含绝对值不等式解法要点归纳
高考数学含绝对值的不等式的解法
三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a
0,
a
0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
绝对值不等式的解法及应用
绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。
本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。
一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。
例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。
2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。
Step 2: 分别求解这两个条件对应的方程,得到解的范围。
Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。
例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。
二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。
1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。
通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。
下面通过一个例子来说明。
例题:求解不等式 |2x-1|<5 。
解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。
然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。
最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。
2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。
绝对值不等式的解法
绝对值不等式的解法绝对值不等式在数学中有着广泛的应用,它们涉及到了绝对值的概念和不等式的解法。
本文将介绍几种常见的绝对值不等式的解法,并给出相应的例子进行说明。
一、绝对值不等式的基本性质在解绝对值不等式之前,我们先来了解一些绝对值的基本性质。
对于任意实数a,有以下三个性质:1. 非负性质:|a| ≥ 0绝对值表示的是一个数距离原点的距离,因此它始终是非负的。
2. 正负性质:如果a > 0,则 |a| = a;如果a < 0,则 |a| = -a这是绝对值的定义,即当a为正时,取a的值;当a为负时,取-a 的值。
3. 三角不等式:对于任意实数a和b,有|a + b| ≤ |a| + |b|这是绝对值的三角不等式,它表明两个数的绝对值之和不超过它们的绝对值的和。
有了以上基本性质的了解,我们可以利用它们来解决绝对值不等式。
二、1. 绝对值的定义法义来解决不等式。
例如,对于不等式 |2x - 3| ≤ 5,我们可以通过以下步骤来求解:(1)当2x - 3 ≥ 0时,|2x - 3| = 2x - 3,此时原不等式可以转化为2x - 3 ≤ 5,解得x ≤ 4。
(2)当2x - 3 < 0时,|2x - 3| = -(2x - 3) = -2x + 3,此时原不等式可以转化为 -2x + 3 ≤ 5,解得x ≥ -1。
综合以上两种情况的解集,最终得到该不等式的解集为 -1 ≤ x ≤ 4。
2. 绝对值的范围法当绝对值中的表达式的取值范围已知时,我们可以利用绝对值的非负性质来解决不等式。
例如,对于不等式 |x - 3| > 2,我们可以通过以下步骤来求解:(1)当 x - 3 > 0 时,|x - 3| = x - 3,此时原不等式可以转化为 x -3 > 2,解得 x > 5。
(2)当 x - 3 < 0 时,|x - 3| = -(x - 3) = -x + 3,此时原不等式可以转化为 -x + 3 > 2,解得 x < 1。
高考中常见的七种含有绝对值的不等式的解法
高考中常见的七种含有绝对值的不等式的解法类型一:形如)()(,)(R aa x f a x f 型不等式解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当0a 时,ax f a a x f )()(a x f ax f )()(或ax f )(2、当0aa x f )(,无解ax f )(使0)(x f 的解集3、当0a时,a x f )(,无解ax f )(使)(x f y成立的x 的解集.例1 (2008年四川高考文科卷)不等式22xx的解集为()A.)2,1(B.)1,1(C.)1,2(D.)2,2(解:因为22x x,所以222x x.即20222xxx x ,解得:21xR x ,所以)2,1(x,故选A.类型二:形如)0()(a b b x f a 型不等式解法:将原不等式转化为以下不等式进行求解:bx f a ab b x f a)()0()(或a x fb )(需要提醒一点的是,该类型的不等式容易错解为:bx f aabb x f a)()0()(例2 (2004年高考全国卷)不等式311x 的解集为()A .)2,0( B.)4,2()0,2(C .)0,4( D.)2,0()2,4(解:311311x x 或11,3x 20x或24x,故选D类型三:形如)()(x g x f ,)()(x g x f 型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把)(x g 看成一个大于零的常数a 进行求解,即:)()()()()(x g x f x g x g x f ,)()()()(x g x f x g x f 或)()(x g x f 例3 (2007年广东高考卷)设函数312)(xx x f ,若5)(x f ,则x的取值范围是解:53125)(x x x f 2122212xx x x x 212212xx x x 1111xxx ,故填:1,1.类型四:形如)()(x g x f 型不等式。
含绝对值不等式解法要点归纳
含绝对值不等式解法要点归纳解含绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同.因此,掌握去掉绝对值符号的方法和途径是解题关键.一、含有绝对值不等式的几种去掉绝对值符号的常用方法去掉绝对值符号的方法有很多,其中常用的方法有:1.定义法去掉绝对值符号根据实数绝对的意义,即| x | =(0)(0)x xx x≥⎧⎨-<⎩,有:| x |<c⇔(0)(0)c x c ccφ-<<>⎧⎨≤⎩;| x |>c⇔(0)0(0)(0)x c x c cx cx R c<->>⎧⎪≠=⎨⎪∈<⎩或;2.利用不等式的性质去掉绝对值符号利用不等式的性质转化为| x |<c或| x |>c (c>0)来解.不等式|ax+b|>c (c >0)可化为ax+b>c或ax+b<-c,再由此求出原不等式的解集;不等式|ax+b|<c (c>0)可化为-c<ax+b<c,再由此求出原不等式的解集,对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a≤| x |≤b⇔a≤x≤b或-b≤x≤-a求解.这是一中典型的转化与化归的数学思想方法.3.平方法去掉绝对值符号.对于两边都含有“单项”绝对值的不等式,利用| x |2= x2可在两边脱去绝对值符号求解,这样解题要比按绝对值定义,讨论脱去绝对值符号解题简捷.解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数,(式)时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.4.零点分段法去掉绝对值符号.所谓“零点分段法”是指:设数x1,x2,x3,…,xn是分别使含有|x-x1|,|x-x2|,|x-x3|,…,|x-xn|的代数式中相应的绝对值为零,称x1,x2,x3,…,xn 为相应绝对值的零点,零点x1,x2,x3,…,xn将数轴分为n+1段,利用绝对值的意义化去绝对值符号,从而得到代数式在各段上的简化式,从而化为不含绝对值的不等式组来解.即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.“零点分段法”是解含有多个绝对值符号的不等式的常用手段,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化,思路直观.5.数形结合法去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.数形结合法形象、直观,可以使复杂问题简单化,此解法适用于| x-a|+| x-b |>m或| x-a|+| x-b |<m (m为正常数)类型的不等式.二、几点注意事项1.根据绝对值定义,将| x |<c或| x |>c (c>0)转化为两个不等式组,这两个不等式组的关系是“或”而不是“且”,因而原不等式的解集是这两个不等式组解的并集,而不是交集.2.| x |<c和| x |>c (c>0)的解集公式要牢记,以后可以直接作为公式使用.但要注意的是,这两个公式是在c>0时导出的,当c≤0时,需要另行讨论,不能使用该公式.3.解不等式问题与集合运算有密切联系,在应用集合有关内容处理绝对值不等式的过程中,要注意在不等式组的解集中,对不等式端点值的取舍情况.再有,因为已学习了集合表示法,所以不等式的解集要用集合形式表示,不要使用不等式的形式.4.解含有绝对值的不等式的关键是把含有绝对值的不等式转化为不含绝对值符号的不等式,然后再求解,但这种转化必须是等价转化,尤其是平方法去掉绝对值符号时,一定要注意两边非负这一条件,否则就会扩大或缩小解集的范围.5.要学会灵活运用分类讨论思想、数形结合思想、等价专化与化归思想方法处理绝对值不等式问题.三、典型例题思路点拨例1 关于x的不等式| kx-1|≤5的解集为{x |-3≤x≤2},求k的值.思路点拨:按绝对值定义直接去掉绝对值符号后,由于k的取值不确定,要以k 的不同取值分类处理.解:原不等式可化为-4≤kx ≤6,当k >0时,-k 4≤x ≤k6,依题意,有 ⎪⎪⎩⎪⎪⎨⎧=-=-.26,34k k ⇒⎪⎩⎪⎨⎧==3,34k k ,此时无解. 当k = 0时,显然不满足题意.当k <0时, k 6≤x ≤-k 4,依题意,有⎪⎪⎩⎪⎪⎨⎧-==-.36,24kk ⇒ k =-2. 例2 解不等式| x -1|<| x +a |.思路点拨:由于两边均为非负数,因此可以两边平方去掉绝对值符号. 解:由于| x -1|≥0,| x +a |>0,所以两边平方有| x -1|2<| x +a |2, 即有x 2-2x +1<x 2+2ax +a 2,整理得:(2a +2)x >1-a 2,当2a +2>0,即a >-1时,不等式的解为x >21(1-a); 当2a +2 = 0,即a =-1时,不等式无解;当2a +2<0,即a <1时,不等式的解为x <21(1-a). 例3 若不等式 | x -4|+| 3-x |<a 的解集为空集,求a 的取值范围. 思路点拨一:此不等式左边含有两个绝对值符号,如何去掉绝对值符号呢?可考虑采用“零点分段”,即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.解一:⑴当a ≤0时,不等式 | x -4|+| 3-x |<a 的解集为空集. ⑵当a >0时,先求不等式 | x -4|+| 3-x |<a 有解时a 的取值范围. 令x -4 = 0,得x = 4,令3-x = 0,得x = 3.①当x ≥4时,原不等式 | x -4|+| 3-x |<a 化为:x -4+x -3<a ,即2x -7<a ,解不等式组⎩⎨⎧<-≥.72,4a x x ⇒ 4≤x <27+a ⇒4<27+a , ∴a >1.②当3<x <4时,原不等式 | x -4|+| 3-x |<a 化为:4-x +x -3<a ,解得a >1.③当x ≤3时,原不等式 | x -4|+| 3-x |<a 化为:4-x +3-x <a ,即7-2x <a ,解不等式组⎩⎨⎧<-≤.27,3a x x ⇒ 27a -<x ≤3⇒,27a -<3, ∴a >1.综合①②③可知,当a >1时,原不等式有解,从而当0<a ≤1时,原不等式解集为空集.由⑴、⑵两种情况可知,不等式 | x -4|+| 3-x |<a 的解集为空集,a 的取值范围是a ≤1.思路点拨二:解法一是按去掉绝对值符号的方法求解,这是处理此类问题的一般方法,但运算量大.若仔细观察不等式左边的结构,联想到绝对值| a +b|≤| a |+| b|,便可把问题简化.解二:∵a >| x -4|+| 3-x |≥| x -4+3-x | = 1,∴当a >1时| x -4|+| 3-x |<a 有解,从而当0<a ≤1时,原不等式解集为空集.例4 对任意实数x ,若不等式| x +1|-| x -2 |>k 恒成立,求 k 的取值范围. 思路点拨一:要使| x +1|-| x -2 |>k 对任意x 恒成立,只要| x +1|-| x -2 |的最小值大于k .因| x +1|的几何意义为数轴上点x 到-1的距离,| x -2 |的几何意义为数轴上点x 到2的距离,| x +1|-| x -2 |的几何意义为数轴上点x 到-1与2的距离的差,其最小值可求.解法一:根据绝对值的几何意义,设数x ,-1,2在 数轴上对应的点分别为P 、A 、B ,原不等式即求| PA|-| PB|>k 成立,因为|AB| = 3,即| x +1|-| x -2 |≥-3,故当k <-3时,原不等式恒成立.思路点拨二:如果把不等式的左边用零点分段的方法改写成分段函数,通过画出其图象,从图象观察k 的取值范围. 解法二:令y = | x +1|-| x -2 |,则 y =⎪⎩⎪⎨⎧≥<<---≤-.2.321,121,3x x x x 要使| x +1|-| x -2 |>k 恒成立,从图象可以看出,只要k <-3即可.故k <-3满足题意思.。
带绝对值的不等式解法
带绝对值的不等式解法带绝对值的不等式在数学中是一个常见的问题,它具有一定的挑战性和复杂性。
解决这类问题需要我们掌握一些特定的解法和技巧。
1. 引言带绝对值的不等式是一个重要的数学概念,它出现在许多实际问题中。
了解如何解决这类问题对我们在数学上的学习和解决实际问题上都有很大帮助。
2. 简单的绝对值不等式解法在简单的情况下,我们可以通过将带绝对值的不等式拆分成两个不等式来解决。
对于不等式|2x - 3| > 5,我们可以分别解得2x - 3 > 5和2x - 3 < -5的解。
3. 绝对值函数的图像和性质为了更好地理解带绝对值的不等式,我们需要对绝对值函数有一定的了解。
绝对值函数的图像是一个以原点为对称中心的V形曲线,它的性质包括非负性和不等式性质。
4. 绝对值不等式的绝对值定义法当我们遇到更复杂的带绝对值的不等式时,可以使用绝对值的定义进行求解。
对于不等式|3x - 2| < 10,我们可以通过将绝对值展开为两个不等式,并结合这些不等式的解来得到原不等式的解。
5. 绝对值不等式的符号法在某些情况下,我们可以使用符号法来解决带绝对值的不等式。
符号法通过考虑绝对值的正负性和相对大小来进行推导和求解。
对于不等式|2x - 1| < |3x + 2|,我们可以通过考虑两个绝对值的正负情况,得到不等式的解集。
6. 绝对值不等式的绝对值最大最小法在解决带绝对值的不等式时,绝对值最大最小法可以帮助我们找到不等式的解集。
该方法通过求解不等式中绝对值的最大值和最小值来确定不等式的解集。
对于不等式|5x - 3| + 2 > 7,我们可以通过找到绝对值的最大值和最小值来得到不等式的解。
7. 深入理解带绝对值的不等式通过上述的解法和技巧,我们可以更深入地理解和解决带绝对值的不等式。
我们也可以应用这些思想和方法来解决更复杂的实际问题,例如在经济学、物理学和工程学等领域。
8. 总结带绝对值的不等式是数学中一个重要的概念,它在理论和实际问题中都有广泛的应用。
含绝对值的不等式解法(总结归纳).doc
含绝对值的不等式解法(总结归纳)
含绝对值的不等式解法、一元二次不等式解法[教材分析]|x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|0)的解集是{x|-a0)的解集是{x|x>a或x0)中的x替换成ax+b,就可以得到|ax+b|c(c>0)型的不等式的解法。
一元二次不等式ax2+bx+c>0(或0的解,图象在x轴下方部分对应的x值为不等式ax2+bx+c,当a=0时,不等式化为20时不等式解集是{x|-0,即x2-x-20,其中a∈R。
[分析与解答]a的不同实数取值对不等式的次数有影响,当不等式为一元二次不等式时,a的取值还会影响二次函数图象的开口方向,以及和x轴的位置关系。
因此求解中,必须对实数a的取值分类讨论。
当a=0时,不等式化为8x+1>0。
不等式的解为{x|x>-,x∈R}。
当a≠0时,由Δ=(a-8)2-4a=a2-20a+64=(a-4)(a-16)。
(1)若00,抛物线y=ax2-(a-8)x+1开口向上,方程ax2-(a-8)x+1=0两根为,。
不等式的解为{x|x}。
(2)若40的解为xβ,且β-α≤5(α≠β),求实数a的取值范围。
[参考答案]:1.解:由|ax+1|≤b,∴-b≤ax+1≤b,∴-b-1≤ax≤b-1。
当a>0时,≤x≤。
∴,不满足a>0,舍去。
当a0两边同除以a(a∴β-α=,∴a2+24a≤25,-25≤a。
含绝对值的不等式
{
}
(2) | 2 x + 1 | + | x − 2 |> 4
x > 2 或 2 x + 1 + x − 2 > 4
1 x<− 或 原不等式等价于: 原不等式等价于: 2 解(2) ) − 2 x − 1 − x + 2 > 4
1 − ≤ x ≤ 2 2 2 x + 1 − x + 2 > 4
1 37 37 = −3 x − + ≤ 6 12 12
2
(
)
所以…… 所以
当 a ≠ 0 时, f (a) = 0 , f (−a) = −2a | a |≠ 0, f (x) 是非奇非偶函数
x < a x ≥ a 或 2 (2)x | x − a |≥ 2a ⇔ 2 ) 2 x − ax + 2a ≤ 0 x − ax − 2a 2 ≥ 0 x ≥ a ⇔ x ∈φ 或 ( x − 2a )( x + a ) ≥ 0
2 备用:已知二次函数 备用 已知二次函数 f ( x ) = ax + bx + c (a, b, c ∈ R ) ,
37 当 证明: 若 f (− 1) ≤ 1, f (0) ≤ 3, f (1) ≤ 1 ,证明: x ≤ 1时, f ( x ) ≤ 12 证明: 证明:因为 f (− 1) = a − b + c , f (0) = c , f (1) = a + b + c
含绝对值的不等式
一、基础知识
a (a ≥ 0 ) 1、绝对值的基本性质: 设a ∈ R, 则 a = 、绝对值的基本性质: − a ( a < 0 )
利用不等式组解含绝对值的不等式的方法
利用不等式组解含绝对值的不等式的方法解含绝对值的不等式,需要先将不等式中的绝对值去掉,然后根据去掉绝对值后的不等式的形式,分别讨论不等式的取值范围,最终得出不等式的解集。
不等式组中含有绝对值时,解决的问题是不等式组中未知数的取值范围和条件。
一般情况下,解含绝对值的不等式的方法可以分为以下四个步骤:1. 去掉绝对值,得到不等式的形式;2. 分别讨论不等式的取值范围;3. 根据不等式的取值范围,确定不等式的解;4. 将解代入原不等式中验证,得出最终的解集。
在解含绝对值的不等式时,需要特别注意以下几个问题:1. 去掉绝对值时需要分情况讨论;2. 不等式的取值范围可能会有多个并集,需要进行综合考虑;3. 解集需要验证,以确保解集是符合原不等式的。
为了更好地理解和掌握解含绝对值的不等式的方法,下面将通过具体的例子来详细介绍。
例1:解含绝对值的一元二次不等式考虑一元二次不等式|x^2-4x-5|>0。
首先,我们需要将含有绝对值的一元二次不等式转化为不含绝对值的形式。
一元二次不等式中含有绝对值时,一般可以转化为一个或两个关于未知数的一元二次不等式。
对于不等式|x^2-4x-5|>0,首先我们需要求出使得x^2-4x-5>0和x^2-4x-5<0的情况,分别讨论这两种情况下的不等式的解。
针对x^2-4x-5>0,我们可以使用因式分解或配方法求解。
经过计算和化简,得到x-5>0和x+1<0。
进一步得到x>5和x<-1。
这样,我们就知道在不等式x^2-4x-5>0情况下,x的取值范围是(-∞,-1)并集(5,+∞)。
针对x^2-4x-5<0,我们同样可以使用因式分解或配方法求解。
经过计算和化简,得到-1<x<5。
这样,我们就知道在不等式x^2-4x-5<0情况下,x的取值范围是(-1,5)。
综合以上讨论,当不等式|x^2-4x-5|>0时,x的取值范围是(-∞,-1)并集(5,+∞)并集(-1,5)。
含绝对值不等式的解法
4.重要绝对值不等式 ||a|-|b||≤|ab|≤|a|+|b|. 使用时(特别是求最值)要注意等号成立的条件, 即: |a+b|=|a|+|b|ab≥0; |a-b|=|a|+|b|ab≤0; |a|-|b|=|a+b|b(a+b)≤0; |a|-|b|=|a-b|b(a-b)≥0. 注: |a|-|b|=|a+b||a|=|a+b|+|b| |(a+b)-b|=|a+b|+|b| b(a+b)≤0. 同理可得 |a|-|b|=|a-b|b(a-b)≥0.
典型例题 2 解不等式 ||x+3|-|x-3||>3.
解法一 零点分区间讨论 原不等式等价于: x<-3, -3≤x≤3, x>3, |-x-3+x-3|>3, 或 |x+3+x-3|>3, 或 |x+3-x+3|>3. 3 <x≤3 或 x>3. 即 x<-3 或 -3≤x<- 3 或 2 2 3 3 ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞). 解法二 两边平方 原不等式等价于 (|x+3|-|x-3|)2>9. 即 2x2+9>2|x2-9|( 2x2+9)2>(2|x2-9|)2. 3 3 2 即 4x -9>0. ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞).
备选题 4 已知函数 f(x)=x3+ax+b 定义在区间 [-1, 1] 上, 且 f(0)=f(1), 又 P(x1, y1), Q(x2, y2) 是其图象上任意两点(x1x2). (1)设直线 PQ 的斜率为k, 求证: |k|<2; (2)若 0≤x1<x2≤1, 求证: |y1-y2|<1. 解: (1)∵f(0)=f(1), ∴b=1+a+b. ∴a=-1. ∴f(x)=x3-x+b. y 2- y 1 1 则 k= x -x = x -x [(x23-x2+b)-(x13-x1+b)] 2 1 2 1 1 = x -x [(x23-x13)-(x2-x1)] =x22+x1x2+x12-1. 2 1 ∵x1, x2[-1, 1] 且 x1x2, ∴0<x22+x1x2+x12<3. ∴-1<x22+x1x2+x12-1<2. ∴|x22+x1x2+x12-1|<2. 即 |k|<2. (2)∵0≤x1<x2≤1, ∴由(1)知 |y2-y1|<2|x2-x1|=2(x2-x1). ① 又 |y2-y1|=|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)| ≤|f(x1)-f(0)|+|f(1)-f(x2)|<2|x1-0|+2|1-x2|=2(x1-x2)+2
含绝对值的不等式解法
含绝对值的不等式解法
一、定义
绝对值不等式是一种广义不等式,它由一个带有绝对值符号的线性表达式组成,其中
左右两边都有一个绝对值函数,比较两边绝对值之间的大小,可以把它归类到不等式中。
绝对值不等式可以简化计算结果,使计算更简单、更清晰,是一个非常有用的工具。
二、解法
正解法是一种解决含绝对值不等式的最常用的方法,它的解法可以分为以下几步:
A、将整个不等式中的绝对值符号变成两个端口,并把它们的表示值记录下来,即
|x|=a。
B、将绝对值不等式变形,对其中的变量进行简化处理,例如:x+2~x-2,可以简写成:x~-2。
C、把原绝对值不等式分成两个不等式,一个为x>-2,另一个为x<2,将这两个不等
式分别求解,比较两个解集,得出整个问题的解集。
2、交叉解法
三、小结
从前面的介绍,我们可以知道,含绝对值的不等式的解法有两种:正解法和交叉解法,它们都是一种比较常用的方法。
这两种方法都是非常有效的,但是正解法更加直接,它可
以把原先复杂的绝对值不等式简化,使问题变得更清晰可控。
含绝对值的不等式知识点
2. | x | < a(a>0)的解集是{ x | — av xv a}.I x | > a( a>0)的解集是{ x | xv — a 或 x>a}.【思考导学】1 . | ax+ b| v b (b>0)转化成一bv ax+bv b 的根据是什么答:含绝对值白不等式| ax+ b | <b 转化—b< ax+ bv b 的根据是由绝对值的意义确定.2 .解含有绝对值符号的不等式的根本思想是什么答:解含有绝对值符号的不等式的根本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不 等式,而后,其解法就与解一般不等式或不等式组相同.【典例剖析】[例1]解不等式2V | 2x-5 | & 7.,原不等式的解集为{ x 1 — 1Wxv 0或7 vxW6}2 2解法二:原不等式的解集是下面两个不等式组解集的并集不等式组(I )的解集为{ x I 7<x<6}2不等式组(n)的解集是{ x | - 1<x< - }2,原不等式的解集是{ x 1 — 1Wxv 0或7 vxW6}2 2解法三:原不等式的解集是下面两个不等式解集的并集.(I )2 < 2x-5< 7(n)2 V 5-2x< 7不等式(I )的解集为{ x | -<x<6}23不等式(n )的解集是{ x | - 1<x< -}2,原不等式的解集是{ x 1 — 1Wxv °或7 vxW6}.2 2点评:这是含多重绝对值符号的不等式,可以从“外〞向“里〞方法,去掉绝对值的符号,逐次化解. 【随堂练习】1 .不等式|8 — 3x | >0的解集是〔〕A. B . R 1.绝对值的意义是: x(x 0) x(x 0)含绝对值的不等式 解法一:原不等式等价于 |2x 5| 2 |2x 5| 7.2x 5|2 或 2x 5 7 2x 5| 7 7一或x 21 x 6 (I) 2x 52 2x(n) 2x 5 02 5 2x点评:含绝对值的双向不等式的解法,关键是去绝对值号.其方法一是转化为单向不等式组如解法一,再就是利用绝对值的定义如解法二、解法三.[例2]解关于x的不等式:(1)I 2x+3 | — 1<a(a€ R);(2) | 2x+ 1 | > x+ 1 .解:〔1〕原不等式可化为I 2x+3|va+1当a+1 >0,即a>—1时,由原不等式得一 〔a+1〕 v 2x+3va+1a 4 a 2- .............. v x< ---------当a+1w0,即aw — 1时,原不等式的解集为综上,当a>- 1时,原不等式的解集是{ x 当aw — 1时,原不等式的解集是〔2〕原不等式可化为下面两个不等式组来解不等式组〔I 〕的解为x>02不等式组〔n 〕的解为x<- 23点评:由于无论x 取何值,关于x 的代数式的绝对值均大于或等于 0,即不可能小于0,故I f 〔x 〕 I < a 〔a< 0〕的解集为 .解不等式分情况讨论时,一定要注意是对参数分类还是对变量分类,对参数分类的解集一般不合并,如(1)对变量分类,解集必须合并如 (2).例3]解不等式| x — |2 x+ 1|| > 1.解:二.由 |x —|2x+1|| >1 等价于(x —|2x+1|) >1 或 x —|2x+1|v —1(1)由 x — |2 x+ 1| > 1 得 |2 x+ 1| vx — 12x 1 0 32x 1 0 或 2x 1 x 1 (2x 1) x 11 1 x _ . x _ ..即 2或 2均无解x 2 x 0(2)由 x — |2 x+ 1| v — 1 得|2 x+ 1| >x+ 12x 1 0 - 2x 1 0或2x 1 x 1 (2x 1) x 1答案:C2.以下不等式中,解集为 R 的是〔〕A. | x+2 | > 1 B . | x+2 | + 1 >1C. 〔x- 78〕2>- 1 D . 〔x+78〕2-1>0答案:C3 .在数轴上与原点距离不大于 2的点的坐标的集合是〔〕A. {x | - 2<x< 2}B. {x I 0<x<2}C. {x I — 2<x<2}D. {x | x > 2 或 x w — 2}解析:所求点的集合即不等式I x | < 2的解集.答案:C4 .不等式| 1—2*|<3的解集是〔〕 <x<(I) 2x 2x 2x 1 0(2x 1),原不等式的解集为{ , 2… … x | x<--或 x>0}3 ,反复应用解答绝对值根本不等式类型的x 1A.{x | x< 1}B.{x | - 1<x< 2}C.{x | x>2}D.{x | xv — 1 或x>2}解析:由I 1 —2x|v3 得—3v2x— 1v3,,— 1vxv 2答案:B5.不等式| x + 4 | > 9的解集是 .解析:由原不等式得x+ 4>9或x+4v —9, x> 5或xv—13答案:{x [ x>5 或xv—13}6.当a>0时,关于x的不等式| b— ax | < a的解集是. 解析:由原不等式得I ax— b I v a,,一a〈ax—bvab-1<x<b+1b-1<x< b + 1} a a答案:{x| b - 1< x< — + 1} a a【强化练习】1.不等式I x+a | v 1的解集是〔〕A.{x | — 1 + avxv 1+ aB.{x | - 1 -a<x< 1- a}C.{x| — 1 — I al〈x<1 — I a I }D.{x|x<—1— I al 或x>1— |a|}解析:由I x+ a | < 1 得一1 vx+ a< 1答案:B2.不等式1 w | x— 3 | w 6的解集是〔〕A.{x | — 3<x<2 或4<x<9}B.{x | — 3<x<9}C.{x | — 1<x<2}D.{x | 4<x<9}x 3 0 3 x 3 0解析: 不等式等价于或1x36 13x6解得:4WxW9 或—3<x<2. 答案:A3.以下不等式中,解集为{ x | x< 1或x>3}的不等式是〔〕A.| x-2 | >5B.| 2x —4 | > 3C. 1 - | - - 1 | < 12 2D. 1 — | x-1\ < 12 2解析:A中,由 | x-2 | > 5得x—2>5或x—2v —5x> 7 或x< — 3同理,B的解集为{ x | x> 7或xv —1}2C的解集为{ x | xw 1或x> 3}D的解集为{ x | xv 1或x> 3}答案:D4.集合A= {x|| x-1|<2} , B= {x|| x-1| >1},那么An B等于〔〕A.{x| - 1 <x< 3}B.{x| xv 0 或x>3}C.{x| -1<x< 0}D.{x| —1 vxv 0 或2vx<3}解析:| x — 1| V 2 的解为一1 vxv 3, | x- 1| >1 的解为x<0 或x>2.・•.An B= {x| —1 v xv 0 或2v x v 3}.答案:D5.不等式I x -2 | < a〔a>0〕的解集是{ x | — 1 vxv b},那么a+ 2b= 解析:不等式I x-2 | < a的解集为{ x I 2-a<x<2+a}由题意知:{x| 2— avxv2+a} = {x| —1vxvb}2 a 1 a 32 a c c 5. ・a+ 2b=3+2X5=13答案:136.不等式|x+2| >x+2的解集是.解析::当x+2>0 时,|x+2| =x+2, x+2>x+2 无解.当x+2<0 时,|x+2| =—(x+2) >0>x+ 2・••当xv— 2 时,| x + 2 | >x+2答案:{x | xv— 2}7.解以下不等式:(1)|2 — 3x| W2; (2)|3 x-2| >2.解:(1)由原不等式得一2<2-3x<2,各加上一2得一4W —3xW0,各除以一3得f >x>0,解集为{x|03一一4、v xw — }.3(2)由原不等式得3x-2<- 2或3x—2>2,解得x<0^x>4,故解集为"|*<0或*>£}.3 38.解以下不等式:(1)3 w |x—2| <9; (2)|3 x-4| >1 + 2x.解:(1)原不等式等价于不等式组由①得xW — 1或x>5;由②得一7vxv 11,把①、②的解表示在数轴上(如图),・,・原不等式的解集为{x| — 7vxw — 1或5W xv 11}.(2)原不等式等价于下面两个不等式组,即原不等式的解集是下面两个不等式组解集的并集:D 3x 4 0,② 3x 4°’3x 4 1 2x; (3x 4) 1 2x.3由不等式组①解得x>5;由不等式组②解得x<3.5,原不等式的解集为{x| x< 3或x>5}.59.设A= {x | | 2x-1 | < 3}, B= { x | |x+2 | < 1},求集合M使其同时满足以下三个条件:(1)M [(AU E)nz】;(2)M中有三个元素;(3)MA Bw解:: A= { x | | 2x- 1 | <3} = { x | - 1<x< 2}B= {x | | x+2 | < 1} = { x | - 3<x<- 1}M [(AU B) AZ] = { x | — 1 wxw 2} U { x | — 3vxv —1} n Z= { x | - 3<x<2} n Z= {—1,0,1, 2}又「MP Bw , •. 一2C M又M中有三个元素・♦・同时满足三个条件的M为:{— 2, — 1, 0}, {— 2, — 1, 1}, {— 2, — 1, 2}, {— 2, 0, 1}, {— 2, 0, 2}, {— 2, 1 , 2}.【学后反思】解绝对值不等式,关键在于“转化〞.根据绝对值的意义,把绝对值不等式转化为一次不等式(组)I x | v a与| x | > a(a>0)型的不等式的解法及利用数轴表示其解集.不等式| x | va(a>0)的解集是{x | —avxva}.其解集在数轴上表示为(见图1 -不等式| x | > a(a>0)的解集是{ x | x>a或xv —a},其解集在数轴上表示为(见图1—8):把不等式I x I < a与I x I > a(a>0)中的x替换成ax+ b,就可以得到I ax+ b I v b与I ax+ b I>0)型的不等式的解法.12 2,• ' x> 0 或xv ——2 332 ,综上讨论,原不等式的斛集为{x|x< ------------ 或x>0}.3C. {x| xw 1 2 3 * * * * 8 , xC F} D . { 8} 3 32,一7):> b(b。
含绝对值不等式的解法
(Ⅱ)当5x-6<0,即x<6/5时,不等式化为 -(5x-6)<6-x,解得x>0
5x-6 ≥ 0
所以0<x<6/5
5x-6<0
综合(Ⅰ)、 (Ⅱ)取并集得(0,2)
解:
(Ⅰ ) 或
(Ⅱ)
-(5x-6)<6-x 5x-6<6-x 解(Ⅰ)得:6/5≤x<2 解(Ⅱ) 得:0<x<6/5 取它们的并集得:(0,2)
x 2 x 3 0或x 2 x 3 0 x>3或x<-1或-3<x<1. 故原不等式的解集为{x|x<1或x>3}.
2 2
练习:把下列绝对值不等式转 化为同解的非绝对值不等式。
1、|2x-3|<5x 2、|x2-3x-4|>4 3、| x-1 | > 2( x-3)
x x x2 x2
当 2 x 1时, 原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5, 当x 1时, 原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5, 综 上 所 述 可 知 原 不 等的 式 解 集 为 , 3 2, 解 得x 2, 此 时 f(x)|<a
-a<f(x)<a
1、采用了整体换元。
| f(x)|>a
2、归纳型如(a>0) | f(x)|<a, |f(x)|>a
f(x)<-a或 f(x)>a
不
等式的解法。
例3、解不等式 1<︱3x+4︱≤6
解法一:原不等式可化为:
| 3x 4| 6 |3x 4|> 1
x X≥0
绝对值不等式总结
1设函数f(x)中含有绝对值,则(1)绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|(2)|a+b+c|≤|a|+|b|+|c|.2.f(x)>a有解⇔f(x)max>a.(2)f(x)>a恒成立⇔f(x)min>a.(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.3.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.定理1:如果a,b是实数,则|a+b| ≤|a|+|b|,当且仅当ab≥0时,等号成立;定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法1.若关于x的不等式|a|≥|x+1|+|x-2|,存在实数解,则实数a的取值范围是________.2.不等式3≤|5-2x|<9的解集为()A.[-2,1)∪[4,7)B.(-2,1]∪(4,7]C.(-2,-1]∪[4,7)D.(-2,1]∪[4,7)3.不等式|x-5|+|x+3|≥1的解集是()A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,+∞)4.已知不等式|2x-5|+|2x+1|>ax-1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的取值范围.5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.6.设函数f(x)=5-|x+a|-|x-2|.①当a=1时,求不等式f(x)≥0的解集;②若f(x)≤1,求a的取值范围.7. (1)若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.(2)若a≥2,x∈R,证明:|x-1+a|+|x-a|≥3.8.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.9.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.10(1)已知函数f (x )=|x -a |+|x -3a |.①若f (x )的最小值为2,求a 的值;②若对∀x ∈R ,∃a ∈[-1,1],使得不等式m 2-|m |-f (x )<0成立,求实数m 的取值范围.11.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R . (1)求实数m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.12.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范13. 已知函数f (x )=|x -a |+|2x -a |(a ∈R ).(1)若f (1)<11,求a 的取值范围;(2)若∀a ∈R ,f (x )≥x 2-x -3恒成立,求x 的取值范围.14.设函数f (x )=|2x +3|+|x -1|.(1)解不等式f (x )>4;(2)若存在x ∈⎣⎡⎦⎤-32,1使不等式a +1>f (x )成立,求实数a 的取值范围. 14.已知函数f (x )=|x -a |+12a(a ≠0).(1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围. 15..已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.16.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.17..已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.18.设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围. 19.设函数f (x )=⎪⎪⎪⎪x +8m +|x -2m |(m >0).(1)求证:f (x )≥8恒成立; (2)求使得不等式f (1)>10成立的实数m 的取值范围.20.设a ,b 为满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b || D .|a -b |<|a |+|b |21..不等式|2x -a |<b 的解集为{x |-1<x <4},则a +b 的值为( )A.-2B.2C.8D.-822.设函数f (x )=x 2-x -15,且|x -a |<1.(1)解不等式|f (x )|>5.(2)求证:|f (x )-f (a )|<2(|a |+1).23.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围24.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.25.设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2;(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.。
含绝对值的不等式及其解法
含绝对值的不等式及其解法一.知识要点:1.绝对值不等式的类型及解法(1)b x f a R b a b x f a <<⇔∈<<+)(,()(或a x f b -<<-)((2))()()()()()(x g x f x g x f x g x f -<>⇔>或 (3))()()()()(x g x f x g x g x f <<-⇔<(4)[][]0)()()()()()()()(22<-⋅+⇔<⇔<x g x f x g x f x g x f x g x f(5)含多个绝对值符号的不等式——采用零点分段法来求解。
2.绝对值的几何意义:(1)x ——表示数轴上的动点x 到原点的距离.(2)b x a x -+-——表示数轴上的动点x 到两定点a 与b 的距离之和,且b x a x -+-b a -≥(3)b x a x ---——表示数轴上的动点x 到两定点a 与b 的距离之差,且≤--b a b x a x ---≤b a -3.绝对值的性质(1)b a ab ⋅=,(2))0(≠=b b a b a ,(3)b a b a b a +≤+≤-当且仅当o ab ≥时右“=”成立,0≤ab 左“=”成立。
(4)b a b a b a +≤-≤-当且仅当0≤ab 时右“=”成立, o ab ≥左“=”成立。
练习题:1. 不等式243<-x 的整数解的个数为( )A . 0B . 1C . 2D .大于22. 若两实数y x ,满足0<xy ,那么总有( ) A y x y x -<+ B y x y x ->+ C y x y x -<-D x y y x -<+3. 已知0,<+>b a b a ,那么( )A . b a >B . b a 11>C . b a <D . ba 11< 4. 不等式13-<-x x 的解是( )A . 52<<xB . 36≥xC . 2>xD . 32≤<x5. 已知,b c a <-且,0≠abc 则( )A . c b a +<B . b c a ->C . c b a +<D . c b a ->6. 不等式652>-x x 的解集为( ). A 1{-<x x 或}6>x B . }32{<<x x C . ∅ D . 1{-<x x 或32<<x 或}6>x7. 若1lg lg ≤-b a ,那么( )A . b a 100≤<B . a b 100≤<C . b a 100≤<或a b 100≤<D .b a b 1010≤≤ 8. 函数22--=x x y 的定义域是( )A . ]2,2[-B . ),2[]2,(+∞--∞C . ),1[]1,(+∞--∞D . ),2[+∞9. 使不等式a x x <-+-34有解的条件是( )A . 1>aB . 1101<<aC . 101<aD . 1010<<a 10. )(13)(R x x x f ∈+=,当b x <-1有),,(4)(+∈<-R b a a x f 则b a ,满足( ) A . 3a b ≤ B . 3b a ≤ C . 3a b > D . 3b a ≥ 11. 不等式b a b a +≤+取等号的条件是 , b a b a +≤-取等号的条件 .12. 不等式x x ->+512的解集是13. 如果不等式21<x 和31>x 同时成立,则x 的取值范围是 14. 不等式xx x x ->-11的解是 13.函数xx x y -+=0)21(的定义域是 14.不等式331≤-<x 的解集是 15.解下列不等式:(1)xx 1<(2)321>++-x x16.解不等式:x x +<-1log 2log 4141。
第38讲含绝对值的不等式
提示:
1 ab 2 2 2 2 1 1 ab a b (a 1)(b 1) 0 ab
作业:《全案》 P
138
训练 2、3、预测 2
; http://gzsn.pro 广州SN ;
a b ≤ a b ≤ a b 来适当放缩。
第 38 讲含绝对值的不等式
一、知识要点
二、例题分析
定义法
解法公式 1 重要性质 1
基本解法练习
例1
例2
三、课外练习
作业:《全案》 P
138
训练 2、3、预测 2
解绝对值不等式的思路是化为等价的不含绝对值 符号的不等式 (组) , 可用绝对值的定义来去绝对值符号 (关键是恰当分类): 绝对值的定义:
⑷ f x g ( x ) g ( x ) f x g ( x );
⑸ f x g x f x g x
2
2
绝对值的几何意义:
x 表示数轴上的数 x 对应的点与原点的距离;
x a 表示数轴上的数
例 1 已知函数 f ( x) ax2 bx c ,当 0 ≤ x ≤ 1 时, f ( x) ≤1 求证: a b c ≤17
提示:主要是巧妙运用重要不等式:
a1 a2 a3 ≤ a1 a2 a3
来证.
例 2.《全案》第 138 页变式题 3 已知 a、b∈R,且|a|+|b|<1, 求证:方程 x 2 +ax+b=0 的两个根的绝对值均小于 1.
a (a ≥ 0) a a (a 0)
注:①解含有两个或两个以上绝对值符号,常用零点分段法 来确定分类区间(即先求出使每一个绝对值符号内的数学式子 等于零的未知数的值(称为零点),然后将这些值依次在数轴上 标注出来,它们把数轴分成若干分区间.); ②由 x 分类讨论得到解集最后要合并起来; ③由字母分类讨论解得解集,最后是分字母情况写答案
高考数学含绝对值的不等式的解法
f x gx f x gx或f x gx
a f x bb a 0 a f x b或 b f x a
3、不等式的解集都要用集合形式表示,不要使用 不等式的形式。
例1、解下列不等式
1 2 3x 2 3x
A2(100)
B(x)
A5(400)
变式:数轴上有三个点A、B、C,坐标分别为-1,2, 5,在数轴上找一点M,使它到A、B、C三点的距 离之和最小。
小结:
1、解关于绝对值的不等式,关键是理解绝对值的意 义,掌握其基本类型。 2、解绝对值不等式有时要利用数形结合,利用绝对 值的几何意义,结合数轴解决。
2 2 3x 5
3 x 2 3 2 x
定义法
同解变形
同解变形或数形结合 同解变形 平方法 零点分析法 同解变形
41 2 3x 4
5 x x 1
6 x 2 x 1 3
7 ax 2 2
例2、设 a 0,不等式 ax b c 的解集为
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义:
其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0 a 0, a 0 a, a 0
2、含有绝对值不等式的解法:
(解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法;
(2)零点分段法:通常适用于含有两个及两个以上的绝 对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时 (4)图象法或数形结合法; (5)不等式同解变形原理:
x 2 x 1,求 a : b : c
例3、若 x 2 x 1 a恒成立,求实数a的取值范围。
高中数学知识点精讲精析 绝对值不等式的解法
4.2.1绝对值不等式的解法1.含有绝对值的不等式的性质(1) |a|-|b|≤|a+b|≤|a|+|b|证明:∵ -|a|≤a≤|a|, -|b|≤b≤|b|,∴ -(|a|+|b|)≤a+b≤(|a|+|b|),|a+b|≤|a|+|b|........①又 a=a+b-b, |-b|=|b|∴ 由①得|a|=|a+b-b|≤|a+b|+|-b|,即|a|-|b|≤|a+b|.......②由①②得 |a|-|b|≤|a+b|≤|a|+|b|由以上定理很容易推得以下的结论:(2) |a|-|b|≤|a-b|≤|a|+|b|(3) |a1+a2+a3|≤|a1|+|a2|+|a3|2 几个基本不等式的解集(1) |x| -a<X0)(2) |x|>a x>a或x<-a(a>0)(3) |x-m|0) -a<X-M m-a<X<M+A(4) |x-m|>a(a>0) x-m>a或x-m<-a x>m+a 或 x<M-A< SPAN>3.绝对值的定义:|a|=由定义可知:|ab|=|a||b|, .4.绝对值不等式的解法(1)解含有绝对值不等式的基本思路,绝对值符号的存在是解不等式的一大障碍。
因此如何去掉绝对值符号使其转化为等价的不含绝对值符号的不等式是解决这类问题的关键,常采取划分区间逐段讨论,从而去掉绝对值符号转化为一般不等式,或利用绝对值表达的几何意义转化为图像或曲线为解决。
(2)几种主要的类型① |f(x)|>|g(x)| f2(x)>g2(x)② |f(x)|>g(x) f(x)>g(x) 或 f(x)<-g(x)③ |f(x)| -g(x)<F(X)④ 含有两个或两个以上绝对值符号的不等式可用“按零点分区间”讨论的方法来脱去绝对值符号去求解。
⑤ 含有两个或两个以上绝对值符号的不等式可以用图像法来解决5.关于“绝对值”的四则运算规律(1) |ab|=|a|·|b|(2)(3) |a|-|b|≤|a+b|≤|a|+|b|(4) |a|-|b|≤|a-b|≤|a|+|b|在一般情况下,两个数的和或差的绝对值与这两个数的绝对值的和差是不相等的,但在某些情况下,可以取等号。
含绝对值不等式的解法(1)
高二文科数学含绝对值的不等式的解法解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间距离。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈;不等式a x <的解集是∅; 3.cb ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,c bax >+的解集是{}c b ax c b ax x -<+>+或,;c b ax <+的解集是{}c b ax c x <+<-; 当0<c 时,c b ax >+的解集是{}R x x ∈;c bx a <+的解集是∅;4.分类讨论法:即通过合理分类去绝对值后再求解。
1. 解不等式125x x -++<。
说明:(1)原不等式的解集应为各种情况的并集;(2)这种解法又叫“零点分区间法”,即通过令每一个绝对值为零求得零点,求解应注意边界值。
2.解不等式(1)10832<-+x x (2)2321>-x (3) 212+<-x x1.(09辽宁卷)设函数()|1|||f x x x a =-+-,(1)若1a =-,解不等式()3f x ≥;(2)如果x R ∀∈,()2f x ≥,求a 的取值范围。
2.(11年全国卷) 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.3.(12年全国卷)已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集; (Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.| x |<c和| x |>c (c>0)的解集公式要牢记,以后可以直接作为公式使用.但要注意的是,这两个公式是在c>0时导出的,当c≤0时,需要另行讨论,不能使用该公式.
解法二:令y = | x+1|-| x-2 |,
则 y =
要使| x+1|-| x-2 |>k恒成立,从图象可以看出,只要k<-3即可.
故k<-3满足题意思.
??
?? 解集为空集.
例4 对任意实数x,若不等式| x+1|-| x-2 |>k恒成立,求 k的取值范围.
思路点拨一:要使| x+1|-| x-2 |>k对任意x恒成立,只要| x+1|-| x-2 |的最小值大于k.因| x+1|的几何意义为数轴上点x到-1的距离,| x-2 |的几何意义为数轴上点x到2的距离,| x+1|-| x-2 |的几何意义为数轴上点x到-1与2的距离的差,其最小值可求.
含绝对值不等式解法要点归纳
解含绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同.因此,掌握去掉绝对值符号的方法和途径是解题关键.
一、含有绝对值不等式的几种去掉绝对值符号的常用方法
去掉绝对值符号的方法有很多,其中常用的方法有:
解:原不等式可化为-4≤kx≤6,当k>0时,-≤x≤,依题意,有
,此时无解.
当k = 0时,显然不满足题意.
当k<0时, ≤x≤-,依题意,有 k =-2.
例2 解不等式| x-1|<| x+a |.
思路点拨:由于两边均为非负数,因此可以两边平方去掉绝对值符号.
解:由于| x-1|≥0,| x+a |>0,所以两边平方有| x-1|<| x+a |,
1.定义法去掉绝对值符号
根据实数绝对的意义,即| x | =,有:
| x |<c;| x |>c;
2.利用不等式的性质去掉绝对值符号
利用不等式的性质转化为| x |<c或| x |>c (c>0)来解.不等式|ax+b|>c (c>0)可化为ax+b>c或ax+b<-c,再由此求出原不等式的解集;不等式|ax+b|<c (c>0)可化为-c<ax+b<c,再由此求出原不等式的解集,对于含绝对值的双向不等式应化为不等式组求解,也可利用结论"a≤| x |≤b a≤x≤b或-b≤x≤-a求解.这是一中典型的转化与化归的数学思想方法.
4.零点分段法去掉绝对值符号.
所谓"零点分段法"是指:设数x,x,x,...,x是分别使含有|x-x|,|x-x|,|x-x|,...,|x-x|的代数式中相应的绝对值为零,称x,x,x,...,x为相应绝对值的零点,零点x,x,x,...,x将数轴分为n+1段,利用绝对值的意义化去绝对值符号,从而得到代数式在各段上的简化式,从而化为不含绝对值的不等式组来解.即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集."零点分段法"是解含有多个绝对值符号的不等式的常用手段,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化,思路直观.
3.平方法去掉绝对值符号.
对于两边都含有"单项"绝对值的不等式,利用| x |= x可在两边脱去绝对值符号求解,这样解题要比按绝对值定义,讨论脱去绝对值符号解题简捷.解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数,(式)时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.
思路点拨一:此不等式左边含有两个绝对值符号,如何去掉绝对值符号呢?可考虑采用"零点分段",即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.
解一:⑴当a≤0时,不等式 | x-4|+| 3-x |<a 的解集为空集.
⑵当a>0时,先求不等式 | x-4|+| 3-x |<a有解时a的取值范围.
③当x≤3时,原不等式 | x-4|+| 3-x |<a化为:4-x+3-x<a,即7-2x<a,
解不等式组 <x≤3,<3,
∴a>1.
综合①②③可知,当a>1时,原不等式有解,从而当0<a≤1时,原不等式解集为空集.
由⑴、⑵两种情况可知,不等式 | x-4|+| 3-x |<a 的解集为空集,a的取值范围是a≤1.
令x-4 = 0,得x = 4,令3-x = 0,得x = 3.
①当x≥4时,原不等式 | x-4|+| 3-x |<a化为:x-4+x-3<a,即2x-7<a,
解不等式组 4≤x<4<,
∴a>1.
②当3<x<4时,原不等式 | x-4|+| 3-x |<a化为:4-x+x-3<a,解得a>1.
3.解不等式问题与集合运算有密切联系,在应用集合有关内容处理绝对值不等式的过程中,要注意在不等式组的解集中,对不等式端点值的取舍情况.再有,因为已学习了集合表示法,所以不等式的解集要用集合形式表示,不要使用不等式的形式.
4.解含有绝对值的不等式的关键是把含有绝对值的不等式转化为不含绝对值符号的不等式,然后再求解,但这种转化必须是等价转化,尤其是平方法去掉绝对值符号时,一定要注意两边非负这一条件,否则就会扩大或缩小解集的范围.
思路点拨二:解法一是按去掉绝对值符号的方法求解,这是处理此类问题的一般方法,但运算量大.若仔细观察不等式左边的结构,联想到绝对值| a+b|≤| a |+| b|,便可把问题简化.
解二:∵a>| x-4|+| 3-x |≥| x-4+3-x | = 1,
∴当a>1时| x-4|+| 3-x |<a有解,
5.要学会灵活运用分类讨论思想、数形结合思想、等价专化与化归思想方法处理绝对值不等式问题.
三、典型例题思路点拨
例1 关于x的不等式| kx-1|≤5的解集为{x |-3≤x≤2},求k的值.
思路点拨:按绝对值定义直接去掉绝对值符号后,由于k的取值不确定,要以k的不同取值分类处理.
即有x-2x+1<x+2ax+a,
整理得:(2a+2)x>1-a,
当2a+2>0,即a>-1时,不等式的解为x>(1-a);
当2a+2 = 0,即a =-1时,不等式无解;
当2a+2<0,即a<1时,不等式的解为x<(1-a).
例3 若不等式 | x-4|+| 3-x |<a 的解集为空集,求a的取值范围.
5.数形结合法去掉绝对值符号
解绝对值不等式有时要利用数形结合,利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.数形结合法形象、直观,可以使复杂问题简单化,此解法适用于| x-a|+| x-b |>m或| x-a|+| x-b |<m (m为正常数)类型的不等式.
二、几点注意事项
解法一:根据绝对值的几何意义,设数x,-1,2在 数轴上对应的点分别为P、A、B,原不等式即求| PA|-| PB|>k成立,因为|AB| = 3,即| x+1|-| x-2 |≥-3,故当k<-3时,原不等式恒成立.
思路点拨二:如果把不等式的左边用零点分段的方法改写成分段函数,通过画出其图象,从图象观察k的取值范围.