牛吃草公式及倍数知识

合集下载

牛吃草问题解法公式

牛吃草问题解法公式

牛吃草问题解法公式牛吃草问题有这么几个公式哦。

一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。

这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。

那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。

就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。

2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。

你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。

就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。

3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。

你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。

4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式Document number:NOCG-YUNOO-BUYTT-UU986-1986UT牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头天原有草+天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1 ",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1 ",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

【初中数学】奥数牛吃草问题的4个基本公式及经典题型

【初中数学】奥数牛吃草问题的4个基本公式及经典题型

【初中数学】奥数牛吃草问题的4个基本公式及经典题型牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

牛吃草问题是小学奥数中的经典奥数题型之一,也是小学奥数考试中经常会涉及到的考点。

在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×喝的较多天数-适当的牛头数×喝的较少天数)÷(喝的较多天数-喝的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)喝的天数=旧有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式就是化解牛吃草问题的基础。

通常设立每头牛每天吃草量维持不变,设立为"1",解题关键就是弄清楚未知条件,展开对照分析,从而谋出来每日崭新短草的数量,再算出草地里旧有草的数量,进而答疑题所求的问题。

小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上布满牧草,牧草每天都在匀速生长,这片牧场供12头牛喝25天,或者供24头牛喝10天。

在牧场的西侧存有一块60公顷的牧场,20天中供多少头牛吃草?【解析】设立1头牛1天的吃草量为"1",节录条件,将它们转变为如下形式便利分析12头牛25天12×25=300:旧有草量+25天自然增加的草量24头牛10天24×10=240:旧有草量+10天自然增加的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上旧有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供更多草800+16×20=1120,可以使1120÷20=56(头)牛喝20天。

牛吃草公式

牛吃草公式

牛吃草公式牛吃草公式四个基本公式分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)。

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数。

(3)吃的天数=原有草量÷(牛头数-草的生长速度)。

(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题的例题一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天。

如果一头牛一天吃草的量等于5只羊一天吃草的量,那么这块草地可以供10头牛和75只羊一起吃多少天?题目前面说的是牛和羊,两种不同的动物,不同数量,不同天数。

所以我们需要把它换算成同一种动物,这样才便于我们进行计算。

题目后面说1头牛,一天的吃草量等于5只羊一天的吃草量。

这个是一个非常重要的信息。

100只羊每天吃掉的草其实就相当于100÷5=20头牛的草的消耗量。

我们把每头牛一天的吃草量当成为1份,假设草地每天恢复的量为x份,那我们就可以列一个方程。

根据这个方程式,我们可以算出这个x=10,也就是说草地每天恢复10份的量。

根据题意草地原有草量为。

(16×20)-(20×10)=320-200=120(份)。

10头牛和75只羊每天的吃草量,其实就相当于:10+75÷5=25(头)牛的吃草量。

每天纯消耗草量:25-10=15(份)。

120÷(25-10)=120÷15=8(天)。

答:这块草地可以供10头牛和75只羊一起吃8天。

六年级奥数—牛吃草问题

六年级奥数—牛吃草问题

六年级奥数——牛吃草问题牛吃草问题常用到四个基本公式;分别是:①草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数②原有草量=牛头数×吃的天数-草的生长速度×吃的天数③吃的天数=原有草量÷牛头数-草的生长速度④牛头数=原有草量÷吃的天数+草的生长速度这四个公式是解决牛吃草问题的基础..一般设每头牛每天吃草量不变;设为"1";解题关键是弄清楚已知条件;进行对比分析;从而求出每日新长草的数量;再求出草地里原有草的数量;进而解答题总所求的问题..练习1.牧场上长满牧草;草平均匀速生长;这片牧场可供10头牛吃20天;可供15头牛吃10天..问可供25头牛吃几天2.一块草地长满了草;草每天还在匀速生长..已知3头牛36天可把草吃光;5头牛20天可把草吃光..现在要求12天把草吃光;需要几头年牛去吃3.一块草地长满了草;草每天匀速生长..如果17头牛去吃;30天可把草吃光;如果19头牛去吃;24天可把草吃光..现在有若干头牛去吃草;吃了6天后;4头牛死亡;余下的牛继续吃了2天才将草吃光..问原来有多少头牛4.一个水池装有1根进水管和8根相同的排水管..先打开进水管给水池注入一定数量的水;然后同时打开排水管排水;当然进水管还在继续进水..如果打开全部排水管;则3个小时可将水池中的水排光;如果只打开3根排水管;则要18小时才能将水池中的水排光..问:想要8小时排光池中的水;至少需打开几根排水管5.三块草地长满草;草每天匀速生长..第一块草地33亩;可供22头牛吃54天;第二块草地28亩;可供17头牛吃84天;第三块草地40亩;可供多少头牛吃24天6.牧场上的青草每天都在匀生长..这片牧场可供27头牛吃6天;或者可供23头牛吃9天..那么可供21头牛吃几天7.有一片牧场;草每天都匀速生长草每天增长量相等;如果放牧24头牛;则6天吃完牧草;如果放牧21头牛;则8天可吃完牧草;假设每头牛吃草的量是相等的..1如果放牧16头牛;几天可以吃完牧草 2要使牧草永远吃不完;最多可放多少头牛8.有一水池;池底不断有泉水匀速涌出..用10台抽水机20小时可将水抽干;用15台相同的抽水机10小时可将水抽干..问用25台抽水机多少小时可将水抽干9.一块草地;草每天匀速生长..10头牛3天可吃光;5头牛8天可吃光..如果2天要吃光;需要多少头牛来吃10.一湖存有一定量的水;流入均匀入湖..5台抽水机20天可抽干..6台同样的抽水机15天可抽干..若要求6天抽干;需几台这样的抽水机11.一个水池有10根进水管和10根相同的排水管..先打开进水管给水池注入一定的水;然后同时打开排水管进水管不关闭..如果打开10根排水管;则3个小时可将水池里的水排光;如果打6根排水管;则6个小时可将水池里的水排光..问想要10个小时排空水池;则至少要开几根排水管12.一片牧场;可供18头牛吃4天;可供23头牛吃3天..现在有13头牛;放牧了3天后;又购进5头牛..问还吃几天;正好吃完全部的草13.由于天气逐渐冷起来;牧场上的草不仅不增加;反而以固定的速度在减少..已知某牧场的草可供20头牛吃5天或可供15头牛吃6天;照此计算可供多少头牛吃10天14.某车站在检票前若干分钟就开始排队;每分钟来的旅客人数一样多;从开始检票到等候检票的队伍消失;同时开4个检票口需30分钟;同时开5个检票口需20分钟;如果同时开7个检票口;那么需要多少分钟15.仓库里原有一批存货;后又陆续运货进仓;且每天运进的货一样多..用同样的汽车运货出仓;如果每天用4辆汽车;则9天恰好运完;如果每天用5辆汽车;则6天恰好运完..仓库原有的存货若用1辆汽车运;则需要多少天才能运完16.有快;中;慢三辆车同时从同一地点出发;沿同一公路追赶前面的一个骑车人;这三辆车分别有6他钟;10分钟和12分钟追上了骑车人..现在已知快车速度为24千米/小时;中速车速度为20千米/小时;那么慢速车每小时走多少千米。

牛吃草

牛吃草

学科教师辅导讲义教学内容牛吃草问题讲义牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。

典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。

请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?例4 牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?例5 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。

已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?例6 自动扶梯以均匀速度由下往上行驶,小明和小丽从扶梯上楼,已知小明每分钟走25级台阶,小丽每分钟走20级台阶,结果小明用了5分钟,小丽用了6分钟分别到达楼上。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1" ,解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例 1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛 23头, 9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6 天原有草 +6天生长草23头9 天原有草 +9天生长草21头?天原有草 +?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设 1头牛 1天吃的草为"1" ,由条件可知,前后两次青草的问题相差为23×9 - 27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6 )= 3天生长出来的,所以每天生长的青草为45÷3=15 现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15 )× 6=72那么:第一次吃草量 27×6=162第二次吃草量 23×9=207每天生长草量 45÷3=15原有草量( 27-15 )× 6=72或 162- 15×6=7221头牛分两组, 15头去吃生长的草,其余6头去吃原有的草那么 72÷6=12(天)初中解答:假设原来有的草为x 份,每天长出来的草为y 份,每头牛每天吃草1份。

牛吃草公式及倍数知识

牛吃草公式及倍数知识

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是:设定一头牛一天吃草量为“1”公式1.草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);公式2.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`公式3.吃的天数=原有草量÷(牛头数-草的生长速度);公式4.牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。

任意两个奇数的平方差是8的倍数证明:设任意奇数2n+1,2m+1,(m,n∈N)(2m+1)^2-(2n+1)^2=(2m+1+2n+1)*(2m-2n)=4(m+n+1)(m-n)当m,n都是奇数或都是偶数时,m-n是偶数,被2整除当m,n一奇一偶时,m+n+1是偶数,被2整除所以(m+n+1)(m-n)是2的倍数则4(m+n+1)(m-n)一定是8的倍数2的倍数尾数是偶数3的倍数数字和为3倍数4的倍数末两位是4的倍数5的倍数尾数是0或者56的倍数满足2,37的倍数若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除8的倍数末三位是8的倍数9的倍数数字和等于911的倍数奇数位数字和与偶数位数字和的差为11倍数(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

牛吃草

牛吃草

牛吃草、抽水问题一、关键点:1、草场原有的草量。

2、草场每天生长的草量;3、牛每天吃的草量。

二、基本关系式核心关系式:牛吃草总量(牛头数×时间)=原有草量+新长出草量(每天长草量×时间)总量的差/时间差=每天长草量=安排去吃新草的牛的数量原有草量/安排吃原有草的牛的数量=能吃多少天。

单位:1头牛1天吃草的量●一片牧草,可供16头牛吃20天,也可以供20头牛吃12天,那么25头牛几天可以吃完?解析:法1(方程法),等量关系:原有草量相等。

设每头每天吃草量为“1”, x天吃完,每天长草量y16×20-20y=20×12-12y=25x-xy,x=8,y=10.法2,速度差(追及问题),吃完草可以看着是牛追上草。

(牛吃草速度-草生长速度)×时间(天数)=原有草量20(16-y)=12(20-y)=x(25-y),x=8,y=10.法3(利用基本关系式)总量的差/时间差=每天长草量,(16×20-20×12)/(20-12)=10;原有草量=牛吃草总量-新长出草量,16×20-20×10=120;25头牛分10头吃每天长出的草,还剩15头吃原有的草,120/15=8天。

●有一个水池,池底有泉水不断涌出。

用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。

如果14台抽水机需多少小时可以抽完?()A.25B.30C.40D.45解析:泉水每小时涌出量为:(8×15-5×20)÷(20-15)=4份水;原来有水量:8×15-4×15=60份;用4台抽涌出的水量,10台抽原有的水,需60/10=6小时。

●(不同草场的问题:考虑每单位面积的草量)有三片牧场,牧场上的草长的一样密,而且长的一样快,他们的面积分别是公顷、10公顷和24公顷。

12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草。

牛吃草问题详解

牛吃草问题详解

牛吃草问题详解牛吃草问题学习资料。

一、基本公式。

1. 设定一头牛一天吃草量为“1”。

2. 草的生长速度=(对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)。

3. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

4. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)。

5. 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、例题解析。

(一)基础题型。

例1。

有一片牧场,草每天都在匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。

设每头牛每天吃草的量是相等的,问:如果放牧16头牛,几天可以吃完牧草?要使牧草永远吃不完,最多放牧多少头牛?解析:1. 首先求草的生长速度:- 设每头牛每天吃草量为1份。

- 24头牛6天的吃草量为24×6 = 144份。

- 21头牛8天的吃草量为21×8=168份。

- 草的生长速度(168 - 144)÷(8 - 6)=12份/天。

2. 然后求原有草量:- 原有草量=24×6-12×6 = 72份。

3. 计算16头牛吃完牧草的天数:- 吃的天数=72÷(16 - 12)=18天。

4. 要使牧草永远吃不完,那么牛吃草的速度最多等于草生长的速度,所以最多放牧12头牛。

例2。

牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

供25头牛可吃几天?解析:1. 求草的生长速度:- 设每头牛每天吃草量为1份。

- 10头牛20天吃草量10×20 = 200份。

- 15头牛10天吃草量15×10 = 150份。

- 草的生长速度(200 - 150)÷(20 - 10)=5份/天。

2. 求原有草量:- 原有草量=10×20 - 5×20=100份。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

倍数牛吃草

倍数牛吃草

牛吃草问题1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3)吃的天数=原有草量÷(牛头数-草的生长速度);4)牛头数=原有草量÷吃的天数+草的生长速度。

追问例如:有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?解:(200-150)/(20-10)=5(草的生长速度)10*20-5*20=100 (原有草量)100/(25-5)=5(天)追问如果是求牛的头数呢?题目。

例如:有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃5天?解:(20*10-10*15)/(20-10)=5(草的生长速度)10*20-5*20=100 (原有草量)牛头数=原有草量÷吃的天数+草的生长速度=100÷5+5=20+5=25(头)倍数问题【1】果园有苹果树1200棵,梨树的棵数比苹果树的2倍多80棵。

梨树有多少棵?【2】果园有梨树2480棵,梨树的棵数比苹果树的2倍多80棵。

苹果树有多少棵?小结解答求1倍数或几倍数的问题时,特别要注意分清是属于求几倍数的题,还是求1倍数的题。

求几倍多几或几倍少的量,都要先求出几倍数,然后再加或减,即先乘再加或减。

反之,已知几倍多几或几倍少几的量,而求1倍数,应先减或加,求出几倍的对应量,再除以倍数。

【3】学校图书馆有科技书和文艺书共2400本,文艺书的本数是科技书的4倍。

两种书各有多少本?【4】体育室有足球和篮球共76只,足球的只数比篮球的3倍还多4只,足球和篮球各有多少只?分析把篮球的只数看作1份,那么足球的只数就相当于篮球的3份还多4只。

足球和篮球共76只,可以看作篮球的4份就是76-4=72(只),这样篮球的只数是;(76-4)÷(3+1)=18(只)足球的只数有两种方法求得:一种方法是知道足球和篮球共76只,篮球18只。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题经常使用到四个基本公式,辨别是:之老阳三干创作(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决牛吃草问题的基础.一般设每头牛每天吃草量不变,设为"1",解题关头是弄清楚已知条件,进行对比阐发,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题.例1一个牧场长满青草,牛在吃草而草又在不竭生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽.如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关头是要抓住牧场青草总量的变更.设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45.为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份.那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛,设n天可以吃完,则:72+15n=21nn=12例2一水库原有存水量一定,河水每天入库.5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1",第一次总量为5×20=100,第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40,原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份,每天流进来的水为y份,每台机器抽出的水是1个单位.那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完,设n台机器可以抽完,则:60+6×2=6 nn=12。

牛吃草问题的解题口诀及详细解题思路

牛吃草问题的解题口诀及详细解题思路

牛吃草问题的解题口诀及详细解题思路
【口诀】:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。

牛吃草问题的例题解析
例:整个牧场上草长得一样密,一样快。

27头牛6天可以把草吃完;23头牛9天也可以把草吃完。

问21头多少天把草吃完。

每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。

所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;。

牛吃草问题公式

牛吃草问题公式

牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰1) 设定一头牛一天吃草量为“1”1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3)吃的天数=原有草量÷(牛头数-草的生长速度);4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。

牛吃草问题公式

牛吃草问题公式

牛吃草问题公式文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-牛吃草问题公式(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度小学奥数教程:牛吃草问题公式汇总典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是:设定一头牛一天吃草量为“1”公式1.草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);公式2.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`公式3.吃的天数=原有草量÷(牛头数-草的生长速度);公式4.牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是:
设定一头牛一天吃草量为“1”
公式1.草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
公式2.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
公式3.吃的天数=原有草量÷(牛头数-草的生长速度);
公式4.牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

解多块草地的方法
多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,”相对简单些。

1我们一般把面积统一为“
任意两个奇数的平方差是8的倍数
证明:设任意奇数2n+1,2m+1,(m,n∈N)
(2m+1)^2-(2n+1)^2
=(2m+1+2n+1)*(2m-2n)
=4(m+n+1)(m-n)
当m,n都是奇数或都是偶数时,m-n是偶数,被2整除
当m,n一奇一偶时,m+n+1是偶数,被2整除
所以(m+n+1)(m-n)是2的倍数
则4(m+n+1)(m-n)一定是8的倍数
2的倍数尾数是偶数
3的倍数数字和为3倍数
4的倍数末两位是4的倍数
5的倍数尾数是0或者5
6的倍数满足2,3
7的倍数若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除
8的倍数末三位是8的倍数
9的倍数数字和等于9
11的倍数奇数位数字和与偶数位数字和的差为11倍数
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的末位是0或5,则这个数能被5整除。

(6)若一个整数能被2和3整除,则这个数能被6整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

整除。

8整除,则这个数能被8)若一个整数的未尾三位数能被8(.
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。

(10)若一个整数的末位是0,则这个数能被10整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。

(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。

如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这整除23个数能被。

相关文档
最新文档