11[1].1.1三角形的边同步练习题(三)
人教版八年级数学上册11.1.1《三角形的边》同步训练习题
人教版八年级数学上册11.1.1《三角形的边》同步训练习题一.选择题(共7小题)1.(2014秋•惠城区校级月考)下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角2.(2014春•泗县校级期中)图中三角形的个数是()A.8个B.9个C.10个D.11个3.(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.14.(2015•海安县校级二模)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.105.(2015•集美区一模)在同一平面内,线段AB=7,BC=3,则AC长为()A.AC=10 B.AC=10或4 C.4<AC<10 D.4≤AC≤106.(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)7.(2015春•泰兴市期末)已知△ABC的三边a,b,c的长度都是整数,且a≤b <c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个二.填空题(共7小题)8.(2013秋•温岭市校级期中)三角形按边分类可分为:三边都不相等的三角形和三角形两类.9.(2012春•南安市校级月考)平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,用它们作顶点可以组成三角形的个数是个.10.(2015•丹东一模)已知三角形的三边的长分别是5、x、9,则x的取值范围是.11.(2015春•衡阳县期末)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为.12.(2015春•鄄城县期末)若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为.13.(2015春•无锡校级期中)小明和小丽是同班同学,小明家距学校2千米,小丽家距学校5千米,设小明家距小丽家x千米,则x的值应满足.14.(2015秋•鄂城区校级月考)设△ABC三边为a、b、c,其中a、b满足|a+b ﹣6|+(a﹣b+4)2=0,则第三边c的取值范围.三.解答题(共5小题)15.如图,以BC为边的三角形有几个?以A为顶点的三角形有几个?分别写出这些三角形.16.(2013秋•庄浪县校级月考)三角形的三边长分别为5,1+2x,8,求x的取值范围.17.若△ABC中两边长之比为2:3,三边都是整数且周长为18cm,求各边的长.18.(2015秋•石城县校级月考)已知a、b、c为三角形三边的长,化简:|a﹣b ﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.19.(2013秋•湖北校级期中)已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣5)2=0,求b的取值范围.人教版八年级数学上册11.1.1《三角形的边》同步训练习题参考答案一.选择题(共7小题)1.(2014秋•惠城区校级月考)下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角选A2.(2014春•泗县校级期中)图中三角形的个数是()A.8个B.9个C.10个D.11个【考点】三角形.【分析】根据三角形的定义,找出图中所有的三角形即可.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.【点评】此题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.3.(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.(2015•海安县校级二模)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.10【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边,分别求出x的最小值、最大值,进而判断出x的值可能是哪个即可.【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.【点评】此题主要考查了三角形的三边的关系,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)三角形的两边差小于第三边.5.(2015•集美区一模)在同一平面内,线段AB=7,BC=3,则AC长为()A.AC=10 B.AC=10或4 C.4<AC<10 D.4≤AC≤10【考点】三角形三边关系;两点间的距离.【分析】此题要分三点共线和不共线两种情况.三点共线时,根据线段的和、差进行计算;三点不共线时,根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行计算.【解答】解:若点A,B,C三点共线,则AC=4或10;若三点不共线,则根据三角形的三边关系,应满足大于4而小于10.所以4≤AC≤10.故选:D.【点评】此题主要考查了线段的和与差以及三角形的三边关系,关键是要考虑全面,此题有两种情况,不要漏解.6.(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)【考点】三角形三边关系.【分析】根据三角形的三边关系对各选项进行逐一分析即可.【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.7.(2015春•泰兴市期末)已知△ABC的三边a,b,c的长度都是整数,且a≤b <c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个【考点】三角形三边关系.【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c﹣b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.【点评】此题考查了三角形的三边关系.此题难度较大,解题的关键是根据三角形的三边关系与a,b,c的长都是整数,且a≤b<c,b=5去分析求解,得到a=2,3,4,5.二.填空题(共7小题)8.(2013秋•温岭市校级期中)三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.【考点】三角形.【分析】三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.【解答】解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.【点评】此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).9.(2012春•南安市校级月考)平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,用它们作顶点可以组成三角形的个数是4个.【考点】三角形.【分析】根据三角形的定义(由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形)填空.【解答】解:∵平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,∴用它们作顶点可以组成三角形有:△ABC、△ABD、△ACD和△BCD,共4个.故填:4.【点评】本题考查了三角形的定义.注意,是不在同一直线上的三个点才可以连接成为三角形.10.(2015•丹东一模)已知三角形的三边的长分别是5、x、9,则x的取值范围是4<x<14.【考点】三角形三边关系.【分析】由三角形的两边的长分别为9和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.【解答】解:根据三角形的三边关系,得:9﹣5<x<9+5,即:4<x<14.故答案为:4<x<14.【点评】此题考查了三角形的三边关系.此题比较简单,注意掌握已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和.11.(2015春•衡阳县期末)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为8或10cm.【考点】三角形三边关系.【点评】考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.12.(2015春•鄄城县期末)若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为15cm或18cm.【考点】三角形三边关系.【分析】分情况考虑:当相等的两边是4cm时或当相等的两边是7cm时,然后求出三角形的周长.【解答】解:当相等的两边是4cm时,另一边长为7cm,则三角形的周长是4×2+7=15cm,当相等的两边是7cm时,则三角形的周长是4+7×2=18cm.故答案为:15cm或18cm.【点评】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:两边之和大于第三边,两边之差小于第三边.13.(2015春•无锡校级期中)小明和小丽是同班同学,小明家距学校2千米,小丽家距学校5千米,设小明家距小丽家x千米,则x的值应满足3≤x≤7.【考点】三角形三边关系.【分析】小明家、小丽家和学校可能三点共线,也可能构成一个三角形,由此可列出不等式5﹣2≤x≤5+2,化简即可得出答案.【解答】解:依题意得:5﹣2≤x≤5+2,即3≤x≤7.故答案为:3≤x≤7;【点评】本题考查的是三角形三边关系定理的应用,解此类题目时要注意三个地点的位置关系.14.(2015秋•鄂城区校级月考)设△ABC三边为a、b、c,其中a、b满足|a+b ﹣6|+(a﹣b+4)2=0,则第三边c的取值范围4<c<6.【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值范围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.【点评】此题主要考查了非负数的性质,以及三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.三.解答题(共5小题)15.如图,以BC为边的三角形有几个?以A为顶点的三角形有几个?分别写出这些三角形.【考点】三角形.【分析】根据图形直接得出所有的三角形进而得出答案.【解答】解:以BC为边的三角形有△ABC,△DBC,△EBC,△OBC;以A为顶点的三角形有△ABE,△ADC,△ABC.【点评】此题主要考查了三角形的定义,根据三条线段,两两相交在一起所构成的一个密闭的平面图形叫做三角形得出所有三角形是解题关键.16.(2013秋•庄浪县校级月考)三角形的三边长分别为5,1+2x,8,求x的取值范围.【考点】三角形三边关系;解一元一次不等式组.【分析】根据三角形的三边关系三角形两边之和大于第三边;三角形的两边差小于第三边可得8﹣5<1+2x<8+5,再解不等式即可.【解答】解:根据三角形的三边关系可得8﹣5<1+2x<8+5,解得:1<x<6.【点评】本题考查了三角形的三边关系,以及解一元一次不等式组,关键是熟记三边关系.17.若△ABC中两边长之比为2:3,三边都是整数且周长为18cm,求各边的长.【考点】三角形三边关系.【分析】首先根据题意设两边长为2xcm,3xcm,第三边长为ycm,根据周长为18cm可得2x+3x+y=18,然后计算出正整数解,再根据三边关系确定答案.【解答】解:设两边长为2xcm,3xcm,第三边长为ycm,2x+3x+y=18,5x+y=18,①x=1,y=13,则三边长为2cm,3cm,13cm,∵2+3=5<13,∴不能够成三角形;②x=2,y=8,则三边长分别为4cm,6cm,8cm,∵4+6>8,∴能够成三角形;③x=3,y=3,则三边长分别为6cm,9cm,3cm,∵3+6=9,∴不能够成三角形;因此各边的长分别为4cm,6cm,8cm.【点评】此题主要考查了二元一次方程的应用,以及三角形的三边关系,关键是掌握三角形两边之和大于第三边.18.(2015秋•石城县校级月考)已知a、b、c为三角形三边的长,化简:|a﹣b ﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.【考点】三角形三边关系;绝对值;整式的加减.【分析】根据三角形的三边关系得出a+b>c,a+c>b,b+c>a,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|a﹣(b+c)|+|b﹣(c+a)|+|c﹣(a+b)|=b+c﹣a+a+c﹣b+a+b﹣c=a+b+c.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.(2013秋•湖北校级期中)已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣5)2=0,求b的取值范围.【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质得b+c﹣2a=0,b+c﹣5=0,两式联立求出a的值,再根据三角形任意两边之和大于第三边,任意两边之差小于第三边列不等式求解即可.【点评】本题主要利用非负数的性质和三角形的三边关系求解.几个表示非负数的算式的和等于0,则每一个运算式都等于0.。
11-1-1 三角形的边 随堂练习 人教版数学八年级上册
11.1.1 三角形的边一、单选题1.用集合来表示“按边把三角形分类”,下面集合正确的是()A.B.C.D.2.若长度分别为2,7,x的三条线段能组成一个三角形,则x的值可以是( )A.4B.5C.6D.93.若一个三角形的两边长分别为5和8,则第三边长可能是( )A.14B.10C.3D.24.在△ABC中,三边长分别为a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是( )A.3<a<8B.5<a<11C.6<a<10D.8<a<115.如图,称有一条公共边的两个三角形为一对共边三角形,则图中的共边三角形有()对.A.8B.16C.24D.326.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形7.如图,与ABC没有公共边的三角形是()A.CDE B.BCE C.ABE D.BCD8.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是()A.12B.10C.9D.69.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|=( )A.a+b+cB.﹣a+3b﹣cC.a+b﹣cD.2b﹣2c10.一个三角形的三边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过10cm,则x取值范围是( )A.x≤133B.1<x≤133C.x≤73D.1<x≤73二、填空题11.一个等腰三角形的两边分别为5、2.则它的周长是__________ .12.△ABC中三边长分别为a,b,c,已知a=5,b=8,则第三边c的取值范围是_____.13.现有四根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能组成三角形的个数为_____个.14.求三边为整数,且最大边小于16的三角形个数为_____个.15.已知△ABC的边长a,b,c满足()2240a b+=--,若c为偶数,则c的值为________.16.根据________可以判断,三条长分别为2cm、3cm、6cm的木棒不能围成一个三角形.三、解答题17.已知a,b,c分别是三角形的三条边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|.18.在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.19.已知:a、b、c满足2(|0a c+-=求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.20.如果一个三角形的一边长为9cm 、另一边长为1cm ,求:(1)这个三角形的第三边的范围;(2)当第三边长为奇数时,求三角形的周长.21.阅读下列材料:解方程组:()1045x y x y y --=⎧⎪⎨--=⎪⎩①② 解:由△得x ﹣y =1 △,将△代入△,得4×1﹣y =5,解这个一元一次方程,得y =﹣1从而求得01x y =⎧⎨=-⎩. 这种思想被称为“整体思想”.请用“整体思想”解决下面问题:(1)解方程组:2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩; (2)在(1)的条件下,若x ,y 是△ABC 两条边的长,且第三边的长是奇数,求△ABC 的周长.。
2021年人教版数学八年级上册11.1.1《三角形的边》课时练习(含答案)
人教版数学八年级上册11.1.1《三角形的边》课时练习一、选择题1.若三角形的两边长分别为6 ㎝,9 cm,则其第三边的长可能为( )A.2㎝ B.3 cm C.7㎝ D.16 cm2.如图,下图中共有三角形()A.4个B.5个C.6个D.8个3.为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15m B.17m C.20m D.28m4.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个5.一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有()A.1个 B.2个 C.3个 D.4个6.如图,A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n;则下列说法正确的是( )A.AB∥PCB.△ABC的面积等于△BCP的面积C.AC=BPD.△ABC的周长等于△BCP的周长7.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或208.已知三角形两边长分别是4和10,则此三角形第三边的边长可能是()A.5 B.6 C.12 D.169.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm10.一个三角形的三边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过10cm,则x取值范围是()A.xB.1C.xD.1二、填空题11.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.13.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.14.如图,AD是△ABC中线,已知△ABD周长为25 cm,AB比AC长6 cm,则△ACD周长为_____cm.三、解答题15.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数,①求c的长;②判断△ABC的形状.16.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.17.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.18.小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.参考答案1.C2.D3.D4.C5.D6.B7.C8.C9.B10.D11.答案为:1212.答案为:313.答案为:(8,8,5)或(6,6, 9)14.答案为:1915.解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.16.解:设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.17.解:∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解, ∴a-4=±2,解得a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC的周长为2+2+3=7,△ABC是等腰三角形.18.解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m. (2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7,∵7+7<16,∴不能构成三角形,即第一条边长不可以为7m.18.解:(1)如图1所示:∠ADC=∠BDC=90°;(2)如图2所示:∠ACD=120°,∠BDC=150°.。
人教版八年级数学上册《第十一章 11.1.1 三角形的边》课后练习题
人教版八年级数学上册《第十一章11.1.1三角形的边》课后练习一、单选题1.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11a的三条线段能组成一个三角形,则a的值可以是()2.若长度分别为,3,5A.1 B.2 C.3 D.83.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.104.已知n正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有( ) A.4个B.5个C.6个D.7个5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.186.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8二、填空题7.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__ cm.8.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.9.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.10.若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.11.各边长度都是整数、最大边长为8的三角形共有____个.12.我们规定:满足(1)各边互不相等且均为整数;(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为“比高三角形”,其中k叫做“比高系数”.那么周长为13的三角形的“比高系数”k=____.13.△ABC的三边长分别为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|+|a﹣b﹣c|=_____.三、解答题14.已知在△ABC中,AB=5,BC=2,AC的长为奇数.(1)求△ABC的周长;(2)判定△ABC的形状,并说明理由.15.若一个三角形的三边长分别是a,b,c,其中a和b满足方程421804380a bb a+-=⎧⎨-+=⎩,若这个三角形的周长为整数,求这个三角形的周长.16.已知长度分别为1,2,3,4,5,6的线段各一条.若从中选出n条线段组成线段组,由这一组线段可以拼接成三角形,则称这样的线段组为“三角形线段组”.回答下列问题:(1)n的最小值为 .(2)当n取最小值时,“三角形线段组”共有组.(3)若选出的m条线段组成的线段组恰好可以拼接成一个等边三角形,则称这样的线段组为“等边三角形线段组”,比如“等边三角形线段组”{1,2,4,5,6}可以拼接成一个边长为6的等边三角形.请写出另外两组不同的“等边三角答案:1.B 2.C 3.C 4.D 5.B 6.A7.22 8.7 9.5 10.1<c<5.11.10 12.2或3 13.3b﹣a﹣c14.(1)12;(2)△ABC是等腰三角形.理由见解析。
11-1-1 三角形的边同步练习2022-2023学年人教版八年级数学上册
11.1.1 三角形的边班级 姓名一.选择题1.如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 边为公共边的“共边三角形”有 ( )A.2对 B .3对 C .4对 D.6对2.如图,为估计池塘两岸A ,B 间的距离,数学试验小组在池塘一侧选取了一点P ,测得PA =16 m ,PB =12 m ,则A ,B 间的距离不可能是 ( )A.5 m B .15 m C. 20 m D .28 m3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 ( )A. 12 B .15 C .12或15 D .184.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是 ( )A. 1 : 2 : 4 B .1 : 3 : 4 C .3 : 4 : 7 D .2 : 3: 45.如果三角形的两边长分别是4、5,那么周长c 的范围是 ( )A. 1<c <9 B .9<c <14 C .10<c <18 D .无法确定6.若以4cm 长的线段为底边作一个等腰三角形,则腰长x 的取值范围是 ( )A .x>4 cmB .x>2 cmC .x ≥ 4 cm D. x ≥ 2 cm7.在等腰三角形ABC 中,AB=AC ,其周长为20 cm ,则AB 边的取值范围是 ( )A. 1cm<AB<4 cmB. 5cm<AB<10 cmC. 4cm<AB<8 cmD. 4cm<AB<10 cm8. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有 ( )A.1种 B .2种 C .3种 D .4种二.填空题9.两根木棒的长分别为7 cm 和10 cm ,要选择第三根木棒,将它们钉成一个三角形的框架,那么第三根木棒的长x (单位:cm)的范围是 。
10.三角形的两边长分别为2和6,且第三边的长是整数,则第三边的长是。
人教版数学八年级上册第11章11.1.1三角形的边同步练习(解析版)
人教版数学八年级上册第11章11.1.1三角形的边同步练习一、单选题(共12题;共24分)1、在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为()(提示:可以构造平行四边形)A、2<AD<14B、1<AD<7C、6<AD<8D、12<AD<162、已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A、5B、7C、5或7D、103、等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A、8B、10C、8或10D、不能确定4、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、125、下列各组数据能作为一个等腰三角形各边长的是()A、1,1,2B、4,2,4C、2,3,4D、3,3,76、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A、2<x<6B、3<x<9C、1<x<9D、2<x<87、平行四边形的对角线长为x、y,一边长为11,则x、y的值可能是()A、8和14B、10和8C、10和32D、12和148、平行四边形的两条对角线长和一条边的长可以依次是()A、4、4、4B、6、4、4C、6、4、6D、3、4、59、平行四边形一边的长是10cm,那么它的两条对角线长可以是()A、4、6cmB、6、8cmC、8、12cmD、20、30cm10、分别以下列各组数一个三角形的三边长,其中能构成直角三角形的是()A、B、C、D、2,3,411、平行四边形ABCD中对角线AC和BD交于点O,AC=6,BD=8,平行四边形ABCD较大的边长是m,则m取值范围是()A、2<m<14B、1<m<7C、5<m<7D、2<m<712、下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A、1B、2C、3D、4二、填空题(共5题;共6分)13、已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.14、在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是________.15、已知△ABC中,AB=10cm,AC=12cm,AD为边BC上的中线,求中线AD的取值范围________.16、AD是△ABC的边BC上的中线,AB=6,AC=4,则边BC的取值范围是________,中线AD的取值范围是________.17、已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).三、解答题(共5题;共25分)18、在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.19、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.20、已知三角形三边长分别为a、b、c,其中a、b满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.21、在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.22、如图,线段AB=CD,AB与CD相交于O,且AC与BD不平行,∠AOC=60°,判断AC+BD与AB的大小关系,并说明理由.答案解析部分一、单选题1、【答案】B【考点】三角形三边关系,平行四边形的判定与性质【解析】【解答】解:延长AD至点E,使AD=ED,连接BE、CE.∵点D是BC的中点,∴BD=CD,∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形),∴CE=AB(平行四边形的对边相等),在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,1<AD<7.故选B.【分析】作辅助线(延长AD至点E,使AD=ED)构建平行四边形2、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.【分析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.3、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:∵方程x2﹣6x+8=0的解是x=2或4,·(1)当2为腰,4为底时,2+2=4不能构成三角形;·(2)当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选:B.【分析】先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.4、【答案】B【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.5、【答案】B【考点】三角形三边关系,等腰三角形的判定【解析】【解答】解:A、因为1+1=2,所以本组数据不可以构成等腰三角形;故本选项错误;B、因为4﹣4<2<4+4,所以本组数据可以构成等腰三角形;故本选项正确;C、因为这个三角形没有一组相等的边,所以构不成等腰三角形;故本选项错误;D、因为3+3<7,所以本组数据不可以构成等腰三角形;故本选项错误;故选B.【分析】根据三角形的三边关系对以下选项进行一一分析、判断.6、【答案】C【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:如图,∵平行四边形的两条对角线长分别为8cm和10cm,∴OA=4cm,OB=5cm,∴1<AB<9,即其边长的取值范围是:1<x<9.故选:C.【分析】首先根据题意画出图形,然后由平行四边形的性质得出OA=4cm,OB=5cm,利用三角形的三边关系,即可求得答案.7、【答案】D【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:因为平行四边形的对角线互相平分,一边与两条对角线的一半构成三角形,所以根据三角形的三边关系进行判断:A、根据三角形的三边关系可知:4+7=11,不能构成三角形,故此选项错误;B、5+4<11,不能构成三角形,故此选项错误;C、5+16>11,11+5=16,不能构成三角形,故此选项错误;D、6+7=13>11,能构成三角形,故此选项正确.故选:D.【分析】根据平行四边形的性质知,平行四边形的对角线互相平分,则对角线的一半和已知的边组成三角形,再利用三角形的三边关系可逐个判断即可.8、【答案】B【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,A、OA=2,OB=2,2、2、4不满足三角形的三边关系,不能组成三角形,故本选项错误;B、OA=3,OB=2,3、2、4满足三角形的三边关系,能组成三角形,故本选项正确;C、OA=3,OB=2,3、2、6不满足三角形的三边关系,不能组成三角形,故本选项错误;D、OA=1.5,OB=2,1.5、2、5不满足三角形的三边关系,不能组成三角形,故本选项错误.故选B.【分析】平行四边形的对边相等,对角线互相平分,平行四边形的一边和两条对角线的一半构成三角形,满足三角形中第三边大于两边之差,小于两边之和,由此结合选项即可作出判断.9、【答案】D【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、4+6=10,不能构成三角形,故此选项错误;D、10+10>15,能够成三角形,故此选项正确;故选:D.【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.10、【答案】B【考点】三角形三边关系【解析】【解答】解:根据勾股定理的立逆定理,∵,∴A不符合;∵,∴B符合;∵,∴C不符合;∵,∴D不符合;故选B.【分析】如果三角形三边符合“ ”,那么这个三角形是直角三角形;则只需要计算每个选项中,较小的两边长的平方的和是否等于第三边长的平方.11、【答案】B【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:如图所示:∵四边形ABCD是平行四边形,∴OA= AC=3,OD= BD=4,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3,∴1<AD<7.故选:B.【分析】根据平行四边形的对角线互相平分,即可求得OA与OD的值,又由三角形的三边关系,即可求得答案.12、【答案】C【考点】三角形的角平分线、中线和高,三角形三边关系,三角形内角和定理,全等三角形的判定【解析】【解答】解:∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;∵有两个角和一条边对应相等的两个三角形全等,∴④正确;故选C.【分析】锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,根据以上内容即可判断①;举出反例a=2,b=c=1,满足a+b>c,但是边长为1、1、2不能组成三角形,即可判断②;设三角形的三角为3x°,2x°,x°,由三角形的内角和定理得:3x+2x+x=180,求出3x=90,得出三角形是直角三角形,即可判断③;根据有两个角和一条边对应相等的两个三角形全等即可判断④.二、填空题13、【答案】17【考点】三角形三边关系,全等三角形的性质,等腰三角形的性质【解析】【解答】解:当3为腰时,3+3=6,∵6<7,∴3、3、7不能组成三角形;当7为腰时,3+7=10,∵7<10,∴3、7、7能组成三角形.∴△ABC的周长为3+7+7=17.又∵△DEF≌△ABC,∴△DEF的周长是17.故答案为:17.【分析】根据等腰三角形的性质结合三角形三边关系即可得出等腰三角形的三边长为3、7、7,再根据全等三角形的性质结合三角形的周长即可得出结论.14、【答案】2<AD<4【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.15、【答案】1cm<AD<11cm【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:过点D作DE∥AB交AC于点E,如图所示.∵AD是BC边上的中线,∴BD=CD.∵DE∥AB,∴DE是△ABC的中位线,∴AE= =6,DE= =5.∵在△ADE中:AE﹣DE<AD<AE+DE,∴6﹣5<AD<6+5,∴1<AD<11.故答案为:1cm<AD<11cm.【分析】过点D作DE∥AB交AC于点E,根据AD是BC边上的中线可得出BD=CD,由平行线的性质可得出DE是△ABC的中位线,进而得出AE、DE的长度,再根据三角形的三边关系即可得出中线AD的取值范围.16、【答案】2<BC<10;1<AD<5【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:∵在△ABC中,AB=6,AC=4,∴6﹣4<BC<6+4,∴2<BC<10;延长AD到E,使AD=DE,连接BE,如图所示:∵AD为中线,∴BD=DC,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB=6,BE=4,∴6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为:2<BC<10,1<AD<5.【分析】根据三角形的三边关系定理求出BC的范围即可;延长AD到E,使AD=DE,连接BE,证三角形全等,推出BE=AC=6,在三角形ABE中,根据三角形的三边关系定理求出即可.17、【答案】y=﹣x+9(0<x<9)【考点】函数关系式,函数自变量的取值范围,三角形三边关系,等腰三角形的性质【解析】【解答】解:由已知得:y=﹣x+9,三角形的三边关系式可得:,解得:0<x<9.则y与x之间的函数关系式为y=﹣x+9(0<x<9).故答案为:y=﹣x+9(0<x<9).【分析】根据三角形的周长公式结合等腰三角形的周长为48厘米,即可得出腰长y关于底边长x的函数解析式,再由三角形的三边关系即可得出关于x的一元一次不等式组,解不等式组即可得出x的取值范围.三、解答题18、【答案】解:如图,设AB=AC=a,BC=b,则有a+a=24且a+b=18;或a+a=18且a+b=24,得到a=16,b=10或a=12,b=18,这时三角形的三边长分别为16,16,10和12,12,18.它们都能构成三角形.【考点】三角形三边关系【解析】【分析】结合题意画出图形,利用三角形的中线的定义,以及三角形的周长和三角形的三边关系求三角形三边的长.19、【答案】解:若4cm长的边为底边,设腰长为xcm,则4+2x=14,解得x=5,若4cm长的边为腰,设底边为xcm,则2×4+x=14,解得x=6.两种情况都成立.所以等腰三角形另外两边长分别为5cm、5cm或4cm、6cm【考点】三角形三边关系,等腰三角形的性质【解析】【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.20、【答案】解:∵(a﹣6)2+|b﹣8|=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14【考点】三角形三边关系,平方的非负性,绝对值的非负性【解析】【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.21、【答案】解:∵关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,∴△=(b+2)2﹣4(6﹣b)=0,即b2+8b﹣20=0;解得b=2,b=﹣10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12【考点】根与系数的关系,三角形三边关系,等腰三角形的性质【解析】【分析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.22、【答案】证明:把CD沿CA方向、距离为AC长度平移到AE,连接BE、DE,如图,则AC=ED,AE∥CD,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,在△DBE中,ED+BD>EB,则有AC+BD>AB【考点】平行线的性质,三角形三边关系,等边三角形的判定与性质【解析】【分析】根据三角形的三边关系:两边之和大于第三边,及平移的基本性质可得.。
人教版八年级上册数学:《11.1.1三角形的边》同步练习及答案
清大教育三角形的边试题一、选择题1.三角形是( )A .连接任意三角形组成的图形B .由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C .由三条线段组成的图形D .以上说法均不对2.若△ABC 三条边的长度分别为m,n,p,且()02=-+-p n n m ,则这个三角形为( )A .等腰三角形 B.等边三角形C .直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( )A .一个直角三角形一定不是等腰三角形B .一个等腰三角形一定不是锐角三角形C .一个等腰三角形一定不是等腰三角形D .一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( )A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( )A .3cm B.4 cm C. 7 cm D.11cm6.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A .2 B.3 C.4D.87.)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远8.)如图1为图2中三角柱ABCEFG 的展开图,其中AE 、BF 、CG 、DH 是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB 长度?( )A .2B .3C .4D .5 (第7题) (第8题) (第9题)二、填空题9.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有________对10.已知△ABC 的一个外角为50°,则△ABC 一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C 在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n 个图形中,互不重叠的三角形共有__________个(用含n 的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有 __________ 个三角形.17.如图,直角ABC 的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为 __________.18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.如图,△ABC 是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.。
人教版八年级数学上《11.1.1三角形的边》同步练习题(含答案)
初中数学·人教版·八年级上册——第11章三角形11.1与三角形有关的线段11.1.1三角形的边同步练习题测试时间:30分钟一、选择题1.如图,以BC为边的三角形有()A.3个B.4个C.5个D.6个答案B以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为()A.4B.3C.2D.1答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cmB.6cmC.9cmD.3cm或6cm答案A当3cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3cm,3cm,6cm不能构成三角形,∴此种情况不存在;当3cm是等腰三角形的底边长时,腰长=12-32=4.5(cm),此时能组成三角形.∴底边长为3cm,故选A.二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.答案10解析若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.如果三角形的三边长分别为3a,4a,14,则a的取值范围是.答案2<a<14解析根据三角形的三边关系,得3 +4 >14,4 -3 <14,解得2<a<14.三、解答题6.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.解析(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c为整数,∴c=4,5,6,∴当c=4时,△ABC的周长最小,最小值=5+2+4=11;当c=6时,△ABC的周长最大,最大值=5+2+6=13.7.小兵用长度为10cm,45cm和50cm的三根木条钉一个三角形时,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个三角形木架?解析(1)∵两根木条的长为10cm,45cm,∴若设第三根木条的长为x cm,则x应满足45-10<x<45+10,即35<x<55,∵第三根木条长为50cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25cm,则还剩25cm.要想钉成一个三角形木架,可以将45cm长的木条折成大于15cm且小于35cm的木条.。
人教版八年级数学上册 11.1.1 三角形的边 同步练习题(含答案,教师版)
人教版八年级数学上册第十一章三角形11.1.1 三角形的边同步练习题1.下列4个图形都是由三条线段组成的图形,其中是三角形的是(C)2.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示(D)A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.有下列说法:①三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;②等边三角形一定是等腰三角形;③有两边相等的三角形一定是等腰三角形.其中说法正确的有(B)A.1个B.2个C.3个D.0个4.在下列长度的三条线段中,不能组成三角形的是(C)A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm5.如图,为估计池塘岸边A,B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,则A,B间的距离不可能是(A)A.5米B.10米C.15米D.20米6.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为(C)A.7B.8C.9D.107.图中三角形的个数是(C)A.4个B.6个C.8个D.10个8.已知n是正整数,若一个三角形的三边长分别是n+2,n+8,3n,则满足条件的n的值有(D)A.4个B.5个C.6个D.7个9.如图所示,以AB为边的三角形有△ABO,△ABC,△ABD;含∠ACB的三角形有△BOC,△ABC;在△BOC中,OC的对角是∠OBC,∠OCB的对边是OB.10.如图,过A,B,C,D,E五个点中的任意三个点画三角形.(1)其中以AB为一边可以画出3个三角形;(2)其中以C为顶点可以画出6个三角形.11.如图,已知AB=AC,AD=BD=DE=CE=AE,则图中共有4个等腰三角形,有1个等边三角形.12.已知等腰三角形的一边长为4,另一边长为8,则该等腰三角形的周长为20.13.在长度为2,5,6,8的四条线段中,任取三条线段,可构成2个不同的三角形.14.已知三角形的两边长分别为2 cm和7 cm,最大边的长为a cm,则a的取值范围是7≤a <9.15.图中共有12个三角形.16.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC-BC=5,求AB的最小值.解:(1)∵由三角形的三边关系知,6<AB<10,又∵△ABC的周长为奇数,而AC,BC为偶数,∴AB为奇数,故AB=7或9.(2)∵AC-BC=5,∴AC,BC中一个奇数、一个偶数.又∵△ABC的周长为奇数,故AB为偶数,∴AB>AC-BC=5,得AB的最小值为6.17.已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a-b|+|b-c|=0,试判断△ABC的形状;(2)化简:|a-b-c|+|b-c-a|+|c-a-b|.解:(1)∵|a-b|+|b-c|=0,∴a-b=0,b-c=0.∴a=b=c.∴△ABC为等边三角形.(2)∵a,b,c是△ABC的三边长,∴a-b-c<0,b-c-a<0,c-a-b<0.∴原式=-a+b+c-b+c+a-c+a+b=a+b+c.18.【探究题】如图,点P是△ABC内部的一点.(1)度量线段AB,AC,PB,PC的长度,根据度量结果比较AB+AC与PB+PC的大小;(2)改变点P的位置,上述结论还成立吗?(3)你能说明上述结论为什么成立吗?解:(1)AB+AC>PB+PC.(2)改变点P的位置,上述结论还成立.(3)连接AP,延长BP交AC于点E,在△ABE中有,AB+AE>BE=BP+PE.①在△CEP中有,PE+CE>PC.②①+②,得AB+AE+PE+CE>BP+PE+PC,即AB+AC+PE>BP+PE+PC,∴AB+AC>BP+PC.。
人教版八年级数学上册《11.1.1三角形的边》同步练习-带答案
人教版八年级数学上册《11.1.1三角形的边》同步练习-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是()A.B.C.D.2.等边三角形是().A.直角三角形B.锐角三角形C.钝角三角形D.等腰直角三角形3.下列几组线段中,能构成三角形的是()A.2,3,5B.3,4,5C.3,5,10D.4,4,84.已知在ABC中84,,那么边AC的长可能是()AB BC==A.13B.5C.2D.15.如图,测得100mPB=那么点A与点B之间的距离可能是()PA=,90mA.10m B.120m C.190m D.220m6.如图,李老师用长方形纸板遮住了ABC的一部分,其中6AB=,则另外两边的长不可能是()A.3,4B.2,5C.3,6D.2,37.已知三角形的三边长分别为1,2,x,则x的取值范围在数轴上表示为() A.B.C.D.二、填空题8.如图,图中有个三角形,以AD为边的三角形有.9.已知三角形的两边长为3和4,则第三条边长可以为.(请写出一个符合条件的答案)10.三角形的三边长分别为7,1+2x,13,则x的取值范围是11.三角形的三边长为3、a、7,且三角形的周长能被5整除,则a = ;12.已知a,b,c是△ABC的三边长,a,b满足|a﹣6|+(b﹣2)2=0,c为偶数,则c=.13.三角形的两条边长分别是2cm,8cm,第三边为奇数,则其周长为.三、解答题14.判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、9cm、4cm;(2)4cm、7cm、11cm;(3)5cm、6cm、10cm;15.已知a,b,c是ABC的三边长,若21b a=-,5=+且ABC的周长不超过20cm,求a范c a围.16.如果一个三角形的一边长为9cm,另一边长为3cm.(1)求这个三角形第三边的长的取值范围;(2)当第三边长为偶数时,求三角形的周长.17.一个等腰三角形的周长是28cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边长为6cm,求各边的长.参考答案1.D2.B3.B4.B5.B6.D7.A8. 3 △ABD,△ADC9.5(不唯一)10.3<x<611.512.613.17cm或19cm14.(1)不能,因为3cm+4cm <9cm;(2)不能,因为4cm+7cm=11cm;(3)能,因为5cm +6cm>10cm15.3<a≤416.(1)6cm<第三边的长12cm<(2)三角形的周长为20cm或22cm17.(1)4cm,12cm,12cm;(2)6cm,11cm,11cm.。
人教版八年级数学上册《11.1.1三角形的边》同步练习题-带答案
人教版八年级数学上册《11.1.1三角形的边》同步练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.观察下列图形,其中是三角形的是( )A .B .C .D .2.如图,图中共有三角形( )A .4个B .5个C .6个D .8个3.下列长度的三条线段能组成三角形的是( )A .3cm ,5cm ,4cmB .1cm ,2cm ,3cmC .2cm ,2cm ,5cmD .1cm ,2cm ,4cm4.现有2根木棒,它们的长分别是8cm 和5cm ,还需要一根木棒来组成首尾相连的三角形,应选择( )的木棒A .2cmB .3cmC .5cmD .13cm5.一个三角形的三条边长为2、3、x ,则其中x 取值的范围是( )A .5x <B .1x >C .15x <<D .15x ≤≤6.已知等腰三角形的两边分别为5cm 、10cm ,则第三边长为( )A .5cmB .10cmC .5cm 或10cmD .12cm7.有四根木条,长度分别是5cm 、6cm 、11cm 、16cm ,选其中三根组成三角形,能组成三角形的个数是( )个A .1B .2C .3D .48.如果三角形的两边长分别为5和8,第三边长为奇数,那么这个三角形的周长不可以是( ) A .26B .24C .22D .20二、填空题9.若三角形的三边长分别为3,x ,5,请写出x 可能的整数值 .(只要写一个) 10.若三角形两边的长分别为2cm 和3cm ,且第三边的长为奇数,则第三边的长为 cm. 11.设三角形三边之长分别为3,8,2a -1,则a 的取值范围为 .12.如果一个三角形两边长为2cm ,7cm ,且三角形的第三边为偶数,则三角形的周长是13.如果△ABC中,两边a=7cm,b=3cm,则c的取值范围是;第三边为奇数的所有可能值为;周长为偶数的所有可能值为.三、解答题14.判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、8cm、4cm;(2)5cm、6cm、11cm;(3)5cm、6cm、10cm;15.已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.16.一个三角形的三边长分别是a、a+2、a+4,它的周长不超过30,求a的取值范围.17.已知一个等腰三角形的周长为24cm.(1)若一条边的长为10cm,求其余两条边的长;(2)若一条边的长为4cm,求其余两条边的长.参考答案1.B2.D3.A4.C5.C6.B8.A9.5 (答案不唯一)10.311.36a<<12.15或17.13.4cm<c<10cm 5cm、7cm、9cm 16cm或18cm14.(1)不能,因为3cm+4cm <8cm;(2)不能,因为5cm+6cm=11cm;(3)能,因为5cm +6cm>10cm15.7或9.16.28a<≤17.(1)10cm,4cm或7cm,7cm (2)10cm,10cm。
人教版八年级数学上第十一章11.1.1《三角形的边》同步练习 姓名 .docx
初中数学试卷 鼎尚图文**整理制作第十一章11.1.1《三角形的边》同步练习 姓名 (时间120分钟,满分150分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、三角形是( )A .连接任意三角形组成的图形B .由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C .由三条线段组成的图形D .以上说法均不对2.若△ABC 三条边的长度分别为m ,n ,p ,且()02=-+-p n n m ,则这个三角形为( ) A .等腰三角形 B.等边三角形 C .直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( )A .一个直角三角形一定不是等腰三角形;B .一个等腰三角形一定不是锐角三角形C .一个等腰三角形一定不是等腰三角形;D .一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( )A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.一个三角形的两边长分别为3cm 和7cm ,则此三角形第三边长可能是( )A .3cm B.4 cm C. 7 cm D.11cm6. 如果三角形的两边长分别为3和5,则周长L 的取值范围是( )A.6<L<15B.6<L<16C.11<L<13D.10<L<167、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )A.2cmB.3cmC.4cmD.5cm8、等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为( )cm.A 、3B 、8C 、3或8D 、以上答案均不对9、若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为( )A 、2cmB 、4cmC 、6cmD 、8cm10、已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9B.12C.15D.12或1511、下列说法中,正确的有( )个:A 、4 B 、3 C 、2 D 、1(1)三角形可分为等腰三角形、钝角三角形、不等边三角形。
11-1-1三角形的边 同步精练 人教版八年级数学上册
11.1.1 三角形的边 同步精练一、单选题1.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是( ) A .B .C .D . 2.下列长度的三条线段,能组成三角形的是( )A .1,1,3B .3,4,5C .2,3,5D .4,5,9 3.如图所示的图形中共有( )三角形A .3个B .4个C .5个D .6个 4.已知非等腰三角形的两边长分别是2 cm 和9 cm,如果第三边的长为整数,那么第三边的长为( )A .8 cm 或10 cmB .8 cm 或9 cmC .8 cmD .10 cm 5.三角形按边可分为( )A .等腰三角形、直角三角形、锐角三角形B .直角三角形、不等边三角形C .等腰三角形、不等边三角形D .等腰三角形、等边三角形6.如图,用四条线段首尾相接连成一个框架,其中12AB =,14BC =,18CD =,24DA =,则A ,B ,C ,D 任意两点之间的最长距离为( )A .24B .26C .32D .36二、填空题7.如图,∠A的对边是_________;∠B的对边是_______;边AC的对角是___________;边BD的对角是____________.8.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为________cm.9.已知三角形的两边长分别为2和4,第三边长为整数,则该三角形的周长最大值为_________10.已知a,b,c是三角形的三条边,化简简|a-b+c|+|a-b-c|=________.11.已知a,b,c是ABC的三边长,满足()2-+-=,c为奇数,则c=______.720a b12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对三、解答题13.已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.14.(1)等腰三角形的周长为12,求腰长的取值范围.(2)等腰三角形的周长为8,三边长均为整数,求三边的长.15.已知a、b、c为∠ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求∠ABC的周长,并判断∠ABC的形状.16.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长.(2)若符合上述条件的三角形共有a个,求a的值.17.“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元∠分米,问至少需要多少钱购买材料?(忽略接头)18.如图,P是∠ABC内一点,连结BP,并延长交AC于点D.(1)试探究AB+BC+CA与2BD的大小关系;(2)试探究AB+CA与PB+PC的大小关系.。
最新人教版八年级上册数学:《11.1.1三角形的边》同步练习及答案
11.1.1三角形的边一、选择题1.三角形是( )A .连接任意三角形组成的图形B .由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C .由三条线段组成的图形D .以上说法均不对2.若△ABC 三条边的长度分别为m,n,p,且()02=-+-p n n m ,则这个三角形为( )A .等腰三角形 B.等边三角形 C .直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( ) A .一个直角三角形一定不是等腰三角形 B .一个等腰三角形一定不是锐角三角形 C .一个等腰三角形一定不是等腰三角形 D .一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( ) A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.(2012·海南)一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( )A .3cm B.4 cm C. 7 cm D.11cm6.(2012·义乌)一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A .2 B.3 C.4D.87.(2013•河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( ) A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远(第7题)(第8题)(第9题)D.点M在BC上,且距点C较近,距点B较远8.(2012•台湾)如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2 B.3 C.4 D.5二、填空题9.(2006•绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对10.(2009•呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n个图形中,互不重叠的三角形共有__________个(用含n的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有__________ 个三角形.17.如图,直角ABC的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为__________.18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.(2006•贵阳)两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为__________个;(2)试猜想当n对点时,按上述规则画出的图形中,最少有多少个三角形?(3)当n=2006时,按上述规则画出的图形中,最少有多少个三角形?20.过A、B、C、D、E五个点中任意三点画三角形;(1)其中以AB为一边可以画出__________个三角形;(2)其中以C为顶点可以画出__________个三角形.21.(2003•泸州)如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.22.如图,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…若一直连接到An,则图中共有__________个三角形.23.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.11.1.1三角形的边一、选择题1.B2.B3.D4.C5.C6.C7.C8.C二、填空题9.3 10.钝角11.11或13 12.AE,BD,AB13.2 14.(3n+1) 15.316.28 17.2008 18.10三、解答题19.解:(1)4个;(2)当有n对点时,最少可以画2(n-1)个三角形;(3)2×(2006-1)=4010个.答:当n=2006时,最少可以画4010个三角形.20.解:(1)如图,以AB为一边的三角形有△ABC、△ABD、△ABE共3个;(2)如图,以点C为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△CDE共6个.故答案为:(1)3,(2)6.21.解:第一种是取各边的中点,分别取,AB.BC,AC的中点D,E,Y,连接DE,EY和AE,所形成的四个三角形面积相等(如下图).第二种,在BC边上取四等分点D,E,F,分别连接AD,AE,AF,所形成的四个三角形面积相等(如下图).(3)1+2+3+…+(n+1)= )2)(1(21++n n 23.解:设三边长分别为2x ,3x ,4x , 由题意得,2x+3x+4x=36, 解得:x=4.故三边长为:8cm ,12cm ,16cm .。
11-1-1 三角形的边+同步练习 人教版数学八年级上册
11.1.1 三角形的边同步精练一.选择题1.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.5cm,6cm,12cmC.4cm,6cm,8cm D.2cm,3cm,5cm2.已知a,b,c为某三角形的三条边长,若a=4,b=7,则c的取值范围是()A.3<c<11B.3<c≤11C.3≤c<11D.3≤c≤113.如图所示,由三角形两边的和大于第三边,可得到的结论是()A.AB+AD>BC B.PD+CD>BP C.AB+AC>BC D.BP+CP>AC 4.观察下列图形,其中是三角形的是()A.B.C.D.5.有下列两种图示均表示三角形分类,则正确的是()A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对6.如图所示的图形中三角形的个数为()A.6个B.9个C.12个D.16个二.填空题7.在三角形内取一点,分别连接这个点与其余各顶点,可以把这个三角形分成个三角形.8.如图,以CD为公共边的三角形是;以∠A为公共角的三角形有.9.△ABC的周长是12cm,边长分别为a,b,c,且a=b+1,b=c+1,则a=cm,b =cm,c=cm.10.有两根长度分别为3cm,5cm的木棒,若想钉一个三角形木架,第三根木棒的长度可以是cm.(写出一个即可)11.一个三角形的周长为10cm,其中两边长分别是xcm、(2x﹣1)cm,则x的取值范围是.12.已知a,b,c是一个三角形的三边长,化简|a+c﹣b|+|b﹣c+a|+|a﹣b﹣c|=.三.解答题13.图中有几个三角形?请将它们分别表示出来,并写出其中两个三角形的边和角.14.请你根据下图回答问题.(1)请写出以A为顶点的三角形.(2)请写出以BC为边的三角形.15.△ABC的周长是22cm,AB边的长是AC边的1.5倍,BC边的长比AC边多1cm,求△ABC的三边长.16.已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣6)2=0,求b的取值范围.17.如图,在△ABC中,D,E分别是BC,AC上的点,连接AD,BE交于点O.(1)试探究线段AB+BC+CA与线段2AD的大小关系;(2)求证:AC+BC>AO+BO.18.(1)如图1,图中共有三角形个;如图2,若增加一条线,则图中共有三角形个;(2)如图3,若增加到10条线,请你求出图中的三角形的个数.。
人教版八年级数学上册《11.1.1三角形的边》同步练习题(含答案)
初中数学·人教版·八年级上册——第11章三角形11.1 与三角形有关的线段11.1.1 三角形的边同步练习题测试时间:30分钟一、选择题1.如图,以BC为边的三角形有( )A.3个B.4个C.5个D.6个答案 B 以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为( )A.4B.3C.2D.1答案 B 选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为( )A.3 cmB.6 cmC.9 cmD.3 cm或6 cm答案 A 当3 cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角=4.5(cm),此时能组成三角形.∴底边长为形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长=12-323 cm,故选A.二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.答案10解析 若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.如果三角形的三边长分别为3a,4a,14,则a 的取值范围是 .答案 2<a<14解析 根据三角形的三边关系,得{3a +4a >14,4a -3a <14,解得2<a<14. 三、解答题6.已知△ABC 的三边长分别为a,b,c.(1)若a,b,c 满足(a-b)2+(b-c)2=0,试判断△ABC 的形状;(2)若a=5,b=2,且c 为整数,求△ABC 的周长的最大值及最小值.解析 (1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC 是等边三角形. (2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c 为整数,∴c=4,5,6,∴当c=4时,△ABC 的周长最小,最小值=5+2+4=11;当c=6时,△ABC 的周长最大,最大值=5+2+6=13.7.小兵用长度为10 cm,45 cm 和50 cm 的三根木条钉一个三角形时,不小心将50 cm 的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25 cm,你怎样通过截木条的方法钉成一个三角形木架?解析 (1)∵两根木条的长为10 cm,45 cm,∴若设第三根木条的长为x cm,则x 应满足45-10<x<45+10, 即35<x<55,∵第三根木条长为50 cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25 cm,则还剩25 cm.要想钉成一个三角形木架,可以将45 cm 长的木条折成大于15 cm 且小于35 cm 的木条.。
人教版初中数学八年级上册11.1.1 三角形的边 同步课时训练试题
人教版数学八年级上册同步课时训练第十一章三角形11.1与三角形有关的线段11.1.1三角形的边自主预习基础达标要点1三角形及其有关概念1. 三角形的定义:由不在同一条直线上的三条首尾所组成的图形叫做三角形.2. 三角形的表示:三角形用符号“△”表示,如图所示的三角形,记作“△ABC”,读作“三角形ABC”.3. 三角形的顶点:如图所示,△ABC的三个顶点分别是A,B,C.4. 三角形的边、内角:如图所示,△ABC的三条边分别是AB,BC,C A.它的三个内角(简称三角形的角)分别是∠A,∠B,∠C.要点2三角形的分类1. 按照三个内角的大小,可以将三角形分为三角形、三角形和三角形.2. 按照边是否相等,可以将三角形分为三边都的三角形和三角形.要点3三角形的三边关系三角形两边的和第三边;三角形两边的差第三边.课后集训巩固提升1. 如图,在△ABF中,∠B的对边是()A. ADB. AEC. AFD. AC第1题第2题2. 如图所示的图形中,三角形共有()A. 3个B. 4个C. 5个D. 6个3. 下列说法正确的是()A. 三角形按边分类可分为不等边三角形和直角三角形B. 三角形按角分类可分为锐角三角形和钝角三角形C. 等腰三角形可分为等边三角形和底边与腰不相等的等腰三角形D. 等边三角形不是等腰三角形4. 设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个选项中,能表示它们之间关系的是()A BC D5. 下列各数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,106. 如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A. 2B. 3C. 4D. 87. 如图所示,为估计池塘岸边A,B两点的距离,小方在池塘的一侧选取一点O,测得OA=15m,OB=10m,A,B间的距离不可能是()A. 20mB. 15mC. 10mD. 5m第7题第8题8. 若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A. 2对B. 3对C. 4对D. 6对9. 已知三角形的三边长分别是3,8,x,若x的值为奇数,则x的值有()A. 5个B. 4个C. 3个D. 2个10. 下面给出的三条线段,一定不能组成三角形的是()A. a+1,a+2,a+3(a>0)B. 三条线段的比为4∶6∶10C. 3cm,8cm,10cmD. 3a,5a,2a+1(a>0)11. 五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中的三条线段为边可以构成个三角形.12. 若等腰三角形的两边长分别是4和9,则它的周长是.13. 图中一共有多少个三角形?锐角三角形、直角三角形、钝角三角形各有多少个?用符号表示这些三角形.14. 若a,b,c为三角形的三边长,化简:|a-b-c|+|a-c+b|+|a+b+c|.15. 已知等腰三角形的周长是14cm,底边与腰的比为3∶2,求各边的长.16. 已知在△ABC 中,AB =AC ,D 在AC 的延长线上. 求证:BD -BC <AD -AB.17. 已知△ABC 的两边长分别为3和7,第三边的长是关于x 的方程x +a2=x +1的解,求a 的取值范围.18. 如图,某油田有四个油井分别位于A ,B ,C ,D 四个点上,如果要建一个维修站H ,使这个维修站到这四个油井的距离之和最短,那么这个维修站就必须建于AC ,BD 的交点上,你知道这是为什么吗?19. 如图,是由6个面积为1的小正方形组成的长方形,点A ,B ,C ,D ,E ,F ,G 是小正方形的顶点,以这7个点中的任意3个点为顶点,可组成多少个面积为1的三角形?请写出所有这样的三角形.参考答案自主预习 基础达标要点1 1. 线段 顺次相接要点2 1. 锐角 直角 钝角 2. 不相等 等腰 要点3 大于 小于课后集训 巩固提升1. C2. C3. C4. A5. C6. C7. D8. B9. D 10. B 11. 3 12. 2213. 解:共有6个三角形,其中锐角三角形有2个:△ABE ,△ABC ;直角三角形有3个:△ABD ,△ADE ,△ADC ;钝角三角形有1个:△AEC.14. 解:因为a ,b ,c 是三角形的三边长,由三角形的三边关系,得b +c >a ,即a -(b +c )<0,同理a -c +b =(a +b )-c ,a +b >c ,则(a +b )-c >0.从而由绝对值的性质可得,原式=-(a -b -c )+(a -c +b )+(a +b +c )=-a +b +c +a -c +b +a +b +c =a +3b +c .15. 解:设底边长为3x cm ,腰长为2x cm ,依题意,得3x +2x +2x =14,解得x =2,∴底边为3x =6,腰长为2x =4.三角形各边的长分别为6cm ,4cm ,4cm.16. 证明:∵AB =AC ,AD =AC +CD ,∴AD -AB =AC +CD -AC =CD ,∵在△BCD 中,BD -BC <CD ,∴BD -BC <AD -AB.17. 解:解关于x 的方程x +a2=x +1,得x =a -2.由题意得7-3<x <7+3,即4<x <10.∴4<a -2<10.解得6<a <12.即a 的取值范围是6<a <12.18. 解:在四边形ABCD 内另取一点H ′,如图,连接AH ′,BH ′,CH ′,DH ′,则AH ′+CH ′>AC ,BH ′+DH ′>BD ,所以AH ′+CH ′+BH ′+DH ′>AC +BD ,即AH +CH +BH +DH 最短.19. 解:共有14个三角形,以这7个点中的任意3个点为顶点,组成面积为1的三角形,只需三角形的底是1,高是2或三角形的底是2,高是1.符合要求的三角形为△ADE,△BDE,△AEF,△BEF,△BFG,△AFG,△ABD,△ABE,△ABF,△ABG,△DCF,△ECG,△BCF,△ACG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《11.1.1三角形的边》练习题
一、基础练习:
1.下列说法:其中正确的有()
A.1个 B.2个 C.3个 D.4个
(1)等边三角形是等腰三角形;
(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;
(3)三角形的两边之差大于第三边;
(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.
2.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()
A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm 长的木棒
3.下列长度的各组线段中,能组成三角形的是()
A.3cm,12cm,8cm B.6cm,8cm,15cm
C.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm
4.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.
5.已知等腰三角形的两边长分别是3和6,则它的周长等于()
A.12 B.12或15 C.15 D.15或18
6.已知三角形三边的长均为整数,其中某两条边长之差为5,•若此三角形周长为奇数,则第三边长的最小值为?
二、选择题:(每小题3分,共18分)
1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )
A.1个
B.2个
C.3个 C.4个
2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )
A.6<L<15
B.6<L<16
C.11<L<13
D.10<L<16
3.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )
A.10cm的木棒
B.20cm的木棒;
C.50cm的木棒
D.60cm的木棒
4.已知等腰三角形的两边长分别为3和6,则它的周长为( )
A.9
B.12
C.15
D.12或15
5.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )
A.2cm
B.3cm
C.4cm
D.5cm
6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )
A.2个
B.3个
C.4个
D.5个
二、填空题:(每小题3分,共18分)
1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.
2.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.
3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.
4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.
5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.
三,解答题:
1.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为?
2.已知等腰三角形的两边长分别为4,9,求它的周长.。