数学必修2第四章知识点小结及典型习题(新)
最新数学必修2第四章知识点-总结.docx
精品文档第四章圆与方程知识点总结4.1.1 圆的标准方程1、圆的标准方程C : ( x a)2 ( y b) 2 r 2圆心为 C(a,b), 半径为 r 的圆的方程2、点 M (x 0 , y 0 ) 与圆 C : ( x a) 2 ( y b) 2 r 2 的关系的判断方法:位置关系 利用距离判断利用方程判断点 M 在圆上 |CM| =rx 0 - a 2 y b2r 2点 M 在圆外 |CM| >rx 0 - a 2 y b 2> r 2 点 M 在圆内|CM| <rx 0 - a2y b 2 <r 24.1.2圆的一般方程1、方程 x 2y 2 Dx Ey F○1 、当 D 2E 2 4F >0 时,方程 x 2 y 2DxEyF 0 为圆的一般方程,其中圆心为12E 2 2E24FD 2E 24FDyD长为,即 x2422○2 、当 D 2E 2 4F0 时,方程 x 2y 2DxEyF0 表示点D , E2 2○3 、当 D 2E 2 4F <0 时,方程 x 2y 2DxEyF0 无解,不表示任何图形。
2、圆的一般方程的特点:(1) ① x 2和 y 2的系数相同,不等于 0. ②没有 xy 这样的二次项.(2) 圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.D ,E,半径22(3) 与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
补充:已知直径两端点的圆的方程公式推导 :以 A x , y , B x , y 2为直径的两端点的圆的方程是x x1x x 2y y 1y y 2112精品文档4.2.1直线与圆的位置关系几何法:直线l : Ax By C 0,圆心C:x2y 2Dx Ey F 0 ,圆心 C 到直线l的距离 d。
代数法:直线 l : Ax By C 0,圆心 C: x 2y 2Dx Ey F 0 ,两方程联立,消去x 或者 y,得到关于y 或者 x 的一元二次方程,其判别式△位置关系交点个数代数法几何法相交2△> 0d> r相切1△= 0d= r相离0△< 0d< r4.2.2圆与圆的位置关系两圆的位置关系.设两圆的连心线长为C1C2,则判别圆与圆的位置关系的依据有以下几点:( 1)当C1C2r1r2时,圆C1与圆C2相离;(2)当C1C2r1r2时,圆C1与圆C2外切;( 3)当| r1r2|C C2r1r时,圆 C1与圆 C 2 相交;12( 4)当C1C2| r1r2|时,圆C1与圆C2内切;( 5)当C1C2| r1r2|时,圆C1与圆C2内含;4.2.3直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点 M对应着唯一确定的有序实数组(x, y, z)2、有序实数组( x, y, z) ,对应着空间直角坐标系中的一点精品文档3、空间中任意点M 的坐标都可以用有序实数组( x, y, z) 来表示,该数组叫做点M在此空间直角坐标系中的坐标,记 M(x, y, z),x叫做点 M的横坐标,y 叫做点M的纵坐标,z叫做点M的竖坐标。
数学必修二第四章知识点_
数学必修二第四章知识点_内容摘要:如果把高中三年去挑战高考看作一次越野长跑的话,那么高中二年级是这个长跑的中段。
与起点相比,它少了许多1.并集(1)并集的定义由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B 的并集,记作A∪B(读作"A并B");(2)并集的符号表示A∪B={某|某∈A或某∈B}.并集定义的数学表达式中"或"字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.某∈A,或某∈B包括如下三种情况:①某∈A,但某B;②某∈B,但某A;③某∈A,且某∈B.由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.2.交集利用下图类比并集的概念引出交集的概念.(1)交集的定义由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作"A交B").(2)交集的符号表示A∩B={某|某∈A且某∈B}.1.函数的奇偶性(1)若f(某)是偶函数,那么f(某)=f(-某);(2)若f(某)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(某)±f(-某)=0或(f(某)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(某)]的定义域由不等式a≤g(某)≤b解出即可;若已知f[g(某)]的定义域为[a,b],求f(某)的定义域,相当于某∈[a,b]时,求g(某)的值域(即f(某)的定义域);研究函数的问题一定要注意定义域优先的原则。
必修二数学第四章知识点归纳
必修二数学第四章知识点归纳必修二数学第四章知识点归纳标准方程圆半径的长度定出圆周的大小,圆心的位置确定圆在平面上的位置。
如果已知:(1)圆半径长R;(2)中心A的坐标(a,b),则圆的大小及其在平面上关于坐标轴的位置就已确定(如下图)。
根据图形的几何尺寸与坐标的联系可以得出圆的标准方程。
结论如下:(x-a)2+(y-b)2=R2当圆的中心A与原点重合时,即原点为中心时,即a=b=0,圆的方程为:x2+y2=R2圆的一般方程圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y的降幂排列,得:x2+y2-2ax-2by+a2+b2-R2=0设D=-2a,E=-2b,F=a2+b2-R2;则方程变成:x2+y2+Dx+Ey+F=0任意一个圆的方程都可写成上述形式。
把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:(1)x2项和y2项的系数相等且不为0(在这里为1);(2)没有xy的乘积项。
Ax2+Bxy+Cy2+Dx+Ey+F=0圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 x2+y2=r2上一点M(a0,b0)的切线方程为a0·x+b0·y=r2在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。
如何快速学好数学适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
必修二数学第四章知识点
必修二数学第四章知识点
第四章知识点主要涉及到图形的性质和关系,包括平行四边形和矩形的性质、梯形的性质、圆的性质以及相关的计算方法等等。
1. 平行四边形的性质:
- 对角线互相平分
- 相邻角互补
- 对角线长度相等
- 任意一条对角线把平行四边形分成两个全等三角形
- 相邻边互相平行且长度相等
2. 矩形的性质:
- 两对对边分别平行且相等
- 相邻角为直角
- 对角线相等
3. 梯形的性质:
- 两条底边平行
- 两个对角线相交于一点
- 两个底角和两个顶角之和为180度
4. 圆的性质:
- 圆心到圆上任意一点的距离都相等
- 直径是最长的线段,而半径是一半长
- 任意两条弦之间的弦长相等时,这两条弦是等长的
- 切线和半径所形成的角是直角
- 切线与圆心连线所形成的角等于其对应的弧所对的角
5. 图形的计算方法:
- 平行四边形的面积 = 底边长×高
- 矩形的面积 = 长×宽
- 梯形的面积 = 上底 + 下底×高÷ 2
- 圆的面积 = π×半径的平方,其中π约等于3.14
- 圆的周长 = 2 ×π×半径
这些是第四章必修二数学的主要知识点,掌握了这些知识点可以帮助你理解和解决与图形性质和关系相关的问题。
高中数学必修2第四章知识点总结
高中数学必修2第四章知识点总结4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。
高中数学必修2知识点总结第四章-圆和方程
第四章 圆与方程 知识点与习题1. ★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内;(2)一般方程022=++++F Ey Dx y x (x+D/2)2+(y+E/2)2=(D2+E2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; ②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可; ②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
高中数学必修2__第四章《圆与方程》知识点总结与练习
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 方程 (x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r一般 方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2, 半径:12D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.圆的方程的求法典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.与圆有关的最值问题典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5与圆有关的轨迹问题典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.与圆有关的交汇问题是近几年高考命题的热点,这类问题,要特别注意圆的定义及其性质的运用. 同时,要根据条件,合理选择代数方法或几何方法, 凡是涉及参数的问题,一定要注意参数的变化对问 题的影响,以便确定是否分类讨论.同时要有丰富 的相关知识储备,解题时只有做到平心静气地认真 研究,不断寻求解决问题的方法和技巧,才能真正 把握好问题.[典例] (2011·江苏高考)设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.[解析] 由题意知A ≠∅,则m 2≤m 2,即m ≤0或m ≥12.因为A ∩B ≠∅,则有:(1)当2m +1<2,即m <12时,圆心(2,0)到直线x +y =2m +1的距离为d 1=|2-2m -1|2≤|m |,化简得2m 2-4m +1≤0,解得1-22≤m ≤1+22,所以1-22≤m ≤12; (2)当2m ≤2≤2m +1,即12≤m ≤1时,A ∩B ≠∅恒成立;(3)当2m >2,即m >1时,圆心(2,0)到直线x +y =2m 的距离为d 2=|2-2m |2≤|m |,化简得m 2-4m +2≤0, 解得2-2≤m ≤2+2, 所以1<m ≤2+ 2.综上可知:满足题意的m 的取值范围为⎣⎡⎦⎤12,2+2. [答案] ⎣⎡⎦⎤12,2+2 [题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95B .1C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2,且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根. 故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255, 所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小, 所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第四节直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d ,圆的半径为r )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r二、圆与圆的位置关系(⊙O 1、⊙O 2半径r 1、r 2,d =|O 1O 2|) 相离外切相交内切内含图形量化 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|[小题能否全取]1.(教材习题改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =5,0<d <6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x-2y+4=0.答案:x-2y+4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.直线与圆的位置关系的判断典题导入[例1](2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能[自主解答]将点P(3,0)的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,所以点P(3,0)在圆内.故过点P的直线l定与圆C相交.[答案] A本例中若直线l为“x-y+4=0”问题不变.解:∵圆的方程为(x-2)2+y2=4,∴圆心(2,0),r=2.=32>2.又圆心到直线的距离为d=62∴l与C相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.直线与圆的位置关系的综合典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0 解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k 2≤1,解得-33≤k ≤ 33.圆与圆的位置关系典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2 D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2.又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP = x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13, 又∵|MQ |=|MA |2|MP |,∴|MQ |=3. 设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③ 因P (0,2)、Q (6,0),PQ =(6,-2), 所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k .1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y。
数学必修2第四章知识点总结
数学必修2第四章知识点总结第四章是高中数学必修课程中的一章,主要内容是复数与概率。
本文将对第四章的知识点进行总结。
一、复数1.复数的引入复数是为了解方程$x^2=-1$而引入的一种新的数,其中$i$称为虚数单位,$i^2=-1$。
复数可以表示为$a+bi$的形式,其中$a$为实部,$b$为虚部。
2.复数的四则运算复数的加减法可以分别对实部和虚部进行运算。
复数的乘法是根据$i$的性质进行简化,即$i^2=-1$。
复数的除法可以通过有理化分母的方法进行。
3.复数的共轭与模复数$a+bi$的共轭是$a-bi$,即实部不变虚部改变符号。
复数的模表示为$,a+bi,=\sqrt{a^2+b^2}$,表示复数到原点的距离。
4.求复数的正弦、余弦与辐角复数$a+bi$的正弦、余弦可以由Euler公式得到$e^{ix}=\cosx+i\sin x$,再通过对比系数得到正弦、余弦的表达式。
复数的辐角是指复数与正实轴的夹角,可以由正弦、余弦的关系得到。
5.复数的乘方和开方复数的乘方可以利用复数的乘法进行展开计算。
复数的开方是指找到一个复数的平方等于原复数,可以利用复数的乘方和解方程的方法进行求解。
二、概率1.概率的引入概率是研究随机事件发生可能性的数学方法。
概率的范围在0到1之间,事件发生的概率越大,其可能性越高。
2.随机事件与样本空间随机事件是指在一定条件下可能发生或不发生的事件。
样本空间是指所有可能结果的集合,可以用列举、图表或文字等形式表示。
3.事件的概率事件的概率可以用频率定义、古典定义和几何定义等方法进行计算。
频率定义是指通过大量实验统计得到事件出现的次数,用次数除以总次数得到概率。
古典定义是指在等可能的情况下,事件发生的概率等于有利结果的个数除以总结果的个数。
几何定义是指在几何模型中,事件发生的概率等于事件对应的区域面积与样本空间的面积之比。
4.事件发生的关系与运算事件发生的关系包括包含关系和互斥关系。
2022年必修二数学第四章知识点
必修二数学第四章知识点学习数学课堂练习是最直接的反馈,肯定要仔细对待。
不要急于完成作业,要先看看课堂笔记,回顾学习内容,加深记忆与理解。
下面是我整理的必修二数学第四章学问点,仅供参考盼望能够关心到大家。
必修二数学第四章学问点1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(_-a)^2+(y-b)^2=r^2。
特殊地,以原点为圆心,半径为r(r0)的圆的标准方程为_^2+y^2=r^2。
2、圆的一般方程:方程_^2+y^2+D_+Ey+F=0可变形为(_+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:(1)、当D^2+E^2-4F0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);(3)、当D^2+E^2-4F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是_=a+r_cosθ,y=b+r_sinθ,(其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(_-a1)(_-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的半径都是r。
经过圆_^2+y^2=r^2上一点M(a0,b0)的切线方程为a0__+b0_y=r^2在圆(_^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0__+b0_y=r^2 面积公式圆的面积:S=πr²=πd²/4扇形弧长:L=圆心角(弧度制) _ r = n°πr/180°(n为圆心角)扇形面积:S=nπ r²/360=Lr/2(L为扇形的弧长)圆的直径:d=2r圆锥侧面积:S=πrl(l为母线长)圆锥底面半径:r=n°/360°L(L为母线长)(r为底面半径)提高数学成果的窍门是什么找漏洞同学如何找自己学科上的漏洞呢?主要就是要在预习时找漏洞。
高中数学吧必修2第四章知识点总结
高中数学吧必修2第四章知识点总结高中数学必修2第四章主要讲述了函数的性质和应用。
本章内容较多,需要了解的知识点较多。
以下是第四章的知识点总结:一、函数的概念与性质1.函数的概念:函数是指一种特殊的对应关系,将一个或多个元素映射到唯一确定的输出。
2.自变量和因变量:在函数中,自变量是指输入的数值,因变量是指输出的数值。
3.定义域和值域:函数在定义域内有意义。
在函数的定义域内,每一个自变量都有唯一确定的因变量。
自变量的取值范围称为定义域,因变量的取值范围称为值域。
4.奇偶函数:当函数满足f(-x)=-f(x),x∈D(D为定义域)时,称为奇函数;当函数满足f(-x)=f(x),x∈D时,称为偶函数;若既不满足奇函数的条件,也不满足偶函数的条件,则为一般函数。
5.函数的图象:函数的图象是由平面上所有满足函数方程的点的集合组成。
6.函数的单调性:函数在一定区间上的取值可以是递增的(称为增函数),也可以是递减的(称为减函数)。
增函数和减函数统称为单调函数。
7.复合函数:当一个函数的自变量是另一个函数时,称这个函数为复合函数。
8.反函数:如果一个函数f的定义域和值域分别改换后,得到的新函数是一个函数,则称之为原函数的反函数。
二、函数的应用1.函数建模:在实际问题中,选择合适的函数建立数学模型,可以更好地描述问题和解决问题。
2.利润函数:利润函数可以通过分析成本与收益之间的关系来研究企业的盈利情况。
3.数量关系函数:数量关系函数可以描述两个物体之间的数量关系,如速度、加速度等。
4.利率问题:利率问题是函数的增长和变化问题,通常使用指数函数来描述。
5.累加函数:累加函数可以描述对其中一变化过程中所有变化量的累加情况。
三、函数的图象与性质1.基本初等函数:常数函数、一次线性函数、二次函数、反比例函数、绝对值函数和有理函数等都是基本初等函数。
2.一次函数:一次函数的图象是一条直线,可以通过两点的坐标来确定。
3.二次函数:二次函数的图象是抛物线,可以通过顶点坐标和另外一点的坐标来确定。
高中数学必修2(人教A版)第四章圆与方程4.2知识点总结含同步练习及答案
− |3 × 0 + 12 − |AB| − − − − − − √− 10 设直线 l 与圆 C 的交点为 A 、B ,则 . = √r2 − d 2 = 2 2 − |AB| = √−
为 √5 ,点 (0, 1) 到直线 l 的距离为 d =
可知 Δ = 4m(3m + 4).
4 时,直线与圆相切; 3 4 当 Δ > 0 ,即 m > 0 或 m < − 时,直线与圆相交; 3 4 当 Δ < 0 ,即 − < m < 0 时,直线与圆相离. 3
当 Δ = 0 ,即 m = 0 或 m = −
2.圆的切线 描述: 圆的切线长 过圆外一点P (x 0 , y 0 ) 向圆 M 作两条切线,其中圆心 M 的坐标为 (a, b) ,如图,
切:d = r;直线与圆相离:d > r. 2. 代数法:把直线的方程与圆的方程联立,得方程组,消去 y 或 x 整理得到关于 x 或 y 的一 元二次方程,其判别式为Δ ,直线与圆相交:Δ > 0 ;直线与圆相切:Δ = 0 ;直线与圆 相离:Δ < 0 . 例题: 当 m 为何值时,直线 mx − y − m − 1 = 0 与圆 x2 + y 2 − 4x − 2y + 1 = 0 相交?相切?相 离? 解:法一:(几何法) 由已知,得圆心坐标为 (2, 1),半径 r = 2,圆心 (2, 1) 到直线 mx − y − m − 1 = 0 的距离
解得 A(
4.圆与圆的位置关系 描述: 圆与圆的位置关系
平面上两圆的位置关系有五种:
判断两圆的位置关系 判断圆C1 :(x − a1 )2 + (y − b 1 )2 = r2 与圆C2 :(x − a2 )2 + (y − b 2 )2 = r2 的位置关系,主要 1 2 有两种方法: ①几何法:比较圆心距与两圆半径的关系,设两圆的圆心距为d , 当d > r1 + r2 时,两圆外离; 当d = r1 + r2 时,两圆外切; 当|r1 − r2 | < d < r1 + r2 时,两圆相交; 当d = |r1 − r2 | 时,两圆内切; 当0 ≤ d < |r1 − r2 | 时,两圆内含. ②代数法:通过两圆方程组成方程组的公共解的个数进行判断. 圆 C1 的方程与圆 C2 的方程联立,消去 x 或 y 得到关于y 或关于x的一元二次方程, 当Δ > 0 ⇒ 两圆相交; 当Δ = 0 ⇒ 两圆内切或外切; 当Δ < 0 ⇒ 两圆外离或内含. 例题: a 为何值时,两圆 C1 :x 2 + y 2 − 2ax + 4y + a2 − 5 = 0 和C2 : x2 + y 2 + 2x − 2ay + a2 − 3 = 0 . (1)外切;(2)相交;(3)外离. 解:将两圆方程写成标准方程,
必修二数学第四章知识点
必修二数学第四章知识点
必修二数学第四章主要讲解函数和导数的相关知识点,主要包括以下内容:
1. 函数的概念:函数是一个变量的变化规律,可以用一个自变量和一个因变量的关系
式来表示,常用的函数有多项式函数、指数函数、对数函数、三角函数等。
2. 函数的表示方法:可以用表格、图像、公式等方式表示函数。
3. 线性函数:线性函数是一种最简单的函数形式,表示为y = kx + b,其中k为斜率,b为截距。
4. 幂函数:幂函数是一种基本的函数形式,表示为y = ax^n,其中a为常数,n为指数。
5. 指数函数:指数函数是一种特殊的幂函数形式,表示为y = a^x,其中a为底数。
6. 对数函数:对数函数是指数函数的反函数,表示为y = loga(x),其中a为底数。
7. 三角函数:包括正弦函数、余弦函数、正切函数等,是数学中常用的函数形式。
8. 导数的概念:导数表示函数在某一点上的变化速率,也可以理解为函数曲线在该点
的切线斜率。
9. 导数的计算方法:常用的方式有用定义法、利用已知函数的导数性质、利用导数的
四则运算法则等。
10. 函数的图像和导数的关系:函数的图像和导数的关系可以通过导数的正负和零点、导数的增减性等来描述。
这些知识点是必修二数学第四章的主要内容,掌握了这些知识点可以帮助学生更好地理解函数和导数的概念和性质,为后续学习打下基础。
高中数学必修2第四章知识点总结
高中数学必修2第四章知识点总结一、几何证明几何证明是数学中的一种重要方法。
在几何证明中,我们需要运用已知条件和几何定理进行推理,以得到我们要证明的结论。
1.等腰三角形性质等腰三角形的性质包括两边相等、两底角相等等。
在证明等腰三角形时,可以利用相等的角、相等的边、对称性等性质进行推导。
2.相似三角形性质相似三角形的性质包括对应角相等、对应边成比例等。
在证明相似三角形时,可以运用角度对应、边长比例、平行性等性质来推导。
3.圆的性质圆的性质包括切线与半径垂直、半径相等的弧对应的角相等等。
在证明圆的性质时,可以使用切线、弦、弧等基本概念和定理进行推导。
二、平面上的向量向量是数学中一个重要的概念,表示有大小和方向的量。
向量的运算包括加法、减法、数量乘法和向量的线性组合。
1.向量的加法和减法向量的加法满足交换律和结合律,减法是加法的逆运算,即A-B=A+(-B)。
2.数量乘法向量与实数的乘法称为数量乘法,它可以改变向量的大小和方向。
3.向量的线性组合向量的线性组合是指将若干个向量与一些实数相乘再相加而得到的新的向量。
4.向量共线和共面两个向量共线是指它们的方向相同或相反,两个向量共面是指它们在同一个平面上。
三、线性规划线性规划是一种优化问题,它的目标是在一定的约束条件下,使其中一目标函数达到最大或最小值。
线性规划的基本步骤包括建立数学模型、确定目标函数和约束条件、求解可行解集和最优解。
1.线性规划问题的建立线性规划的问题可以用一个线性方程组来表示,其中包括目标函数和约束条件。
2.目标函数和约束条件目标函数是要优化的目标量,约束条件是对决策变量的限制要求。
3.可行解集和最优解可行解集是满足约束条件的决策变量的取值范围,最优解是在满足约束条件下使目标函数达到最大或最小值的解。
四、数列与数列的合成数列是一系列按照一定规律排列的数的集合。
数列的合成是指将两个或多个数列按照一定规律进行组合。
1.数列的概念数列可以用函数来表示,其中自变量是自然数,函数值是一系列按照一定规律排列的数。
必修二数学第四章知识点归纳
必修二数学第四章知识点归纳
必修二数学第四章的主要知识点包括:
1. 函数的概念:函数是一种特殊的关系,通过一个自变量和一个因变量的对应关系来
描述。
函数可以用一个公式、图表或者一段描述来表示。
2. 函数的图像与性质:函数的图像是将自变量的取值代入函数中,得到对应的因变量
值所得到的点的集合。
函数的性质包括奇偶性、周期性、单调性、有界性等。
3. 四种基本初等函数:常数函数、幂函数、指数函数、对数函数。
这四种函数是常见
的函数类型,并且它们在实际问题中经常出现。
4. 复合函数:复合函数是两个或多个函数通过代数运算所得到的新函数,其中一个函
数的输出作为另一个函数的输入。
5. 反函数:反函数是原函数的输入和输出进行互换后得到的新函数,即输出变为输入,输入变为输出。
6. 函数的运算:函数的加法、减法、乘法、除法等运算按照相应的规则进行。
7. 指数函数与对数函数的性质:指数函数和对数函数是互逆关系,具有一系列特定的
性质,如指数函数的零点、对数函数的基本性质等。
8. 指数函数与对数函数的应用:指数函数和对数函数在实际问题中具有广泛的应用,
如在金融、经济、生物、物理等领域中。
以上是必修二数学第四章的主要知识点,理解这些知识点能够帮助解答相关的题目和问题。
数学必修2第四章知识点小结及典型习题
第四章 圆与方程一、圆的定义:平面内到一定点的距离等于定长的点的集合(或点的轨迹)叫圆,定点为圆心,定长为圆的半径.二、圆的方程:(标准方程和一般方程)(一)标准方程:()()222r b y a x =-+-,圆心()b a ,,半径为r圆的参数方程(还未学习,暂作了解)()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 ()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 1、求标准方程的方法——关键是求出圆心()b a ,和半径r①待定系数法:往往已知圆上三点坐标,例如教材119P例2 ②利用平面几何性质:往往涉及到直线与圆的位置关系,特别是:相切和相交。
相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2、特殊位置的圆的标准方程设法(无需记,关键能理解)条件 方程形式圆心在原点 ()2220x y r r +=≠过原点 ()()()2222220x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2220x a y r r -+=≠ 圆心在y 轴上 ()()2220x y b r r +-=≠圆心在x 轴上且过原点 ()()2220x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2220x y b b b +-=≠与x 轴相切()()()2220x a y b b b -+-=≠与y 轴相切 ()()()2220x a y b a a -+-=≠与两坐标轴都相切()()()2220x a y b a a b -+-==≠ (二)圆的一般方程:()2222040x y Dx Ey F D E F ++++=+-> 1、圆的一般方程的特点:(1)①2x 和2y 的系数相同,且不等于0.②没有xy 这样的二次项.(2) 求圆的一般方程采用待定系数法:圆的一般方程中有三个待定的系数D 、E 、F ,只要求出这三个系数,圆的方程就确定了.如教材122P 例4(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
必修二数学第四章知识点归纳
必修二数学第四章知识点归纳
第四章是关于一次函数的知识点,主要包括以下内容:
1. 一次函数的概念:一次函数是指函数的表达式为y=ax+b,其中a和b是常数,且a ≠0。
2. 一次函数的图像特征:一次函数的图像是一条直线,且具有以下特征:
- 斜率:斜率为a,表示直线的倾斜程度。
斜率大于0时,表示直线向右上方倾斜;斜率小于0时,表示直线向右下方倾斜。
- 截距:截距为b,表示直线与y轴的交点。
3. 一次函数的性质:
- 增减性:当a>0时,函数图像单调递增;当a<0时,函数图像单调递减。
- 定义域和值域:一次函数的定义域为整个实数集,值域也是整个实数集。
- 零点:一次函数的零点是使得函数值为0的x值,即当ax+b=0时,得到x=-b/a。
- 与坐标轴的交点:与x轴的交点为(-b/a, 0),与y轴的交点为(0, b)。
4. 一次函数的应用:
- 故事性实例:通过实际故事或问题来引入一次函数的概念与应用。
- 直线的方程:通过已知函数图像上的两个点来确定一次函数的方程。
- 解一次方程:通过一次函数建立的方程来求解实际问题。
这些是第四章一次函数的主要知识点,希望对你有帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 圆与方程一、圆的定义:平面内到一定点的距离等于定长的点的集合(或点的轨迹)叫圆,定点为圆心,定长为圆的半径.二、圆的方程:(标准方程和一般方程)(一)标准方程:()()222r b y a x =-+-,圆心()b a ,,半径为r圆的参数方程(还未学习,暂作了解)()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数1、求标准方程的方法——关键是求出圆心()b a ,和半径r①待定系数法:往往已知圆上三点坐标,例如教材119P 例2②利用平面几何性质:往往涉及到直线与圆的位置关系,特别是:相切和相交。
相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2、特殊位置的圆的标准方程设法(无需记,关键能理解)条件 方程形式圆心在原点 ()2220x y r r +=≠过原点 ()()()2222220x a y b a b a b -+-=++≠圆心在x 轴上 ()()2220x a y r r -+=≠圆心在y 轴上 ()()2220x y b r r +-=≠圆心在x 轴上且过原点 ()()2220x a y a a -+=≠圆心在y 轴上且过原点 ()()2220x y b b b +-=≠与x 轴相切 ()()()2220x a y b b b -+-=≠与y 轴相切 ()()()2220x a y b a a -+-=≠与两坐标轴都相切 ()()()2220x a y b a a b -+-==≠(二)圆的一般方程:()2222040x y Dx Ey F D E F ++++=+->1、圆的一般方程的特点:(1)①2x 和2y 的系数相同,且不等于0.②没有xy 这样的二次项. (2) 求圆的一般方程采用待定系数法:圆的一般方程中有三个待定的系数D 、E 、F ,只要求出这三个系数,圆的方程就确定了.如教材122P 例 4(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
2、220Ax By Cxy Dx Ey F +++++=表示圆方程,则 222200004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩3、常可用0422>-+F E D 来求有关参数的范围。
4、(1)当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=;(2)当0422=-+F E D 时,表示一个点;(3)当0422<-+F E D 时,方程不表示任何图形。
例:若方程2222210x y ax ay a a +++++-=表示圆,则实数a 的取值范是( )。
A 、203a -<<B 、20a -<<C 、223a <-或a>D 、223a -<< (三)注意求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
三、点与圆的位置关系点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:1、判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外2、涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r==+ min max PB NB BC r PB MB BC r ==-==+,(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- 、max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC )例:若点(1,1)在圆22()()4x a y a -++=的内部,则实数a 的取值范围是( )。
A. —1<a<1B. 0<a<1C.a<—1或a>1D.a=±1四、直线与圆的位置关系的判定及弦长公式:(一)直线与圆的位置关系有相离,相切,相交三种情况,判断方法如下:1、设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到直线l 的距离为22B A C Bb Aa d +++=,则有r d >⇔直线l 与圆C 相离;r d =⇔直线l 与圆C 相切; r d <⇔直线l 与圆C 相交; 这一知识点可以出题:告诉你直线与圆相交让你求有关参数的范围.2、设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为∆,则有相离与C l ⇔<∆0;相切与C l ⇔=∆0;相交与C l ⇔>∆0注:如果圆心的位置在原点,可使用公式200r yy xx =+去解直线与圆相切的问题,其中()00,y x 表示切点坐标,r 表示半径。
(二)直线与圆相切1、知识要点①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径r2、常见题型——求过定点的切线方程(1)切线条数:点在圆外——3条;点在圆上——1条;点在圆内——无(2)求切线方程的方法及注意点...i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了!ii )点在圆上1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r +=会在选择题及填空题中运用,但一定要看清题目.2) 若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数。
如:1、234(3123如:1径r 2、已知直线l :3x +4y -12=0与圆C :C :(x —3)2 + (y —2)2=4.请选择适当的方法判断直线l 与圆C 的位置关系;若直线l 与圆C 相交,请求出直线l 被圆C 截得的弦长。
解法1:(代数法) 解法2:(几何法)总结:(1)代数法:设直线与圆的方程连立方程组,消元后所得一元二次方程为220ax bx c ++=,其两个不等实根为1x ,2x .则其两点弦长为|AB|=||Δ12a k +。
(2)几何法;设直线l :Ax+By+C=0,圆C :222()()x a y b r -+-=,圆心C(a ,b)到直线l 的距离d =22B A C Bb Aa +++||,弦长|AB|=222d r -。
3、圆2244100x y x y +---=的上点到直线x+y —14=0的最大距离和最小距离为 和 。
最大距离和最小距离的差为五、圆与圆的位置关系:1、判定方法:常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆C 1:(x —a 1)2+(y —b 1)2=r 2,C 2:(x —a 2)2+(y —b 2)2=R 2 (设R>r)当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;当d =当d <注意: 2圆1C 则(1D ※3(1)说明:①上述圆系不包括2C ;②当1λ=-时,表示过两圆交点的直线方程(公共弦)(2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=※数学思想方法简介——方程思想与坐标法直线方程Ax+By+C=0与圆的方程222()()x a y b r -+-=有三个方面的应用:(1)通过研究直线与圆或圆与圆的方程联立所得的方程组的解的情况来确定直线与圆之间的交点情况,从而判定直线与圆的之间位置关系,圆与圆之间位置关系及求它们的交点坐标。
(2)通过点到直线的距离公式求出圆心到直线的距离d =22B A C Bb Aa +++\|,并比较d 与半径r 的大小解决圆与直线的有关性质问题。
或圆心距与圆半径的和或差大小的比较,解决圆与圆之间的性质问题。
(3) 利用已知方程,任给一个坐标x 的值,就可以求另一个坐标y 的值解决实际问题 专项练习:(1) 过原点且倾斜角为60°的直线被圆2240x y y +-=截得弦AB 长为(2) 已知一圆上的两点A(2,—3)、B(—2,—5),且圆心C 在直线x —2y —3=0上,求此圆C 的方程.(3)(4) 的方程。
(5) l (6) 0=(7) .(8) (9) 3)的圆C (10) C 、D ,且(11) (12) 1=的一点上,求这条光线由A 点入射、反射到圆上的最短路程。
六、空间直角坐标系:1、空间直角坐标系:从空间某一个定点O 引三条 且有 单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O-xyz ,点O 叫做 ,x 轴、y 轴、z 轴叫做 。
在画空间直角坐标系O-xyz 时,一般使∠xOy=135°,∠yOz=90°。
2、坐标平面:通过每两个坐标轴的平面叫做 ,分别称为xOy 平面、yOz 平面、 zOx 平面。
3、在空间直角坐标系中,空间一点M 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点M 在空间直角坐标系中的坐标,记作M(x ,y ,z),其中x 叫做 坐标,y 叫做 坐标,z 叫做 坐标.4、右手直角坐标系:在空间直角坐标系中,令右手大拇指、食指和中指相互垂直时,让右手大拇指指向为x 轴的正方向,食指指向y 轴的正方向,中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。