高中数学排列组合题型总结

合集下载

高中数学 排列组合的常见题型及其解法解题思路大全

高中数学 排列组合的常见题型及其解法解题思路大全

排列组合的常见题型及其解法排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。

复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。

一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。

例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)。

三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)

一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高中数学排列组合经典题型全面总结版汇编

高中数学排列组合经典题型全面总结版汇编

6种高中数学排列与组合(一)典型分类讲解一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C13然后排首位共有C14最后排其它位置共有由分步计数原理得C A341C1A3=288434C1A3C1443练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有A5A2A2=480种不同的排法522甲乙丙丁要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有A5种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有5种A4不同的方法,由分步计数原理,节目的不同顺序共有A5A465元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:A7/A373(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有A4种方法,其余的三个位置甲乙丙共有71种坐法,则共有A4种7方法。

高中数学排列组合题型归纳总结 生说课讲解

高中数学排列组合题型归纳总结 生说课讲解

排列组合1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有m 种不同的方法,…,在第n 类办法中有n m 不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_________三.不相邻问题插空策略例3.、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为_________四.定序问题倍缩空位插入策略例4.、 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题: 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5.、把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为______________2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法_______六.环排问题线排策略例6.、 8人围桌而坐,共有多少种坐法?练习题:6颗颜色不同的钻石,可穿成几种钻石圈?七.多排问题直排策略例7.、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是___________八.排列组合混合问题先选后排策略例8.、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m n A n任务,且正副班长有且只有1人参加,则不同的选法有_________种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1、计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为___________2、2、 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法____________-有种.十.元素相同问题隔板策略例10.、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1、10个相同的球装5个盒中,每盒至少一有多少装法?2、100x y z w +++=求这个方程组的自然数解的组数?十一.正难则反总体淘汰策略例11.、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C --有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.十二.平均分组问题除法策略例12.、 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2、10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的法?3、某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案有多少 ?十三. 合理分类与分步策略例13.、在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1、.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有________2、2、 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法?十四.构造模型策略例14.、 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种? 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。

高中数学排列组合题型总结

高中数学排列组合题型总结

排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。

一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

高中数学:排列组合所有题型归纳

高中数学:排列组合所有题型归纳

高中数学:排列组合所有题型归纳
排列组合现在属于高中数学的选修内容,但是在高考中还是必考的一个知识点,排列组合的题型不多,高考中属于中档题型,掌握了这几种方法,其他的基本也就会了,不出左右。

课本知识点回顾:
1、分类计数原理(加法原理)
2、分步计数原理(乘法原理)
3、分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

题型:
1、特殊元素和特殊位置优先策略
2、相邻元素捆绑策略
3、不相邻问题插空策略
4、定序问题倍缩空位插入策略
5、重排问题求幂策略
6、环排问题线排策略
7、多排问题直排策略
8、排列组合混合问题先选后排策略
9、小集团问题先整体后局部策略
10、元素相同问题隔板策略
11、正难则反总体淘汰策略
12、平均分组问题除法策略
13、合理分类与分步策略
14、构造模型策略
15、实际操作穷举策略
16、分解与合成策略
17、化归策略
18、数字排序问题查字典策略
19、树图策略
20、复杂分类问题表格策略
21、住店法策略。

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)一、基本原理1.加法原理:如果做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:如果做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。

注:当做一件事时,元素或位置允许重复使用时,常用基本原理求解。

二、排列从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An公式:Anm=n(n-1)(n-2)…(n-m+1)=n!/(n-m)!规定:0!=1性质:1.n!=n×(n-1)。

(n+1)×n!=(n+1)!2.n×n!=[(n+1)-1]×n!=(n+1)×n!-n!=(n+1)!-n!3.n(n+1)/2-1=n(n-1)/2三、组合从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作C nm。

公式:Cnm=n!/m!(n-m)! 性质:1.若Cn1=m,则Cnm=Cnm-1+Cn-1m-1规定:Cn1=Cnn=12.Cn0+Cn1+。

+C nn=2^n3.Crr+1+Crr+2+。

+C rn=Cr+1n4.CnC1nCnn=2^n四、处理排列组合应用题1.明确要完成的是一件什么事(审题);2.确定有序还是无序,分步还是分类;3.解排列、组合题的基本策略:1)直接法;2)间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

3)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

3.排列应用题:一种解法是穷举法,即将所有满足题设条件的排列和组合逐一列举出来。

另一种解法是特殊元素和特殊位置优先考虑。

对于相邻问题,可以使用捆绑法,将相邻的元素看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)

一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式:()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:①;②;③;④若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

2.解排列、组合题的基本策略 (1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

这是解决排列组合应用题时一种常用的解题方法。

(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。

(完整版)高中数学排列组合经典题型全面总结版(可编辑修改word版)

(完整版)高中数学排列组合经典题型全面总结版(可编辑修改word版)

34 4 4 3 45 2 25 7 3 C 10甲 乙丁要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端定序问题可以用倍缩法,还可转化为占位插空模型处理高中数学排列与组合(一)典型分类讲解一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C 1然后排首位共有C 1最后排其它位置共有 A 3由分步计数原理得C 1C 1A3= 288131443练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有 A 5 A 2A 2 = 480 种不同的排法练习题:某人射击 8 枪,命中 4 枪,4 枪命中恰好有 3 枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例 3.一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排 2 个相声和 3 个独唱共有 A 5种,第二步将 4 舞蹈插入第一步排好的 6 个元素中间包含首尾两个空位共有 种 A 4 不同的方法,由分步计数原理,节目的不同顺序共有 A5A 4种65 6练习题:某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略 例 4. 7 人排队,其中甲乙丙 3 人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是: A 7/ A 3(空位法)设想有 7 把椅子让除甲乙丙以外的四人就坐共有 A 4 种方法,其余的三个位置甲乙丙共有 1 种坐法,则共有 A 4种77方法。

高中数学排列组合经典题型全面总结版

高中数学排列组合经典题型全面总结版

高中数学排列与组合(一)典型分类讲解一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

排列组合题型总结

排列组合题型总结

排列组合题型总结
排列组合是数学中的一个重要概念,在计算中经常用到,以下是排列组合题型的总结:
1. 排列问题:
排列指的是从n个元素中取出m个元素进行排列的问题,其公式为:
A(n, m) = n!/(n-m)!
主要注意点:
- 选取的元素是有序的。

- 选取m个元素后,这m个元素之间是有先后顺序的。

2. 组合问题:
组合指的是从n个元素中选取m个元素的问题,其公式为:
C(n, m) = n!/((n-m)!*m!)
主要注意点:
- 选取的元素是无序的。

- 选取的元素数量固定为m,之间没有先后顺序。

3. 常见的排列组合问题:
- 从n个元素中取出m个元素进行排列,且要求选取的元素必须包含某几个元素。

- 从n个不同的元素中取出m个,其中有k个元素必须选取,且这k个元素的排列方式已经确定,求剩余元素的排列方式。

- 对于排列或组合问题,统计满足特定条件的个数。

以上是排列组合问题的常见形式,需要掌握常用的排列组合公式,并根据具体问题理解是否需要考虑先后顺序或特定条件。

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)

安排在 5 月 1 日和 2 日,不同的安排方法共有________种.(用数字作答)
[解析] 先安排甲、乙两人在后 5 天值班,有 A25=20(种)排法,其余 5 人再进行排列,有 A55 =120(种)排法,所以共有 20×120=2400(种)安排方法.
11.今有 2 个红球、3 个黄球、4 个白球,同色球不加以区分,将这 9 个球排成一列有________
Cr n1
Cnr

C r1 r 1

Cr r 1

Cr r2
Cnr1
Cnr

C r1 r2

Cr r2
Cnr1
Cnr

C r1 n1

C m1 n

C m2 n
则m1
=m
2或m1
+m
2

n
例 1.电视台连续播放 6 个广告,其中含 4 个不同的商业广告和 2 个不同的公益广告,要求
2.从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛 (1)如果 4 人中男生和女生各选 2 人,
有 种选法; (2)如果男生中的甲与女生中的乙必须在内,有 种选法; (3)如果男
生中的甲与女生中的乙至少要有 1 人在内,有 种选法; (4)如果 4 人中必须既有男生又有
女生,有
种选法
分析:本题考查利用种数公式解答与组合相关的问题.由于选出的人没有地位的差异,所以是
中标号为 1,2 的卡片放入同一信封,则不同的方法共有
(A)12 种
(B)18 种
(C)36 种
(D)54 种
【解析】标号 1,2 的卡片放入同一封信有 种方法;其他四封信放入两个信封,每个信封两

高中排列组合题型及解题方法

高中排列组合题型及解题方法

高中排列组合题型及解题方法高中排列组合题型及解题方法排列和组合是高中数学中比较重要的一部分,也是经常会被考到的题型。

排列组合题的解题方法也比较多样,下面我们就来详细讲解一下高中排列组合题型及解题方法。

一、排列排列是指从一定个数中取出一部分进行排序,其顺序不同,则排列也不同。

简单来说,就是“从n个不同元素中取出m个元素进行排列”的问题,排列的计算公式是P(n,m)=n*(n-1)*(n-2)*...*(n-m+1)。

下面就来看一个具体的实例:在有10个人中挑选三个人排队,问有多少种排法?解题思路:从10个人中取出3人进行排列,共有P(10,3)种排列方法,即P(10,3)=10 * 9 * 8 = 720 种方案。

二、组合组合是指从一定个数中取出一部分,其顺序不同,则组合相同。

简单来说,就是“从n个不同元素中取出m个元素”的问题,组合的计算公式是C(n,m)=n!/m!(n-m)!。

下面就来看一个具体的实例:有8个人排成一行,现需从中选出5个人组成小组,请问有多少种组合方式?解题思路:从8个人中选出5人组成小组,共有C(8,5)种组合方法,即C(8,5)=8!/5!3!=56种方案。

三、排列组合计数法排列组合计数法是指通过组合、排列的计算,求解相关方案数的方法。

其中常见的方法有加法原理、乘法原理以及容斥原理。

1. 加法原理加法原理是指,在计算某个事件发生的总次数时,如果该事件可以被分解成m个互不相交的子事件,且每个子事件的发生次数分别为n1,n2,...,nm,则该事件发生的总次数为n1+n2+...+nm。

下面举例说明:一件工作分成两个阶段,第一阶段有4种做法,第二阶段有3种做法,则整个工作的做法有4+3=7种。

2. 乘法原理乘法原理是指,在计算某个事件发生的总次数时,如果该事件可以被分解成m个独立的子事件,且第一子事件有n1种发生方式,第二子事件有n2种发生方式,..., 第m个子事件有nm种发生方式,则该事件发生的总次数为n1*n2*...*nm。

高中数学排列组合题型归纳总结教程文件

高中数学排列组合题型归纳总结教程文件

排列组合1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有m 种不同的方法,…,在第n 类办法中有n m 不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解: 522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解5456A A练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.、 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

高考数学中的常见排列组合

高考数学中的常见排列组合

高考数学中的常见排列组合在高中数学中,排列组合是一个重要的概念和方法,也是高考中常见的题型之一。

掌握排列组合的基本原理和解题方法,对于学生们提高数学成绩,顺利应对高考至关重要。

本文将介绍高考数学中常见的排列组合知识点及其解题技巧。

一、排列排列是指从给定的一组数或对象中按照一定的顺序取出一部分或全部进行排列。

常见的排列问题有以下几种情况:1. 直线排列:假设有n个对象,从这n个对象中按一定顺序排列取出k个,就构成了从n个对象中取出k个对象的直线排列。

直线排列的公式为:A(n, k) = n * (n-1) * (n-2) * ... * (n-k+1),其中n ≥ k。

2. 圆排列:假设有n个对象,从这n个对象中按一定顺序排列取出k个,构成了从n个对象中取出k个对象的圆排列。

圆排列的公式为:P(n, k) = (n-k+1) * (n-k+2) * ... * n * (n-1) * (n-2) * ... * 2 * 1,其中n ≥ k。

3. 重复排列:重复排列是指从给定的一组数或对象中,按照一定的顺序取出一部分或全部进行排列,允许重复。

重复排列的公式为:A'(n, k) = n^k,其中n ≥ k。

排列问题在高考中常常涉及选排队、座位、字母、数字等情况,解题时需要根据具体题目中的条件和要求来确定应用哪种排列公式,并注意计算时的条件约束。

二、组合组合是指从给定的一组数或对象中,按照一定的顺序取出一部分或全部进行组合。

与排列不同,组合中的元素的排列顺序不重要。

常见的组合问题有以下几种情况:1. C(n, k)表示从n个对象中选择k个不同的对象组成一个集合,其中n ≥ k。

定义组合公式为:C(n, k) = A(n, k) / k! = n! / [(n-k)! * k!]。

2. n个相异对象的m个同类分成若干组,每组可以有0个或者多个,此种情况下共有C(m-1, n)种不同的组合。

组合问题在高考中常常涉及选人、选课、摆放等情况,解题时需要根据具体题目中的条件和要求来确定应用哪种组合公式,并注意计算时的条件约束。

[排列组合例题]高中排列组合知识点汇总及典型例题(全)

[排列组合例题]高中排列组合知识点汇总及典型例题(全)

[排列组合例题]高中排列组合知识点汇总及典型例题(全)篇一: 高中排列组合知识点汇总及典型例题一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n个不同元素中,任取m个元素,按照一定的顺序排成一m列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An.1.公式:1.An2.m?n?n?1??n?2????n?m?1?? 规定:0!?1 n! n?m! n!?n?!,?n n?n!?[?1]?nn!?n!?!?n!;nn?1?1n?1111 n!!mn三.组合:从n个不同元素中任取m个元素并组成一组,叫做从n 个不同的m 元素中任取m 个元素的组合数,记作Cn 。

n?n?1n?m?1?Amn!n 1. 公式:Cm!m!n?m!Amm2.组合数性质:Cn①若Cn1m 规定:Cn0?1 mn?mmm?1m01nn ?Cn,Cn?Cn?Cn,C?CC?2?1nnn;②;③;④rrr?1rrrrr?1rrrr?1 注:Crr?Crr?1?Crr?2??Cn?1?Cn?Cr?1?Cr?1?Cr?2??Cn?1?Cn?Cr?2?Cr?2??C n?1?Cn?Cn?1m2?Cn则m1=m2或m1+m2?n四.处理排列组合应用题1.①明确要完成的是一件什么事②有序还是无序③分步还是分类。

2.解排列、组合题的基本策略两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

这是解决排列组合应用题时一种常用的解题方法。

分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。

在处理排列组合问题时,常常既要分类,穷举法:将所有满足题设条件的排列与组合逐一列举出来;、特殊元素优先考虑、特殊位置优先考虑;.相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

高中数学排列组合题型归纳总结生说课讲解

高中数学排列组合题型归纳总结生说课讲解

⾼中数学排列组合题型归纳总结⽣说课讲解排列组合1.分类计数原理(加法原理)完成⼀件事,有n 类办法,在第1类办法中有1m 种不同的⽅法,在第2类办法中有m 种不同的⽅法,…,在第n 类办法中有n m 不同的⽅法.2.分步计数原理(乘法原理)完成⼀件事,需要分成n 个步骤,做第1步有1m 种不同的⽅法,做第2步有2m 种不同的⽅法,…,做第n 步有n m3.分类计数原理分步计数原理区别分类计数原理⽅法相互独⽴,任何⼀种⽅法都可以独⽴地完成这件事。

分步计数原理各步相互依存,每步中的⽅法完成事件的⼀个阶段,不能完成整个事件.⼀.特殊元素和特殊位置优先策略例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成⼀列的花盆⾥,若两种葵花不种在中间,也不种在两端的花盆⾥,问有多少不同的种法?⼆.相邻元素捆绑策略例2、 7⼈站成⼀排 ,其中甲⼄相邻且丙丁相邻, 共有多少种不同的排法.练习题:某⼈射击8枪,命中4枪,4枪命中恰好有3枪连在⼀起的情形的不同种数为_________三.不相邻问题插空策略例3.、⼀个晚会的节⽬有4个舞蹈,2个相声,3个独唱,舞蹈节⽬不能连续出场,则节⽬的出场顺序有多少种?练习题:某班新年联欢会原定的5个节⽬已排成节⽬单,开演前⼜增加了两个新节⽬.如果将这两个新节⽬插⼊原节⽬单中,且两个新节⽬不相邻,那么不同插法的种数为_________四.定序问题倍缩空位插⼊策略例4.、 7⼈排队,其中甲⼄丙3⼈顺序⼀定共有多少不同的排法练习题: 10⼈⾝⾼各不相等,排成前后排,每排5⼈,要求从左⾄右⾝⾼逐渐增加,共有多少排法?五.重排问题求幂策略例5.、把6名实习⽣分配到7个车间实习,共有多少种不同的分法练习题:1.某班新年联欢会原定的5个节⽬已排成节⽬单,开演前⼜增加了两个新节⽬.如果将这两个节⽬插⼊原节⽬单中,那么不同插法的种数为______________2. 某8层⼤楼⼀楼电梯上来8名乘客⼈,他们到各⾃的⼀层下电梯,下电梯的⽅法_______六.环排问题线排策略例6.、 8⼈围桌⽽坐,共有多少种坐法?练习题:6颗颜⾊不同的钻⽯,可穿成⼏种钻⽯圈?七.多排问题直排策略例7.、8⼈排成前后两排,每排4⼈,其中甲⼄在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2⼈就座规定前排中间的3个座位不能坐,并且这2⼈不左右相邻,那么不同排法的种数是___________⼋.排列组合混合问题先选后排策略例8.、有5个不同的⼩球,装⼊4个不同的盒内,每盒⾄少装⼀个球,共有多少不同的装法.练习题:⼀个班有6名战⼠,其中正副班长各1⼈现从中选4⼈完成四种不同的任务,每⼈完成⼀种允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐⼀安排各个元素的位置,⼀般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种⼀般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m n A n任务,且正副班长有且只有1⼈参加,则不同的选法有_________种九.⼩集团问题先整体后局部策略例9.⽤1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1、计划展出10幅不同的画,其中1幅⽔彩画,4幅油画,5幅国画, 排成⼀⾏陈列,要求同⼀品种的必须连在⼀起,并且⽔彩画不在两端,那么共有陈列⽅式的种数为___________2、2、 5男⽣和5⼥⽣站成⼀排照像,男⽣相邻,⼥⽣也相邻的排法____________-有种.⼗.元素相同问题隔板策略例10.、有10个运动员名额,分给7个班,每班⾄少⼀个,有多少种分配⽅案?练习题:1、10个相同的球装5个盒中,每盒⾄少⼀有多少装法?2、100x y z w +++=求这个⽅程组的⾃然数解的组数?⼗⼀.正难则反总体淘汰策略例11.、从0,1,2,3,4,5,6,7,8,9这⼗个数字中取出三个数,使其和为不⼩于10的偶数,不同的取法有多少种?练习题:我们班⾥有43位同学,从中任抽5⼈,正、副班长、团⽀部书记⾄少有⼀⼈在内的抽法有多少种?将n 个相同的元素分成m 份(n ,m 为正整数),每份⾄少⼀个元素,可以⽤m-1块隔板,插⼊n 个元素排成⼀排的n-1个空隙中,所有分法数为11m n C --有些排列组合问题,正⾯直接考虑⽐较复杂,⽽它的反⾯往往⽐较简捷,可以先求出它的反⾯,再从整体中淘汰.。

高中数学排列组合题型总结与易错点提示学习资料

高中数学排列组合题型总结与易错点提示学习资料

排列组合复习巩固1. 分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,⋯,在第n类办法中有m n 种不同的方法,那么完成这件事共有:N m1 m2 L m n 种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,⋯,做第n步有m n种不同的方法,那么完成这件事共有:N m1 m2 L m n种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例 1. 由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求, 应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C31然后排首位共有C14最后排其它位置共有A431C143A341C13由分步计数原理得C41C31A43288练习题:7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元5 2 2素内部进行自排。

由分步计数原理可得共有A55A22A22480 种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:某人射击8 枪,命中4枪,4 枪命中恰好有 3 枪连在一起的情形的不同种数为20三.不相邻问题插空策略例 3. 一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱, 舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有A55种,第二步将 4 舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种A64不同的方法,由分步计数原理, 节目的不同顺序共有A55A46种元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四.定序问题倍缩空位插入策略例 4. 7 人排队, 其中甲乙丙 3 人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列, 然后用总排列数除以这几个元素73之间的全排列数,则共有不同排法种数是:A77/ A33(空位法)设想有7 把椅子让除甲乙丙以外的四人就坐共有A47种方法,其余的三个位置甲乙丙共有 1 种坐法,则共有A74种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。

一. 直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有711C 种练习1.(a+b+c+d)15有多少项?当项中只有一个字母时,有14C 种(即而指数只有15故01414C C ⋅。

当项中有2个字母时,有24C 而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,114C 即24C 114C 当项中有3个字母时34C 指数15分给3个字母分三组即可21434C C 当项种4个字母都在时31444C C ⋅ 四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?(216C )3.不定方程X 1+X 2+X 3+…+X 50=100中不同的整数解有(4999C )六. 平均分堆问题 例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a 1,a 2),(a 3,a 4),(a 5,a 6)由顺序不同可以有33A =6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有33222426A C C C =15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法?2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

七. 合并单元格解决染色问题例7 (全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不 得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有 种(以数字作答)。

分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素 ①③⑤的全排列数A 44(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得A 44种着色法.(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格 ①从4种颜色中选3种来着色这三个单元格,计有A C 3334⋅种方法.由加法原理知:不同着色方法共有2A C A 333444+=48+24=72(种)练习1(天津卷(文))将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 , 不同的种植方法共 种(以数字作答) (72)2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不同的栽种方法有 种(以数字作答).(120)图3 图43.如图4,用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是 种(84)图5 图65.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420)八. 递推法例八 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法? 分析:设上n 级楼梯的走法为a n 种,易知a 1=1,a 2=2,当n ≥2时,上n 级楼梯的走法可分两类:第一类:是最后一步跨一级,有a n-1种走法,第二类是最后一步跨两级,有a n-2种走法,由加法原理知:a n =a n-1+ a n-2,据此,a 3=a 1+a 2=3,a 4=a #+a 2=5,a 5=a 4+a 3=8,a 6=13,a 7=21,a 8=34,a 9=55,a 10=89.故走上10级楼梯共有89种不同的方法。

九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A 在同一平面上,不同的取法有 种(335C +3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面? (310C -436C +4-334C +3-6C 34+6+2×6=29)(2)以这10个点为顶点,共能确定多少格凸棱锥? 三棱锥 C 104-4C 64-6C 44-3C 44=141 四棱锥 6×4×4=96 3×6=18 共有114十. 先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有( ) 种种种种分析:先从10人中选出2人十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.解 把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25A =20种例11. 个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.解 把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.59C =126种例12 从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法. 解 把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。

10991C例13 某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.解 无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.37C =35(种)例14 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.解 根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.612C =924(种). 例15 求(a+b+c )10的展开式的项数.解 展开使的项为a αb βc γ,且α+β+γ=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.212C =66(种)例16 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?解 设亚洲队队员为a 1,a 2,…,a 5,欧洲队队员为b 1,b 2,…,b 5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为610C =252(种)十二.转化命题法例17 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各? 分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有415C =1365(个)十三.概率法例18 一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为21,故本例所求的排法种数就是所有排法的21,即21A=360种 十四.除序法 例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个?(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个? 解(1)3377A A (2)443377A A A十五.错位排列例20 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有 种(9) 公式 1)))(1(21--+-=n n n a a n a n=4时a 4=3(a 3+a 2)=9种 即三个人有两种错排,两个人有一种错排. 2)n a =n!(1-!11+!21-!31+…+()n 1-!1n 练习 有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)。

相关文档
最新文档