用双缝干涉测量光的波长
实验十四用双缝干涉测光的波长
frac{L}{d}lambda$),计算光的波长。
03
重复测量多个波长的干涉条纹间距,求平均值以减小
误差。
05 数据记录与处理
记录干涉条纹间距
干涉条纹间距
在实验过程中,使用测量工具精确测 量并记录干涉条纹的间距。
测量精度
为了确保测量结果的准确性,应采用 高精度的测量工具,并多次测量以减 小误差。
波长与干涉条纹间距的关系
干涉条纹间距与光的波长成正比。在双缝干涉实验中,相邻干涉条纹之间的距离(即干涉条纹间距) 与光的波长成正比。通过测量干涉条纹间距,可以推算出光的波长。
干涉条纹间距的计算公式为:间距 = 波长 / 双缝间距。通过调整双缝间距或已知双缝间距,可以计算 出光的波长。
03 实验器材
多次测量求平均值
对干涉条纹间距进行多次测量 并取平均值,以减小人眼观察 和读数误差对结果的影响。
提高实验操作技能
通过培训和练习,提高实验操 作技能,确保实验过程中各项
操作准确无误。
THANKS FOR WATCHING
感谢您的观看
双缝干涉装置
双缝干涉装置由双缝、屏幕和测量工具组成。双缝用于产生相干光束,屏幕用于观 察干涉条纹,测量工具用于测量条纹间距。
双缝的间距和宽度对干涉条纹的清晰度和测量精度有重要影响,因此需要选用精度 较高的双缝。
屏幕要求平整、无划痕,以便准确观察干涉条纹。
测量工具:光尺、测微器等
光尺是一种测量光束位移的仪器,用于测量条纹间距。光尺的精度直接影响到测量结果的准确性。
单色光的照射与干涉条纹的观察
01
打开光源,使单色光照射到双缝上。
02
观察屏幕上出现的干涉条纹,记录干涉条纹的形状和分布情况。
高考物理实验-用双缝干涉测光的波长
用双缝干涉测光的波长知识元用双缝干涉测光的波长知识讲解一、实验目的观察干涉图样,测定光的波长.二、实验原理双缝干涉中相邻两条明(暗)条纹间的距离△x与波长λ、双缝间距离d及双缝到屏的距离L 满足△x=λ.因此,只要测出△x、d和L,即可求出波长λ.三、实验器材双缝干涉仪(包括光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头)、刻度尺.四、实验步骤1.观察双缝干涉图样①将光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏依次安放在光具座上,如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源灯丝发出的光能沿轴线到达光屏.④安装双缝,使双缝与单缝的缝平行,二者间距5~10cm.⑤观察白光的干涉条纹.⑥在单缝和光源间放上滤光片,观察单色光的干涉条纹.2.测定单色光的波长(1)安装测量头,调节至可清晰观察到干涉条纹.(2)使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a1,转动手轮,使分划板中心刻线移动,记下移动的条纹数n和移动后手轮的读数a2,a1与a2之差即n条亮纹的间距.(3)用刻度尺测量双缝到光屏间距离l(d是已知的).(4)重复测量、计算,求出波长的平均值.(5)换用不同滤光片,重复实验测量其他单色光的波长.五、注意事项1.安装器材时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且竖直.2.光源灯丝最好为线状灯丝,并与单缝平行且靠近.3.调节的基本依据是:照在屏上的光很弱,主要原因是灯丝与单缝、双缝、测量头、遮光筒不共轴所致,干涉条纹不清晰的主要原因是单缝与双缝不平行.4.光波波长很短,△x、l的测量对波长λ的影响很大,l用毫米刻度尺测量,△x利用测量头测量.可测多条亮纹间距再求△x,采用多次测量求λ的平均值法,可减小误差.例题精讲用双缝干涉测光的波长例1.在“用双缝干涉测光的波长”实验中,将所用器材按要求安装在如图甲所示的光具座上,然后接通电源使光源正常工作。
实验16 用双缝干涉测光的波长
②滤光片 ③单缝 ④双缝
根据 Δx=������������λ 知,为增加相邻亮纹(暗纹)间的距离,可采取增大双缝到 光屏的距离、减小双缝间距离。
(2)将灯泡换成激光光源,激光的单色性好,不需要滤光片。
使分划板左右移动,让分划板的中心刻线对准亮纹的中心如图乙所
示,记下此时手轮上的读数,转动测量头,使分划板中心刻线对准另
一条亮纹的中心,记下此时手轮上的读数。问:
第十五章
实验16 用双缝干涉测光的波长
必备知识
关键能力
对应演练
-19-
第十五章
实验16 用双缝干涉测光的波长
必备知识
关键能力
对应演练
-20-
实验16 用双缝干涉测光的波长
必备知识
关键能力
对应演练
-10-
思维点拨光源发出的光经滤光片成为单色光,单色光通过单缝后, 经双缝产生稳定的干涉图样。通过测量d、L、Δx由公式 λ=Δ������������������ 就 可计算出光的波长。
用双缝干涉测光的波长问题的解决方法
(1)明确双缝干涉条纹间距公式Δx=
螺旋测微器的固定刻度读数为14.5 mm,可动刻度读数为
0.01×20.0=0.200 mm,所以最终读数为14.700 mm。
因为 Δx=������2-������1,
6
又 Δx=������λ,所以 λ=������2-������1d,
������
6������
代入数据得:λ=800 nm。
必备知识
关键能力
对应演练
实验用双缝干涉测量光的波长
实验用双缝干涉测量光的波长在本实验中,我们将介绍实验用双缝干涉测量光的波长的方法和步骤。
通过这个实验,我们能够了解光的波属性以及测量光波长的原理和技术。
1. 实验介绍实验用双缝干涉是一种经典的实验方法,用于测量光的波长。
该实验基于干涉现象,利用光的波动性和相长干涉原理,通过测量干涉条纹的间距来计算光的波长。
2. 实验原理光线通过双缝时,会形成一系列明暗交替的干涉条纹。
这些干涉条纹的间距与入射光的波长和双缝之间的距离有关。
根据波长和距离之间的关系,可以通过测量干涉条纹的间距来计算光的波长。
3. 实验步骤3.1 准备工作a. 准备一块透明平板,放置在透明平面上。
b. 在透明平板上划上两个细缝,使它们尽可能平行且距离适当,引入夹子来调节缝宽。
c. 将一束单色光照射到双缝上,可以使用一束激光光源或太阳光透过窄缝进入。
d. 使用屏幕或照相底片作为记录干涉条纹的介质。
3.2 实验操作a. 调节双缝间距和缝宽,以获得清晰的干涉条纹。
b. 将屏幕或照相底片放置在适当位置,以观察干涉条纹。
c. 使用显微镜或放大镜对干涉条纹进行测量。
4. 数据处理和计算通过对干涉条纹的测量,我们可以得到两个相邻条纹之间的距离,即干涉条纹的间距。
根据这个间距和实验中的测量参数,我们可以计算出入射光的波长。
5. 结果与讨论根据实验数据和计算结果,我们可以得到光的波长的近似值。
同时,我们还可以分析实验中的误差源和改进方法,提高实验的准确性。
6. 实验结论通过实验用双缝干涉测量光的波长,我们得到了光的波长的近似值,并了解了光的波动性和干涉现象。
这个实验不仅增加了我们对光学的理解,还展示了实验方法和数据处理的重要性。
通过本实验,我们不仅掌握了实验用双缝干涉测量光的波长的基本原理和操作步骤,还了解了光的波动性和干涉现象。
同时,我们还学会了数据处理和计算的方法,提高了实验的准确性和可靠性。
这个实验对于深入理解光学和科学研究具有重要意义。
第4章 第5节 用双缝干涉实验测定光的波长
第4章第5节用双缝干涉实验测定光的波长D.只是半波长的奇数倍【解析】光的干涉现象出现亮条纹的条件:δ=nλ(n=0,±1,±2…)【答案】 A4.(3分)如图4-5-2所示,是单色光双缝干涉实验某一时刻的波形图,实线表示波峰,虚线表示波谷.在此刻,介质中A点为波峰相叠加点,B点为波谷相叠加点,A、B连线上的C点为某中间状态相叠加点.如果把屏分别放在A、B、C三个位置,那么()图4-5-2A.A、B、C三个位置都出现亮纹B.B位置出现暗纹C.C位置出现亮或暗条纹由其他条件决定D.以上结论都不对【解析】在干涉现象中,所谓“振动加强点”是指两列波在该点引起的振动方向总是相同的,该点的振幅是两列波的振幅之和,而不要理解为该点始终处于波峰或波谷,在某时刻它也可以位于平衡位置(如图中C点),所谓“振动减弱点”是指两列波在该点引起的振动方向总是相反的,该点的振幅是两列波长的振幅之差,如果两列波的振幅相同,则该点始终在平衡位置,对光波而言,该点是完全暗的.本题中,A、B、C连线上所有点到缝S1、S2的距离相等,所以A、B、C三点都是振动加强点,屏上对应出现的是亮条纹,所以A正确.【答案】 A课标导思1.了解光波产生稳定干涉图样的条件.2.会用公式Δx=Ldλ测定波长.学生P 52一、实验目的1.了解光波产生稳定干涉图样的条件.2.观察白光及单色光的双缝干涉图样.3.掌握用公式Δx =L d λ测定波长的方法.4.会用测量头测量条纹间距离.二、实验原理1.相邻明纹(暗纹)间的距离Δx 与入射光波长λ之间的定量关系推导如图4-5-3所示,双缝间距d ,双缝到屏的距离L .双缝S 1、S 2的连线的中垂线与屏的交点为P 0.对屏上与P 0距离为x 的一点P ,两缝与P 的距离PS 1=r 1,PS 2=r 2.在线段PS 2上作PM =PS 1,则S 2M =r 2-r 1,因d ≪L ,三角形S 1S 2M 可看作直角三角形.有:r 2-r 1=d sin θ(令∠S 2S 1M =θ).图4-5-3则:x ≈L tan θ≈L sin θ有:r 2-r 1=d x L若P 处为亮纹,则d x L =±kλ,(k =0,1,2,…)解得:x =±k L d λ.(k =0,1,2,…)相邻两亮纹或暗纹的中心距离:Δx =L d λ.2.测量原理由公式Δx =L d λ可知,在双缝干涉实验中,d 是双缝间距,是已知的;L 是双缝到屏的距离,可以测出,那么,只要测出相邻两明条纹(或相邻两暗条纹)中心间距Δx ,即可由公式λ=d l Δx 计算出入射光波长的大小.3.条纹间距Δx 的测定测量头由分划板、目镜、手轮等构成,测量时先转动测量头,让分划板中心刻线与干涉条纹平行,然后转动手轮,使分划板向左(向右)移动至分划板的中心刻线与条纹的中心对齐,记下此时读数,再转动手轮,用同样的方法测出n个亮纹间的距离a,可求出相邻两亮纹间的距离Δx=an-1.三、实验器材双缝干涉仪(包括:光具座、光源、滤光片、单缝、双缝、遮光筒、光屏及测量头,其中测量头又包括:分划板、目镜、手轮等)、学生电源、导线、米尺.学生P52一、实验步骤1.按图4-5-4所示安装仪器.图4-5-42.将光源中心、单缝中心、双缝中心调节在遮光筒的中心轴线上.3.使光源发光,在光源和单缝之间加红(绿)色滤光片,让通过后的条形光斑恰好落在双缝上,通过遮光筒上的测量头,仔细调节目镜,观察单色光的干涉条纹,撤去滤光片,观察白光的干涉条纹(彩色条纹).4.加装滤光片,通过目镜观察单色光的干涉条纹,同时调节手轮,划板的中心刻线对齐某一条纹的中心,记下手轮的读数,然后继续转动使分划板移动,直到分划板的中心刻线对齐另一条纹中心,记下此时手轮读数和移过分划板中心刻度线的条纹数n.5.将两次手轮的读数相减,求出n条亮纹间的距离a,利用公式Δx=a/(n-1),算出条纹间距,然后利用公式λ=dLΔx,求出此单色光的波长λ(d、L仪器中都已给出).6.换用另一滤光片,重复步骤3、4,并求出相应的波长.二、注意事项1.单缝、双缝应相互平行,其中心大致位于遮光筒的轴线上,双缝到单缝距离应相等.2.测双缝到屏的距离l可用米尺测多次取平均值.3.测条纹间距Δx时,用测量头测出n条亮(暗)纹间的距离a,求出相邻的两条亮(暗)纹间的距离Δx=an-1.三、误差分析本实验为测量性实验,因此应尽一切办法减少有关测量的误差,实验中的双缝间距d是器材本身就给出的,因此另外就要注意L和Δx的测量.1.L的测量因本实验中,双缝到屏的距离较大,L的测量误差影响不太大,也应尽量用米尺(精确到mm)准确去测定,如果可能,可多次测量求平均值.2.条纹间距Δx的测定(1)分划板的调节,分划板上的刻线形状如图4-5-5所示,一条水平刻线,三条竖直刻线,待视场中出现清晰的干涉条纹后,使竖直刻线与干涉条纹平行,若不平行,松开测量头上的紧固螺钉,转动测量头使其平行.图4-5-5(2)若直接测相邻两亮纹的间距Δx,相对误差较大,可象图4-5-6那样,转动手轮,使分划板中心刻线对齐左侧某一条清晰亮纹(暗纹),记下游标尺读数x1;然后使分划板右移,让竖直中央刻线与第七条亮(暗)纹对齐,记下游标尺读数x7,则Δx=x7-x16.图4-5-6(3)分划板刻线能否与干涉条纹对齐,对测量结果影响很大,由于明、暗条纹的界线不清晰,具体的对齐方法如下:把明(暗)纹嵌在分划板两条短刻线之间,使条纹的两边缘与短刻线的距离相等,这时即为对齐,如图4-5-7所示.图4-5-7(4)为更有效地减小实验误差,x1、x7的读数应重复测几次,取其平均值.一、实验原理的理解分别以红光和紫光先后用同一装置进行双缝干涉实验,已知λ红>λ紫,在屏上得到相邻亮纹间的距离分别为Δx1和Δx2,则()A.Δx1<Δx2B.Δx1>Δx2C .若双缝间距d 减小,而其他条件保持不变,则Δx 1增大D .若双缝间距d 减小,而其他条件保持不变,则Δx 不变【导析】 依据条纹间距表达式Δx =L d λ进行分析解答.【解析】 该题考查条纹间距的表达式.由Δx =L d λ,λ红>λ紫,得Δx 红>Δx紫,B 项正确.当双缝间距d 减小,其他条件不变时,条纹间距Δx 应增大,故C 项正确.【答案】 BC 根据Δx =L d λ即可得出结论透膜,一般用折射率为1.38的氟化镁,为了使波长为5.52×10-7 m 的绿光在垂直表面入射时使反射光干涉相消,求所涂的这种增透膜的厚度?【解析】 由于人眼对绿光最敏感,所以通常所用的光学仪器其镜头表面所涂的增透膜的厚度只使反射的绿光干涉相消,但薄膜的厚度不易过大,只需使其厚度为绿光在膜中波长的14,使绿光在增透膜的前后两个表面上的反射光互相抵消.而光从真空进入某种介质后,其波长会发生变化.若绿光在真空中波长为λ0,在增透膜中的波长为λ,由折射率与光速的关系和光速与波长及频率的关系得:n =c v =λ0f λf ,即λ=λ0n ,那么增透膜厚度 h =14λ=λ04n =5.52×10-74×1.38m =1×10-7 m.【答案】 1×10-7 m二、实验操作过程和实验原理的理解现有毛玻璃屏A、双缝B、白光光源C、单缝D和透红光的滤光片E等光学元件,要把它们放在图4-5-8所示的光具座上组装成双缝干涉装置,用以测量红光的波长.图4-5-8(1)本实验的实验步骤有:①取下遮光筒左侧的元件,调节光源高度,使光束能直接沿遮光筒轴线把屏照亮;②按合理顺序在光具座上放置各光学元件,并使各元件的中心位于遮光筒的轴线上;③用米尺测量双缝到屏的距离;④用测量头(其读数方法同螺旋测微器)测量数条亮纹间的距离.在操作步骤②时还应注意____________和________________________.(2)将测量头的分划板中心刻线与某亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图4-5-9甲所示.然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,记下此时图乙中手轮上的示数________mm,求得相邻亮纹的间距Δx为________mm.(3)已知双缝间距d为2.0×10-4m,测得双缝到屏的距离l为0.700 m,由计算公式λ=________,求得所测红光波长为________m.图4-5-9【导析】依据实验操作规程和数据处理方法进行解答.【解析】本题重点考查了实验操作规程、条纹间距与波长等数据的处理问题,这些也都是历届高考考查的热点问题.(1)单缝与双缝的间距为5~10 cm,使单缝与双缝相互平行.(2)甲图的读数为2.320 mm,乙图的读数为13.870 mm,Δx=13.870-2.3206-1mm=2.310 mm(3)由Δx=ldλ可得:λ=dlΔx=2.0×10-40.700×2.310×10-3m=6.6×10-7m.【答案】(1)见解析(2)13.870 2.310(3)ld·Δx 6.6×10-7测量头有千分尺(如本例题)和游标卡尺两种结构,应根据各自的读数规则读数;利用Δx=|a2-a1|n-1计算Δx时,一定要明确n的含义.螺旋测微器是日常生活和工厂中经常使用的一种精度较高的测量长度的仪器,能正确地使用和读数是一种起码的技能,它是高考的热点.螺旋测微器的读数原则是:①以mm为单位;②整数部分由固定刻度的整数决定;③小数部分则由固定部分的半刻度和可动部分的示数共同决定:若固定部分过半刻线,则可动部分的示数加上“0.5”,若没有过半刻线,就由可动部分的示数来确定,有一点必须明确,示数一定要读到小数点后面的第三位.A.白炽灯,B.单缝片,C.光屏,D.双缝,E.滤光片(其中双缝和光屏连在遮光筒上).(1)把以上元件安装在光具座上时,正确的排列顺序是A______(A已写好).(2)正确调节后,在屏上观察到红光干涉条纹,用测量头测出10条红亮纹间的距离为a;改用绿色滤光片,其他条件不变,用测量头测出10条绿亮纹间的距离为b,则一定有________大于________.【解析】双缝干涉仪各组成部分在光具座上的正确排序为光源,滤光片、单缝、双缝、屏,或把它们全部倒过来,因本题第一项已经填好,故答案是唯一的.由Δx=ldλ知,波长越长,条纹越宽,间距越大,或由干涉条纹的特征均可得出a一定大于b.【答案】(1)EBDC(2)a b三、实验误差分析在“用双缝干涉实验测定光的波长”的实验中,若测量头中的分划板中心刻度线与干涉条纹不平行,出现如图4-5-10所示的情形,在这种情况下用测量出的相邻明(或暗)条纹间距Δx计算光波波长,则计算出的波长λ和光的实际波长λ0的关系是()图4-5-10A.λ>λ0B.λ=λ0C.λ<λ0D.无法确定【导析】分析判断出Δx的变化,再由λ=dLΔx即可得出结果.【解析】由图4-5-10可以看出,分划板中心刻度线与干涉条纹不平行导致相邻明(或暗)条纹间距Δx偏大,从而使计算出的光波波长λ=dLΔx偏大,故答案选A.【答案】 A由λ=dLΔx可知,对λ的测量产生影响的主要有两个因素,即L和Δx的测量值.到干涉图样,这可能是由于()A.光束的中央轴线与遮盖光筒的轴线不一致,相差较大B.没有安装滤光片C.单缝与双缝不平行D.光源发出的光束太强【解析】安装实验器件时要注意:光束的中央轴线与遮光筒的轴线要重合,光源与光屏正面相对,滤光片、单缝和双缝要在同一高度,中心位置在遮光筒轴线上,单缝与双缝要相互平行,才能使实验成功.当然还要使光源发出的光束不致太暗.据上分析,可知选项A、C正确.【答案】 AC2.在双缝干涉实验中,中间明条纹(零级明条纹)到双缝的路程差为零,那么从双缝到第三级明条纹之间的路程差是( )A .1.5λB .2λC .2.5λD .3λ【解析】 由Δx =nλ(n =0、1、2、3…)可知屏上的第三级亮条纹对应n =3.【答案】 D3.如图4-5-11为双缝干涉实验中产生的条纹图样:甲图为绿光进行实验的图样,a 为中央亮条纹;乙为换用另一种单色光进行实验的图样,a ′为中央亮条纹.则以下说法正确的是( )图4-5-11A .乙图可能是用红光实验产生的条纹,表明红光波长较长B .乙图可能是用紫光实验产生的条纹,表明紫光波长较长C .乙图可能是用紫光实验产生的条纹,表明紫光波长较短D .乙图可能是用红光实验产生的条纹,表明红光波长较短【解析】 由图可知,乙图中的条纹间距大,由Δx =L d λ可知λ乙>λ甲,A正确.【答案】 A4.在“用双缝干涉测光的波长”的实验中,装置如图4-5-12所示.双缝间的距离d =3 mm.图4-5-12(1)若测定红光的波长,应选用________色的滤光片.实验时需要测定的物理量有:________和________.【解析】 该题考查实验原理和螺旋测微器的读数,由于测红光的波长,因此用红色滤光片.由Δx =L d λ可知要想测λ必须测定L 和Δx .【答案】 (1)红 L Δx5.用波长未知的单色光做双缝干涉实验,若双缝间的距离为1 mm ,缝到屏的距离为1 m ,第20级亮条纹中心在中央亮条纹(零级亮条纹)中心上方1.78 cm 处,则该单色光的波长是多少微米?【解析】 Δx =1.78×10-220m =8.9×10-4 m λ=d Δx L =1×10-3×8.9×10-41 m =8.9×10-7 m=0.89 μm【答案】 0.89 μm。
用双缝干涉测量光的波长
距离( )
A.增大③和④之间的距离
B.增大④和⑤之间的距离
C.将红色滤光片改为绿色滤光片
图7
D.增大双缝之间的距离
(3)在某次实验中,已知双缝到光屏之间的距离是 600 mm,双 缝之间的距离是 0.20 mm,单缝到双缝之间的距离是 100 mm, 某同学在用测量头测量时,先将测量头目镜中看到的分划板 中心刻线对准某条亮纹(记作第 1 条)的中心,这时手轮上的示 数如图 8 甲所示,然后他转动测量头,使分划板中心刻线对 准第 7 条亮纹的中心,这时手轮上的示数如图乙所示.这两 次示数依次为________mm 和________mm,由此可以计算出 这次实验中所测得的单色光的波长为________nm.
(3)测量头的读数应该先读整数刻度,然后看半刻度是否露出, 最后看可动刻度,图乙读数为 13.870 mm,图甲读数为 2.320 mm, 所以相邻条纹间距 Δx=13.870- 5 2.320 mm=2.310 mm. (4)由条纹间距离公式 Δx=dlλ 得:λ=dΔl x 代入数值得:λ=6.6×10-7 m=660 nm
d·Δx/l.
三、实验器材 双缝干涉仪,即:光具座、光源、滤 光片、单缝、双缝、遮光筒、毛玻璃 屏、测量头,另外还有学生电源、导 线、刻度尺.
.
• 附:测量头的构造及使用
• 如图甲所示,测量头由分划板、目镜、手 轮等构成,转动手轮,分划板会向左右移 动,测量时,应使分划板的中心刻度对齐 条纹的中心,如图乙,记下此时手轮上的 读数.然后转动测量头,使分划板中心刻 线与另一条纹的中心对齐,再次记下手轮 上的刻度.两次读数之差就表示这两个亮 条纹间的距离
实际测量时,要测出 n 条亮条纹(暗条 纹)的宽度,设为 a,那么 Δx=n-a 1.
实验15 用双缝干涉实验测量光的波长
解析 (1)在组装仪器时单缝和双缝应该相互平行放置。 (2)游标尺是 50 分度的,分度值为 0.02 mm,其读数为 15 mm+1×0.02 mm=15.02 mm。两相邻条纹的间距 Δx=x66- -x11=15.02- 5 1.16 mm=2.772 mm,根据 Δx=Ldλ 得 λ=ΔLxd=2.772×10-0.38×002.00×10-4 m=6.93×10-7 m =693 nm。
1.如图所示,安装仪器(注:滤光片可装在单缝前)
(1)将光源、透镜、遮光筒、毛玻璃屏依次安装在光具座上。 (2)打开光源,调节光源的高度和角度,使它发出的光束沿着遮光筒的 轴线把屏照亮。 (3)放好单缝和双缝。注意使单缝与双缝相互平行,尽量使缝的中点位 于遮光筒的轴线上。
2.观察记录与数据处理 (1)调节单缝与双缝间距为5~10 cm时,观察白光的双缝干涉图样。 (2)在单缝和光源之间放上滤光片,观察单色光的双缝干涉图样。 (3)用刻度尺测量出双缝到屏的距离l。 (4)调节测量头,使分划板中心刻线对齐第1条亮条纹的中心,记下手 轮上的读数a1;转动手轮,使分划板向一侧移动,当分划板中心刻线与第n 条亮条纹中心对齐时,记下手轮上的读数a2。 (5)分别改变滤光片的颜色和双缝的距离,观察干涉条纹的变化,并求 出相应的波长。
(3)为减小误差,该实验并未直接测量相邻亮条纹间的距离Δx,而是先 测量n个条纹的间距再求出Δx。下列实验采用了类似方法的有___C_D____。
A.《探究两个互成角度的力的合成规律》的实验中合力的测量 B.《探究弹簧弹力与形变量的关系》的实验中弹簧的形变量的测量 C.《用单摆测重力加速度》的实验中单摆的周期的测量 D.《用油膜法估测油酸分子的大小》的实验中1滴油酸酒精溶液体积 的测量
用双缝干涉测量光的波长
解析: (1)根据平面镜成像特点 (对称性),先作出S在 镜中的像,画出边沿光线,范围如图所示.
(2)根据杨氏双缝干涉实验中干涉条纹宽度与双缝间 L 距、缝屏距离、光波波长之间的关系式 Δx= d λ,因为 d L =2a,所以 Δx= λ. 2a
L (3)由 Δx= d λ 可得
λ = Δ x·
(1.770-1.250)×10-2 0.5×10-3 d - λ = Δx·L = × m = 6.5×10 7m. 1 6-2
5×10-7m.
例2:现有毛玻璃屏A,双缝B、白光光源C、单缝D和透红 光的滤光片E等光学元件,要把它们放在下图所示的光 具座上组装成双缝干涉装置,用以测量红光的波长. (1)将白光光源C放在光具座最左端,依次放置其他光学元 件,由左至右,表示各光学元件的字母排列顺序应为 C、 E、D、B 、A. (2)本实验的实验步骤有: ①取下遮光筒左侧的元件,调节光源高度,使光束能直 接沿遮光筒轴线把屏照亮; ②按合理顺序在光具座上放置各光学元件,并使各元件 的中心位于遮光筒的轴线上; ③用米尺测量双缝到屏的距离;
第四节 实验:用双缝干涉测量光的波长
一、实验原理 相邻两个明(或暗)条纹之间的距离为:
l x d
P1 S1 d S2
l
其中,λ 表示波长,d x 表示两个狭缝之间的距 离,l 为挡板与屏间的距 P 离,如果测出 x 、l 和d 就能测出波长。
二、实验器材 光源、滤光片、单缝、双缝、遮光筒、光屏 及光具座。
使单缝与双缝相互平行. 单缝与双缝的间距为5cm~10cm,
(4)已知双缝间距d为2.0×10-4m,测得双缝到屏的距离l 为0.700m,由计算公式λ=________,求得所测红光波 长为________m.
实验十五用双缝干涉测光的波长
使用高精度的测量工具,如显微镜、测微器等。
提高操作者的技能水平,确保操作过程中产生的误差最 小化。
05 结论与总结
实验结论
1
成功观察到双缝干涉现象,验证了光的波动性质。
2
通过测量干涉条纹间距,计算得到单色光的波长。
3
实验结果与理论值基本一致,证明了双缝干涉实 验的可靠性。
实验收获与体会
01 掌握了双缝干涉实验的基本原理和操作方 法。
在双缝干涉实验中,单色光通过两条狭缝后形成相干光源,在光屏上产生明暗交 替的干涉条纹。
波长的定义与测量方法
波长是光波的一个基本参数,表 示光波在一个周期内传播的距离。
在双缝干涉实验中,可以通过测 量干涉条纹的间距来间接测量光
的波长。
具体测量方法包括使用测量尺或 显微镜来测量光屏上相邻干涉条 纹之间的距离,并根据干涉公式
THANKS FOR WATCHING
感谢您的观看
误差分析
测量误差
由于实验过程中使用的测量工具可能存在误差, 导致测量结果存在偏差。
环境因素
实验环境中的温度、湿度等变化可能对实验结果 产生影响。
操作误差
实验操作过程中可能存在的误差,如调整显微镜 时产生的误差等。
误差分析
为了获得更准确的实验结果,可以采取以下措施
在稳定的实验环境下进行实验,尽量减少环境因素的影 响。
干涉条纹的清晰度
观察到清晰的干涉条纹,表明实验过程中双缝干涉现象明显。
条纹间距与波长关系
通过观察不同波长的光产生的干涉条纹间距,可以初步判断波长与条纹间距之间的关系。
测量结果计算
测量双缝间距
使用显微镜测量双缝间距,确保 测量结果的准确性。
计算波长
4.4 实验:用双缝干涉测量光的波长-课件(11张PPT)
蓝光 双缝间距0.36 mm
新知讲解
三、物理量的测量
的测量 :双缝到屏的距离 可以用刻度尺测出。 的测量
新知讲解
三、物理量的测量
的测量 :测量个亮条纹间的距离
则:∆ =
−
新知讲解
三、物理量的测量
的测量 :双缝到屏的距离 可以用刻度尺测出。 的测量 :测量个亮条纹间的距离
板中心刻线与某亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图甲所示;
然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,此时手轮上的示数如
图乙所示。一、实验装置
双缝干涉实验装置示意图
滤光片
光源
透镜
双缝
遮光筒
毛玻璃
目镜
单缝
新知讲解
二、实验步骤
红光 双缝间距0.18 mm
红光 双缝间距0.36 mm
安装遮光筒与光源,使之在一条直线直线上
在光源前加个凸透镜,以便得到平行光
加上单缝与双缝,使缝平行
调整单缝筒与遮光筒同轴,使屏上得到清晰的干涉条纹
则:∆ =
用公式求出光的波长: =
−
课堂练习
1. 用如图所示的实验装置观察双缝干涉图样,双缝之间的距离是0.2mm,用的是绿色滤光片,
从目镜中可以看到绿色干涉条纹。
(1)如果把毛玻璃屏向远离双缝的方向移动,相邻两亮条纹中心的距离如何变化?
(2)把绿色滤色片换成红色,相邻两个亮条纹中心的距离增大了。这说明哪种色光的波长
实验:用双缝干涉
测量光的波长
温故知新
1.产生稳定的干涉条纹的条件:两光频率相同。
实验用双缝干涉测光的波长总结
实验用双缝干涉测光的波长总结引言:光干涉是光学中一种重要的现象,它是基于波动理论解释得出的。
双缝干涉是一种经典的光干涉实验,通过两个相隔很近的缝隙使光线发生干涉现象。
实验用双缝干涉测光的波长是分析光波特性和验证光学理论的重要手段。
本文将以实验用双缝干涉测光的波长为主题,详细介绍实验方法和结果,并对实验结果进行总结和讨论。
一、实验用双缝干涉测光的原理实验用双缝干涉测光的原理是基于光的波动性和干涉理论。
当光通过两个相距很近的缝隙时,根据菲涅尔衍射原理,光波将发生干涉现象。
在一定条件下,干涉条纹呈现出一系列亮暗相间的条纹,这些条纹的间距和形态与光的波长有关。
实验通过观察干涉条纹的位置或通过测量干涉条纹的间距来确定光的波长。
二、实验方法1.实验装置:实验装置由一个光源、一组双缝、一个屏幕和一个测量器件组成。
光线由光源发出,经过双缝后,形成干涉条纹在屏幕上投影。
测量器件可以是标尺或干涉仪等,用于测量干涉条纹的间距。
2.实验步骤:(1)调整实验装置:将光源、双缝和屏幕依次排列好,使光线能够通过双缝并形成干涉条纹在屏幕上投影。
(2)观察干涉条纹:通过调整光源或双缝的位置,使干涉条纹清晰可见。
注意观察干涉条纹的形态、间距和亮暗变化。
(3)测量干涉条纹间距:使用测量器件测量干涉条纹的间距,并记录下来。
三、实验结果通过实验得到的干涉条纹的间距可以用来测量光的波长。
根据干涉理论,干涉条纹的间距d和光波长λ之间的关系可以由杨氏双缝干涉公式表示:d=λL/(2d)其中,d是双缝间距,L是屏幕距离,λ是光波长。
根据干涉条纹的间距d和实际测量的数值,可以通过计算得到光的波长λ。
四、实验总结和讨论实验用双缝干涉测光的波长是一种简单而常用的实验方法,它可以通过测量干涉条纹的间距来确定光的波长。
然而,实际实验中可能会遇到一些困难,如双缝的制作和调整、干涉条纹的观察和测量等。
为了获得准确的实验结果,需要仔细设计实验装置和注意实验技巧。
4 实验 用双缝干涉测量光的波长
测量头
邻两条亮(暗)条纹间的距离Δx用
测Hale Waihona Puke .[实验器材]双缝干涉仪(包括光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃光
刻度尺
屏)、测量头、学生电源、导线、
.
[物理量的测量]
1.安装、调节双缝干涉仪,实验装置如图所示,使各部件水平、
单缝与双缝间的距离在8 cm左右.
干涉
2.观察白光的双缝
对齐
C.为了减小测量误差,可用测微目镜测出n条亮纹间的距离a,求出相邻两条亮
纹间距Δx=
−1
[解析] (1)放上单缝和双缝后,由于发生干涉现象,没法调节光源的高度,故A项错误.
(2)测量某亮纹位置时,手轮上的示数如图所示,其示数为
1.970 mm.
[解析] (2)按读数规则,读出示数为1.5 mm+47.0×0.01 mm=1.970 mm.
[实验思路]
1. 实验目的
(1)观察白光及单色光的双缝
干涉图样
.
(2)测定单色光的 波长 .
2.实验原理
(1)当两列单色光在空间相遇并发生干涉时,在接收屏上将出现 明暗相间 的
Δx
条纹.两相邻亮(暗)条纹间的距离满足Δx= λ,故有λ=
.测出d、l、Δx
即可算出光的波长.
刻度尺
(2)实验中,双缝间的距离d是已知的,双缝到屏的距离l可以用
4
实验:用双缝干涉测量光的波长
新课程标准
学业质量水平
1.了解光波产生稳定干涉图样
的条件
1.能利用双缝干涉实验测定光的波长
2.观察白光及单色光的双缝干
涉图样
l
3.掌握用公式Δx= λ测定波长的
完整版实验用双缝干涉测量光的波长
完整版实验用双缝干涉测量光的波长实验目的:通过使用双缝干涉实验,了解光的干涉现象,熟悉实验的操作方法,并且使用该实验测量出光的波长。
实验原理:1. 光的干涉现象在一定条件下,两个或多个光波相遇时,它们可能会发生互相干涉,从而产生干涉现象。
当两个光波的振幅相同时,它们会叠加在一起,形成干涉图案。
干涉现象被广泛应用于测量实验中,例如通过双缝干涉实验测量出光的波长。
2. 双缝干涉实验双缝干涉实验是一种基本实验,它演示了干涉现象的基本特征。
该实验的原理是将光束通过两个细缝后,让它们发生干涉。
通过观察干涉条纹来研究光的干涉现象。
实验器材:- 光源- 双缝板- 客观透镜- 物镜- 偏振板- 光屏- 丝尺- 直尺实验步骤:1. 准备实验器材,将光源放置在距离双缝板约50 cm的位置上。
2. 在光源下放置双缝板,并将其对齐。
可以使用直尺和丝尺来检查距离和角度。
3. 将客观透镜放置在双缝板后面。
客观透镜是用来收集和聚焦光线的。
4. 安装偏振板,以保证光的偏振方向始终不变。
5. 将物镜安装在光屏上,然后将光屏放置在客观透镜后面。
这样可以将光线聚集到某个点上,形成干涉条纹。
6. 调节双缝板的位置和距离,以便获得清晰的干涉条纹。
干涉条纹的形状取决于双缝板之间的间距和光的波长。
7. 使用丝尺和直尺测量干涉条纹的间距。
将测量结果记录下来。
8. 使用公式计算出光的波长。
根据干涉条纹的间距和缝隙之间的距离,可以使用公式λ = y D / d计算出光的波长。
实验注意事项:1. 实验过程中要保持环境比较暗,以减少环境光的干扰。
2. 要使用准确的测量仪器,例如丝尺和直尺等。
3. 改变双缝板的间距和光的颜色可以产生不同的干涉条纹,要注意观察。
实验结论:通过使用双缝干涉实验,可以观察到光的干涉现象。
通过测量干涉条纹的间距,可以计算出光的波长。
了解光的干涉现象和实验操作方法是理解基本物理概念和技能的重要步骤。
4、实验:用双缝干涉测量光的波长
一、实验目的
(1)了解光波产生稳定的干涉现象的条件;
(2)观察白光及单色光的双缝干涉图样;
(3)掌握测定单色光的波长的方法。
二、实验原理
单色光通过单缝后,经双缝产生稳定的干涉图样,
图样中相邻两条亮(暗)纹间的距离Δx与双缝间的
距离d、双缝到屏的距离l、单色光的波长λ之间满足:
(2)使用:
①使分划板的中心刻线与某一条亮条纹的中心对齐(如图),记下此时手轮
上的读数a1。
②转动测量头。使分划板中心刻线与第n条亮条纹的中心对齐,再次记下手
轮上的读数a2。
③相邻两条亮条纹间的距离Δx=
|a2-a1|
n-1
。
六、实验步骤
1、器材的安装与调整
(1)先将光源(线状光源)、遮光筒
依次放于光具座上。
a 2− a 1
Δx =
n −1
(2)测量双缝到屏的距离l和相邻两条亮条纹间的距离Δx。
(3)分别改变滤光片的颜色和双缝的距离,观察干涉条纹的变化,并求出相
应的波长。
a2−a1
(a
−a1)d
2
Δx= λ
λ=
七、数据处理 Δx = n−1
(n−1)l
八、误差分析
1、误差来源
由于光波的波长很小,双缝到光屏的距离l和条纹间Δx的测量是否准确对
5、要多测几条亮纹(或暗纹)中心间的距离,再求Δx。
精析典题 提升能力
【例1】在“用双缝干涉测量光的波长”实验中,光具座上放置的光学元件依
次为光源、透镜、M、N、P、遮光筒、毛玻璃、放大镜(目镜),如图所示。
A
(1)M、N、P三个光学元件依次为___。
实验用双缝干涉测量光的波长(解析版)
实验用双缝干涉测量光的波长(解析版)实验用双缝干涉测量光的波长(解析版)实验背景与目的光是一种电磁波,具有波特性,它的波长是光学特性中的重要参数。
在实验室中,我们可以通过双缝干涉实验来测量光的波长。
本实验的目的是通过实验测量,获得准确的光的波长数值。
实验原理双缝干涉实验基于波的干涉现象。
当光通过具有一定间距的两个细缝时,光波会以相互干涉的方式形成明暗相间的干涉条纹。
其中,两条连续的暗纹之间的距离为等级,可用于计算光的波长。
实验材料与仪器1. 光源:使用单色光源,如利用钠黄光来保证实验的准确性。
2. 双缝装置:包括细缝和支架,确保细缝间距及安装稳定性。
3. 光屏:用于接收干涉条纹的光,并进行观察和测量。
4. 间接测量器具:如毫米尺、卡尺等,用于测量干涉条纹的间距。
实验步骤1. 准备实验装置:将双缝装置放置在光源前方,与光源保持适当距离。
调整双缝装置,使其垂直于光线传播方向。
2. 调整装置:调整双缝之间的间距,以及光源和屏幕的位置,使得在光屏上能够观察到清晰的干涉条纹。
3. 观察干涉条纹:用肉眼观察在光屏上出现的干涉条纹,并调整观察位置,以获得最清晰的条纹图案。
4. 测量干涉条纹间距:使用间接测量工具,如毫米尺或卡尺,测量连续暗纹之间的距离,称为等级。
5. 计算光的波长:根据干涉条纹的等级和双缝之间的间距,使用以下公式计算光的波长:波长 = 等级 ×双缝间距 / 总暗纹数注意事项1. 实验环境应保持较暗,以减少外界光线的干扰。
2. 测量时应尽量减少误差,尽可能精确测量干涉条纹间距。
3. 为了获得更准确的实验结果,建议重复实验多次,取平均值作为最终测量结果。
实验结果与讨论根据实验测量得到的干涉条纹间距和已知的双缝间距,我们可以使用上述公式计算出光的波长。
在本实验中,我们使用钠黄光源进行测量,钠黄光波长已经得到准确的数值,所以可以将实验得到的结果与已知值进行比较,验证实验的准确性。
在实际操作中,我们进行了多组实验,每一组实验都测量了多个干涉条纹间距,以减小测量误差。
66 第十四章 实验十八 用双缝干涉实验测量光的波长
(3)用刻度尺测量双缝到光屏间的距离 l(d 是已知的)。 (4)重复测量、计算,求出波长的平均值。 四、实验数据处理 1.条纹间距Δx=an2--1a1 。 2.波长 λ=dl Δx。 3.计算多组数据,求 λ 的平均值。
五、注意事项 1.双缝干涉仪是比较精密的仪器,应轻拿轻放,且注意保养。 2.安装时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的 中心轴线上,并使单缝、双缝平行且间距适当。 3.光源灯丝最好为线状灯丝,并与单缝平行且靠近。 4.照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮 光筒不共轴所致;干涉条纹不清晰的一般原因是单缝与双缝不平行,故 应正确调节。
02
考点研析 提能力
教材原型实验 例1 (2022·北京市十一学校三模)物理实验一般都涉及实验目的、实验原 理、实验仪器、实验方法、实验操作、数据分析等。物理小组用如图甲 所示的实验装置测光的波长。
(1)实验仪器。如图乙所示,将测量头的分划板中心刻线与A亮纹中心对 齐,将该亮纹定为第1条亮纹,此时手轮的示数x1=2.331 mm,然后同 方向转动测量头,使分划板中心刻线与B亮纹中心对齐,记下此时图丙中 手轮上的示数x6=________mm;
12
(3)已知测量头主尺的最小刻度是毫米,副尺上有50个刻度。某同学调 整手轮后,从测量头的目镜看去,第1次映入眼帘的干涉条纹如图乙所 示,图乙中的数字是该同学给各暗条纹的编号,此时游标卡尺如图丙 所示,读数为x1=1.16 mm;接着再转动手轮,映入眼帘的干涉条纹 如图丁所示,此时游标卡尺如图戊所示,读数为x2=________mm。
第十四章 光学
实验十八 用双缝干涉实验测量光的波长
内容 索引
➢基础梳理 夯根基 ➢考点研析 提能力 ➢课时精练(六十六) 用双缝干涉实验测量光的波长
4.4实验用双缝干涉测量光的波长
4.3试验:用双缝干预测量光的波长 一、试验原理 (1)二、试验器材 (1)三、试验步骤 (2)四、数据处理 (2)五、误差分析 (2)六、考前须知 (2)【稳固练习】 (4)一、试验原理如图1所示,两缝之间的距离为d ,每个狭缝都很窄,宽度可以忽视.图1两缝S 1、S 2的连线的中垂线与屏的交点为P 0,双缝到屏的距离OP 0=l .那么相邻两个亮条纹或暗条纹的中心间距:Δx =l dλ. 假设双缝间距,再测出双缝到屏的距离l 和条纹间距Δx ,就可以求得光波的波长.二、试验器材双缝干预仪,即光具座、光源、滤光片、透镜、单缝、双缝、遮光筒、毛玻璃屏、测量头.另外,还有同学电源、导线、刻度尺等.学习名目学问把握三、试验步骤1.将光源、透镜、遮光筒、毛玻璃屏依次安放在光具座上,如图2所示.图22.接好光源,翻开开关,使灯丝正常发光.3.调整各器件的高度,使光源灯丝发出的光能沿轴线到达光屏.4.安装双缝和单缝,中心大致位于遮光筒的轴线上,使双缝与单缝的缝平行,两者间距5~10 cm,这时可观看白光的干预条纹.5.在单缝和光源间放上滤光片,观看单色光的干预条纹.四、数据处理1.安装测量头,调整至可清楚观看到干预条纹.2.使分划板中心刻线对齐某条亮条纹的中心,登记手轮上的读数a1,将该条纹记为第1条亮条纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中心,登记此时手轮上的读数a2,将该条纹记为第n条亮条纹,两条纹间距为a=|a2-a1|,那么相邻两条亮条纹间的距离Δx=|a2-a1|n-1=an-1.3.用刻度尺测量双缝到光屏间的距离l(d是的).4.重复测量、计算,求出波长的平均值.五、误差分析1.光波的波长很小,Δx、l的测量误差对波长λ的影响很大.2.在测量l时,一般用毫米刻度尺;而测Δx时,用千分尺且采纳“累积法〞.3.屡次测量求平均值.六、考前须知1.双缝干预仪是比拟精密的仪器,应轻拿轻放,不要任凭拆解遮光筒、测量头等元件.2.滤光片、单缝、双缝、目镜等如有灰尘,应用擦镜纸轻轻擦去.3.安装时,留意调整光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且竖直,间距大约为5~10 cm.4.测量头在使用时应使中心刻线对应着亮(暗)条纹的中心.[例题1]〔2023•天河区校级三模〕在利用“双缝干预测定光的波长〞试验中,双缝间距为d,双缝到光屏间的距离为L ,在调好试验装置后,用某种单色光照耀双缝得到干预条纹,当分划板在图中B 位置时,对应游标卡尺读数如图,那么:〔1〕分划板在图中B 位置时游标卡尺读数x B =mm ;〔2〕假设分划板在图中A 位置时游标卡尺读数为x A 〔x A <x B 〕,那么该单色光的波长的表达式为λ=(x B −x A )d 6L 〔用x A 、x B 及题中所给字母及必要的数字表示〕;〔3〕假设用频率更高的单色光照耀,同时增大双缝间的距离,那么条纹间距 变窄 〔填“变宽〞或“变窄〞或“不变〞〕。
第十四章 实验十四 用双缝干涉测量光的波长
由题图乙可得读数为x2=13.5 mm+37.0×0.01 mm=13.870 mm, 由题图甲可得读数为x1=2 mm+32.0×0.01 mm=2.320 mm, 则相邻亮条纹的间距 Δx=x2-5 x1=13.8705-2.320 mm=2.310 mm.
(4)已知双缝间距d为2.0×10-4 m,测得双缝到屏的距离l为0.700 m,由计
分划板中心刻线在B位置时读数为6.5 mm+2.6×0.01 mm=6.526 mm 条纹间距为 Δx=6.526-4 1.128 mm=1.349 5 mm 由 Δx=dl λ 解得该绿光的波长 λ=dl Δx=0.6×1.510-3×1.349 5×10-3 m= 5.398×10-7 m≈540 nm.
3.数据分析 an-a1
(1)条纹间距Δx= n-1 .
(2)波长λ=d Δx. l
(3)计算多组数据,求λ的平均值.
4.注意事项 (1)安装时,注意使光源、透镜、滤光片、单缝、双缝的中心均在遮光筒 的中心轴线上,并使单缝、双缝平行且间距适当. (2)光源灯丝最好为线状灯丝,并与单缝平行且靠近. (3)调节的基本依据:照在光屏上的光很弱,主要原因是灯丝与单缝、双 缝,测量头与遮光筒不共轴;干涉条纹不清晰,一般原因是单缝与双缝 不平行.
d __l_Δ_x__ .
2.实验步骤 (1)观察双缝干涉图样 ①将光源、遮光筒、毛玻璃依次安放在光 具座上,如图所示. ②接好光源,打开开关,使灯丝正常发光. ③调节各器件的高度和角度,使光源灯丝发出的光能沿遮光筒轴线到达 光屏. ④安装单缝和双缝,尽量使缝的中点位于遮光筒的轴线上,使单缝与双 缝 平行 ,二者间距约为5~10 cm. ⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陈家照
实验原理
如图所示的双缝实验中,屏离开挡板越远,条纹 间的距离越大,另一方面,实验所用光波的波长越大, 条纹间的距离也越大,这是为什么? 思考 r1 S1 d S2 r2
M
P1
运用几何知识
r2-r1=dsinθ X=ltanθ≈lsinθ 当两列波的路程差为波长的整 数倍,即dx/l=±kλ,(k=0,1, 2…)时才会出现亮条纹,亮条纹 位置为: X=±klλ/d
45 25
2
0 5
40
10
15 0 20 5 10
5 第1条时读
图(乙)
图(丙)
第4条时读 数
数
游标尺的读数 :
测量结果求波长:
测出n个亮条纹间的举例a。就可以 求出相邻两个亮条纹的距离 a
x
n 1
l 再由 x d
得
ad (n 1)l
(1)将测量头的分划板中心刻线与某亮纹 中心对齐,将该亮纹定为第1条亮纹,此时 手轮上的示数如图13-3-10甲所示,然后同方 向转动测量头,使分划板中心刻线与第6条 亮纹中心对齐,记下此时图13-3-10乙中手轮 上的示数为_______________mm ,求得相邻 13.870 2.310 亮纹的间距Δx=__________mm.
.如图13-2-11所示是双缝干涉实验装置,使用波长为600 nm的橙色光源照射单缝S,在光屏中央,P处观察到亮条 纹(PS1=PS2),在位于P点上方的P1点出现第一条亮纹 中心(即P1到S1、S2的路程差为一个波长).现换用波 长为400 nm的紫光源照射单缝,则 ( B)
A.P和P1仍为亮点 B.P为亮点,P1为暗点 C.P为暗点,P1为亮点 D.P、P1均为暗点
(2)已知双缝间距d为2.0×10-4 m,测得双 缝到屏的距离l为0.700 m,由计算式λ=__, -7 6.6x10 求得所测红光波长为_________m.
4.如图13-2-9所示为双缝干涉实验的装置示意图,其中甲 图为用绿光进行实验时,屏上观察到的条纹情况,a为中 央亮条纹;乙图为换用另一颜色的单色光实验时观察到 的条纹情况,a′为中央亮条纹.则下列说法正确的是 ( A) A.乙图可能是用红光实验产生的条纹,表明红光波长较长 B.乙图可能是用紫光实验产生的条纹,表明紫光波长较长 C.乙图可能是用紫光实验产生的条纹,表明紫光波长较短 D.乙图可能是用红光实验产生的条纹,表明红光波长较短
注意事项:
1、安装仪器的顺序:光源、滤光片、
单缝、双缝、遮光筒、光屏 2、双缝与单缝相互平行,且竖直放置 3、光源、虑光片、单缝、双缝的中心 均在遮光筒的中心轴线上 4、若出现在光屏上的光很弱,由于不 共轴所致 5、若干涉条纹不清晰,与单缝和双缝 是否平行有很大关系
三、测定单色光的波长
螺旋测微器的读数
x
θ
P
l
实验原理
相邻两个明(或暗)条纹之间的距离为
l x d
其中,波长用 表示,d表示两个狭缝之间的距离,l 为挡板与屏间的距离.
ΔX
ΔX
ΔX
ΔX ΔX
ΔX
第 二 条 亮 纹
第 一 条 亮 纹
中 间 亮 纹
第 一 条 亮 纹
第 二 条 亮 纹
第 三 条 暗 纹
第 二 条 暗 纹
第 一 条 暗 纹
第 一 条 暗 纹
第 二 条 暗 纹
第 三 条 暗 纹
l l d d
测定单色光的波长
• 测出n个亮条纹间的距离a,求出相邻两个
亮条纹间的距离△x=a/(n-1),然后由
→
△x=lλ/d
测 量 头
光具座
本实验的步骤有: ①取下遮光筒左侧的元件,调节光源高度, 使光束能直接沿遮光筒轴线把屏照亮; ②按合理顺序在光具座上放置各光学元件, 并使各元件的中心位于遮光筒的轴线上; ③用米尺测量双缝到屏的距离; ④用测量头(其读数方法同螺旋测微器)测量 数条亮纹间的距离. 在操作步骤②时还应注意使单缝和双缝间距 为5—10 cm ,使单缝与双缝相互平行.
利用图13-2-10中的装置研究双缝干涉现象时,有下面几 种说法: A.将屏移近双缝,干涉条纹间距变窄 B.将滤光片由蓝色的换成红色的,干涉条纹间距变宽 C.将单缝向双缝移动一小段距离后,干涉条纹间距变宽 D.换一个两缝之间距离较大的双缝,干涉条纹间距变窄 E.去掉滤光片后,干涉现象消失 其中正确的是:___________________. ABD