高中必修1第一章集合复习(讲义+例题+练习)

合集下载

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

(完整)人教版高一数学必修一集合知识点以及习题,推荐文档

(完整)人教版高一数学必修一集合知识点以及习题,推荐文档

高一数学必修1第一章集合一、集合有关概念1.集合的含义:一定范围的、确定的、可区别的事物,当作一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。

2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2},{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆注意:有两种可能(1)A是B的一部分,;(2)AB与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集例题1.下列四组对象,能构成集合的是( )A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个 3.若集合M={y|y=x 2-2x+1,x R},N={x|x≥0},则M 与N 的关系是 .∈4.设集合A=,B=,若A B ,则的取值范围是 }{12x x <<}{x x a <⊆a 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。

高一数学(必修一)集合经典复习

高一数学(必修一)集合经典复习

高一数学(必修一)集合1.1.1集合的含义与表示(一)集合的含义1.我们在初中接触过“正数的集合”、“负数的集合”等,集合的含义又是什么呢?•①解不等式2x-1>3得x>2,所有大于2的实数集在一起称为这个不等式的解集.•②平面几何中,圆是到定点的距离等于定长的点的集合.•③自然数的集合0,1,2,3,……•④高一(5)班全体同学组成一个集合.•请想一想,集合这个概念应该怎样描述?•一般地,我们把所研究的对象如点、自然数、高一(5)班的同学统称为,把一些组成的总体叫做,通常用表示.•(二)集合中元素具的有几个性质特征(或称三要素)•⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.•⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只•能算一个,即集合中的元素是不重复出现的.•⑶无序性-即集合中的元素没有次序之分.•例题(1)给定的集合中的元素必须是确定的.•“我国的小河流”能不能组成一个集合,你能用集合的知识解释吗?•.•例题(2)集合中的元素必须是互不相同的,•由1,-1,1,3组成的集合为;若a∈{a2,1}则a=.•例题(3)若构成两集合的元素是一样的,则称两集合,若集合{1,2}与集合{a,1}相等,则a=. •例子 1 A={1,3},问3,5哪个是A的元素? 2 B={素质好的人}能否表示成为集合?•• 3 C={2,2,4}表示是否正确?• 4 D={太平洋,大西洋} E={大西洋,太平洋} 集合D ,E是不是表示相同的集合?••(三)常用的数集及其记法•我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,…表示集合中的元素.•全体非负整数组成的集合称为自然数集,记为N•所有正整数组成的集合称为正整数集,记为N+•全体整数组成的集合称为整数集,记为Z•全体有理数组成的集合称为有理数集,记为Q•全体实数组成的集合称为实数集,记为R•常见的数集符号:自然数集:;正整数集:;整数集:;有理数集:;实数集:. •(四)集合的表示方法•1.把集合中的元素一一列举出来.•并用括起来表示集合的方法叫做,如大于-1且小于10的偶数构成的集合可表示为•练习题:用列举法表示下列集合:•(1)方程(x2-1)(x2+2x-8)=0的解集为.•(2)方程|x-1|=3的解集为.(3)绝对值小于3的整数的集合为.•2.用集合所含元素的表示集合的方法,称作描述法.•具体方法是:在花括号内先写上表示这个集合元素的,再画一条竖线,在这条竖线后面写出这个集合中元素所具有的.它的一般形式是{x∈A|p(x)}或{x|p(x)}.“”为代表元素,“”为元素x必须具有的共同特征,当且仅当“x”适合条件“p(x)”时,x才是该集合中的元素,此法具有抽象概括、普遍性的特点,当元素个数较多时,一般选用此法.•练习题1°试用描述法表示下列集合:•(1)方程x2-3x+2=0的解集为.(2)不等式3x+2>0的解集为.•(3)大于1小于5的整数组成的集合为.•练习题2°用列举法表示下列集合:•(1)6的正约数组成的集合.________(2)不等式2x-1<5的自然数解组成的集合.________ •(3)古代我国的四大发明组成的集合.________•本节重点:集合的概念,集合中元素的三个特性及集合的表示方法.•本节难点:集合中元素的性质的理解.•正确理解概念,准确使用符号,熟练进行集合不同表示方法的转换是学好本节的关键.•1.要辩证理解集合和元素这两个概念:•(1)符号∈和∉是表示元素和集合之间关系的,不能用来表示集合之间的关系.元素与集合之间是个体与整体的关系,不存在大小与相等关系.•(2)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.•2.深刻认识集合中元素的四种属性•(1)任意性:集合中的元素可以是任意的对象,无论是数、式、点、线、人,还是其它的某种事或物,只要它们具有某种共同属性,集中在一起就能组成一个集合,我们把集合的这一性质称为元素的任意性;在中学,我们主要研究对象是一系列的数的集合或点的集合.•(2)确定性:判断一些对象是否可以组成一个集合,主要方法是,在观察任意一个对象时,应该可以确定这一对象要么属于这一集合,要么它不属于这一集合.例如:给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其它对象都不属于这个集合.如果说“由接近3的数组成的集合”这里“接近3的数”是没有严格标准、比较模糊的概念.它不能构成集合.如“好人”、“较大的树”等都不能成为集合.••(3)无序性:在表示一个集合时,我们只需将某些指定的对象集在一起,虽然习惯上会将元素按一定顺序来写出,但却不强调它们的顺序,当两个集合中的元素相同,即便放置顺序完全不同时,它们也表示同一集合.•例如:{a,b}和{b,a}表示同一个集合.•(4)互异性:对于任意一个集合而言,在这一集合中的元素都是互不相同的个体.如:给出集合{1,a 2},我们根据集合中元素的互异性,就已经得到了关于这个集合的几点信息,即这一集合中有两个不同的元素,其中的一个是实数1,而另一个一定不是1,所以a ≠1,且a ≠-1. • 3.正确理解列举法• (1)元素间用分隔号“,”隔开;(2)元素不重复;• (3)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后才能用省略号.• 4.合理选用集合的表示方法• 列举法与描述法各有优点,列举法可以看清集合的元素,描述法可以看清集合元素的特征,一般含有较多或无数多个元素时不宜采用列举法,因为不能将集合中的元素一一列举出来,而没有列举出来的元素往往难以确定.• 5.要正确理解描述法• 用描述法表示集合时注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)等.(2)元素具有怎样的属性?• 用描述法表示集合时,若需要多层次描述属性时,可选用联结词“且”与“或”等联结;若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.• 6.特别注意以下几种集合,这是我们研究集合时的主要研究对象.• (1)一般数集.(2)特殊数集:如方程的解集;不等式的解集等.(3)平面点集.(4)图形集. • 7.集合语言• 集合语言是现代数学的基本语言,也就是用集合的有关概念和符号来叙述问题的语言.包括文字语言、符号语言、图形语言.• 要熟练地将集合的三种语言进行相互转化.• 8.解集合问题的关键• 解决集合问题的关键是弄清集合由哪些元素所构成.如何弄清呢?关键在于把抽象问题具体化、形象化.也就是把用描述法表示的集合用列举法来表示,或用图示法来表示抽象的集合,或用图形来表示集合.• 例如,在判断集合A ={x |x =4k ±1,k ∈Z }与集合B ={y |y =2n -1,n ∈Z }是否为同一集合时,若从代表元素入手来分析它们之间的关系,则比较抽象,而用列举法来表示两个集合,则它们之间的关系就一目了然.即A ={…,-1,1,3,5,…},而B ={…,-1,1,3,5…}• ∴A 与B 是同一集合.基础练习1.已知A ={x|3-3x>0},则下列各式正确的是( )A .3∈AB .1∈AC .0∈AD .-1∉A2.下列四个集合中,不同于另外三个的是( )A .{y|y =2}B .{x =2}C .{2}D .{x|x 2-4x +4=0}3.下列关系中,正确的个数为________.①12∈R ;②2∉Q ;③|-3|∉N *;④|-3|∈Q .4.已知集合A ={1,x ,x 2-x},B ={1,2,x},若集合A 与集合B 相等,求x 的值.巩固练习一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1} C.{x=1} D.{x2-2x+1=0} 3.已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈A B.0∈A C.3∈A D.1∈A4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.。

必修一第一章集合全章练习题(含答案)

必修一第一章集合全章练习题(含答案)

》第一章集合与函数概念§集合1.集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念·(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4—5.____一、选择题1.下列语句能确定是一个集合的是( )!A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )#A.直角三角形 B.锐角三角形C.钝角三角形 D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( ) A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( ) A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有( )#A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号) ①不超过π的正整数; ②本班中成绩好的同学;③高一数学课本中所有的简单题; ④平方后等于自身的数.@8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________. 9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z . 三、解答题10.判断下列说法是否正确并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,,32,12组成的集合含有四个元素;^(4)高一(三)班个子高的同学构成一个集合.`11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .'。

高一数学第一章集合,典型例题及基础训练

高一数学第一章集合,典型例题及基础训练

则下列正确的是(C ) A
QP
BQ RC Nhomakorabea
Q PR
D Q PR
13)若 1 A 1,2,3,4,5, 且A中所有元素 之和为奇数的集合A的个数 是 7
14)已知集合 M a2 , a 1,3, N a 3,2a 1, a2 1 ,若 M N 3 ,则a的值为 -1 15)若集合A1、A2满足 A1 A2 A ,则 称(A1,A2)为集合A的一种分拆,并规 定当且仅当A1=A2时,(A1,A2)与 (A2,A1)为集合A的同一种分拆,则集 合A={1,2,3}的不同分拆种数是 27
对于集合运算与不等式问题,要注意 正确借助图形来表示.
例9 A={x | -2≤x≤5} B={x | m+1≤x≤2m-1} 若B A,求实数m的取值范围。 解:当B=ф时 m+1>2m-1 ∴m<2 当B≠φ 要使B A
m 1 2m 1 m 2 m 3 2 m 3 m 1 2 2m 1 5 m 3
总结:
在研究问题时要抓住元素a,b,c所满 足的特征.
你能解决这道题吗? 集合A= {x x a b 2 , a Z , b Z } 证明:(1) x1,x2
(2)
A 则x1+x2 A A 则x1x2 A
x1,x2
例6 若-3 {a 3,2a 1, a
2
2
这三个集合是不一样的
例5集合A= {x x 3n 1, n Z}, B {x 3n 2, n Z}
C= {x x 6n 3, n Z}
(1)若c C ,问是否有 a A , b B 使 c ab 成立? (2)对于任意 a A , b B 是否一定 有 a b C ?并证明你的结论.

高一上册数学第一章1《集合综合复习》讲义

高一上册数学第一章1《集合综合复习》讲义

知识一、集合的含义与表示1、集合的性质:_____________、_____________、_____________.2、集合的表示方法:_____________、_____________、_____________.3、空集的性质:空集是任何集合子集;空集是任何非空集合的真子集.4、集合的分类:无限集;有限集.5、特殊集合的表示:实数集________;整数集________;有理数集________;自然数集________;正整数集________.例1、若{}4,12,332---∈-a a a ,求实数a 的取值.变式1:已知集合},,|),{(},5,4,3,2,1{A y x A y A x y x B A ∈-∈∈==,则B 中所含元素的个数为______________. 变式2:若集合}2,0{},1,1{=-=B A ,则集合},,|{B y A x y x z z ∈∈+=中元素的个数为______________. 例2、已知集合}023|{2=+-=x ax x A .(1)若∅=A ,求实数a 的取值范围; (2)若A 是单元素集,求a 的值及集合A ;(3)求集合}|{∅≠∈=A R a M .变式1:设集合},244|{},,45|{22R a a a y y N R a a a x x M ∈++==∈+-==.则下列关系正确的是( ) N M A =. N M B ⊃. N M C ⊂. N M D ⊆.例3、定义集合运算:},,|{*B y A x xy z z B A ∈∈==,设}2,1{=A ,}2,0{=B ,则集合B A *的所有元素之和为A. 0B. 2C. 3D. 6变式1:已知Q P ,是两个非空集合,定义新运算}|{Q P x Q P x x Q P ∉∈=⊗且.若}|{},|{22x y y B x y x A ====,则B A ⊗=_____________.知识点二、集合间的基本关系1、元素与集合的关系:如果a 是集合A 的元素,可以表示为______;如果a 不是集合A 的元素,可表示为_______.2、集合与集合的关系:若A 是B 的子集,则可表示为B A ⊆;若集合A 是B 的真子集,则可表示为B A ⊂.3、集合相等---定义:如果两个集合中的元素完全相同,则两集合相等.表示方法:集合A 与集合B 相等可表示为________. 如果集合A 与集合B 满足B A ⊆且A B ⊆,则A 与B 相等. 例4、已知集合}01)1(2|{22=-+++=a x a x x A ,}04|{2=+=x x x B ,若B A ⊆,求实数a 的取值范围.变式1:设}4|{},4|{2<=<=x x Q x x P ,则( )A.Q P ⊆B.P Q ⊆C.Q C P R ⊆D.P C Q R ⊆变式2:已知关于x 的不等式41≤≤-ax 的解集为A ,关于不等式02322≤--x x 的解集为B.(1)若A ∈2,求实数a 的取值范围; (2)若B A ⊆,求实数a 的取值范围.例5、集合},,,,{e d c b a S =,包含},{b a 的S 的子集共有 ( )A. 2个B. 3个C. 5个D. 8个变式1:已知非空集合}5,4,3,2,1{⊂M ,且若M a ∈,则M a ∈-6,那么集合M 的个数为( )A. 5个B. 6个C. 7个D. 8个变式2:设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”. 给定}8,7,6,5,4,3,2,1{=S ,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 知识点三、集合的基本运算1、集合间的运算:集合A 和集合B 的交集可表示为________;集合A 和集合B 的并集可表示为________; 若U 为全集,集合A 的补集可表示为________.2、集合间的逻辑运算(1)设U 为全集. 交集:∅=∅=⊆⊆⊆ A A A A U B A B B A A B A ,,,,;并集:A A A A A U B A A B A B B A =∅=⊆⊇⊇ ,,,,;补集:U A C A A C A U C U C A A C C U U U U U U =∅==∅∅==)(,)(,,,)((2)设有限集合A ,)()(*N n n A card ∈=,则 ① A 的子集个数是 ________;② A 的真子集个数是 ________; ③ A 的非空子集个数是 ________; ④ A 的非空真子集个数是 ________.(3)设有限集合A 、B 、C ,则 ① )()()()(B A card B card A card B A card -+=;② )()()()()()(C B card B A card C card B card A card C B A card --++=-)()(C B A card C A card + ③ B A B B A B A A B A ⊆⇔=⊆⇔= ,; ④ )()()(B A C B C A C U U U =;⑤ )()()(B A C B C A C U U U =.例6、设集合}31|{},06|{2≤≤=<-+=x x N x x x M ,则N M =_____________.变式1:已知集合}0)3)(1(|{},023|{>-+=>+∈=x x x B x R x A ,则=B A _________.变式2:设集合}|{},1,0,1{2x x x N M ≤=-=,则=N M _______________.例7、设集合}4,2,1{},6,5,4,3,2,1{==M U ,则=M C U ________________.变式1:设集合}032|{},41|{2≤--=<<=x x x B x x A ,则)(B C A R =_____________.变式2:设集合}9,8,7,4,3{},9,7,5,4{==B A ,全集B A U =,则集合)(B A C U 中的元素共有__________个. 例8、某试验班有21个学生参加数学竞赛,17个学生参加物理竞赛,10个学生参加化学竞赛,他们之间既参加数学 竞赛又参加物理竞赛的有12人,既参加数学竞赛有参加化学竞赛的有6人,既参加物理竞赛又参加化学竞赛的 有5人,三科都参加的有2人.现在参加竞赛的学生都要到外地学习参观,问需要预订多少张火车票?变式1:某班有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运 动但不喜爱乒乓球运动的人数为_______.变式2:某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、 化学小组的分别有26人、15人、13人,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人, 则同时参加数学和化学小组的有__________人.知识点四、集合的综合问题例9、设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A .(1)若B B A = ,求a 的值; (2)若B B A = ,求a 的值.变式1:已知集合}02|{},1,1{2=+-=-=b ax x x B A ,若∅≠=B B A ,求实数b a ,的值.变式2:已知集合}50|{≤-<=a x x A ,}62|{≤<-=x a x B . (1)若A B A = ,求a 的取值范围; (2)若A B A = ,求a 的取值范围.课下作业:1、已知集合A B A m B m A === },,1{},,3,1{,则=m _______________.2、已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∅=M C N I ,则N M =_______________.3、满足},,,{4321a a a a M ⊆,且},{},,{21321a a a a a M = 的集合M 的个数是______.4、已知全集B A U =中有m 个元素,)()(B C A C U U 中有n 个元素.若B A 非空,则B A 的元素个数为 mn A . n m B +. m n C -. n m D -.5、设集合},1|||{R x a x x A ∈<-=,},51|{R x x x B ∈<<=.若∅=B A ,则实数a 的取值范围是( )}60|.{≤≤a a A }4,2|.{≥≤a a a B 或 }6,0|.{≥≤a a a C 或 }42|.{≤≤a a D。

高一数学必修一 第1章 集合 章末复习课

高一数学必修一 第1章 集合  章末复习课

题型一 集合间的基本关系解答与集合有关的问题时,应首先认清集合中的元素是什么,是数集还是点集,再进行相关的运算,以免混淆集合中元素的属性.分清集合中的两种隶属关系,即元素与集合、集合与集合的关系是解答集合问题的先决条件,也是正确使用集合有关术语和符号的基础.应明确:元素与集合的关系是“个体与集体的关系”,而集合与集合的关系是“集体与集体的关系”.例1 若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可能取值组成的集合.解 由题意得,P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a, 为满足S ⊆P ,可使-1a =-3,或-1a=2, 即a =13,或a =-12. 故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12. 跟踪训练1 已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.答案 4解析 由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4.题型二 集合的交、并、补运算集合与集合之间的交集、并集和补集有如下性质:(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(B ∪C )=(A ∩B )∪(A ∩C ).(4)A ∪(B ∩C )=(A ∪B )∩(A ∪C ).(5)A ∩∁U A =∅,A ∪∁U A =U .(6)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A .(7)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).(其中集合A 与集合B 为全集U 的子集).例2 设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解 A ={x |x ≤-1或x ≥4}.(1)∵A ∩B ≠∅,∴⎩⎪⎨⎪⎧ 2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧ 2a ≤a +2,2a ≤-1,∴⎩⎨⎧ a ≤2,a ≥2或⎩⎪⎨⎪⎧a ≤2,a ≤-12.∴a =2或a ≤-12. 故a 的取值范围是{a |a ≤-12}∪{2}. (2)∵A ∩B =B ,∴B ⊆A ,有三种情况:①⎩⎪⎨⎪⎧ 2a ≤a +2,a +2≤-1,得a ≤-3; ②⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4,得a =2; ③B =∅,得2a >a +2,a >2.∴a 的取值范围是(-∞,-3]∪[2,+∞).跟踪训练2 已知集合U ={x |0≤x ≤6,x ∈Z },A ={1,3,6},B ={1,4,5},则A ∩(∁U B )=________.答案 {3,6}解析 ∵U ={0,1,2,3,4,5,6},B ={1,4,5},∴∁U B ={0,2,3,6},又∵A ={1,3,6},∴A ∩(∁U B )={3,6}.题型三 数形结合思想的应用集合的运算有交、并、补这三种常见的运算,它是集合这一单元的核心内容之一.在进行集合的交集、并集、补集运算时,往往由于运算能力差或考虑不全面而极易出错,此时,数轴分析(或Venn 图)是个好帮手,能将复杂问题直观化,是数形结合思想具体应用之一.在具体应用时要注意检验端点值是否适合题意,以免增解或漏解.例3 已知集合A ={x |0≤x ≤2},B ={x |a ≤x ≤a +3}.(1)若(∁R A )∪B =R ,求a 的取值范围.(2)是否存在a 使(∁R A )∪B =R 且A ∩B =∅?解 (1)A ={x |0≤x ≤2},∴∁R A ={x |x <0或x >2}.∵(∁R A )∪B =R .∴⎩⎪⎨⎪⎧a ≤0,a +3≥2,∴-1≤a ≤0. (2)由(1)知(∁R A )∪B =R 时,-1≤a ≤0,而a +3∈[2,3],∴A ⊆B ,这与A ∩B =∅矛盾.即这样的a 不存在.跟踪训练3 若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________.答案 {x |0<x <1}解析在数轴上表示出集合A ,如图所示.则∁U A ={x |0<x <1}.题型四 转化与化归思想的应用转化与化归思想方法用在研究、解决数学问题时思维受阻或寻求简单方法,从一种情况转化为另一种情况,也就是转化到另一种情境,使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.例 已知集合A ={x ∈R |mx 2-2x +1=0},在下列条件下分别求实数m 的取值范围.(1)A =∅;(2)A 恰有两个子集;(3)A ∩⎝⎛⎭⎫12,2≠∅.解 (1)若A =∅,则关于x 的方程mx 2-2x +1=0没有实数解,所以m ≠0,且Δ=4-4m <0,所以m >1.(2)若A 恰有两个子集,则A 为单元素集,所以关于x 的方程mx 2-2x +1=0恰有一个实数解,讨论:①当m =0时,x =12,满足题意; ②当m ≠0时,Δ=4-4m =0,所以m =1.综上所述,m 的集合为{0,1}.(3)若A ∩⎝⎛⎭⎫12,2≠∅,则关于x 的方程mx 2=2x -1在区间⎝⎛⎭⎫12,2内有解,这等价于当x ∈⎝⎛⎭⎫12,2时,求m =2x -1x 2=1-⎝⎛⎭⎫1x -12的值域,所以m ∈(0,1]. 跟踪训练4 已知集合A ={x |x 2-ax +a 2-12=0},B ={x |x 2-5x +6=0},是否存在实数a ,使得集合A ,B 同时满足下列三个条件:①A ≠B ;②A ∪B =B ;③∅(A ∩B )?若存在,求出a 的值;若不存在,试说明理由.解 B ={x |x 2-5x +6=0}={2,3},由A ∪B =B ⇒A ⊆B ⇒A ∩B =A ,又∅(A ∩B ),即∅A ⇒A ≠∅,而A ≠B ,所以A ={2}(经验证A ≠{3}).所以方程x 2-ax +a 2-12=0有两个相等的实根2.由⎩⎪⎨⎪⎧ 2+2=a 2×2=a 2-12⇒⎩⎪⎨⎪⎧ a =4a 2=16⇒a =4, 此时A ={x |x 2-4x +4=0}={2}符合题意,故存在实数a =4同时满足题设中的三个条件.。

人教版数学必修一1.1集合整章教案加练习题含答案

人教版数学必修一1.1集合整章教案加练习题含答案

1.1集合1.1.1集合的含义与表示一、教学重点、难点:重点:集合的含义与表示方法.难点:集合中元素的三要素:确定性、互异性、无序性 二、相关概念用6分钟时间预习教材P2~P5,完成下列内容: (1)、集合:一般地,我们把 统称为元素,把一些元素组成的 叫做集合,简称为: 。

(2)、集合元素的三要素(三特征): 、 、 ; 若两个集合相等,那么必须有: 。

(3)、元素与集合的关系:若a 是集合A 的元素,则记作:a A ; 若a 不是集合A 的元素,则记作:a A 。

(4)、常用数集的记法:自然数集: ; 有理数集: ; 整数集: ; 实数集: ; 正实数集: ; 正整数集: .(5)集合的表示方法列举法:把集合中的元素 ,并用 括起来表示集合的方法叫列举法描述法:用集合所含元素的 表示集合的方法称为描述法,具体方法是: 在 内写上表示这个集合元素的 及取值(或变化)范围,再画 , 最后在 后写出这个集合中元素所具有的共同特征。

只要构成两个集合的元素是一样的,我们就称这两个集合是 相等 的。

三、回归课本(1)1~20以内所有的质数;(2)我国在1991~2003年这13年内所发射的所有人造卫星; (3)某汽车厂2003年生产的所有汽车;(4)2004年1月1日之前与我国建立外交关系的所有国家; (5)所有的正方形;(6)到直线l 的距离等于定长d 的所有的点;(7)方程0232=-+x x 的所有实数根;(8)新华中学2013年9月入学的高一学生的全体.教师组织学生分组讨论:这8个实例的共同特征是什么? 一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set )(简称为集)。

注意:教师应该特别强调指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.1、判断以下元素的全体是否组成集合,并说明理由:(1)不大于10的正偶数;(2)高一年级的胖子.(3)高一学习成绩好的人 (4)个字高的学生2、如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(6)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.数学中一些常用的数集及其记法全自然数集(非负数集):N 正整数集:N*或N + 整数集:Z 有理数集:Q 实数集:R 正实数集:R +集合的表示方法:列举法:把集合中的元素 一一列举出来,并用 花括号 括起来表示集合的方法叫列举法 描述法:用集合所含元素的 共同特征 表示集合的方法称为描述法,具体方法是:在 花括号 内写上表示这个集合元素的 一般符号 及取值(或变化)范围,再画 一条竖线 , 最后在 竖线 后写出这个集合中元素所具有的共同特征。

高一必修一数学集合章节全部知识点例题对应练习课后练习(全)

高一必修一数学集合章节全部知识点例题对应练习课后练习(全)

1.1集合【考纲解读】◆ 理解集合的定义、元素与集合的属于关系、集合的表示方法; ◆ 理解集合之间的包含、相等关系,以及全集、子集、空集的含义;◆ 理解补集的含义,以及集合之间的交集、并集的含义,会求补集、交集、并集,并且能用韦恩图表示;【知识储备】知识点1、集合与元素的概念在小学和初中,其实我们已经学过一些集合,例如:自然数的集合,有理数的集合,不等式的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合......思考?你还能想到哪些类似学过的集合?集合、元素的定义:一般地,我们把研究对象统称为“元素”,通常用小写字母a 、b 、c ...表示;把一些元素组成的总体叫做“集合”,简称“集”,通常用大写字母A 、B 、C ...表示。

知识点2、集合中元素的性质❶确定性:构成集合的对象具有明确的特征,即有明确的界线来区分元素是不是在这个集合中的,不能模棱两可。

给定一个集合,那么集合中的元素就确定了。

如:“中国四个直辖市”(北京,天津,重庆,上海)、“东北三省”(辽宁、吉林、黑龙江)可以构成集合,其元素具有确定性;而“比较胖的人”,“解放碑附近”一般不构成集合,因为组成它的元素是不确定的. ❷互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程0)2()1(2=--x x的解虽然有三个:,2,1,1321===x x x ,集表示为{}2,1,而不是{}2,11,。

❸无序性:集合中的元素无顺序,可以任意排列、调换。

如:{}2,1、{}12,表示同一个集合。

例:看下面几个例子,判断每个例子中的对象能否组成一个集合。

(1)大于等于1,且小于等于100的所有整数;(2)方程x 2=4的实数根;(3)平面内所有的直角三角形; (4)正方形的全体; (5)∏的近似值的全体;(6)平面集合中所有的难证明的题; (7)著名的数学家;(8)平面直角坐标系中x 轴上方的所有点。

(完整版)(必修1)第一章集合复习课(含答案)_共10页

(完整版)(必修1)第一章集合复习课(含答案)_共10页

集合的概念与运算复习课1. 集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法集合 自然数集正整数集 整数集 有理数集实数集 符号NN *(或N +)ZQR2. 集合间的关系(1)子集:对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ). (2)真子集:若A ⊆B ,且A ≠B ,则A B (或B A ).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A ,∅B (B ≠∅). (4)若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个. (5)集合相等:若A ⊆B ,且B ⊆A ,则A =B . 3.集合的运算集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A 或x ∈B }A ∩B ={x |x ∈A 且x ∈B }∁U A ={x |x ∈U ,且x ∉A }并集的性质:A ∪∅=A ;A ∪A =A ;A ∪B =B ∪A ;A ∪B =A ⇔B ⊆A . 交集的性质:A ∩∅=∅;A ∩A =A ;A ∩B =B ∩A ;A ∩B =A ⇔A ⊆B . 补集的性质:A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A . 题型一 集合的基本概念例1 (1)下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)} (2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.思维启迪:解决集合问题首先要考虑集合的“三性”:确定性、互异性、无序性,理解集合中元素的特征. 答案 (1)B (2)2解析 (1)选项A 中的集合M 表示由点(3,2)所组成的单点集,集合N 表示由点(2,3)所组成的单点集,故集合M 与N 不是同一个集合.选项C 中的集合M 表示由直线x +y =1上的所有的点组成的集合,集合N 表示由直线x +y =1上的所有的点的纵坐标组成的集合,即N ={y |x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 有两个元素,而集合N 只含有一个元素,故集合M 与N 不是同一个集合.对选项B ,由集合元素的无序性,可知M ,N 表示同一个集合. (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,得ba =-1,所以a =-1,b =1.所以b -a =2.探究提高 (1)用描述法表示集合时要把握元素的特征,分清点集、数集;(2)要特别注意集合中元素的互异性,在解题过程中最容易被忽视,因此要对计算结果进行检验,防止所得结果违背集合中元素的互异性.若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________.答案 0或98解析 ∵集合A 的子集只有两个,∴A 中只有一个元素. 当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.题型二 集合间的基本关系例2 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.思维启迪:若B ⊆A ,则B =∅或B ≠∅,要分两种情况讨论. 解 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.探究提高 (1)集合中元素的互异性,可以作为解题的依据和突破口;(2)对于数集关系问题,往往利用数轴进行分析;(3)对含参数的方程或不等式求解,要对参数进行分类讨论.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________. 答案 4解析 由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 题型三 集合的基本运算例3 设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.思维启迪:本题中的集合A ,B 均是一元二次方程的解集,其中集合B 中的一元二次方程含有不确定的参数m ,需要对这个参数进行分类讨论,同时需要根据(∁U A )∩B =∅对集合A ,B 的关系进行转化. 答案 1或2解析 A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2.探究提高 本题的主要难点有两个:一是集合A ,B 之间关系的确定;二是对集合B 中方程的分类求解.集合的交、并、补运算和集合的包含关系存在着一些必然的联系,这些联系通过Venn 图进行直观的分析不难找出来,如A ∪B =A ⇔B ⊆A ,(∁U A )∩B =∅⇔B ⊆A 等,在解题中碰到这种情况时要善于转化,这是破解这类难点的一种极为有效的方法.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围. 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},。

必修一第一章集合全章练习题(含答案)

必修一第一章集合全章练习题(含答案)

第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是() A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有()A.2个元素B.3个元素C.4个元素D.5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D[集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是() A.x0∈NB.x0∉NC.x0∈N或x0∉N D.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑. 第2课时 集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A[M={x|x=2k+14,k∈Z},N={x|x=k+24,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.]1.1.2集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A、B,如果集合A中________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作______(或______),读作“__________”(或“__________”).2.Venn图:用平面上______曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念图形表示A B(或B A)(1)定义:______________的集合叫做空集.(2)用符号表示为:____.(3)规定:空集是任何集合的______.5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么___________________________.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是()A.P=Q B.P QC.P Q D.P∩Q=∅2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是()A.3 B.6 C.7 D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或B A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含()等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2集合间的基本关系知识梳理1.任意一个A⊆B B⊇A A含于B B包含A 2.封闭3.A⊆B且B⊆A x∈B,且x∉A 4.(1)不含任何元素(2)∅(3)子集 5.(1)A⊆A(2)A⊆C作业设计1.B[∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0}∴P Q,∴选B.]2.C[M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.]3.C4.B[只有④正确.]5.B[由N={-1,0},知N M,故选B.]6.C[运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.]7.①②解析①、②显然正确;③中π与M的关系为元素与集合的关系,不应该用“”符号;④中{π}与M的关系是集合与集合的关系,不应该用“∈”符号.8.a≥2解析在数轴上表示出两个集合,可得a≥2.9.6解析 (1)若A 中有且只有1个奇数, 则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅.10.解 A ={-3,2}.对于x 2+x +a =0,(1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;(2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;(3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6.11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示. 要使B ⊆A ,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3.∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a ≥-1,2a≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2. 13.5解析 若A 中有一个奇数,则A 可能为{1},{3},{1,2},{3,2}, 若A 中有2个奇数,则A ={1,3}.1.1.3集合的基本运算第1课时并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.并集(1)定义:一般地,________________________的元素组成的集合,称为集合A与B的并集,记作________.(2)并集的符号语言表示为A∪B=_____________________________________________ ___________________________.(3)并集的图形语言(即V enn图)表示为下图中的阴影部分:(4)性质:A∪B=________,A∪A=____,A∪∅=____,A∪B=A⇔________,A____A ∪B.2.交集(1)定义:一般地,由________________________元素组成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=___________________________________________ _____________________________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔________,A∩B____A ∪B,A∩B⊆A,A∩B⊆B.一、选择题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于()A.{x|x<1} B.{x|-1≤x≤2}C.{x|-1≤x≤1} D.{x|-1≤x<1}3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是() A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于()A.1 B.2C.3 D.46.集合M={1,2,3,4,5},集合N={1,3,5},则()A.N∈M B.M∪N=MC.M∩N=M D.M>N二、填空题7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.三、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.613.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分.特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B ⇔A∩B=A.这种转化在做题时体现了化归与转化的思想方法,十分有效.1.1.3 集合的基本运算 第1课时 并集与交集知识梳理 一、1.由所有属于集合A 或属于集合B A ∪B 2.{x |x ∈A ,或x ∈B } 4.B ∪A A A B ⊆A ⊆二、1.属于集合A 且属于集合B 的所有 A ∩B 2.{x |x ∈A ,且x ∈B } 4.B ∩A A ∅ A ⊆B ⊆ 作业设计 1.A2.D [由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.]3.D [参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .]4.D [M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.] 5.C [依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3,故选C.] 6.B [∵N M ,∴M ∪N =M .] 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ) ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3}, 即方程x 2+px +q =0的两个实根为1,3. ∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.D [x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6,故选D.] 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}.③M={1,2,3},N={1,3}.共3个.第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集补集与全集的性质(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁U A)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2} B.{x|-2≤x≤2}C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于()A.{2} B.{2,3}C.{3} D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是()A.A=∁U P B.A=PC.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]2.C[∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]3.D[由B={2,5},知∁U B={1,3,4}.A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]4.B[由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]6.D [由A ∪B ={1,3,4,5,6}, 得∁U (A ∪B )={2,7},故选D.] 7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3. 8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}. 9.∁U B ∁U A解析 画Venn 图,观察可知∁U B ∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意. 11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x . 根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.§1.1习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1} B.{x|x<3}C.{x|-1<x<3} D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a}A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e} D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4} B.{a|3≤a≤4}C.{a|3<a<4} D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________. 9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于V enn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1 习题课双基演练1.C [∵A ={x |x >-1},B ={x |x <3}, ∴A ∩B ={x |-1<x <3},故选C.]2.A [画出数轴,将不等式-3<x ≤5,x <-5,x >5在数轴上表示出来,不难看出M ∪N ={x |x <-5或x >-3}.] 3.D4.A [∵∁I M ={d ,e },∁I N ={a ,c }, ∴(∁I M )∩(∁I N )={d ,e }∩{a ,c }=∅.] 5.A =B解析 4k -3=4(k -1)+1,k ∈Z ,可见A =B .6.解 ∵A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6} (1)又∵B ∩C ={3},∴A ∪(B ∩C )={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (2)又∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C )={-6,-5,-4,-3,-2,-1,0}∴A ∩(∁A (B ∪C ))={-6,-5,-4,-3,-2,-1,0}. 作业设计1.B [Q ={x |-2<x <2},可知B 正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b },{a ,c },{a ,b ,c }共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,…. ∴M P .]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).] 5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎪⎨⎪⎧a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2. 7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ; 当x =2时,x -1=1∈A ,x +1=3∈A ; 当x =3时,x -1=2∈A ,x +1=4∉A ; 当x =5时,x -1=4∉A ,x +1=6∉A ; 综上可知,A 中只有一个孤立元素5. 8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5, ∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2. a =4经验证,符合题意. 9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5}, 故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N ) ={x |x <1或x ≥5}.10.解 (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.11.解 由题意,设全班同学为全集U ,画出Venn 图,A 表示答错A 的集合,B 表示答错B 的集合,C 表示答错C 的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A ∪B ∪C 中元素数目为32,从而至少错一题的共32人,因此A ,B ,C 全对的有50-32=18人.12.解 依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解 在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.§1.2 函数及其表示 1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A 、B 是非空的数集,如果按照某种确定的__________,使对于集合A 中的____________,在集合B 中都有________________和它对应,那么就称f :________为从集合A 到集合B 的一个函数,记作__________________.其中x 叫做________,x 的取值范围A 叫做函数的________,与x 的值相对应的y 值叫做________,函数值的集合{f (x )|x ∈A }叫做函数的________. (2)值域是集合B 的________. 2.区间(1)设a ,b 是两个实数,且a <b ,规定:①满足不等式__________的实数x 的集合叫做闭区间,表示为________; ②满足不等式__________的实数x 的集合叫做开区间,表示为________;③满足不等式________或________的实数x 的集合叫做半开半闭区间,分别表示为______________.(2)实数集R 可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合分别表示为________,________,________,______.一、选择题1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( ) A .10个 B .9个 C .8个 D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2 011)f (2 010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.三、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A中的任一个值,按照对应关系所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2函数及其表示1.2.1函数的概念知识梳理1.(1)对应关系f任意一个数x唯一确定的数f(x)A→B y=f(x),x∈A自变量定义域函数值值域(2)子集2.(1)①a≤x≤b[a,b]②a<x<b(a,b)③a≤x<b a<x≤b[a,b),(a,b](2)(-∞,+∞)正无穷大负无穷大[a,+∞)(a,+∞)(-∞,b](-∞,b)作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2 010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1,∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f (2)f (1)=f (3)f (2)=…=f (2 011)f (2 010)=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1, 得⎩⎨⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).。

高中数学必修一第一章集合与常用逻辑用语经典大题例题(带答案)

高中数学必修一第一章集合与常用逻辑用语经典大题例题(带答案)

高中数学必修一第一章集合与常用逻辑用语经典大题例题单选题1、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.2、已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}答案:B分析:根据集合交集定义求解.P∩Q=(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.3、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.3答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x∈R,x2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x∈R,x2+2x+1≤0,则¬p:∀x∈R,x2+2x+1>0,故③错误;对于④:ac2>bc2可以推出a>b,所以a>b是ac2>bc2的必要条件,故④正确;所以正确的命题为②④,故选:C4、若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:D分析:根据集合元素的互异性即可判断.由题可知,集合M={a,b,c}中的元素是△ABC的三边长,则a≠b≠c,所以△ABC一定不是等腰三角形.故选:D.5、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.6、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B分析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a 2=4a4=16,解得a=±2故选:B7、2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)新冠肺炎,患者症状是发热、干咳、浑身乏力等外部表征.“新冠肺炎患者”是“患者表现为发热、干咳、浑身乏力”的()已知该患者不是无症状感染者.............A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A分析:根据充分必要条件的定义判断.新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征,充分的同,但有发热、干咳、浑身乏力等外部表征的不一定是新冠肺炎患者,不必要,即为充分不必要条件.故选:A.8、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.多选题9、(多选)下列是“a<0,b<0”的必要条件的是()A.(a+1)2+(b+3)2=0B.a+b<0C.a−b<0D.a>0b答案:BD分析:由a<0,b<0判断各个选项是否成立可得.取a=−2,b=−4,得(a+1)2+(b+3)2=2≠0,故A不是“a<0,b<0”的必要条件;由a<0,b<0,得a+b<0,故B是“a<0,b<0”的必要条件;取a=−2,b=−4,得a−b=−2−(−4)=2>0,故C不是“a<0,b<0”的必要条件;>0,故D是“a<0,b<0”的必要条件.由a<0,b<0,得ab故选:BD.10、若集合M⊆N,则下列结论正确的是A .M ∩N =MB .M ∪N =NC .M ⊆(M ∩N )D .(M ∪N )⊆N答案:ABCD分析:根据子集的概念,结合交集、并集的知识,对选项逐一分析,由此得出正确选项.由于M ⊆N ,即M 是N 的子集,故M ∩N =M ,M ∪N =N ,从而M ⊆(M ∩N ),(M ∪N )⊆N .故选ABCD.小提示:本小题主要考查子集的概念,考查集合并集、交集的概念和运算,属于基础题.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.填空题12、已知集合A =R ,B =∅,则A ∪B =___________.答案:R分析:根据交集定义计算.由已知A∪B=R,所以答案是:R.13、若a∈{−1,3,a3},则实数a的取值集合为______.答案:{0,1,3}分析:根据元素的确定性和互异性可求实数a的取值.因为a∈{−1,3,a3},故a=−1或a=3或a=a3,当a=−1时,a3=−1,与元素的互异性矛盾,舍;当a=3时,a3=27,符合;当a=a3时,a=0或a=±1,根据元素的互异性,a=0,1符合,故a的取值集合为{0,1,3}.所以答案是:{0,1,3}14、若∅是{x|x2≤a,a∈R}的真子集,则实数a的取值范围是_________.答案:[0,+∞)分析:根据题意以及真子集定义分析得出x2≤a有实数解即可得出答案.若∅是{x|x2≤a,a∈R}的真子集,则{x|x2≤a,a∈R}不是空集,即x2≤a有实数解,故a≥0,即实数a 的取值范围是[0,+∞).故答案为:[0,+∞)解答题15、已知集合A={x|1≤x≤3},B={x|a−4≤x≤a−1},若“x∈A”是“x∈B”的充分不必要条件,求实数a的取值范围.答案:[4,5]分析:根据给定条件可得AB,再借助集合的包含关系列式计算作答.因“x∈A”是“x∈B”的充分不必要条件,于是得AB,而集合A={x|1≤x≤3},B={x|a−4≤x≤a−1},因此,{a −4<1a −1≥3 或{a −4≤1a −1>3,解得4≤a <5或4<a ≤5,即有4≤a ≤5, 所以实数a 的取值范围为[4,5].。

人教B版高中数学必修一学第一章集合的运算讲解与例题

人教B版高中数学必修一学第一章集合的运算讲解与例题

1.2.2 集合的运算1.符号语言中的“且”是指同时属于集合A 和集合B 的全部元素,也就是说A ∩B 是集合A 与B 的全部“公共”元素所构成的集合.2.当集合A 和集合B 无公共元素时,不能说集合A ,B 没有交集,而是A ∩B =∅.3.“x ∈A ,且x ∈B ”与“x ∈(A ∩B )”是等价的,即由既属于A ,又属于B 的元素构成的集合为A ∩B .而只属于集合A 或只属于集合B 的元素,不属于A ∩B .【例1-1】已知集合A ={0,2,4,6},B ={2,4,8,16},则A ∩B 等于( ) A .{2} B .{4} C .{0,2,4,6,8,16} D .{2,4}解析:观察集合A ,B ,可得集合A ,B 的全部公共元素是2,4,所以A ∩B ={2,4}. 答案:D【例1-2】设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B.{x |1≤x ≤2} C .{x |0≤x ≤4} D.{x |1≤x ≤4} 解析:在数轴上表示出集合A 与B ,如下图.则由交集的定义,得A ∩B ={x |0≤x ≤2}. 答案:A【例1-3】已知A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =2},求A ∩B . 解:A ∩B ={(x ,y )|x +y =0}∩{(x ,y )|x -y =2}==0,(,)=2x y x y x y ⎧⎫+⎧⎪⎪⎨⎨⎬-⎩⎪⎪⎩⎭={(1,-1)}.图形语言性质 (1)A ∪B =B ∪A ,即集合的并集运算满足交换律; (2)A ∪A =A ,即一个集合与其本身的并集是其本身;(3)A ∪∅=∅∪A =A ,即一个集合与空集的并集是其本身;(4)A ⊆(A ∪B ),B ⊆(A ∪B ),即一个集合是其与任一集合并集的子集; (5)A ∪B =B ⇔A ⊆B ,即一个集合与其子集的并集是其自身.谈重点 对并集的理解 1.A ∪B 中的元素包含三种情况:(1)x ∈A ,但x ∉B ;(2)x ∈B ,但x ∉A ;(3)x ∈A ,且x ∈B . 2.对概念中“所有”二字的理解,不能认为A ∪B 是由A 与B 中的所有元素构成的,是简单的拼凑.若集合A 和B 中有公共元素,根据集合中元素的互异性,知公共元素在A ∪B 中仅出现一次.如A ={0,1},B ={-1,0},则A ∪B ={-1,0,1},不能写成{-1,0,0,1}.【例2-1】设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A .{3,4,5,6,7,8} B .{5,8} C .{3,5,7,8} D .{4,5,6,8} 答案:A辨误区 求并集时应注意的问题注意应用集合中元素的互异性,重复的元素在并集中只能出现一次,防止出现A ∪B ={3,4,5,5,6,7,8,8}这样的错误.【例2-2】已知集合A ={x |0≤x <7},B ={x |x <5},则A ∪B 等于( ) A .{x |x <7} B .{x |x <0} C .{x |5<x <7} D .{x |0<x <5}解析:用数轴表示A ∪B ,如下图所示的阴影部分.则A ∪B ={x |x <7}. 答案:A点评:用数轴来表示不等式的解集,较为直观,有助于准确、迅速地解题. 3.全集与补集 (1)全集在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U 表示.谈重点 对全集的理解“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R 看作全集,而当我们在整数内研究问题时,就把整数集Z 看作全集.定义文字语言 如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作UA ,读作“A 在U 中的补集”.符号语言 UA ={x |x ∈U ,且x ∉A }图形语言性质(1)UA ⊆U ; (2)UU =∅,U∅=U ;(3)U(UA )=A ;(4)A∪(U A)=U;A∩(U A)=∅;(5)(U A)∩(U B)=U(A∪B);(U A)∪(U B)=U(A∩B)1.U A包含三层意思:(1)A⊆U;(2)U A是一个集合,且U A⊆U;(3)U A是由U中所有不属于A的元素构成的集合.2.补集的概念具有某种相对性,即只有明确全集,才能确定其子集的补集.【例3—1】已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(U A)∩(U B)等于( )A.{1,6} B.{4,5}C.{2,3,4,5,7} D.{1,2,3,6,7}解析:(方法一)由题意,得(U A)∩(U B)={1,3,6}∩{1,2,6,7}={1,6}.(方法二)A∪B={2,3,4,5,7},则(U A)∩(U B)=U(A∪B)={1,6}.答案:A【例3-2】已知全集U=R,A={x|x<1或x>6},则U A等于( )A.{x|1<x<6}B.{x|x<1或x>6}C.{x|1≤x≤6}D.{x|x≤1或x≥6}解析:用数轴表示集合A为如图所示的阴影部分,则U A={x|1≤x≤6}.答案:C4.集合的基本运算(1)对于用列举法表示的集合,可以根据交集、并集、补集的定义,利用观察法或借助维恩图直接写出集合的运算结果.这里要注意集合元素的特征,做到不重不漏.例如,已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,2,3},集合B={3,4,9},根据交集、并集、补集的定义,观察可得A∪B={0,1,2,3,4,9},A∩B={3},U A={4,5,6,7,8,9}.(2)用描述法给出的集合,先明确集合中元素的一般符号及其特征性质,然后在确定了集合中元素的前提下,再着手进行集合的运算.否则,就会无从下手或出现错误.例如,集合A ={x|2x+2>4},集合B={y|y2-3y=0},往往错认为集合A中的元素是x,而集合B中的元素是y,则集合A和B没有公共元素,所以A∩B=∅.出错的原因是没有准确把握集合A,B中元素的一般符号的意义:仅仅代表该集合中的元素,也可以换成其他符号.其实,集合A是不等式2x+2>4的解集,则集合A={x|x>1},集合B是方程y2-3y=0的解集,则有B={0,3},所以有A∩B={x|x>1}∩{0,3}={3}.特别地,当已知集合均是用描述法给出的连续“数集”时,常先用数轴表示所给的集合,再借助于数轴的直观性,写出集合运算的结果.例如:已知集合A={x|x<-1或x>3},B={x|2<x<4},则(U A)∩B等于( ) A.{x|-1≤x<4} B.{x|2<x<3}C.{x|2<x≤3} D.{x|-1<x<4}解析:如图所示,∵UA ={x |-1≤x ≤3},∴(U A )∩B ={x |2<x ≤3}. 答案:C【例4-1】集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M =( ) A .{1,2} B .{0,1,2} C .{x |0≤x <3} D .{x |0≤x ≤3} 解析:∵P ={0,1,2},M ={x |-3≤x ≤3}, ∴P ∩M ={0,1,2}. 答案:B【例4-2】已知全集U =R ,集合30,=360x A xx ⎧⎫->⎧⎪⎪⎨⎨⎬+>⎩⎪⎪⎩⎭,集合B ={m |3>2m -1}, 求:(1)A ∩B ,A ∪B ; (2)U(A ∩B ).分析:(1)集合A 是不等式组30,360x x ->⎧⎨+>⎩的解集,集合B 是不等式3>2m -1的解集,先确定集合A 和B 中的元素,再根据交集和并集的定义,借助于数轴写出;(2)利用(1)的结论,规范解答 顾问点评解:(1)∵30=360x A xx ⎧⎫->⎧⎪⎪⎨⎨⎬+>⎩⎪⎪⎩⎭,={x |-2<x <3}, B ={m |3>2m -1}={m |m <2}.(得分点) 用数轴表示集合A ,B ,如图.∴A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.(得分点) (2)由(1)知A ∩B ={x |-2<x <2}, 如图所示.∴U(A ∩B )={x |x ≥2或x ≤-2}.(得分点)借助数轴求解比较直观,且易于观察结果,这里要注意端点的虚实.另外本题的结果还可以写成A ∩B ={m |-2<m <2},A ∪B ={m |m <3},U(A ∩B )={m |m ≤-2或m ≥2}.【例4-3】设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},UA ={5},求实数a 的值.解:∵U A ={5},∴5∈U,5∉A ,且A ⊆U .∴a 2+2a -3=5,解得a =2或a =-4. 当a =2时,|2a -1|=3≠5.当a =-4时,|2a -1|=9≠5,但9∉U .∴a =2. 5.集合的基本运算与方程的交汇问题(1)已知集合的运算结果求方程中的参数值,实质上是集合运算关系的逆向思维的应用.解决这类问题的关键是对集合运算的有关结果准确理解和应用.这些运算结果实质上是给出了集合间的关系或元素与集合间的关系.一般地,有:①若A ∪B =A ,则B ⊆A ; ②若A ∩B =B ,则B ⊆A ;③若U A=B ,则A =U B ;④若A ∪B =C ,则A ⊆C ,B ⊆C .也就是说:若x ∈C ,则x ∈A 或x ∈B ; ⑤若A ∩B =D ,则D ⊆A ,且D ⊆B .也就是说:若x ∈D ,则x ∈A ,且x ∈B .(2)当{x |f (x )=0}=∅时,则说明关于x 的方程f (x )=0无实数解.如{x |mx 2-mx +1=0}=∅,则表示关于x 的方程mx 2-mx +1=0无实根,要注意当m =0时,方程无实根.【例5】设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.分析:可以利用条件“A ∩B =B ⇔B ⊆A ”及“A ∪B =B ⇔A ⊆B ”求解.解:(1)∵A ={x |x 2=4x }={0,4},又∵A ∩B =B ,∴B ⊆A .①若B =∅,则Δ=4(a -1)2-4(a 2-1)<0,解得a >1. ∴当a >1时,B =∅⊆A .②若0∈B ,则0为方程x 2+2(a -1)x +a 2-1=0的一个根,即a 2-1=0,解得a =±1.当a =1时,B ={x |x 2=0}={0}⊆A ;当a =-1时,B ={x |x 2-4x =0}=A .③若4∈B ,则4为方程x 2+2(a -1)x +a 2-1=0的一个根,即a 2+8a +7=0,解得a =-1或a =-7.由②知当a =-1时,A =B 符合题意,当a =-7时,B ={x |x 2-16x +48=0}={4,12}A ,综上可知,a ≥1,或a =-1.(2)∵A ∪B =B ,∴A ⊆B .又∵A ={0,4},而B 中最多有2个元素,∴A =B ,即0,4为方程x 2+2(a -1)x +a 2-1=0的两个根.∴22(1)=41=0a a --⎧⎨-⎩,,解得a =-1.6.集合的基本运算与不等式的交汇问题(1)求解几个不等式解集之间的交集、并集、补集的运算问题,通常要借助数轴,把集合所表示的范围在数轴上明确地表示出来,通过数轴,直观形象地找出集合的运算结果.(2)当{x |f (x )>0}=∅时,表示关于x 的不等式f (x )>0无解.当{x |f (x )<0}=∅,{x |f (x )≤0}=∅,{x |f (x )≥0}=∅时,也表示相应的不等式无解.如{x |mx -1>0}=∅,则表示关于x 的不等式mx -1>0无解.当{x |n <x <m }=∅时,表示关于x 的不等式n <x <m 无解,此时有n ≥m .如{x |a <x <1-a }=∅,则关于x 的不等式a <x <1-a 无解,则有a ≥1-a ,所以a ≥12.(3)对于含有参数的不等式的解集的运算问题,要结合数轴,通过观察尝试找出不等式解集的端点可能所处的位置,然后列出不等式(组),从而求得参数的值或范围.点技巧 求不等式解集的并集的方法 (1)用数轴表示不等式的解集.(2)若不等式的解集的端点含有参数,需根据端点大小进行讨论. (3)取解集的所有部分构成并集.【例6-1】已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}. (1)若A ∩B =A ,求a 的取值范围;(2)若全集U =R ,且A ⊆UB ,求a 的取值范围.解:(1)∵B ={x |x ≥a }, 又∵A ∩B =A ,∴A ⊆B . 如图所示. ∴a ≤-4.(2)∵U B={x|x<a},如下图所示.∵A⊆U B,∴a>-2.【例6-2】集合A={x|-1<x<1},B={x|x<a}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B={x|x<1},求a的取值范围.解:(1)如图所示,∵A={x|-1<x<1},B={x|x<a},且A∩B=∅,∴在数轴上,点a在-1的左侧(含点-1).∴a≤-1.(2)如图所示,∵A={x|-1<x<1},B={x|x<a},且A∪B={x|x<1},∴在数轴上,点a在-1和1之间(含点1,但不含点-1).∴-1<a≤1.7.维恩图在集合运算中的应用借助于维恩图分析集合的运算问题,可以使问题简捷地获得解决,利用维恩图将本来抽象的集合问题直观形象地表现出来,体现了数形结合思想的优越性.在使用维恩图时,可将全集分成四部分,如图所示.Ⅰ,Ⅱ,Ⅲ,Ⅳ这四部分的含义如下:Ⅰ:A∩(U B);Ⅱ:A∩B;Ⅲ:(U A)∩B;Ⅳ:(U A)∩(U B)(或U(A∪B)).【例7】集合S={x|x≤10,且x∈N+},A S,B S,且A∩B={4,5},(S B)∩A={1,2,3},(S A)∩(S B)={6,7,8},求集合A和B.分析:本题可用直接法求解,但不易求出结果,用Venn图法较为简单.解法一:因为A∩B={4,5},所以4∈A,5∈A,4∈B,5∈B.因为(S B)∩A={1,2,3},所以1∈A,2∈A,3∈A,1∉B,2∉B,3∉B.因为(S A)∩(S B)={6,7,8},所以6,7,8既不属于A,也不属于B.因为S={x|x≤10,且x∈N+},所以9,10不知所属.因为9,10均不属于S B,所以9∈B,10∈B.综上可得,A={1,2,3,4,5},B={4,5,9,10}.解法二:如图,因为A ∩B ={4,5},所以将4,5写在A ∩B 中. 因为(SB )∩A ={1,2,3},所以将1,2,3写在A 中A ∩B 之外.因为(S B )∩(S A )={6,7,8}, 所以将6,7,8写在S 中A ∪B 之外.因为(S B )∩A 与(S B )∩(S A )中均无9,10, 所以9,10在B 中A ∩B 之外.故A ={1,2,3,4,5},B ={4,5,9,10}. 8.集合思想在实际问题中的应用我们可以利用集合思想解决某些实际问题,借助维恩图将错综复杂的问题清晰地理顺,使问题得以解答.这在阅读能力上常常有较高的要求,一定要深入而全面地理解题意,然后再动手解题.在解决实际问题中,常涉及集合中元素的个数问题.为了方便,我们常用card(A )来表示集合A 中元素的个数.如,若A ={a ,b ,c },则card(A )=3.集合中元素的个数问题card(A ∪B )=card(A )+card(B )-card(A ∩B ).事实上,由图可知,A ∩B 的元素个数在card(A )和card(B )中均计算一次,因而在card(A )+card(B )中计算两次,而在card(A ∪B )中只能计算一次,从而有card(A ∪B )=card(A )+card(B )-card(A ∩B ).【例8】通过调查50名学生对A ,B 两个事件的态度,有如下结果:赞成事件A 的人数是全体的35,其余的不赞成;赞成事件B 的人数比赞成事件A 的多3人,其余的不赞成.另外,对事件A 与B 都不赞成的学生数比对事件A 与B 都赞成的学生数的13多1人.问对事件A 与B都赞成的和都不赞成的学生各有多少人?分析:设50名学生组成全集U ,赞成事件A 的学生组成集合M ,赞成事件B 的学生组成集合N ,则M ,N 把全集U 分成4个区域,其中U (M ∪N ),M ∩(U N ),(U M )∩N 中元素的个数都可以由M ∩N 中元素个数来表示,根据总元素数为50,列方程可把问题解决.解:设赞成事件A 的学生组成集合M ,赞成事件B 的学生组成集合N,50名学生组成全集U ,对事件A 与B 都赞成的人数设为x .由条件知集合M 中有30个元素,集合N 中有33个元素,集合U(M ∪N )中有13x ⎛⎫+⎪⎝⎭个元素,集合M ∩(UN )中有(30-x )个元素,集合(UM )∩N 中有(33-x )个元素,用维恩图表示为:由13x ⎛⎫+ ⎪⎝⎭+(30-x )+x +(33-x )=50,解得x =21,3x +1=8,所以对事件A 与B 都赞成的学生有21人,对事件A 与B 都不赞成的有8人.。

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};。

人教高一数学必修一第一章知识点与习题讲解

人教高一数学必修一第一章知识点与习题讲解

必修1第一章集合与函数基础知识点整理第1讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B . 解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合.解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况:A BBAAB A BA .B .C .D .⑴方程有等根且不是 △=0,得94a =-,此时的解为12x =,合.⑵方程有一解为,而另一解不是:将x =代入得a =,此时另一解1x =⑶方程有一解为,而另一解不是:将x =代入得a =,此时另一解为1x =,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲 §1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(propersubset ),记作A ≠⊂B (或B ≠⊃A ). 4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=;0 {0}; ∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A . 【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆;(ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a==-或,解得1123a a ==-或.故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b ax a b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-. 经检验,此时A =B 成立. 综上所述12x =-.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解B (读作“B (读作“,{|15},{|39},,()U R A x x B x x A B A B ==-≤≤=<<求ð解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,(){|1,9}U C A B x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A B C ð. 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------. (1)又{}3B C =,∴()A B C ={}3; (2)又{}1,2,3,4,5,6B C =, 得{}()6,5,4,3,2,1,0A C B C =------.∴ ()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围. 解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C A B =. 由{5,8}A B =,则(){1,2,3,4,6,7,9}U C A B = 由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B =, ()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C A B =, ()()()U U U C A C B C A B =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B =与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二)¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9A B =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意. 所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅; 当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则 {1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B .第5讲 §1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则 {|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-. (2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1xf x x-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x++=+=+==+++++. (2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2ax <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f又 ∵,∴ f)3-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12bx x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a -∞-上单调递增. 同理可得()f x 在[,)2ba-+∞上单调递减.【例3】求下列函数的单调区间:(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.第8讲 §1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-. 3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++.所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为 (8)[10010(10)]y x x =---.即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3】求函数2y x =.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 22y =+,函数的最小值为2.点评:形如y ax b =+性法研究,也可以用换元法研究.【另解】令t ,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,mi n 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--. 解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-. 画出函数的图象,由图可知,当1x =-时,m a x 4y =; 当32x =时,m i n 94y =-.所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §1.3.2 函数的奇偶性¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有 3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数. (2)原函数定义域为R ,对于定义域的每一个x ,都有 ()|1||1||1||1|f x x x x x f x-=--+-+=-++=,所以为偶函数. (3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数. 【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数, ∴ ()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩.两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.。

新人教版高一必修第一册第一章第1节集合的概念知识点+练习题

新人教版高一必修第一册第一章第1节集合的概念知识点+练习题

高一第一册第1章集合的概念知识点1、元素和集合(1)元素定义:把统称为元素。

记法:常用小写的拉丁字母a、b、c....表示。

(2)集合定义:一些元素组成的,简称集。

记法:常用大写拉丁字母.....表示。

相等:只要构成两个集合的元素是的,我们就称这两个集合是相等的。

2、元素和集合的关系。

(1)属于概念:如果a是集合A的元素,就说a属于集合A。

记法:;读法:a属于集合A。

(2)不属于概念:如果a不是集合A的元素,就说a不属于集合A。

记法:;读法:a不属于集合A。

3、常见的数集以及表示符号。

符号非负整数集(自然数集):;正整数集:;整数集:;有理数集:;实数集:;基础类型一:集合的基本概念1、下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③大于3小于10的所有整数;④截止到2021年10月,获得国家最高科技奖的科学工作者;A、①③④B、②③④C、②③D、①②④2、下列各组中,集合P和集合Q表示同一个集合的是()A、P是由元素1,√3,π构成的集合,Q是由元素π,1,|﹣√3|构成的集合B、P是由π构成的集合,Q是由3.1415926构成的集合C、P是由2,3构成的集合,Q是由有序数对(3,2)构成的集合D、P是满足不等式﹣1≤x≤1的自然数构成的集合,Q是方程x2=1的解集3、下列说法中,正确的是。

(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中的3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合。

基础知识二:元素和集合的关系1、①14∈R ;②√3∈Q ;③|﹣5|∈N ;④|﹣√4|∈Z ;⑤0∉N ,其中正确的个数有( )个。

A 、1B 、2C 、3D 、42、集合A 是由形如m+√3n (m ∈Z ,n ∈Z )的数构成的,试分别判断a=﹣√3,b=12+√36,c=15-5√3与集合A 的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合章节复习1.集合元素的三个特性:确定性,互异性,无序性.2.元素与集合有且只有两种关系:∈,∉.(属于、不属于)3.集合表示方法有列举法,描述法,韦恩图法,常用数集字母代号.4.集合间的关系与集合的运算符号定义Venn图子集A⊆B x∈A⇒x∈B真子集A B A⊆B且存在x0∈B但x0∉A并集A∪B {x|x∈A或x∈B}交集A∩B {x|x∈A且x∈B}补集∁U A(A⊆U) {x|x∈U且x∉A}5.常用结论(1)∅⊆A.(2)A∪∅=A;A∪A=A;A∪B=A⇔A⊇B.(3)A∩∅=∅;A∩A=A;A∩B=A⇔A⊆B.(4)A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.1.若A ={}x ,|x |,则x <0.( √ ) 2.任何集合至少有两个子集.( × )3.若{}x |ax 2+x +1=0有且只有一个元素,则必有Δ=12-4a =0.( × ) 4.设A ,B 为全集的子集,则A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .( √ )类型一 集合的概念及表示法例1 下列表示同一集合的是( ) A .M ={(2,1),(3,2)},N ={(1,2)} B .M ={2,1},N ={1,2}C .M ={y |y =x 2+1,x ∈R },N ={y |y =x 2+1,x ∈N }D .M ={(x ,y )|y =x 2-1,x ∈R },N ={y |y =x 2-1,x ∈R } 答案 B解析 A 选项中M ,N 两集合的元素个数不同,故不可能相同;B 选项中M ,N 均为含有1,2两个元素的集合,由集合中元素的无序性可得M =N ;C 选项中M ,N 均为数集,显然有NM ;D 选项中M 为点集,即抛物线y =x 2-1上所有点的集合,而N 为数集,即抛物线y =x 2-1的值域,故选B.反思与感悟 要解决集合的概念问题,必须先弄清集合中元素的性质,明确是数集,还是点集等.跟踪训练1 设集合A ={(x ,y )|x -y =0},B ={(x ,y )|2x -3y +4=0},则A ∩B =________. 答案 {(4,4)}解析 由⎩⎪⎨⎪⎧ x -y =0,2x -3y +4=0,得⎩⎪⎨⎪⎧x =4,y =4.∴A ∩B ={(4,4)}.类型二 集合间的基本关系例2 若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可能取值组成的集合.解 由题意得,P ={-3,2}. 当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a ,为满足S ⊆P ,可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.反思与感悟 (1)在分类时要遵循“不重不漏”的原则,然后对于每一类情况都要给出问题的解答.(2)对于两集合A ,B ,当A ⊆B 时,不要忽略A =∅的情况. 跟踪训练2 下列说法中不正确的是________.(填序号) ①若集合A =∅,则∅⊆A ;②若集合A ={x |x 2-1=0},B ={-1,1},则A =B ; ③已知集合A ={x |1<x <2},B ={x |x <a },若A ⊆B ,则a >2. 答案 ③解析 ∅是任何集合的子集,故①正确; ∵x 2-1=0,∴x =±1,∴A ={-1,1}, ∴A =B ,故②正确;若A ⊆B ,则a ≥2,故③错误.类型三集合的交、并、补运算命题角度1用符号语言表示的集合运算例3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.解把全集R和集合A,B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10},∵∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.反思与感悟求解用不等式表示的数集间的集合运算时,一般要借助于数轴求解,此法的特点是简单直观,同时要注意各个端点的画法及取到与否.跟踪训练3已知集合U={x|0≤x≤6,x∈Z},A={1,3,6},B={1,4,5},则A∩(∁U B)等于() A.{1} B.{3,6}C.{4,5} D.{1,3,4,5,6}答案 B解析∵U={0,1,2,3,4,5,6},B={1,4,5},∴∁U B={0,2,3,6},又∵A={1,3,6},∴A∩(∁U B)={3,6},故选B.命题角度2用图形语言表示的集合运算例4设全集U=R,A={x|0<x<2},B={x|x<1}.则图中阴影部分表示的集合为____________.答案{x|1≤x<2}解析图中阴影部分表示的集合为A∩(∁U B),因为∁U B={x|x≥1},画出数轴,如图所示,所以A∩(∁U B)={x|1≤x<2}.反思与感悟解决这一类问题一般用数形结合思想,借助于Venn图和数轴,把抽象的数学语言与直观的图形结合起来.跟踪训练4学校举办了排球赛,某班45名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛,已知两项都参赛的有6名同学,两项比赛中,这个班共有多少名同学没有参加过比赛?解设A={x|x为参加排球赛的同学},B={x|x为参加田径赛的同学},则A∩B={x|x为参加两项比赛的同学}.画出V enn图(如图),则没有参加过比赛的同学有:45-(12+20-6)=19(名).答这个班共有19名同学没有参加过比赛.类型四关于集合的新定义题例5设A为非空实数集,若对任意的x,y∈A,都有x+y∈A,x-y∈A,且xy∈A,则称A 为封闭集.①集合A={-2,-1,0,1,2}为封闭集;②集合A={n|n=2k,k∈Z}为封闭集;③若集合A1,A2为封闭集,则A1∪A2为封闭集;④若A为封闭集,则一定有0∈A.其中正确结论的序号是________.答案②④解析①集合A={-2,-1,0,1,2}中,-2-2=-4不在集合A中,所以不是封闭集;②设x,y∈A,则x=2k1,y=2k2,k1,k2∈Z,故x+y=2(k1+k2)∈A,x-y=2(k1-k2)∈A,xy=4k1k2∈A,故②正确;③反例是:集合A1={x|x=2k,k∈Z},A2={x|x=3k,k∈Z}为封闭集,但A1∪A2不是封闭集,故③不正确;④若A为封闭集,则取x=y,得x-y=0∈A.故填②④. 反思与感悟新定义题是近几年高考中集合题的热点题型,解答这类问题的关键在于阅读理解,也就是要在准确把握新信息的基础上,利用已有的知识来解决问题.跟踪训练5 设数集M =⎩⎨⎧⎭⎬⎫x ⎪⎪ m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果b -a 叫做集合{x |a ≤x ≤b }(b >a )的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13 B.23 C.112 D.512 答案 C解析 方法一 由已知可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,⎩⎪⎨⎪⎧n -13≥0,n ≤1,解得0≤m ≤14,13≤n ≤1.取字母m 的最小值0,字母n 的最大值1,可得M =⎩⎨⎧⎭⎬⎫x ⎪⎪0≤x ≤34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪23≤x ≤1, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 0≤x ≤34∩⎩⎨⎧⎭⎬⎫x ⎪⎪ 23≤x ≤1=⎩⎨⎧⎭⎬⎫x ⎪⎪ 23≤x ≤34, 此时得集合M ∩N 的“长度”为34-23=112.方法二 集合M 的“长度”为34,集合N 的“长度”为13.由于M ,N 都是集合{x |0≤x ≤1}的子集, 而{x |0≤x ≤1}的“长度”为1,由此可得集合M ∩N 的“长度”的最小值是⎝⎛⎭⎫34+13-1=112.1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案 B2.下列关系中正确的个数为( ) ①22∈R ;②0∈N +;③{-5}⊆Z . A .0 B .1 C .2 D .3答案 C解析 ①③正确.3.已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B 等于( ) A .{x |-1<x <3} B .{x |-1<x <0} C .{x |0<x <2} D .{x |2<x <3}答案 A解析 由A ={x |-1<x <2},B ={x |0<x <3}, 得A ∪B ={x |-1<x <3}.故选A.4.设全集I ={a ,b ,c ,d ,e },集合M ={a ,b ,c },N ={b ,d ,e },那么(∁I M )∩(∁I N )等于( ) A .∅ B .{d } C .{b ,e } D .{a ,c } 答案 A5.已知集合U =R ,集合A ={}x |x <-2或x >4,B ={}x |-3≤x ≤3,则(∁U A )∩B =________. 考点 交并补集的综合问题 题点 无限集合的交并补运算 答案{}x |-2≤x ≤3.解析 由图知(∁U A )∩B ={}x |-2≤x ≤3.1.要注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系. 2.在利用集合中元素相等列方程求未知数的值时,要注意利用集合中元素的互异性这一性质进行检验,忽视集合中元素的性质是导致错误的常见原因之一.课时对点练一、选择题1.若集合M={x|(x+4)(x+1)=0},N={x|(x-4)·(x-1)=0},则M∩N等于() A.{1,4} B.{-1,-4}C.{0} D.∅答案 D解析因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N =∅,故选D.2.已知集合A={x|x+3>0},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅C.A⊆B D.B⊆A考点集合的包含关系题点集合包含关系的判定答案 D解析A={x|x>-3},B={x|x≥2},结合数轴可得:B⊆A.3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}答案 D解析画出满足题意的Venn图,由图可知B={1,3,5}.4.设集合M={-1,0,1},N={a,a2},若M∩N=N,则a的值是()A.-1 B.0 C.1 D.1或-1答案 A解析由M∩N=N得N⊆M.当a=0时,与集合中元素的互异性矛盾;当a=1时,也与集合中元素的互异性矛盾;当a=-1时,N={-1,1},符合题意.5.设全集U=R,已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为()A.a>3 B.a≥3C.a≥7 D.a>7答案 A解析因为A={x|x<3或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.6.定义差集A-B={x|x∈A,且x∉B},现有三个集合A,B,C分别用圆表示,则集合C-(A-B)可表示下列图中阴影部分的为()答案 A解析如图所示,A-B表示图中阴影部分,故C-(A-B)所含元素属于C,但不属于图中阴影部分,故选A.二、填空题7.设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩(∁U B)=________.答案{1,4}解析∵∁U B={x|x<2或x>3},∴A∩(∁U B)={1,4}.8.设集合A={1,-1,a},B={1,a},A∩B=B,则a=______.答案0解析∵A ∩B =B ,即B ⊆A ,∴a ∈A . 要使a 有意义,a ≥0. ∴a =a ,∴a =0或a =1, 由元素互异,舍去a =1.∴a =0.9.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N =________. 答案 {(3,-1)}解析 M ,N 中的元素是平面上的点,M ∩N 是集合,并且其中的元素也是点,解方程组⎩⎪⎨⎪⎧ x +y =2,x -y =4, 得⎩⎪⎨⎪⎧x =3,y =-1.∴M ∩N ={(3,-1)}.10.已知集合A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∩B =∅,则a 的取值范围是________.答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪-12≤a ≤2或a >3 解析 ①若A =∅,则A ∩B =∅, 此时2a >a +3,即a >3.②若A ≠∅,如图,由A ∩B =∅,可得⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪-12≤a ≤2或a >3. 三、解答题11.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M .解结合图形可得M=⎩⎨⎧⎭⎬⎫(x,y)⎪⎪xy≥0,-2≤x≤52,-1≤y≤32.12.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A∪B=A,求实数m的取值范围;(2)当A={x∈Z|-2≤x≤5|}时,求A的非空真子集的个数;(3)若A∩B=∅,求实数m的取值范围.考点集合各类问题的综合题点集合各类问题的综合解(1)因为A∪B=A,所以B⊆A,当B=∅时,由m+1>2m-1,得m<2,符合;当B≠∅时,根据题意,可得⎩⎪⎨⎪⎧2m-1≥m+1,m+1≥-2,2m-1≤5,解得2≤m≤3.综上可得,实数m的取值范围是{m|m≤3}.(2)当x∈Z时,A={x∈Z|-2≤x≤5}={-2,-1,0,1,2,3,4,5},共有8个元素,所以A的非空真子集的个数为28-2=254.(3)当B=∅时,由(1)知m<2;当B≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧2m-1≥m+1,2m-1<-2或⎩⎪⎨⎪⎧2m-1≥m+1,m+1>5,解得m>4.综上可得,实数m 的取值范围是{m |m <2或m >4}.13.设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,求实数a 的取值范围.解 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根, 则⎩⎪⎨⎪⎧ Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综上所述,所求实数a 的取值范围是a ≤-1或a =1.四、探究与拓展14.已知全集U ={2,4,a 2-a +1},A ={a +4,4},∁U A ={7},则a =________.答案 -2解析 由题意,得a 2-a +1=7,即a 2-a -6=0,解得a =-2或a =3.当a =3时,A ={7,4},不合题意,舍去,故a =-2.15.对于集合A ,B ,我们把集合{}(a ,b )|a ∈A ,b ∈B 记作A ×B .例如,A ={}1,2,B ={}3,4,则有:A ×B ={}(1,3),(1,4),(2,3),(2,4),B ×A ={}(3,1),(3,2),(4,1),(4,2),A ×A ={}(1,1),(1,2),(2,1),(2,2),B ×B ={}(3,3),(3,4),(4,3),(4,4). 据此,试回答下列问题:(1)已知C ={}a ,D ={}1,2,3,求C ×D ;(2)已知A ×B ={}(1,2),(2,2),求集合A ,B ;(3)若集合A 中有3个元素,集合B 中有4个元素,试确定A ×B 中有多少个元素. 考点 集合各类问题的综合题点 集合各类问题的综合解析 (1)C ×D ={}(a ,1),(a ,2),(a ,3).(1,2),(2,2),(2)因为A×B={}所以A={}1,2,B={}2.(3)由题意可知A×B中元素的个数与集合A和B中的元素个数有关,即集合A中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有m×n个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B中有12个元素.。

相关文档
最新文档