微生物的物质能量代谢

合集下载

微生物的能量代谢与转化机制研究

微生物的能量代谢与转化机制研究

微生物的能量代谢与转化机制研究微生物是存在于人类周围环境中的一类单细胞生物。

它们具有极强的代谢能力,可以利用各种有机物或无机物进行代谢,将其转化为能量和营养物质。

微生物在自然界中扮演着重要的角色,对于生态环境的维护和物质循环都有不可或缺的作用。

本文将探讨微生物的能量代谢和转化机制研究。

一、微生物能量代谢的类型微生物的能量代谢通常分为两种类型:有氧代谢和厌氧代谢。

有氧代谢是指微生物在氧气存在的条件下进行代谢,将其转化为ATP等化学能。

厌氧代谢则是指微生物在缺氧或无氧环境下进行代谢,利用无氧化合物来产生ATP等化学能。

有氧代谢通常分为三个过程,即糖解、糖酵解和电子传递呼吸链。

在糖解过程中,微生物会将葡萄糖分解成两个分子的丙酮酸,同时产生小量的ATP。

接着在糖酵解过程中,丙酮酸被转化成有机酸和更多的ATP。

最后,在电子传递呼吸链过程中,微生物会利用有氧环境中的氧气,将电子传递下去,同时产生更多的ATP。

厌氧代谢也有多个类型,其中较为常见的有硫酸还原作用和甲烷发酵等。

在硫酸还原作用中,微生物会利用硫酸、硝酸根、氯离子等无氧化合物来产生ATP。

在甲烷发酵中,微生物会利用氢气和二氧化碳产生甲烷和ATP。

二、微生物转化机制的研究微生物的转化机制是一个非常复杂的过程。

研究微生物的代谢能力和转化机制有助于我们更好地了解微生物的生物学特性以及生态环境中的物质循环。

下面介绍一些常见的微生物转化过程研究。

1、生物降解生物降解是指微生物利用污染物(如有机物、重金属等)进行代谢,将其分解成无毒或低毒的物质。

这是一种常见的环境治理方式。

近年来,随着环境污染问题的逐渐加重,生物降解研究受到了广泛的关注。

研究人员通过微生物发酵、分离和酶学等技术手段,从微生物中筛选出对污染物具有高效代谢能力的菌株,并通过引入外源基因等方式,提高菌株的代谢能力和环境适应性。

这为环境污染治理提供了新的思路和技术手段。

2、微生物油脂代谢微生物油脂代谢是指微生物利用废弃物或可再生资源代谢产生油脂。

微生物学第五章微生物的代谢

微生物学第五章微生物的代谢
细胞膜透性的调节
通过改变细胞膜的通透性,控制代谢底物和产物的进出,从而调 节代谢过程。
微生物代谢的基因调控
01
原核生物的基因调 控
通过操纵子模型实现基因表达的 调控,包括正调控和负调控两种 方式。
02
真核生物的基因调 控
通过转录因子和顺式作用元件的 相互作用,实现基因表达的精确 调控。
03
基因表达的诱导和 阻遏
03 氮的转化代谢
微生物还可以通过氮的转化代谢将一种含氮化合 物转化成另一种含氮化合物,如硝酸盐还原成氨 的过程。
04Βιβλιοθήκη 微生物代谢的调节与控制代谢调节的方式与机制
酶活性的调节
通过改变酶的构象或修饰酶活性中心,从而调节代谢途径中关键 酶的活性。
代谢物浓度的调节
代谢物浓度的变化可以影响酶的活性,从而调节代谢速率。
用、液相色谱-质谱联用等。
核磁共振法
利用核磁共振技术对微生物代 谢产物进行结构和构象分析, 可以获得代谢产物的详细化学
信息。
生物信息学分析
利用生物信息学方法对微生物 代谢组学数据进行处理和分析, 包括代谢途径分析、代谢网络 构建、代谢物鉴定和代谢调控 研究等。
THANKS
感谢观看
微生物代谢产物的生物活性与应用
抗生素
由微生物代谢产生的具有抗菌活 性的化合物,用于治疗细菌感染。

微生物代谢产生的生物催化剂,广 泛应用于食品、医药、化工等领域。
激素
某些微生物代谢产物具有激素活性, 可用于调节动植物生长发育。
微生物代谢在环境保护和能源领域的应用
污水处理
利用微生物代谢降解污水中的有机污染物,净化水质。
02
微生物的能量代谢
能量代谢的基本过程

微生物学-5-5 整理微生物的代谢

微生物学-5-5 整理微生物的代谢

硝酸盐呼吸(反硝化作用)
同化性硝酸盐还原: NO3- NH3 - N 异化性硝酸盐还原: 无氧条件下,利用NO3-为最终氢受体 NO3- 反硝化意义:
1)使土壤中的氮(硝酸盐NO3-)还原成氮气而消失,降低土壤的肥力;
R - NH2 (氨基酸)
NO2
硝酸盐还原酶
亚硝酸还原酶 氧化亚氮还原酶 氧化氮还原酶
产生6ATP;
在无氧条件下, NADH+H+可还原丙酮酸产生乳酸或乙醇。
EMP途径的意义: ① 提供能量和还原力(ATP,NADH);
② 连接其它代谢途径的桥(TCA,HMP,ED);
③ 提供生物合成的中间产物(丙酮酸,甘油醛-3磷酸)
④ 逆向合成多糖(淀粉、纤维糖、果胶 )。
(2) HMP 途径(Hexose Monophophate Pathway)
1G
EMP
2 丙酮酸
(丙酮酸甲酸解酶)
甲酸 + 乙酰-- CoA
乙醛脱氢酶
乙醛 乙醇
2)乳酸发酵
同型乳酸发酵:德氏乳杆菌(
反应式: EMP C6H12O6+2ADP 2CH3CHOHCOOH+2ATP 同型乳酸发酵是将1分子葡萄糖转化为2分子乳酸,消耗能量少。 应用: 食品加工业的应用(鲜奶加工酸奶;腌制泡菜); 农业上用于青饲料的发酵; 工业上用于规模化生产乳酸 。
HMP途径的意义:
• 供应合成原料,该途径可产生从3C到7C的碳化合物,如戊糖-磷
酸、赤藓糖-4-磷酸;
• • • HMP途径是戊糖代谢的主要途径,作为固定CO2的中介(Calvin) 单独HMP途径较少,一般与EMP途径同存; 产生大量的NADPH+H+形式的还原力 。

第六章 微生物的代谢

第六章 微生物的代谢

+
3NAD+ + FAD+
+
3H2O
+
CoA
+ ATP +
FADH2 + 3NADH2
经过EMP和TCA循环,1分子葡萄糖被彻底氧化成水 和CO2,并可产生高达38分子的ATP。其总反应式如下:
C6H12O6
+
6O2
+
38ADP
+
38Pi
6CO2
+
6H2O
+
38ATP
在微生物的物质代谢中,TCA循环在分解代谢和合成 代谢中都占有枢纽地位,具有重要的生物学意义: (1)可产生多种有机酸,这些有机酸是合成细胞物质的
的营养物合成细胞自身大分子物质的过程。在同化作用过
程中产生能量(ATP)和还原力。
(2)分解代谢(Catabolism,异化作用):指将细胞自 身的物质分解的过程。异化作用是耗能的过程。 微生物的代谢活动包括能量代谢和物质代谢。
第一节 能量代谢
微生物与其它生物一样,在生命活动过程中需要消 耗大量的能量,这些能量有的来自于物质代谢过程中产生 的化学能,有的来源于微生物细胞吸收的光能。无论何种 二、能量代谢的方式
4、三羧酸循环(Tricarboxylic acid cycle,TCA)
又称为柠檬酸环。丙酮酸首先在丙酮酸脱氢酶的催化
下氧化脱羧并与辅酶A结合,形成乙酰辅酶A,同时产生1 进入TCA循环。TCA循环总反应式如下:
CH3COOCoA + ADP + Pi 2CO2
分子NADH2。然后,乙酰辅酶A与草酰乙酸缩合成柠檬酸,
C6H12O6+ADP+H3PO4 2CH3CH2OH+2CO2+ATP

微生物的代谢可以通过什么方式调节

微生物的代谢可以通过什么方式调节

微生物的代谢可以通过什么方式调节引言:微生物是一类微小的生物体,包括细菌、真菌、病毒等。

微生物的代谢是指微生物体内化学过程的总和,包括营养物质的摄取、分解、合成和转化等。

微生物的代谢方式的调节对于微生物的生长、繁殖以及产生有用的代谢产物具有重要意义。

本文将介绍微生物代谢调节的几种方式。

概述:微生物的代谢调节可以通过包括基因表达调控、信号传导、环境响应、代谢产物反馈调控以及细胞内能量平衡等多种方式来实现。

这些调控方式可以使微生物根据外界环境的变化,调整代谢途径,以适应不同的生存条件。

正文:一、基因表达调控1. 转录调控:微生物的代谢调节最基本的方式是通过转录调控。

微生物通过启动子区域的结构特征和转录因子的结合来调控基因的转录,从而调节酶的合成。

例如,当微生物需要产生某种特定酶时,相关的转录因子被激活并与启动子结合,启动基因的转录。

2. 翻译调控:除了通过转录调控来调节基因的表达外,微生物还可以通过翻译调控来影响蛋白质的合成水平。

这可以通过调控转录后修饰、mRNA稳定性和翻译效率等途径实现。

二、信号传导1. 孤立态信号传导:微生物可以通过发送和接收特定的信号分子来进行细胞间的通信。

这些信号分子可以是激素、激活因子或抑制因子等,它们通过特定的信号传导通路传递信号,从而调节代谢途径的活性。

2. 确定信号:微生物还可以通过环境感知来进行代谢调节。

例如,当微生物感知到特定的环境因素,如温度、pH值、氧气浓度等发生变化时,它们可以通过转导途径来调整代谢途径以适应外界环境的改变。

三、环境响应1. 高温应激响应:高温是微生物生长和代谢的重要限制因素之一。

为了适应高温环境,微生物可以通过调节热休克蛋白表达、膜脂组分改变以及调节酶的热稳定性等途径来进行代谢调节。

2. 氧气响应:氧气是微生物代谢的重要底物和能量供应者。

微生物可以通过调节酶的氧气需求以及调整氧气通透性等途径来适应不同氧气浓度的环境。

四、代谢产物反馈调控1. 酶的反馈抑制:微生物的代谢途径中,常常存在着反馈抑制机制。

食品微生物学 第三章微生物的生理 第四节微生物的代谢

食品微生物学 第三章微生物的生理 第四节微生物的代谢
微生物的生理
第三章
微生物的生理
3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢
微生物的生理
3.4 微生物的代谢
代谢(metabolism)是微生物细胞与外界环境不断进行 物质交换的过程,即微生物细胞不停地从外界环境中吸收适 当的营养物质,在细胞内合成新的细胞物质并储存能量,这 是微生物生长繁殖的物质基础,同时它又把衰老的细胞和不 能利用的废物排出体外。因而它是细胞内各种生物化学反应 的总和。由于代谢活动的正常进行,保证的微生物的生长繁 殖,如果代谢作用停止,微生物的生命活动也就停止。因此 代谢作用与微生物细胞的生存和发酵产物的形成紧密相关。 微生物的代谢包括微能量代谢和物质代谢两部分。
微生物的生理
第四阶段:2-磷酸甘油酸转变为丙酮酸。这一阶段包括 以下两步反应:
① 2-磷酸甘油酸在烯醇化酶的催化下生成磷酸烯醇式丙 酮酸。
反应中脱去水的同时引起分子内部能量的重新分配,形 成一个高能磷酸键,为下一步反应做了准备。
微生物的生理
② 磷酸烯醇式丙酮酸在丙酮酸激酶的催化下,转变为 丙酮酸。
GDP+ Pi GTP 琥珀酰CoA 琥珀酸硫激酶 琥珀酸 + CoASH
琥珀酰CoA在琥珀酸硫激酶的催化下,高能硫酯键被水 解生成琥珀酸,并使二磷酸鸟苷(GDP)磷酸化形成三磷酸 鸟苷(GTP)。这是三羧酸循环中唯一的一次底物水平磷酸 化。
微生物的生理
⑥琥珀酸脱ቤተ መጻሕፍቲ ባይዱ生成延胡索酸
FAD
FADH2
琥珀酸
NAD+
NADH +H+
苹果酸
草酰乙酸
苹果酸脱氢酶
TCA循环的总反应式如下:

微生物的代谢途径和调控机制

微生物的代谢途径和调控机制

微生物的代谢途径和调控机制微生物是一种非常常见而又重要的生物,它们在生态系统中有着重要的作用。

微生物的代谢途径和调控机制是微生物研究中不可忽视的一部分。

本文将从微生物的代谢途径和调控机制两个方面展开论述。

微生物的代谢途径微生物的代谢途径是指微生物在自身体内进行能量代谢的一系列反应,包括有氧呼吸、厌氧呼吸和发酵等。

其中,有氧呼吸是指微生物利用氧气作为终端电子受体,将有机物完全氧化成为二氧化碳和水,并产生能量。

厌氧呼吸则是指微生物在氧气不足的条件下,利用其他物质作为电子受体,将有机物部分氧化,并产生能量。

而发酵则是指微生物在氧气缺乏时,将有机物在不需要外部电子受体的条件下,分解成酸、醇和气体等产物,并产生能量。

微生物的代谢途径对于微生物的生存和繁殖有着至关重要的作用。

不同的微生物对于不同种类物质的代谢能力不同,这也是微生物能够适应不同环境的原因之一。

例如,某些微生物能够代谢硫、铁等金属离子,从而在海洋底部形成硫化物流,而某些细菌则能够将氮气转化为氨,提供生态系统的必需氮源。

微生物的调控机制微生物的代谢途径需要受到调控才能保证生命过程的正常。

微生物的调控机制包括转录调控、翻译调控和代谢调控等。

其中,转录调控是指微生物可以通过正反馈和负反馈机制,调控基因的表达量。

翻译调控则是指微生物可以通过启动子和转录因子等控制RNA的合成和mRNA的稳定性,影响蛋白质的表达量。

而代谢调控则是指微生物通过代谢产物的反馈和前体物的调节,调控酶的活性和基因表达,从而控制代谢途径的进行。

微生物的调控机制不仅对维持其生命活动有着重要的作用,同时也对于人类的健康有着深远的影响。

以大肠杆菌为例,它是肠道中普遍存在的微生物,当体内钙浓度过低时,大肠杆菌就会通过感应系统调控Calcium Transporter (CaT)的表达量,从而增加体内钙的吸收,保证人体的健康。

总结微生物的代谢途径和调控机制是微生物研究中的重要内容。

通过对微生物的代谢途径和调控机制的研究,不仅可以更好地了解微生物对环境的适应性和生命活动的本质,同时也可以为生物技术和人类健康等方面提供有益的参考和支持。

微生物的生理与代谢

微生物的生理与代谢

微生物的生理与代谢微生物是由单细胞生物组成的一个广泛的群体,其种类繁多,包括细菌、真菌、病毒等等。

虽然微生物微小无形,但是它们对人类生存和健康产生着极为重要的影响。

微生物不仅寄生在人体内,还广泛分布在海洋、土壤、空气等环境中。

微生物的生理与代谢研究是微生物学领域的一个重要内容,本文将介绍微生物的生理代谢过程以及其应用。

一、微生物的生理代谢过程微生物的生理代谢过程包括能量代谢和非能量代谢两个部分。

能量代谢主要通过三种生化途径来完成:糖酵解、无氧呼吸和有氧呼吸。

糖酵解是指将葡萄糖等简单碳水化合物分解,产生能量,同时生成乳酸等代谢产物。

无氧呼吸是指微生物在缺氧环境下,通过代谢糖类、脂肪酸或其他有机物质,产生ATP能量,并释放出二氧化碳和水等副产物。

而有氧呼吸则需要氧气参与,将有机物质完全氧化成CO2和H2O,并同时产生ATP能量。

非能量代谢主要包括一些特定的代谢途径。

例如产生酸性物质的乳酸发酵、醋酸发酵和丙酮酸发酵等;发酵坚果及肉类的曲霉、产奶酪的嗜热乳酸菌等。

此外,微生物还可以利用硫化氢、氨气和甲烷等无机化合物进行生物氧化或利用CO2进行光合作用。

二、微生物生理代谢的应用微生物的能量代谢和非能量代谢的研究无疑对现代生物技术的发展产生了很大的影响。

下面我们将依次介绍微生物在食品加工、生物污染控制、医药开发等方面的应用。

1. 食品加工微生物在食品加工中的应用是微生物学的一个重要领域。

比如酿酒,麦芽中的淀粉可以利用酵母发酵成乙醇和二氧化碳;制作奶酪的过程中,乳糖发酵成乳酸,使其凝固,形成奶酪。

此外,微生物还可以生产酸奶和豆浆等发酵食品,以及开发富含菌株蛋白质的饲料等。

2. 生物污染控制微生物在环境污染治理方面的应用也十分广泛,例如:在一些含高浓度污染物的土壤中,可以通过微生物进行生物清洁;微生物菌剂能够适用于受污染的土地疏浚,去除污染物,以及清除水体中的有毒化学物质等。

微生物菌剂选择合适的菌株可以有效地控制生物污染。

微生物的代谢过程

微生物的代谢过程

微生物的代谢过程微生物是一类广泛存在于地球各个环境中的微小生物体,包括细菌、真菌、病毒等。

它们具有独特的代谢过程,通过分解和转化有机物质,维持了地球生态系统的平衡和物质循环。

本文将着重探讨微生物的代谢过程,从其能量获取、营养物质利用等方面展开,以便更好地理解微生物的生活方式。

一、微生物的能量获取微生物的能量获取主要通过两种方式:化学能和光能。

一些微生物通过化学反应来获得能量,这被称为化学合成。

比如许多细菌利用硫化氢等无机物质进行化学反应,产生能量来维持其生存。

另一些微生物则利用光合作用,将阳光转化为化学能以供自身使用。

光合作用是一种利用光能合成有机物质的过程,典型的代表就是光合细菌和光合蓝藻。

二、微生物的营养物质利用微生物对于营养物质的利用非常广泛,可以利用各种有机物质和无机物质进行代谢。

其中,碳源的利用尤为重要。

微生物可以根据对碳源的利用方式将其分为两类:自养微生物和异养微生物。

自养微生物能够利用无机碳源如二氧化碳来合成有机物质,比如细菌中的类固醇合成细菌;而异养微生物则需要从外部获取有机碳源,例如许多病原菌依赖于宿主提供的有机物质来生存。

微生物的氮源利用也非常重要,因为氮是构成蛋白质等生物大分子的关键元素。

微生物可以利用无机氮源如氨、硝酸盐等,也可以利用有机氮源如氨基酸、蛋白质等。

通过利用不同的氮源,微生物可以满足自身的生长和繁殖需求。

除了碳源和氮源,微生物还需要其他一些微量元素,如磷、硫、钾等。

这些微量元素在细胞代谢中起到重要的作用,比如作为酶的辅助因子、参与细胞信号传递等。

三、微生物的代谢途径微生物在代谢过程中通过一系列酶催化的化学反应来完成对营养物质的分解和合成。

常见的代谢途径包括糖酵解、无氧呼吸、有氧呼吸、脂肪酸合成等。

糖酵解是一种将葡萄糖分解为乳酸或乙醇等产物的过程,常见于一些厌氧微生物。

无氧呼吸则是一种在缺氧条件下,微生物将有机物质通过无氧反应代谢产生能量的方式。

有氧呼吸是一种需氧条件下进行的代谢途径,微生物通过将有机物质氧化为二氧化碳和水,释放大量能量。

微生物笔记-微生物的代谢调节

微生物笔记-微生物的代谢调节

微生物的代谢新陈代谢:发生在活细胞内的所有化学反应的总称微生物的能量代谢1.新陈代谢的核心问题能量代谢的中心任务:生物体如何将环境中多种形式的最初能源转换称为对一切生命活动都能使用的通用能源。

实质:ATP 的生成和利用能源的转化a.最初能源有机物日光无机物微生物化能异养菌光能营养菌化能自养菌通用能源ATPATP ATP生物氧化反应的三个阶段脱氢:一种失去电子或氢的过程电子供体:被氧化的物质电子受体:接受电子的物质i.递氢:电子供体氧化脱下的氢交给氢载体,并通过多个载体完成电子从供体到受体的传递一般不直接交给电子受体ii.受氢:最终电子受体接受载体上电子的过程iii.b.生物氧化的产能途径底物水平磷酸化生物氧化过程中生成的含有高能键的化合物在酶的作用下,直接将能量转给ADP(GDP)生成ATP(GTP)1)存在于呼吸和发酵过程中2)发酵过程中唯一的能量获取方式3)微生物代谢中的底物水平磷酸化4)底物水平磷酸化反应偶联形成的高能分子1,3-二磷酸甘油酸—>3-磷酸甘油酸ATP 磷酸烯醇式丙酮酸—>丙酮酸ATP 琥珀酰辅酶A —>琥珀酸GTP 乙酰磷酸—>乙酸ATP ATPi.c.微生物的能量代谢2022年4月7日21:49丙酰磷酸—>丙酸ATP 丁酰磷酸—>丁酸ATP甲酰四氢叶酸—>甲酸ATP(电子传递)氧化磷酸化生物氧化中伴随着电子传递发生的磷酸化作用1)发生在呼吸作用(有氧或无氧)中呼吸时大多数伴随ATP 的合成a)2)典型的呼吸链:3分子ATP ,2分子ATP(黄素蛋白起始)a)3)ii.光和磷酸化只发生在光合细胞中1)循环式光合磷酸化:反应产物只有ATP2)非循环式光合磷酸化:反应的产物是ATP 、氧和NADPH3)iii.生物氧化的类型发酵:没有外源的最终电子受体的生物氧化方式电子受体和供体都是有机物1)无电子传递链2)i.呼吸:有外源的最终电子受体的生物氧化方式有氧:以分子氧作为最终电子受体的呼吸方式无机物氧化脱氢a)细菌氢细菌铁细菌硫化细菌硝酸盐细菌能源物质氢气铁硫或硫化物氨或亚硝酸1)无氧:以除氧外的物质作为最终电子受体的呼吸a)2)ii.化能营养型微生物的代谢产能方式iii.产能方式有氧呼吸无氧呼吸发酵环境条件有氧无氧无氧最终电子受体来源环境,外源性环境,外源性胞内,内源性最终电子受体分子氧化合物(通常中间代谢产物d.性质为无机物)能进行该代谢产能方式的微生物专性好氧微生物、兼性厌氧微生物、微嗜氧微生物兼性厌氧微生物、专性厌氧微生物兼性厌氧微生物、耐氧厌氧微生物、专性厌氧微生物呼吸作用和发酵作用的比较相同点:氧化时,底物上脱下的氢和电子都和相同的载体结合,形成NADH 和FADH1)不同点:NADH 和FADH 上的电子和氢的去路不同2)iv. 消耗一分子葡萄糖产生的ATP 数量不同葡萄糖的分解代谢和发酵产物葡萄糖——>丙酮酸1.四种途径:EMP、HMP、ED、PK丙酮酸——>?产物进行各种发酵,一般以产物来命名乙醇发酵酵母菌乙醇发酵i.EMP途径乙醇发酵类型类型条件受氢体ATP主要产物酸性乙醛2乙醇亚硫酸氢钠磷酸二羟丙酮0甘油碱性磷酸二羟丙酮0甘油、乙醇、乙酸细菌的乙醇发酵ii.运动发酵单胞菌ED 途径a.乳酸发酵同型乳酸发酵:产物只有乳酸的乳酸发酵i.b.2.异型乳酸发酵:产物中除乳酸外还有乙醇和二氧化碳的乳酸发酵ii.混合酸发酵c.微生物将葡萄糖转变为琥珀酸、乳酸、甲酸、乙酸、氢气、二氧化碳等多种产物的生物学过程甲基红试验(MR 试验)将细菌接种至葡萄糖蛋白胨水培养基中,置37摄氏度培养48小时,然后沿管壁加入甲基红指示剂,呈红色者为阳性,不呈红色者为阴性。

(完整版)微生物的代谢及其调控

(完整版)微生物的代谢及其调控

1微生物的代谢微生物代谢包含微生物物质代谢和能量代谢。

1.1 微生物物质代谢微生物物质代谢是指发生在微生物活细胞中的各样分解代谢与合成代谢的总和。

1.1.1 分解代谢分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。

—般可将分解代谢分为TP。

三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更加简单的乙酰辅酶 A 、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH 及 FADH2;第三阶段是经过三羧酸循环将第二阶段产物完好降解生成CO2,并产生ATP、NADH 及FADH2。

第二和第三阶段产生的ATP、NADH 及FADH2 经过电子传达链被氧化,可产生大批的 ATP。

1.1.1.1 大分子有机物的分解( 1)淀粉的分解淀粉是很多种微生物用作碳源的原料。

它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。

一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。

直链淀粉为α一 l、 4 糖苷键构成的直链分子;支链淀粉不过在支点处由α—1、6糖苷键连结而成。

微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。

淀粉酶是一类水解淀粉糖苷键酶的总称。

它的种类好多,作用方式及产物也不尽同样,主要有液化型淀粉酶、糖化型淀粉酶(包含β—淀粉酶、糖化酶、异淀粉酶)。

以液化型淀粉酶为例,这种酶能够随意分解淀粉的。

α-l、4 糖苷键,而不可以分解α-1、 6 糖苷键。

淀粉经该酶作用此后,黏度很快降落,液化后变为糊精,最后产物为糊精、麦芽糖和少许葡萄糖。

因为这种酶能使淀粉表现为液化,淀粉黏度急速降落,故称液化淀粉酶;又因为生成的麦芽糖在光学上是α型,所以又称为“ α—淀粉酶。

( 2)纤维素的分解纤维素是葡萄糖由β— 1,4 糖苷键构成的大分子化合物。

它宽泛存在于自然界,是植物细胞壁的主要构成成分。

05、微生物代谢

05、微生物代谢

不经 呼吸链
发酵
有氧呼吸、无氧呼吸和发酵的递氢与受氢
在递氢、受氢中,根据氢受体性质的不同,异养微生物的 生物氧化可分为有氧呼吸、无氧呼吸和发酵三类。
有氧呼吸、无氧呼吸、发酵的特点比较
生物氧化 递氢方式 的类型 末端氢受体 对O2的 要求 有氧 无氧 无氧 产能 效率 高 较低
有氧呼吸 完整呼吸链 外源性分子氧 递 氢
氧化磷酸化产能
有氧呼吸
无氧呼吸 有 机 物 氧 化 (化能异养型微生物) 底物磷酸化产能:发酵 无 机 物 氧 化:氧化磷酸化产能 (化能自养型微生物) 有氧呼吸 无氧呼吸
3、还原力[ H ]的来源
化能异养型微生物:有机物氧化脱氢产生
化能自养型微生物:无机物氧化后通过消耗ATP的 逆呼吸链电子传递产生
部分呼吸链 外源性无机氧 无氧呼吸 递 氢 化物(或有机物) 发酵
不经呼吸链, 内源性中间 直接受氢 代谢有机物
很低
只有 底物磷酸化
1、有氧呼吸(aerobic respiration)
有氧呼吸:底物脱氢后,经完整呼吸链传递,最终 被作为末端氢受体的外源性分子氧接受 产生水并释放能量的生物氧化过程。
(1)硝酸盐呼吸(反硝化作用)
硝酸盐呼吸:以NO3-作为末端氢受体的无氧呼吸。
末端氢受体: NO3末端氢受体的还原产物:(N02[H] 呼吸链 ATP N03N02-
N0
N20
N20
) N2
N0
N2 + H2O
进行硝酸盐呼吸的细菌:反硝化细菌(硝酸盐还原菌) 反硝化细菌属于兼氧菌,有氧时进行有氧呼吸, 无氧时进行硝酸盐呼吸,如:地衣芽孢杆菌。 硝酸盐还原 同化性硝酸盐还原:以N03- 作为氮源。不属于硝酸盐呼吸。

微生物第四章

微生物第四章

第四章微生物的代谢代谢(metabolism):也称新陈代谢,指生物体内进行的全部化学反应的总和。

(一)分解代谢:细胞将大分子物质降解成小分子物质,并在此过程中产生能量的过程。

不同营养类型的微生物进行分解代谢所利用的物质不同,异氧微生物利用的是有机物,自养微生物利用的是无机物。

(二)合成代谢:细胞利用简单的小分子物质合成复杂的大分子物质,并在此过程中贮藏能量的过程。

(三)物质代谢:物质在体内进行转化的过程。

(四)能量代谢:伴随物质转化而发生的能量形式相互转化的过程。

(五)初级代谢:能使营养物转化为结构物质、具生理活性物质或提供生长能量的一类代谢。

产物有小分子前体物、单体、多聚体等生命必需物质。

(六)次级代谢:某些微生物进行的非细胞结构物质和维持其正常生命活动的非必须物质的代谢。

产物有抗生素、酶抑制剂、毒素、甾体化合物等,与生命活动无关,不参与细胞结构,也不是酶活性必需,但对人类有用。

合成代谢和分解代谢的关系1.分解代谢为合成代谢提供能量和原料,保证正常合成代谢的进行,合成代谢又为分解代谢创造更好的条件。

2.合成代谢和分解代谢都是由一系列连续的酶促反应构成的,前一步反映的产物是后续反应的底物。

微生物代谢的特点1.代谢旺盛(代谢强度高、转化能力强)2.代谢类型多样化(导致营养类型的多样化)3.某些微生物在代谢过程中除产生其生命活动必须的初级代谢产物和能量外,还会产生一些次级代谢产物,次级代谢产物与人类生产与生活密切相关,是微生物学的重要研究领域。

4.微生物的代谢作用使得微生物在自然界的物质循环中起着极其重要的作用。

第一节微生物的能量代谢第二节微生物的物质代谢第三节微生物代谢的调节第四节微生物次级代谢与次级代谢产物第一节微生物的能量代谢微生物能量代谢是指微生物把环境提供的能源或本身储存的能源转变为微生物生命活动所需能源的过程。

微生物的产能代谢是指生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,又称生物氧化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2NAD 2NADH2
CH3COCOOH CH3-CO-CH2-CO-COA
2NADH2 2NAD
CH3-CH=CH-CO-COA
2NADH2 2NAD
CH3-CH2-CH2-COOH
代表菌-丁酸梭菌
三 微生物与氧气的关系
1 需氧(好气)微生物 2 厌氧(嫌气)微生物 3 兼性厌氧微生物
1

3
兼性厌氧微生物

呼吸类型-无氧时发酵;有氧时有氧呼吸。 培养方式-具体实验要求而定。 如:大肠杆菌,酵母菌。
第二节
微生物的物质代谢
一 微生物的分解代谢
二 微生物合成的次生代谢产物
一 微生物的物质分解
1 碳水化合物的分解
• • 单糖: 葡萄糖 双糖: 麦芽糖
麦芽糖酶
CO2+H2O 葡萄糖 CO2+H2O
果胶甲基酯酶
果胶酸+甲醇
半乳糖醛酸
多缩半乳糖酶
水浸——厌氧性细菌
露浸——好氧性细菌、放线菌、真菌
二 微生物合成的次生代谢产物
初生代谢
次生代谢
次生代谢:微生物合成一些对其本身的生命活 动没有明确功能的物质的过程。又为支路代谢 次生代谢产物:微生物在次生代谢过程中合成 的对其自身生命活动没有明确功能的物质。 常见的次生代谢产物:抗生素、激素、毒素、色素
第五章
微生物的代谢
第一节 微生物的能量代谢 一 细胞中的氧化还原反应与能量产生 二 微生物的呼吸类型 三 微生物与氧气的关系 第二节 微生物的物质代谢 一 微生物的物质分解 二 微生物合成的次生代谢产物
第一节 微生物的能量代谢
一 细胞中的氧化还原反应与能量产生
1 细胞中的氧化还原反应 AH2 2H+ + 2e +A (氧化)
应用:赤霉素——赤霉菌
赤霉素是植物生长调节剂一种。主要促进作物生 长发育、提早成熟、提高产量,打破种子等繁殖 器官休眠。特别对杂交水稻制种中解决花期不遇 有特殊功效。在葡萄、柑桔、菠萝、蔬菜等作物 广泛使用。
3 毒素
概念:微生物产生的一类对动植物有毒害作用 的物质。 种类: 细菌毒素:破伤风毒素、白喉毒素、肉毒 素等。对人、动物有很大毒性。 真菌毒素:黄曲霉毒素(粮食、花生) 蘑菇毒素(人、动物)
通过呼吸链产生ATP的过程,即物质氧化产生的 H+、e-经电子递体传给受体。一切生物共有。 (3)光合磷酸化
光合微生物。
e
ATP
光合色素吸收光能
电子递体
二 微生物的呼吸类型
呼吸作用 的定义 •简-生物氧化基质释放能量的过程。
•复-生物氧化中,呼吸基质脱下的氢 和电子经载体传递最终交给受体的 生物学过程。
4 色素
概念:微生物代谢时产生的有色物质。
应用:红曲霉——红曲霉素 可用于红腐乳生产。
思考题
1 微生物的有氧呼吸、无氧呼吸和发酵的概念。 2 如何区分有氧呼吸、无氧呼吸和发酵? 3 什么是次生代谢产物? 4 有哪几种次生代谢产物?举例。 5 呼吸作用的概念。
6 赤霉素如何促植物生长?
7 根据微生物与氧气的关系,可把微生物分成哪几种 类型?
丙酮酸
产能量少(2个ATP),大部分储存在乳酸中。
乳链球菌、植物乳杆菌
异型乳酸发酵 以乳酸为发酵主要产物
葡萄糖
NAD
CO2 NADH+H+
肠膜状明串珠菌
5-磷酸木酮糖 丙酮酸
NADH2 NAD
乙酰COA
NADH2 NAD
乙醛
NADH2
乳酸 乙醇
NAD
(3)丁酸发酵(沤肥)
C6H12O6(葡萄糖)
需氧微生物
呼吸类型-有氧呼吸 培养方式-固体表面,液体浅层,通气,振荡。 如-青霉,枯草杆菌等多种细菌放线菌真菌
2 厌氧微生物


呼吸类型-无氧呼吸和发酵 培养方式-抽真空;在N2、H2条件下;固体穿 刺。 如:乳酸杆菌,梭状芽孢杆菌,产甲烷杆菌 为生么有氧气不能生活? 原因:有氧存在,代谢产生H2O2和O2-, H2O2 有毒,该类微生物没有分解H2O2的氧化酶
1
抗生素:
概念:微生物产生的一类能抑制或杀死另一类 微生物的化学药剂。 作用机理: 抑制细胞壁的合成; 损伤细胞质膜; 干扰蛋白质的合成 应用: 医药:青霉素——点青霉,产黄青霉 链霉素——链霉菌 农业:井冈霉素、春日霉素、庆丰霉素等防治植 物病害,进行森林保护。
2 激素 概念:微生物产生的一类能刺激动植物 生长或性器官发育的一类物质。
NAD
NO3-
无氧呼吸的利与弊?
粪池、秸秆产甲烷
水稻田烂秧 SO4= 土壤氮肥的损失
CO3=
H 2S
CH4
NO2-(有毒性)
NO3-
3 发酵 (fermentation)




定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。 最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。是底物水平磷酸化。 常见的发酵有 (1)乙醇发酵 (2)乳酸发酵 (3)丁酸发酵
化能异养微生物——有机物
化能自养微生物——无机物
有氧呼吸是如何完成的呢?
以-呼吸基质是葡萄糖为例说明
葡萄糖
糖酵解
丙酮酸
两个特点
三羧酸循环
NAD
•葡萄糖彻底氧化
•产能量大
CO2、NADPH NAD O2 H+、eH2O 呼吸链 FAD 辅酶Q 细胞色素b、c、a、a3
NAD + 大量ATP(38个)
无氧呼吸是如何完成的呢?
以硝酸盐还原菌还原葡萄糖为例说明:
基质-H2
(葡萄糖) -2e-2H+
脱氢酶
-2e
传递体-2H
-2e
NO3+2e 相应还原酶
基质
脱氢酶-2H
传递体
NO2-+H2O
生成的能量少。
使硝酸盐还原为亚硝酸盐的电子传递体为:
NADH2 NO2-
黄素 蛋白
辅酶Q
细胞色素b
硝酸盐 还原酶
(1)乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
1,3-二磷酸甘油酸
2NAቤተ መጻሕፍቲ ባይዱH2
ATP CO2
乙醇
乙醛
脱羧酶
丙酮酸
产能量少(2个ATP),大部分储存在乙醇中。
酵母菌
(2)乳酸发酵(酸奶、青储饲料)

葡萄糖
同型乳酸发酵
3-磷酸甘油醛
2NAD
1,3-二磷酸甘油酸
2NADH2
ATP CO2
乳酸
乳酸脱氢酶

多糖: 各种细菌、放线菌,曲霉、根霉等
淀粉酶
淀粉
麦芽糖
麦芽糖酶
葡萄糖
CO2+H2O
应用:酿造业
2 脂类的分解
脂肪
脂肪酶
甘油
+O2
脂肪酸
-O2
CO2+H2O 简单酸+CO2+CH4
应用:屠宰场,生活污水
3 果胶物质的分解
原果胶+H2O
原果胶酶
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶酸+H2O 应用:麻类物 质的脱胶处理
主要呼吸基质:葡萄糖、果糖。 有哪些呼吸类型呢? 依据最 终电子受体 的不同有三 种 1 2 3 有氧呼吸 无氧呼吸 发酵
1 有氧呼吸(EDP 己糖-磷酸途径)respiration 定义:微生物氧化底物时以分子氧作为最 终电子受体的氧化作用。
最终电子受体——氧气 O2
参与的微生物——需氧和兼性厌氧微生物 呼吸基质 (底物)
呼吸链(电子传递链)的作用:
•a •b 传递电子 将传递电子时释放的能量合成ATP。
注意:

原核微生物的呼吸链位于细胞膜上,有氧呼吸 在细胞膜上进行。

真核微生物的呼吸链在线粒体膜上,有氧呼吸 在线粒体中进行。
2 无氧呼吸(anaerobic respiration)
定义:微生物氧化底物,底物氧化脱下的氢 和电子经呼吸链传递最终交给无机化合物的过程。 最终电子受体——无机物(NO3-、NO2-、CO2等) 参与的微生物——厌氧菌和兼性厌氧菌。 呼吸基质(底物)——有机物
B + 2H+ + 2e
AH2 + B
BH2(还原)
A + BH2(氧化还原)
2 细胞中ATP的合成

ATP——三磷酸腺苷 ADP——二磷酸腺苷
放能 产能
ATP
ADP + Pi +能量(伴随能源物质的分解)
ADP结合一个磷酸生成ATP,为磷酸化。 磷酸化的方式有哪些呢?
(1)底物水平磷酸化 在底物氧化过程中产生含高能磷酸键的化合物, 经相应酶作用转给ADP生成ATP。 •X~P + ADP X + ATP (2)氧化磷酸化
相关文档
最新文档