第1章 机器人运动学优秀课件

合集下载

机器人运动学正解逆解 ppt课件

机器人运动学正解逆解 ppt课件

C1(C23a44
S1S5C6
S1S5S6
S1C5
C2a33C2a2)
S1C (C 1S253SC465C6S23S46)
S2 3C45C6
S1(C23C45C6S23C46)
C1S5S6 S23C45C6C23C46
S1(C23S45)
C1C5 S2 3S45
S1(C23a44 S23C a442a33S2C a332a2S )2a2
S2
0
C2 0
0
S2a2
1 0
0
0
0
1
C3 S3 0 C3a3
A3
S3
0
C3 0
0
S3a3
1 0
0 0 0 1
C4 0 S4 C4a4
A4
S4
0
0 1
C4 0
S4a4
0
0 0 0 1
C5 0 S5 0
A5
S
5
0
0 1
C5 0
0
0
0
0
0
1
C6 S6 0 0
A6
S
2
arctan(C3a3 (C3a3
a2 )( pz S234a4 ) S3a3( pxC1 py S1 a2 )( pxC1 py S1 C234a4 ) S3a3( pz
C234a4 ) S234a4 )
进而可得:
4 234 2 3
再 根 据 对 应 项 元 素 相 , 等 可 以 得 到
学习重点:1. 给关节指定参考坐标系 2. 制定D-H参数表 3. 利用参数表计算转移矩阵
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你

机器人运动学正解逆解-课件

机器人运动学正解逆解-课件
§1.4
机器人正向运动学
工业机器人的正向运动学是指已知各关节的类型、相邻 关节之间的尺寸和相邻关节相对运动量的大小时,如何确 定工业机器人末端操作器在固定坐标系中的位姿。
主要包括以下内容:
1) 相对杆件的坐标系的确定; 2) 建立各连杆的模型矩阵A; 3) 正运动学算法;
D-H表示法
学习目标:1. 理解D-H法原理
C 2 S A2 2 0 0 S2 C2 0 0 0 C 2a2 0 S2a2 1 0 0 1
C 3 S A3 3 0 0
S3 C3 0 0
0 C 3a3 0 S3a3 1 0 0 1
C 4 S A4 4 0 0
y0
O0
连杆0
z0
d1 x0
解:
例2、PUMA560运动学方程(六个自由度,全部是旋转关节)
关节变量都是θ
θ2
θ1
θ3
θ4
θ5 θ6
PUMA560机器人的连杆及关节编号
A1
A2
为右手坐标系,Yi轴:按右手定则 Zi轴:与Ai+1关节轴重合,指向任意 Xi轴: Zi和Zi-1构成的面的法线, 或连杆i两端轴线Ai 与Ai+1的公垂线(即: Zi和Zi-1的公垂线)
变换矩阵,它们依次连乘的结果就是末端执行器(手爪)在基坐
标系中的空间描述,即
n o a 0 1 n -1 T1 (q1 ) T2 (q2 ) Tn 0 0 0
上式称为运动方程。
p 0 Rn 1 0
0
PnO 1
已知q1,q2,…,qn,求
S3 C3
依次类推,分别在方程2.19两边左乘A1~A4的逆,可得到

机器人学基础(全套课件470P)

机器人学基础(全套课件470P)
机器人学基础
Fundamentals of Robotics
智能科学基础系列课0
Fundamentals of Robotics
1
Ch. 1 Introduction 第1章 绪 论
Ch. 1 Introduction
2
Contents
Course Schedule Top 10 Robotics News of 2008 Development of Robotics Structure, Feature, and Classification of
讲授
2 讲授
2 课堂 报告
2 实验
9
教学进度安排(3)
月 日 周次 4 20 8
教学内容 机器人编程
教学 时数
2
教学 课外 备 方式 时数 注
讲授 2
4 23 8
机器人编程训练
2 训练
4 27 9 综合实验:智能机器人的路 2 综合
径规划与行为决策实验
实验
4 30 9
机器人应用
2 讲授
5 4 10
Ch. 1 Introduction
17
2 Robot ride on a wheelbarrow
➢ In September 2008 Japanese Murata Manufacturing Institute launched a new type of robot riding on a wheelbarrow, named "seiko". This new type of robot can maintain its balance through a series of sensors and gyroscopes, and easy to complete riding of a wheelbarrow.

移动机器人原理与设计第一章机器人概述ppt课件

移动机器人原理与设计第一章机器人概述ppt课件
▪ 3)具有不同程度的智能性,如记忆、感知、推理、 决策、学习。
5
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
1.2.2 机器人的发展历史
1920年,捷克剧作家卡雷尔·卡佩克在《罗萨姆的万能机 器人》中把捷克语“Robota”写成了“Robot”,引起了大家 的广泛关注,被当成了机器人一词的起源。
1.4 移动式机器人
19
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
1.5 机器人竞赛
20
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
机器人的组成
机器人是一个机电一体化的设备。从控制观点来看,机器 人系统可以分成四大部分:机器人执行机构、驱动装置、 控制系统、感知反馈系统。
机器人
执行机构 手腕臂腰 部部部部
( 固基 定 或 移座 动 )
驱动装置
电 驱 动 装 置
液 压 驱 动 装 置
气 压 驱 动 装 置
控制系统


处伺
理 器
服 控 制
可穿戴机器人
14
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
可重构机器人
15
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观

机器人运动学正解逆解 ppt课件

机器人运动学正解逆解 ppt课件
§1.4 机器人正向运动学 工业机器人的正向运动学是指已知各关节的类型、相邻
关节之间的尺寸和相邻关节相对运动量的大小时,如何确 定工业机器人末端操作器在固定坐标系中的位姿。
主要包括以下内容: 1) 相对杆件的坐标系的确定; 2) 建立各连杆的模型矩阵A; 3) 正运动学算法;
1
D-H表示法
学习目标:1. 理解D-H法原理 2. 学会用D-H法对机器人建模
x3
连杆4
y3
O3
连杆3
A3
d3 A2
O4
x2
z5
y5
x4
O5
y4
z2
y2
关节3
A1 连杆2
O2 坐标系2
x5
o3 , o4 , o5重 合 d4 d5 0
关节2 O1
z1
坐标系1
y1 连杆1
x1
d2
关节1 坐标系0
ai—沿 xi 轴, zi-1 轴与 xi 轴交点到Oi 的距离 αi — 绕 xi 轴,由 zi-1 转向zi di — 沿 zi-1 轴,zi-1 轴和 xi 交点至Oi –1 坐标
例1:Stanford机器人运动学方程
10
• 为右手坐标系 • 原点Oi: Ai与Ai+1关节轴线的交点
A6
y6
z6
A5
连杆5
• zi轴:与Ai+1关节轴重合,指向任意
x6
O6
关节6
关节5 坐标系4
• xi轴: Zi和Zi-1构成的面的法线 • yi轴:按右手定则
坐标系5
d6 z4
A4 z3
关节4 坐标系3
0
900
5
θ5 (0) 0
0 -900

机器人运动学正解逆解课件

机器人运动学正解逆解课件
机器人力控制
在机器人力控制中,需要知道每个关节的角度变化来调整 机器人的姿态和力矩。逆解可以用于求解每个关节的角度 变化,从而调整机器人的姿态和力矩。
机器人定位
在机器人定位中,需要知道每个关节的角度变化来调整机 器人的位置和姿态。逆解可以用于求解每个关节的角度变 化,从而调整机器人的位置和姿态。
04
实现复杂运动轨迹
利用运动学正解与逆解,可以规划出 复杂的运动轨迹,满足各种应用需求 。
02
机器人运动学正解
正解的基本概念
正解是指机器人末端执行器从某一初 始位置和姿态到达目标位置和姿态所 需经过的关节角度值。
正解是机器人运动学中的基本问题, 是实现机器人精确控制和自主导航的 基础。
正解的求解方法
逆解的求解方法
01
代数法
通过建立机器人关节角度与目标点坐标之间的方程组,利用数学软件求
解方程组得到关节角度。这种方法适用于简单的机器人结构,但对于复
杂机器人结构求解过程可能较为繁琐。
02
数值法
通过迭代或搜索的方法,不断逼近目标点坐标,最终得到满足要求的关
节角度。这种方法适用于复杂机器人结构,但求解时间较长且可能存在
机器人运动学正解逆解课件
目 录
• 机器人运动学概述 • 机器人运动学正解 • 机器人运动学逆解 • 机器人运动学正逆解的对比与联系 • 机器人运动学正逆解的实例分析
01
机器人运动学概述
定义与分类
定义
机器人运动学是研究机器人末端 执行器位姿与关节变量之间的关 系的学科。
分类
根据机器人的结构和运动特性, 可以分为串联机器人和并联机器 人。
局部最优解。
03
解析法
通过几何学和代数学的方法,直接求解关节角度与目标点坐标之间的关

(完整版)工业机器人技术基础课件(最全)

(完整版)工业机器人技术基础课件(最全)

p


py



b

1pz

c w
2 机器人位姿 变换
坐标轴方向的描述:
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标 来描述x、y、z轴的方向,则
X 1 0 0 0T Y 0 1 0 0T Z 0 0 1 0T
1.已知机器人各关节的位置,求机器人 末端的位姿; 2.已知机器人末端的位姿,求机器人 各关节的位置.
3学机器人工运业动机器人基础知识
为什么要研究运动学:机器人的运动无非有两种:PTP(点到点) 及CP(连续运动)
3学机器人工运业动机器人基础知识
运动学的实用方式:
位置反 馈
3 机器人运动

D-H参数:
关节 坐标

两个关节轴线沿公垂线的距离an,称为连杆长度;另一个是 垂直于an的平面内两个轴线的夹角αn,称为连杆扭角,这两 个参数为连杆的尺寸参数;是沿关节n轴线两个公垂线的距离,
刚体的姿态可由动坐标系的坐标轴方向来表示。 令n、o、a分别为X′、y ′、z ′坐标轴的单位 方向矢量,每个单位方向矢量在固定坐标系上的 分量为动坐标系各坐标轴的方向余弦,用齐次坐 标形式的(4×1)列阵分别表示为:
2 机器人位姿 变换
刚体的位姿可用下面(4×4)矩
阵来描述:
nx ox ax xo
a)4、6轴共线附件,即5轴角度0附件。 b)2、3、5轴关节坐标系原点接近共线,即 已经到达工作范围边界。
c) 5轴关节坐标系原点在Z轴正上方附近。
右图就处于a)的奇异状态,直角下示 教会报警。
直角坐标系
1 系
机器人工坐业标机器人坐标系

机器人运动学 ppt课件

机器人运动学  ppt课件


-θ角,则其旋转变换矩阵就为:

cos sin 0

R z, ij

sin
cos
0

0
0 1
cos sin 0
R z , ij

sin
cos
0
0
0 1
ppt课件
25
2019年12月18日12时47分
第2章 机器人运动学
2.2 齐次变换及运算
为移动关节为转动关节i1i1机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系建立坐标系i1i1关节i机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系ii单步齐次变换矩阵机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系ii单步齐次变换矩阵机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系iii相邻杆件的位姿矩阵机器人运动学方程231运动学方程建立步骤cossinsincoscossinsincoscossinsinsincoscoscossincossinsincossincos相邻杆件位姿矩阵第一种坐标系iii相邻杆件的位姿矩阵cossinsinsincoscoscossincossinsincossincos机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系注意
R—izj ,—坐标系{j}变换到坐标系{i}的旋转变换矩阵,
也称为方向余弦矩阵。
ppt课件
20
2019年12月18日12时47分
第2章 机器人运动学
2.2 齐次变换及运算

器 人
2.2.1 直角坐标变换

机器人运动学正解逆解-精PPT课件

机器人运动学正解逆解-精PPT课件

A3
ai—沿 xi 轴, zi-1 轴与 xi 轴交点到Oi 的距离
αi — 绕 xi 轴,由 zi-1 转向zi
di — 沿 zi-1 轴,zi-1 轴和 xi 交点至Oi –1 坐标
系原点的距离
θi — 绕 zi-1 轴,由 xi-1转向 xi
A5
A4 A6
.
16
连杆 n θn
dn
anαn1 θ1 源自900) 0S5S6 0C234S5 S234S5
C5 0
C234a4 C23a3 C2a2
S234a4
S23a3
S2a2
0
1
根据第3行第4列元素对应相等可得到
1a rc tp paxy)n和 (111 8 0
.
29
根据1,4元素和2,4元素,可得到:
pxC 1pyS1C23 a4 4C2a 33C2a2 pzS23 a4 4S2a 33S2a2
C234a4 ) S234a4 )
进而可得:
4 234 2 3
再 根 据 对 应 项 元 素 相 , 等 可 以 得 到
S5 C23(4 C1ax S1ay ) S234az
C5 C1ay S1ax
5
arctanC234(C1ax S1ax
S1ay ) C1ay
S234az
.
32
§1.4 机器人正向运动学
工业机器人的正向运动学是指已知各关节的类型、相邻 关节之间的尺寸和相邻关节相对运动量的大小时,如何确 定工业机器人末端操作器在固定坐标系中的位姿。
主要包括以下内容: 1) 相对杆件的坐标系的确定; 2) 建立各连杆的模型矩阵A; 3) 正运动学算法;
.
1

《机器人运动学》课件

《机器人运动学》课件

机器人正向运动学建模
正向运动学
根据机器人关节参数,计算机器人末端执行器在笛卡尔坐标 系中的位置和姿态的过程。
正向运动学模型
描述机器人末端执行器位置和姿态与关节参数之间关系的数 学模型。
机器人逆向运动学建模
逆向运动学
已知机器人末端执行器在笛卡尔坐标系中的位置和姿态,求解机器人关节参数 的过程。
逆向运动学模型
02
它主要关注机器人在三维空间中 的位置和姿态,以及如何通过关 节运动来实现这些位置和姿态的 变化。
机器人运动学的研究内容
机器人位姿表示
研究如何用数学表达式表示机 器人在三维空间中的位置和姿
态。
运动学方程
建立机器人末端执行器位姿与 关节状态之间的数学关系,即 运动学方程。
运动学逆解与正解
研究如何通过给定的位姿求解 关节状态(逆解),以及如何 通过给定的关节状态求解位姿 (正解)。
关节坐标系
基于机器人关节建立的坐标系,常用于描述机器 人的关节运动状态。
工作坐标系
基于机器人工作需求建立的坐标系,常用于描述 机器人末端执行器的位置和姿态。
CHAPTER 03
机器人运动学建模
齐次变换与坐标变换
齐次变换
描述空间中物体位置和方向变化的数 学工具,包括平移和旋转。
坐标变换
将一个坐标系中的位置和方向信息转 换到另一个坐标系中的过程,涉及到 齐次变换的应用。
关节空间的轨迹规划
定义
关节空间是指机器人的各个关节角度 构成的坐标系,关节空间的轨迹规划 是指通过控制机器人的关节角度来实 现机器人的运动。
方法
常用的方法包括多项式插值、样条曲 线插值等,通过设定起始和目标位置 的关节角度,计算出一条平滑的关节 角度路径。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 机器人运动学
第1章 机器人运动学 (Kinematics of Robots)
➢ 引言 ➢ 机器人位置与姿态的描述 ➢ 机器人运动学正问题 ➢ 机器人运动学逆问题 ➢ 机器人的雅可比矩阵
§1.1 引 言(The Introduction)
➢ 机器人运动学 正问题:定义 逆问题:定义
➢ 机器人动力学
为,
cosφ 0 sinφ
Ry, φ = 0
10
- sinφ 0 cosφ
cosθ -sinθ 0
Rz, θ = sinθ cosθ 0
0
01
矩阵Rx, α、Ry, φ和Rz, φ称为基本旋转矩阵。
任何旋转变换可以由有限个基本旋转变换合成得到。
依次左乘(如果uvw对xyz旋转)
依次右乘(如果uvw绕自己的坐标轴旋转) R=Rz,θRy,φRx,α
ix ˙iu ix ˙jv ix ˙kw 1 0 0
Rx, α = iy˙iu iy ˙jv iy ˙kw = 0 cosα - sinα
iz˙iu iz ˙jv iz ˙kw
0 sinα cosα
向量点乘:a· b=|a|·|b| · cos(a)
类似地,绕Oy 轴转动φ角和绕Oz 轴转θ角的3×3旋转矩阵分别
当Ouvw坐标系绕一轴线转动后,
均可通过一个3x3旋转矩阵R
将原坐标Puvw变换到Oxyz系中 的坐标Pxyz ,
即: Pxyz=R Puvw
由矢量分量的定义有:Puvw= pu iu + pv jv + pw kw
pu、pv、pw分别表示P沿Ou、Ov、Ow 轴的分量
Px = ix˙P = ix ˙iu pu+ ix ˙jv pv+ix ˙kw pw Py = iy˙P = iy˙iu pu+ iy ˙jv pv+iy ˙kw pw Pz = iz˙P = iz˙iu pu+ iz ˙jv pv+iz ˙kw pw
什么情况下依次右乘? (4)什么是齐次坐标和齐次变换?
§1.3 机器人运动学正问题
(The Forward Kinematic Problem)
Denavit – Hartenberg ( D - H )表示法
1.坐标系的建立:
n关节机器人需建立n+1个坐标系,其中参
考(机座) 坐标系为O0x0y0z0,,机械手末端的坐 标系为Onxnynzn
例题:坐标系{B}的初始位姿与参考坐
标系{A}相同,坐标系{B} 相对于{A}的 zA轴旋转30,再沿{A}的xA轴移动12,沿 {A}的yA轴移动6。求旋转矩阵。
解:
c30 s30 0 0.866 0.5 0
R R(z,30 ) s30
c300Biblioteka 0.50.866 0
0
0 1 0
0 1
= 旋转矩阵3×3 位置矢量3×1
O1×3
1
若三维空间的位置矢量P表示成齐次坐标,即
P = px py pz 1 T ,
10
00
cosβ 0 sinβ 0
Tx,α = 0 cosα - sinα 0 0 sinα cosα 0
Ty,β = 0
1 00
- sinβ 0 cosβ 0
00
01
0 0 01
直角坐标系{A}, 位置矢量Ap
矩阵表示
px
zA p
A
p
py
Ap
pz
oA
yA
矢量和表示
xA
A p pxi py j pzk
矢量的模 p px2 py2 pz2 ,单位矢量
一、机器人坐标系变换(Coordinate Transformation)
Ouvw :Puvw=(Pu , Pv , Pw)T Oxyz :Pxyz=(Px , Py , Pz)T
将上式写成矩阵形式:
Px = ix ˙iu ix ˙jv ix ˙kw Pu Py = iy˙iu iy ˙jv iy ˙kw Pv Pz = iz˙iu iz ˙jv iz ˙kw Pw
Pxyz=R Puvw 同样,也有Puvw=QPxyz, Q=R-1 =RT
如果Ouvw坐标系统绕Ox轴转动α角,变换矩阵Rx, α称为 绕Ox轴转动α角的旋转矩阵,此时ix=iu ,
关节:Joint
连杆:Link
自由度由机动度构成,
23 4
机动度不一定是自由度. 1
5
5个机动度,2个自由度
§1.2 机器人位置与姿态的描述 (The Description of Position and Posture)
z
0
Z 0Tn
y
E
B

x
G
一个物体与机械手
位置与姿态的表示
位置描述:位置矢量(position vector)
cosθ - sinθ 0 0
Tz,θ = sinθ cosθ 0 0 Ttran =
0
0 10
0
0 01
1 0 0 dx 0 1 0 dy
0 0 1 dz
0 001
Pxyz = T Puvw
课前提问:
(1)什么是机器人运动学的正问题和逆问题? (2)机器人的坐标变换矩阵的一般形式是什
么? (3)连续的变换矩阵,什么情况下依次左乘、
二、齐次坐标和变换矩阵
齐次坐标是用n +l 维坐标来描述n维空间中的位置,其 第n+1个分量(元素) ω称为比例因子。
P=(ωPx, ωPy , ωPz , ω)T
在机器人学的应用中,一般将比例因子取为1。
机器人系统运动分析中,齐次变换矩阵写成以下形式:
T = R3×3 P3×1 O1×3 I1×1
基本概念(The Basic Concepts)
自由度:物体能够对坐标系进行独立运动的
数目称为自由度(DOF, degree of freedom)。
刚体具有6个自由度
➢ 三个旋转自由度 R1, R2, R3 ➢ 三个平移自由度T1, T2, T3
Z R3
T3
T2
Y
T1
R2
X R1
机动度:Degree of Mobility
串联杆型机械手是由一
系列通过连杆与其活动关节
连接在一起所组成 。
如图所示,任何一个连
杆都可以用两个量来描述:
一个是公共垂线距离an,另 一个是与an垂直的平面上两 个 轴 的 夹 角 αn , 习 惯 上 称 an 为连杆长度,αn称为连杆的 扭转角。
例题:求表示绕Oy轴转φ角,然后绕Ow 轴转θ角,再绕Ou轴转α角的合成旋转 矩阵。
R Ry, Rw, Ru,
c 0 s c s 01 0 0
0
1
0 s
c
00
c
s
s0 0 c 0 0 10 s c
cc
s
sc
ss csc cc
ssc cs
css sc
cs
cc sss
相关文档
最新文档