傅里叶变换光学简介
傅里叶变换光学系统
傅里叶变换光学系统傅里叶变换光学系统,简称FT光学系统,是一种通过光学方法对物体进行分析的技术。
其基本原理是利用傅里叶变换的思想,将物体在空间域的信息转换为频域的信息,然后通过相同的方式将频域信息还原为空间域信息。
一、傅里叶变换的基本原理傅里叶变换是一种将函数从时域转换到频域的技术。
其基本原理是将一个函数按照不同频率分解成一系列正弦波的和。
具体来说,傅里叶变换可以分为以下几个步骤:1. 对原函数在时间域上进行分段,使其转化为一系列长度为Δt 的小区间。
2. 对每一个小区间的函数值进行离散化处理,生成离散的数据序列。
3. 对离散的数据序列进行傅里叶变换,求出在频域上的频率分量。
4. 通过反傅里叶变换,将在频率域的信息还原为在时间域上的信息。
二、傅里叶变换在光学系统中的应用在光学系统中,傅里叶变换可以将一个物体的透射率函数转换为空间域和频域的关系。
通过加入透镜、像差校正等光学器件,可以实现将频域信息转换为对应的光学信号,进而生成一个光学图像。
这种光学图像可以对物体进行解析,便于对物体形状、大小、结构等信息进行研究。
FT光学系统广泛应用于生物医药、材料科学、光学工程等领域中。
三、傅里叶变换光学系统的优点与不足优点:1. 精度高:通过光学技术,可以获取高精度的物体信息,尤其是对于那些复杂的结构物体。
2. 兼容性好:FT光学系统可以与其他光学测量仪器、成像系统等进行互相配合,丰富了光学分析工具的功能。
3. 速度快:由于光子的速度极快,FT光学系统的成像速度也可以达到很高的水平。
不足:1. 设备成本高:由于FT光学系统需要使用高质量、高精度的光学仪器,因而设备成本较高。
2. 实验难度大:FT光学系统需要经过实验测试,对于初学者来说,实验难度比较大。
3. 约束条件多:FT光学系统对光源、光路、光学器件等条件的约束较多,安装过程比较繁琐。
总之,傅里叶变换光学系统在解析复杂物体、研究物体结构等方面有很大优势,并得到了广泛应用。
光学4f系统的傅里叶变换原理
光学4f系统的傅里叶变换原理
光学4f系统是一种常见的光学传递系统,由两个透镜组成,分别称为前透镜和后透镜,它们之间的距离为f。
该系统可以实现对输入光场的傅里叶变换。
傅里叶变换原理是指输入光场通过光学4f系统后,可以得到输出光场的傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法,可以将一个信号分解成一系列的频率成分。
在光学4f系统中,输入光场首先经过前透镜,前透镜将输入光场进行傅里叶变换,将其分解成一系列的平面波。
这些平面波经过后透镜后,再次叠加在一起,形成输出光场。
输出光场可以通过适当选择前透镜和后透镜的焦距以及它们之间的距离f,来实现对输入光场的傅里叶变换。
具体来说,如果前透镜的焦距为f1,后透镜的焦距为f2,则前透镜和后透镜之间的距离为f=f1+f2。
根据傅里叶变换的性质,输入光场经过前透镜后,可以表示为前透镜的传递函数H1与输入光场的乘积。
同样地,输出光场可以表示为后透镜的传递函数H2与前透镜的传递函数H1与输入光场的乘积。
因此,输出光场可以表示为H2H1与输入光场的乘积。
通过选择合适的传递函数H1和H2,可以实现对输入光场的傅里叶变换。
常见
的选择是使H1和H2为透镜的传递函数,即H1和H2都为复振幅调制函数。
这样,输出光场可以表示为输入光场的傅里叶变换。
总之,光学4f系统的傅里叶变换原理是通过选择适当的透镜传递函数,使得输入光场经过前透镜和后透镜后,可以得到输出光场的傅里叶变换。
这一原理在光学信号处理和图像处理中有广泛的应用。
光学第六章 - 傅里叶变换光学简介
(x , y )
F
+1
+1 -1
0 -1
衍射方向:
0级为正出射的平面波,衍射角为0 ;
空间频率越高, 衍射角就越大
代表向上斜出射的平面光,衍射角 满足: 1级U sin 1 + f 1 1 代表向下斜出射的平面光,衍射角 满足: 1级U sin 1 f 1 1
At U 0 1 0 1 A t ei (2 fx 0 ) U 1 11 2 2 i ( f ) x i0 1 1 A1t1e A1t1eik sin1 x i0 2 2 1 1 i (2 fx 0 ) U 1 A1t1e A1t1eik sin1 x i0 2 2
A1e
发散球面波
2 ( n 1) s ik
x2 y 2 ik ik ( n 1) x 2s
2s
e
2 x ( n 1) s y 2 ik
2s
发散中心,即像点的位置为:((n-1)s, 0, -s)
(3)窗函数
光学元件孔径有限 窗函数(window function) tw
变换相因子
(1)透镜(在傍轴条件下,忽略吸收)
L ( x, y ) e t
x2 y 2 ik 2f
二次相因子
(2)棱镜(小角)
(1x +2 y ) P ( x, y) eik (n1) t
线性相因子
试运用相因子分析法 分析 余弦型环状波带片的衍射场
4、 余弦光栅的衍射场 余弦光栅的制备:
x2 y 2 ik 2f
A1e
x2 y 2 ik 2s
ik
A1e
x2 y 2 fs 2 f s
第五章傅里叶变换光学
会聚 exp[ik x2 y2 ] 2z
5.1.3 相因子分析法
近轴条件下典型光波场在平面波前(x,y)上的相因子
轴上物点球面波(续)
(1 x) 1 x, (x 0) 2
x
r
(x, y)
z
Oz y
r
z2 2 z
1
2
z2
z(1
1 2
2
z2
)
x2 y2
exp[ikr] exp[ikz]exp[ik
(1)若已知衍射屏的屏函数,就可以确定衍射场,进而完全确定接收场。
(2)但由于衍射屏的复杂性以及衍射积分求解的困难,多数情况下解析 的完全确定屏函数几乎是不可能的。
(3)因此,只能采取一定的近似方法获取衍射场的主要特征。
(4)如果知道了屏函数的相位,则能通过研究波的相位改变来确定波场 的变化。这种方法称为相因子判断法。
场或者波面产生改变的因素,它们的作用都可以应用变换的方法处理。
5.1.1 傅里叶变换光学概述
傅里叶变换光学与经典波动光学的关系(衍射)
傅里叶变换光学
傅里叶光谱仪
空间滤波与信 息处理
像质评价与传 递函数
光栅光谱仪
晶体衍射
阿贝成像 原理
点扩展 函像
衍射波前 再现
衍射应用
x
(x, y)
yOz
z
近轴条件 r0 z
r (x x0 )2 ( y y0 )2 z2
z2 x02 y02 x2 y2 2(xx0 yy0 )
r0
1 x2 y2 2(xx0 yy0 )
r02
r02
r0(1
x2 y2 2r02
xx0 yy0 r02
)
傅里叶光学简介
如何在物理上实现数学上的傅立叶变 换和逆变换 L1 S
H1
L2
H2
夫琅和费衍射装置是傅立叶频谱分析器 在物理上实现了傅立叶变换,就可以在频域里考查光 学系统对图像频谱作出的反应(频率响应),以及对 图像所包含的信息进行处理,这正是现代光学发展的 一个重要方向。
阿贝成像原理
阿贝( Abbe, 1840-1905) 研究如何提高显 微镜的分辨本领问题 —1873年对相干光照明的 物体提出了两步衍射成像原理。
频域函数 空域函数
i 2 ( f x x f y y )
dxdy
g ( x, y ) G ( f x , f y )e
空域函数 频域函数
i 2 ( f x x f y y )
df x df y
傅里叶频谱分布
0
空间滤波
P147 图 4-46 空 间 滤 波 改善像质的对比
20世纪 【量子光学】
以光的粒子性(量子性) 光电效应、波粒二像性 为基础,研究光与物质 的相互作用规律
20世纪中叶—至今 【现代光学】
以数学公式为工具, 研究光现象和应用
全息术、激光器的诞生 傅里叶光学、薄膜光学、 集成光学、非线性光学、光 纤光学等现代光学分支
20世纪40年代至60年代 20世纪60年代以来
“空域”
“频域”
傅里叶光学(又称信息光学)经历50多年的发展,形成一门完整独立的学科。
(4)随着计算机技术的发展,信息光学也获得了巨大发展;特别是90
年代分数傅里叶变换理论的发展更是促进了信息光学理论的发展,使信 息光学逐渐发展成为集光学、计算机和信息科学相结合的一门技术,成 为信息科学的一个重要组成部分和现代光学的核心之一。
光学经典理论傅里叶变换
光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
第十四章傅里叶光学
E ( x1 , y1 )
2、点物在距透镜有限远的光轴上 、 设点物S位于距透镜为 l 的光轴上, 设点物 位于距透镜为 的光轴上, 则投射到透镜上的光波就是从S点 则投射到透镜上的光波就是从 点 发出的发散球面波。在傍轴近似下, 发出的发散球面波。在傍轴近似下, 它在透镜前平面上的场分布为
x12 + y12 ~ E ( x1 , y1 ) = A exp ik 2l
由于不考虑透镜的有限孔径大小, 由于不考虑透镜的有限孔径大小,则透镜的复振幅透过率为
2 2 x1 + y1 tl (x1 , y1 ) = exp − ik 2f
则紧靠透镜之后的平面上的复振幅分布为
E ′(x1 , y1 ) = tl ( x1 , y1 ) ⋅ E ( x1 , y1 ) k 2 2 = A ⋅ t (x1 , y1 ) exp− j x1 + y1 2f
(
)
{
}
所以
~ (x , y ) = A exp jk E jλ f 2 f
x y d0 2 2 1 − x + y ⋅ T , λf λf f
(
)
可见后焦面上的复振幅分布仍然正比于物体的傅里叶变换, 可见后焦面上的复振幅分布仍然正比于物体的傅里叶变换,到 有一个位相弯曲。 物体紧靠透镜结论与前面一致, 有一个位相弯曲。当 d 0 = 0 时,物体紧靠透镜结论与前面一致, 当 时 d 0 = f,式子变为 x y
tl ( x1 , y1 ) f
但是这种FT关系不是准确的。 但是这种 关系不是准确的。由于变换式前存在位相因子 关系不是准确的
jk 2 exp x + y2 2 f
光学_郭永康_第六章1傅里叶变换
二. 任意光栅的屏函数及其傅里叶级数展开
严格空间周期性函数的衍射屏 (透射式或反射式) 光栅
一 周期性 T (x d) T (x)
正弦光栅 黑白光栅
维 衍 射
尺寸D 有限
x
D , or
N
D
其他屏函数
1
2
d
屏
在一定的较大范围内的周期函数—准周期函数
(1) 正弦余弦式
x a
)
1 0
x x
a 2
a
2
傅 二维矩形函数
里 叶
rect(
x a
)rect(
y b
)
1 0
xa,y b 22
其它各处
变
圆函数 circ(
x2 y2 1 )
x2 y2 a
a
0 其它各处
换 对
1cos(2f0 x ) g( x )
x L 2 L
0
x 2
高斯函数 g(x) exp(ax2 )
一幅图像是一种光的强度和颜色按空间的分布,这种 分布的特征可用空间频率表明。把图象看作是由各种 方向、各种间距的线条组成。
2. 空间频谱(spatial frequency spectrum)
简谐振动是最简单的周期性运动,几个简谐运动可合 成一个较复杂的周期性运动。 傅里叶分析:已知一周期性运动,求组成它的各个简 谐运动频率及相应振幅的方法。 所得的频率及相应振幅的集合为该周期性运动的频谱。
阿贝成像原理 Abbe imaging principle
空间频谱滤波 spatial frequency filtering 光全息术 holography
CH 6-1
光学_郭永康_第六章1.傅里叶变换
2. 空间频谱(spatial frequency spectrum) 简谐振动是最简单的周期性运动,几个简谐运动可合 成一个较复杂的周期性运动。 傅里叶分析:已知一周期性运动,求组成它的各个简 谐运动频率及相应振幅的方法。 所得的频率及相应振幅的集合为该周期性运动的频谱。 注意:频谱取一系列分立的值。
原函数
缝函数
x rect ( ) a 0
1
频谱函数
a 2 a x 2 x
asinc ( af )
absinc (af x )sinc (bf x )
aJ 1 ( 2a f x f y )
2 2
傅 里 叶 变 换 对
二维矩形函数 1 x y rect( )rect( ) a b 0
1 2
1 2
g ( x) exp (ax )
(x)
1
1
2f 2 exp( ) a a
函数
常数
( f )
函数 定义:
( x) 0
x0 x0
( x) dx 1
单缝函数在缝宽趋于零时的极限
函数---点光源
T ( x)
{0
1
md x (2m 1)d / 2, m 0,1,2
其他
展开为傅里叶级数
1 2 2 2 T ( x) sin( 0 x) sin( 3 0 x) sin( 5 0 x) 2 3 5 v0 0 / 2 1 / d 0 2 / d
Contents
chapter 6
傅里叶变换 Fourier transformation 衍射理论中的傅里叶方法 the method of Fourier in diffraction theory 理想薄透镜的傅里叶变换作用 Fourier transform in the thin lens 阿贝成像原理 Abbe imaging principle 空间频谱滤波 spatial frequency filtering 光全息术 holography
光学第六篇傅里叶变换光学简介
复杂波场: 分解为一系列平面波或球面波成分
波的类型和特性 波前相因子
波前相因子
方向角的余角
线性相因子
系数(cosx,cosy)或 (sin1,sin2)与平面 波的传播方向一一对应。
U2 U1
ik x2 y2
e 2fBiblioteka 凹透镜和凸透镜的情况相同,
只是焦距一个为负,一个为正。
相位型
例题:求薄透镜傍轴成像公式:
在傍轴条件下:U1 ( x,
y)
ik x2 y2
A1e 2s
ik x2 y2
透镜函数:tL (x, y) e 2 f
s
s’
ik x2 y2
ik x2 y2
U2 (x, y) tL (x, y)U1(x, y) e 2 f
二维 tP ( x, y) eik (n1() 1x+2 y)
例题:推导棱镜傍轴成像公式:
傍轴条件:
ik x2 y2
s
U1(x, y) A1e 2s
ik x2 y2 ik (n1) x
U2 (x, y) tP (x, y) U1(x, y) A1e 2s
(n1)s 2 x(n1)s 2 y2
第六章 傅里叶变换光学简介
第六章 傅里叶变换光学简介
1、衍射系统 波前变换 2、相位衍射元件 3、波前相因子分析法 4、余弦光栅的衍射场 5、傅里叶变换 6、超精细结构的衍射 隐失波 7、阿贝成像原理与空间滤波 8、光学信息处理列举 9、泽尼克的相衬法
惠更斯-菲涅耳原理 光波衍射
菲涅耳衍射 夫琅禾费衍射
二维波前 决定 三维波场
二维波前 决定 三维波场
Double-helix Point Spread Function (DH-PSF) DH-PSF transfer function obtained from the iterative obtimization procedure, and its GL modal plane decomposition, which forms a cloud around the GL modal plane line. The DH-PSF transfer function does not have any amplitude component, and consequently is not absorptive.
《傅里叶光学》课件
光通信
利用傅里叶光学原理实现高速光信号的传输和处 理,提高通信容量和速度。
3
光学仪器设计
傅里叶光学在光学仪器设计中的应用,如干涉仪 、光谱仪等。
傅里叶光学的发展前景和挑战
发展前景
随着光子技术的不断发展,傅里叶光学在光通信、光学仪器、生物医学等领域的应用前 景广阔。
傅里叶光学在光学显微镜、光谱仪和 OCT等生物医学成像技术中被广泛应 用。
光电子器件
利用傅里叶光学原理设计的光电子器 件,如光调制器、光滤波器和光开关 等。
02
傅里叶变换
傅里叶变换的定义和性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过正弦和余弦函数的线性组合 来表示信号。
傅里叶变换的性质
傅里叶变换在信号处理中的应用
频域滤波
通过在频域对信号进行滤波,可以实现信号的降噪、增强等处理 。
信号压缩
利用傅里叶变换可以将信号从时域转换到频域,从而实现对信号的 压缩和编码。
图像处理
傅里叶变换在图像处理中也有广泛应用,如图像滤波、图像增强、 图像压缩等。
03
光学信号的傅里叶分析
光学信号的表示和测量
05
傅里叶光学的实践应用
傅里叶光学的实验技术
光学干涉实验
利用干涉现象研究光的波动性质,验证傅里叶光学的 基本原理。
光学衍射实验
通过衍射实验观察光的衍射现象,理解傅里叶光学中 的衍射理论。
光学频谱分析实验
利用傅里叶变换对光信号进行频谱分析,研究光波的 频率成分。
傅里叶光学的应用案例
1 2
图像处理
干涉和衍射在光学系统中的应用
傅立叶变换光学
)
≈
x2 + y2 2r1
∆ 2 (x, y) = −r2 −
r2 2
− (x2
+
y2)
≈
−
x2 + y2 2r2
ϕ
L
(
x,
y)
=
−
2π λ
n −1(1 2 r1
− 1 )(x 2 r2
+
y2 ) = −k
x2 + y2 2F
,其中 F
=
1 (n −1)( 1
−
。
1)
r1 r2
可得透镜的位相变换函数为
转换为 U~ 2
(
x,
y)
。用函数表示,
~t (x,
y)
=
~ U~2 U1
(x, (x,
y) y)
,
~t (x,
y)
为透过率或反射率函数,统
称屏函数。
屏函数为复数,~t (x, y) = t(x, y) exp[iϕt (x, y)]。模 t(x, y) 为常数的衍射屏称为位相型
的,幅角ϕt (x, y) 为常数的衍射屏称为振幅型的。
X 方向的透过率表示为
6
崔宏滨 光学 第六章 傅里叶变换光学
~t (
x)
=
⎧1 ⎩⎨0
x0 + nd < x < x0 + nd + a , x ∈ (−∞, +∞) x0 + nd + a < x < x0 + (n + 1)d
其周期性表示为 ~t (x) = ~t (x + nd ) ,d 为最小的空间周期,即空间周期。空间频率为
§8.2傅里叶(Fourier)变换光学系统.wps
§8.2 傅里叶(Fourier)变换光学系统光学信息处理的任务是研究以二维图像作为媒介来进行图像的识别、图像的增强与恢复、图像的传输与变换、功率谱分析和全息术中的傅里叶全息存储等。
而担任上述任务的数学运算是傅里叶变换,光学成像透镜就具备这种二维图像的傅里叶变换特性。
当然傅里叶变换运算可通过电子计算机来实现,但由于二维图像的信息容量大,需使用复杂而昂贵的电子计算机,且需一定的计算时间,由光学透镜组成的相干光学处理系统,可简单而迅速地完成二维图像的傅里叶变换运算,因此讨论光学透镜的傅里叶变换特性及其设计问题是非常必要的。
一、光学透镜的傅里叶变换特性由标量衍射理论可知,振幅分布为f(x,y)的物体,其夫琅和费衍射场的振幅分布为式中, (x,y)为物面坐标,(xf,yf)为衍射场坐标。
令因此夫琅和费衍射过程实际上就是一个傅里叶变换过程,衍射场即为频谱面。
若把频谱面再进行一次傅里叶变换,可得令x'=-x,y'=-y,则有f(x',y')=f(x,y)。
因此物函数f(x,y)经二次傅里叶变换后,仍可得到原函数f(x',y'),只不过函数的坐标发生了倒置。
若在第一次变换后的频谱面上插入各种不同用途的空间滤波器或掩膜板来改变输入物体的频谱状态,就可以达到各种光学图像的处理目的。
当傅里叶变换物镜满足某些特定的成像要求时,上述4f系统可获得严格的傅里叶变换关系,这是因为当平行光垂直照射输入物面(x,y)时,在输入面上要发生衍射,不同角度的衍射光经透镜L1后,在后焦面(频谱面)上形成夫琅和费衍射图像。
为了获得清晰而位置正确的夫琅和费衍射图像,也就是说为了获得严格的物面傅里叶频谱,傅里叶变换物镜应满足以下成像要求,即具有相同衍射角的光线经透镜变换后,应聚焦于焦平面上的一点,而不同衍射角的光线经透镜变换后,应聚焦于焦面上的不同点处,形成各级频谱。
对傅里叶变换物镜L来说,其成像关系为,若把其像方焦面作为像面,其物面应位于物方无限远,孔径光阑应位于透镜L的前焦面上,构成像方远心光路。
傅里叶光学
傅里叶光学
傅里叶光学的原理是根据傅里叶分析的原理,利用光的波动特性,将一个复杂的光波分解成多个简单的光波,然后利用这些简单的光波来描述复杂的光波的特性。
这种分析方法可以用来研究光的传播,衍射,折射,反射和其他光学相关的现象,可以研究光的空间分布,特性,调制,幅度,相位等特性。
傅里叶光学是一种基于傅里叶变换的光学理论,它用来描述光线的行为,其中光线的行为可以用傅里叶变换的形式表示。
它是由法国物理学家和数学家约瑟夫·傅里叶发现的,他在1822年发表了一篇论文,提出了“傅里叶光学”的概念,并且将其用于描述光线的行为。
傅里叶光学的基本原理是,光线可以用一系列的正弦函数来表示,这些正弦函数的频率和振幅可以用傅里叶变换来表示。
换句话说,傅里叶光学可以用来描述光线如何传播,如何反射,如何折射,以及如何在介质中传播,等等。
傅里叶光学的原理被广泛应用于光学,以及其他科学和工程领域。
它可以用来解释和模拟光线在不同环境中的传播特性,以及光线在介质中的反射、衍射和折射等现象。
傅里叶变换光学
ei 2
fx
1 2
A1t1
ei 2
fx
A
B C
1 1
x
x
x S1 1
C
1
B
S0
1
z
x1
A
S1
F
z
第一步,物光波(屏函数的平面波)经过透镜在 其焦平面上汇聚成衍射斑,即点光源
第二步,焦平面上的衍射斑作为相干的点光源, 发出的次波在像平面上相干叠加
x
x S1 1
~tP (x, y) exp[ ik(n 1)(1x 2 y)] 二维情况下
§5.2 夫琅和费光栅衍射的傅里叶频
谱分析
1.空间频率的概念
在空间上也可以定义周期和频率,空间 周期d的倒数就是空间频率,即有f=1/d。f称 为空间频率。
2.正弦光栅的傅立叶变换
~t (x) t0 t1 cos(2fx 0 )
f1 基频
以简单的平面波入射,透射波为
U2 U1t A1 tn ei2 fnx A1tn ei2 fnx
可以用屏函数表示衍射波(透射波)
t ei2 fnx n
n级平面波
{tn} Fourier 频谱
tn n级平面波的振幅
x
ei2 fnx 的方向
sinn fn
所以可以从障碍物对波场的变换作用,来分析衍射。 从更广义的角度,不仅仅是相干波场的障碍物,非
相干系统中的一切使波场或者波面产生改变的因素, 它们的作用都可以应用变换的方法处理。
§5.1 衍射系统的屏函数
能使波前的复振 幅发生改变的物, 统称为衍射屏。
衍射屏将波的空 间分为前场和后 场两部分。前场 为照明空间,后 场为衍射空间。
傅里叶光学简介
1.光栅衍射和空间频率
2.阿贝成像原理 3. 空间滤波和光学信息处理 (1) 阿贝-波特空间实验 (2) 网格实验 (3) 调制实验
数学中的傅里叶分析,应用到通信理论中, 将电信号的特征在频率域中讨论; 傅里叶分 析与光学中的衍射理论结合起来,形成傅里叶 光学. 傅里叶光学,是在频率域中讨论图象信 息.通信理论中涉及的是一维时间函数,傅立 叶光学中讨论的是二维空间的信号.
1.光栅衍射和空间频率
波长为的单色平面波垂直入射到平面 光栅G上.设光栅d/a=2, N很大,会聚透镜后 的焦平面上得到各级干涉极大,且偶数干涉 极大缺级.
x
0
3
1 -1
屏
0 -3
G光 栅
f
对于光栅我们可以用透过率函数(x) 来描述,一维透射光栅的透过率函数是一矩形 波函数.
为了讨论问题方便, 设光栅狭缝总数N无限大.
像
倾斜方向的频谱通过
像
灰网 尘格 粘 上 的
过只 让 网 格 的 频 谱 通
失网 格 的 像 灰 尘 消
(3)
调制实验
用白光照明透明物体,物体的不同部分是 由不同取向的透射光栅片组成.频谱面上(除 零级外)干涉主极大呈彩色.物面上不同的部 分的频谱在不同方向上. 将一个方向的频谱, 只保留一种颜色,滤掉其余的颜色,其对应的 象面上,就显示出该频率的颜色来.
5 p0
p
透射光栅的空间频率和功率谱
上图是矩形波在频率域中的表示,横坐标是 空间频率p, 纵坐标分别表示振幅A和功率A2. 周期性函数的频谱都是分立的谱,各谱线的 频率为基频整数倍.在p=0处有直流分量. 再回到光栅装置.由光栅方程,
d sin m ,
光傅里叶变换
光傅里叶变换
光傅里叶变换是一种基于傅里叶变换的光学技术,用于分析光信号的频谱信息。
它利用傅里叶变换原理将光信号从时域转换到频域,从而可以在频域中对信号进行分析和处理。
光傅里叶变换基于光的干涉原理。
当一个光波通过光栅或干涉仪等光学元件时,光波会被分散成不同的频率分量。
通过调整光路的长度差异或改变光学元件的参数,可以实现对不同频率分量的选择性处理。
光傅里叶变换可用于光谱分析、滤波、频谱合成等应用。
在光谱分析中,可以通过光傅里叶变换将光信号分解为不同频率的谱线,从而获得样品的光谱信息。
在滤波中,可以通过光傅里叶变换选择性地滤除或增强特定频率的信号。
在频谱合成中,可以通过光傅里叶变换将多个信号的频谱信息叠加起来,得到一个合成的频谱。
光傅里叶变换在光学、光通信、图像处理等领域有广泛的应用。
它可以提供高分辨率的频谱分析能力,同时也具有较快的处理速度和较低的功耗。
因此,光傅里叶变换在大数据处理、光学传输和光学信号处理等方面具有重要的应用潜力。
信息光学中的傅里叶变换
傅里叶变换的物理意义
频域分析
通过傅里叶变换可以将信号从时域转换到频域,从而可以分析信号的频率成分 和频率变化。
时频分析
傅里叶变换可以用于时频分析,即同时分析信号的时域特性和频域特性,对于 非平稳信号的处理尤为重要。
信息光学中的傅里叶变换
目 录
• 傅里叶变换基础 • 信息光学基础 • 傅里叶变换在信息光学中的应用 • 傅里叶变换的实验实现 • 傅里叶变换的未来发展与展望
01 傅里叶变换基础
定义与性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过使用傅里叶级数或傅里叶积 分进行转换。
傅里叶变换的性质
THANKS FOR WATCHING
感谢您的观看
核磁共振成像等,能够提供更准确的图像分析和诊断。
通信技术
02
傅里叶变换在通信技术领域中用于信号调制、解调以及频谱分
析等方面,有助于提高通信系统的性能和稳定性。
地球物理学
03
傅里叶变换在地球物理学领域中用于地震信号处理和分析,有
助于揭示地球内部结构和地质构造。
傅里叶变换面临的挑战与机遇
数据安全与隐私保护
傅里叶变换的应用领域
01
02
03
信号处理
傅里叶变换在信号处理领 域应用广泛,如滤波、频 谱分析、调制解调等。
图像处理
傅里叶变换在图像处理中 用于图像压缩、图像增强、 图像去噪等。
通信系统
在通信系统中,傅里叶变 换用于信号的调制和解调, 以及频谱分析和频分复用 等。
02 信息光学基础
信息光学的定义与特点
傅里叶光学变换
傅里叶光学变换
傅里叶光学变换是一种将光学信号从时域转换到频域的数学工具。
它通过将光学信号分解为不同的频率成分,可以帮助我们更好地理解和分析光学现象。
傅里叶光学变换基于傅里叶变换的原理,在光学领域广泛应用于光波的传播、衍射和成像等问题。
通过傅里叶光学变换,我们可以把一个光学信号表示为一系列不同频率的正弦波的叠加,这些正弦波的振幅和相位信息可以提供有关原始信号的详细特征。
傅里叶光学变换的数学公式如下:
F(ν) = ∫f(t)e^(-2πiνt)dt
其中,F(ν)表示频率为ν的光学信号的傅里叶变换结果,f(t)表示原始光学信号,e为自然对数的底。
傅里叶光学变换的一个重要应用是光学成像。
通过将光场的复振幅进行傅里叶变换,可以获得物体的光学频谱信息,从而实现对物体的高分辨率成像。
此外,傅里叶光学变换还可以应用于光衍射、光波前传播和信号处理等方面。
通过分析不同频率成分的振幅和相位信息,我们可以了解光场在不同空间位置和时间点的变化规律,从而对光学现象进行更深入的研究。
总之,傅里叶光学变换是光学领域中一种重要的数学工具,它能够帮助我们从频域的角度来理解和分析光学信号的特性和行为,为光学研究和应用提供了有力的支持。
傅里叶变换光学
傅里叶变换光学LT22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R=-- (5)代入(3)得: 220(,)exp()exp[()]2k t x y jknD j xy f =-+(6)式(6)即是透镜位相调制的表达式,它表明复振幅(,)LU x y 通过透镜时,透镜各点都发生位相延迟。
从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
第二项22exp[()]2k j xy f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。
而且与透镜的焦距有关。
当考虑透镜孔径后,有:22(,)exp[()](,)2kt x y jx y p x y f=-+(7)其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ⎧=⎨⎩ 孔径内其 它(8)2、透镜的傅里叶变换性质在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。
衍射图像的强度分布正比于衍射屏的功率谱分布。
一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。
如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。
为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。
图2 透镜的傅里叶变换性质设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)ffE x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余弦光栅的衍射特征:
平面波正入射, 其入射波前为:
(x,y)
F
+1
~ U1 ( x, y ) = A1
经过余弦光栅后的透射波前为:
θ+1 θ-1
0 -1
(x, y ) = ( x, y )U ( U t A1 [t0 t1 cos(2π fx + φ0 ) ] 2 1 x, y ) =+ ei ( 2π fx +φ0 ) + e − i (2π fx +φ0 ) = A1 t0 + t1 2 1 1 i (2π fx +φ0 ) = + A1t1e − i (2π fx +φ0 ) A1t0 + A1t1e 2 2 + = + U U U +1 −1 0
振幅模函数 辐角函数
(1)若ϕ (x,y) ≈常数,只有函数t(x,y),则该衍射屏 称为振幅型。 (2)若t(x,y) ≈常数,只有函数ϕ (x,y) ,则该衍射屏 称为相位型。 (3)若有两个函数ϕ (x,y) 和t(x,y),则该衍射屏称为 相幅型。
6
两个衍射屏相叠
(x,y) t1t2 (x’,y’)
由于衍射屏函数的作用,改变了波前, 从而改变了后场的分布,于是发生了衍射。
8
几种光学元件的衍射屏函数 (1)透镜的相位变换函数(在傍轴条件下)
把平行光变成了汇聚球面光
透镜作用 A = U →= U A2 e 1 1 2
U1 U2
x2 + y 2 − ik 2f
f
,
x2 + y 2 − ik 2f
⇒ 成像公式: = s'
fs 1 1 1 ⇐⇒ = + f −s s s' f
10
(2)棱镜的相位变换函数 忽略棱镜对光的吸收, 把棱镜近似看成相位型衍 射屏。
x
α
d z
光经过棱镜比光在真空中自由传播时的光程差:
δ L ≈ n(d − x)α − (d − x)α = (n − 1)(d − x)α
U1 U2U3
U
= ,U ' = ,U = ' U t ⋅ U U t ⋅ U 2 1 1 2 2 3 2 2
2的总体作用: t1和t
U U U ( x, y ) = 3 = 3 ⋅ 2 = 1 ⋅ t 2 t t U ' U U 1 2 1
−i ~ U ( x' , y ' ) =
~ U ~ 2 ( x, y ) 衍射屏函数的定义: t ( x, y ) = ~ U 1 ( x, y )
(cos θ 0 + cos θ ) ~ eikr U 2 ( x, y ) dxdy ∫∫ 2 λ (Σ0 ) r
5
衍射屏函数的三种类型
~ U 2 ( x, y ) ~ t ( x, y ) = ~ = t ( x , y ) e iϕ ( x , y ) U 1 ( x, y )
7
衍射的再说明:
( x ', y ') U
−i
e 有衍射屏存在时 t x y U x y dxdy ⋅ ( , ) ( , ) 1 ∫∫ 自由传播的光场 r λ ( Σ0 )
ikr
ikr
e U 1 ( x, y ) dxdy ≠ ∫∫ r λ ( Σ0 )
−i
无衍射屏存在时 自由传播的光场
或
tP ( x) = e−ik ( n −1)α x
11
− ik ( n −1) (α1 x +α 2 y ) t ( x , y ) = e . 二维 P
例题:推导棱镜傍轴成像公式: 傍轴条件:
( x, y ) ≈ A e U 1 1
x2 + y 2 ik 2s
s
x2 + y 2 ik −ik ( n −1) xα 2s
第五章 傅里叶变换光学简介
1
第五章 傅里叶变换光学简介
1、余弦光栅的衍射场 2、傅里叶变换光学大意 3、阿贝成像原理与空间滤波 4、泽尼克的相衬法 5、全息术原理
2
本章的概貌图:
惠更斯-菲涅耳原理 光波衍射 菲涅耳衍射 衍射分析结构 夫琅禾费衍射 衍射应用 衍射分光 光栅 光谱仪 衍射成像 阿贝 成像原理
x2 + y 2 ik 2s
s
s’
( x, y ) =t ( x, y ) =e L ( x, y )U ⇒U 2 1
x2 + y 2 − ik 2f
⋅ A1e
x2 + y 2 ik 2s
− ikBiblioteka = A1ex2 + y 2 fs 2 f −s
fs ⇒ 汇聚球面波,汇聚点为 : s ' = 光源的像点 f −s
2、余弦光栅的衍射场 余弦光栅的制备:
θ1 θ2
sin θ1 + sin θ 2 I ( x, y ) = I 0 (1 + γ cos(2π fx + φ0 ) );f =
λ
用干板记录,通过显影和定影,形成余弦光栅。 透过率函数为: t ( x, y ) ∝ I ( x, y )
⇒ t ( x, y ) = α + β I ( x, y ) = t0 + t1 cos(2π fx + φ0 )
U L ( x, y ) = 2 = 忽略透镜吸收,A1 ≈ A2, ⇒ t e U1
相位型
凹透镜和凸透镜的情况相同, 只是焦距一个为负,一个为正。
9
例题:求薄透镜傍轴成像公式:
( x, y ) = A e 在傍轴条件下:U 1 1
L ( x, y ) = e 透镜函数:t
x2 + y 2 − ik 2f
衍射再现波前
晶体衍射 图分析
傅里叶 光谱仪
空间滤波和 信息处理
全息术原理
傅里叶变换光学
3
第一节
余弦光栅的衍射场(*)
(x,y) (x’,y’)
一、波前变换和相因子分析
U1 U2
U
~ ~ ~ 衍射屏的作用 波的传播行为 入射场U1 ( x, y ) →出射场U 2 ( x, y ) → 衍射场U ( x' , y ' )
( x, y ) =t ( x, y ) = A e P ( x, y ) ⋅ U U 2 1 1 = A1e
发散球面波
2 ( n −1) sα ] [ − ik
2s
e
2 x − ( n −1) sα ] + y 2 [ ik
2s
发散中心,即像点的位置为:((n-1)sα, 0, -s)
12
附加的相位差:
δϕ = k (n − 1)(d − x)α = k (n − 1)dα − k (n − 1) xα
i[ k ( n −1) dα − k ( n −1) xα ] iδϕ x) e= e = eik ( n −1) dα e − ik ( n −1) xα 相位变换函数:t P (=