大跨度空间结构讲稿2011-03

合集下载

大跨度空间结构

大跨度空间结构

大跨度空间结构在建筑设计和工程中,大跨度空间结构是指那些跨度较大、内部空间较为宽阔的建筑结构。

这种结构通常需要特殊的设计和施工技术,以确保建筑物能够稳定、安全地承受各种荷载,并满足功能需求。

大跨度空间结构的设计涉及到结构力学、材料科学、施工工艺等多个领域,是建筑工程中的重要研究课题。

设计原则设计大跨度空间结构时,需要考虑以下几个方面的原则:结构稳定性大跨度空间结构的稳定性是设计过程中首要考虑的问题。

在结构设计中,需要充分考虑荷载传递、应力分布、挠度控制等因素,确保结构在各种外部荷载作用下保持稳定。

施工可行性由于大跨度空间结构通常体量较大,施工过程中需要考虑施工机械设备、施工工艺、作业空间等因素,确保施工过程安全、高效。

功能需求大跨度空间结构往往会用于会展中心、体育馆、机场等场所,因此需要充分考虑建筑功能需求,如观赏性、照明、通风等方面。

常见结构形式大跨度空间结构常见的结构形式包括:•穹顶结构:利用曲面形式来实现大跨度封闭空间,典型的代表是圆顶体育馆。

•悬索桥:利用悬索来支撑桥面,跨度较大,适用于跨越河流、峡谷等场景。

•桁架结构:由杆件和节点组成的桁架结构具有良好的承载能力和稳定性,适用于大跨度空间屋顶结构。

•拱形结构:借助弧形结构来实现大跨度空间的覆盖,适用于建筑物的支撑结构。

实际应用大跨度空间结构在现代建筑中有着广泛的应用,如:•体育馆:体育馆的设计往往要求大跨度空间结构,以容纳体育比赛和观众席。

•机场候机厅:现代机场的候机厅通常采用大跨度空间结构,提供宽敞的候机区域。

•会展中心:会展中心需要大型展览空间,大跨度结构能够提供灵活的展览空间。

•火车站站厅:为了满足高铁的乘客流量需求,火车站的站厅通常采用大跨度空间结构,提供宽敞的候车区域。

结语大跨度空间结构在现代建筑设计中扮演着重要的角色,它不仅体现了建筑技术的发展和创新,也为人们提供了更加舒适、宽敞的室内体验。

设计和建造大跨度空间结构需要多学科的综合知识和团队合作,只有这样才能打造出稳定、安全、美观的建筑作品。

大跨度空间结构设计

大跨度空间结构设计

大跨度空间结构设计
首先,在进行大跨度空间结构设计前,需要准确了解和分析该结构的
使用要求和设计目标。

包括建筑功能、使用人数、结构形式等。

这些要求
和目标将指导结构设计的具体方案。

其次,对于大跨度空间结构,需要选择合适的结构形式和材料。

常见
的大跨度空间结构形式包括桁架结构、网壳结构、桁架双曲面结构等。


材料的选择则需要考虑结构的强度、刚度和稳定性。

一般会选用钢材、混
凝土等材料。

接着,需要进行结构的静力分析和设计。

静力分析是指分析结构在受
力状态下的平衡和稳定性。

通过这一步骤,可以得到结构的内力分布和变
形情况。

静力设计是指根据结构的使用要求和设计目标,计算出结构所需
的材料数量和尺寸,并进行断面的选取。

在进行大跨度空间结构设计时,还需要考虑施工的可行性和经济性。

施工可行性包括结构的施工工艺、工期和成本等。

经济性可以通过计算结
构的造价和运行费用来评估。

最后,在进行大跨度空间结构设计时,还需要进行结构的验算和优化。

验算是指通过计算和检查,确认结构的强度、刚度和稳定性是否满足设计
要求。

优化则是指在满足设计要求的前提下,通过调整结构形式和材料的
尺寸等参数,使结构更加经济和合理。

总结起来,大跨度空间结构设计的要点包括了解和分析使用要求和设
计目标、选择合适的结构形式和材料、进行结构的静力分析和设计、考虑
施工的可行性和经济性、进行结构的验算和优化。

这些步骤的完成将为大
跨度空间结构的设计和施工提供指导和保障,实现结构的安全和工程的成功。

大跨度空间结构

大跨度空间结构

摘要:随着技术的发展,大跨度空间结构越来越多的在各领域运用,本文先对大跨度空间结构的起源与历史进行介绍,再对空间结构委员会成立三十年来在空间结构领域作了介绍,重点系统论述了三十年来各时期大跨度空间结构发展与应用情况。

全面阐述了我国大跨度空间结构近期发展的特点,包括在各类公共建筑中的应用情况、空间结构体系的发展与技术进步。

关键词:发展历程,我国进展1.简介:横向跨越60米以上空间的各类结构可称为大跨度空间结构。

常用的大跨度空间结构形式包括折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。

大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。

世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。

2.大跨度发展历程:实际上,人类很早以前就认识到穹隆具有用最小的表面封闭最大的空间的优点。

效仿洞穴穹顶,人们建造了许多砖石穹顶,如我国东汉时期河南洛阳的地下砖砌墓穴,公元前1185年古希腊迈西尼国王墓等。

古罗马最著名的穹顶是万神殿,也是建筑史上最早、最大跨度的拱建筑。

被誉为展现穹力的杰作。

然而,在尚无力学与结构理论以前,凭借已有的经验与大胆探索来建造房屋,难免发生事故。

公元537年东罗马帝国建造的圣索亚教堂,还有公元1612年建造的罗马圣彼得教堂都出现多较严重问题。

1742年罗马教皇下令检查圣彼得教堂问题原因,三位科学家经过认真调研和计算分析后,作出了解决方案。

这工程实例表明工程结构经验时代的结束和科学时期的到来。

工程结构的发展推动了理论研究的进步,理论成果的指导完善了工程实践,这是建筑结构科学得以不断进步的历史规律。

19世纪的工业革命促使科学技术飞快进步。

生铁材料出现以后引起了建筑结构革命性的变化。

1787年英国出现机扎熟铁条,1831年英国有出现机扎出角铁,1845年法国人碾压出熟铁工字梁。

大跨度空间结构

大跨度空间结构

结构类型
1
折板屋顶结构
2
壳体屋顶结构
3
架屋顶结构
4
悬索屋顶结构
5
充气屋顶结构
一种由许多块钢筋混凝土板连接成波折形的整体薄壁折板屋顶结构。这种折板也可作为垂直构件的墙体或其 他承重构件使用。折板屋顶结构组合形式有单坡和多坡,单跨和多跨,平行折板和复式折板等,能适应不同建筑平 面的需要。常用的截面形状有V形和梯形,板厚一般为5~10厘米,最薄的预制预应力板的厚度为3厘米。跨度为 6~40米,波折宽度一般不大于12米,现浇折板波折的倾角不大于30°;坡度大时须采用双面模板或喷射法施工。 折板可分为有边梁和无边梁两种。无边梁折板由若干等厚度的平板和横隔板组成,V形折板是无边梁折板的一种常 见形式。有边梁折板由板、边梁、横隔板等组成,一般为现浇,如1958年建成的巴黎联合国教科文组织总部大厦 会 议 厅 的 屋 顶 , 是 意 大 利 P . L . 奈 尔 维 设 计 施 工 的 。 •他 按 照 应 力 变 化 的 规 律 , 将 折 板 截 面 由 两 端 向 跨 中 逐 渐 增 大 结构。这种结构整体性强,稳定性好,空间刚度大,防震性能好。构架高度 较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用建筑空间。适合工业化生产的大跨度架结构,外形 可分为平板型架和壳形架两类,能适应圆形、方形、多边形等多种平面形状。平板型架多为双层,壳形架有单层 和双层之分,并有单曲线、双曲线等屋顶形式。
大跨度空间结构
建筑名词
01 定义
03 结构类型
目录
02 简介 04 发展
大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。世界各国对空间结构的研究和发展都极为重 视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间 结构已经成为衡量一个国家建筑技术水平高低的标志之一。

大跨空间结构—索膜结构详解

大跨空间结构—索膜结构详解

大跨空间结构—索膜结构详解索膜结构作为新的建筑形式于本世纪五十年代在国际上开始出现,至今已有六十多年的历史,特别是到了七十年代以后,膜结构的应用得到了迅速发展。

膜结构的出现为建筑师们提供了超出传统建筑模式以外的新选择。

膜结构一改传统建筑材料而使用膜材,其重量只是传统建筑的三十分之一。

而且膜结构可以从根本上克服传统结构在大跨度,无支撑,建筑上实现时所遇到的困难,可创造巨大的无遮挡的可视空间。

索膜结构是目前发展很快的一种新型空间结构,是一种效率极高的张力集成体系,可以充分发挥钢索的强度与张拉整体结构的空间作用。

张拉膜结构是索膜结构中最常见的一种形式,是索膜建筑的代表和精华,它通过钢索与膜材共同受力形式稳定曲面来覆盖建筑空间,具有高度的形体可塑性和结构灵活性,即通过对膜材内部施加一定的预张力,使其具备了抵抗外荷载能力,从而充当结构材料的一种结构体系。

这种形式能够充分利用膜材的受力性能,形成轻巧、美观、具有现代感的空间大跨曲面结构,并且施工简单、快捷、成本低,在国内外已经被广泛应用于商业建筑、体育建筑、工业建筑、户外设施、文化娱乐建筑等各种领域。

一、索膜结构的组成及材料特性1. 索膜结构的组成一个完整的索膜结构一般由三部分组成1)形成曲面结构的张拉膜材;2)用于加强膜面的脊索和谷索,以及将膜内力传向支承结构的边索;3)求索膜体系的支架结构。

张拉膜材即作为结构材料,要能够抵抗一定的荷载而不致引起过大变形。

同时为完成作为覆盖材料所规定的建筑功能,例如美观、遮光、防火、耐久等等,还需满足各种性能要求。

所以,选用合适的膜材对于索膜结构的设计建造非常重要。

加强索除其对于膜面受力方面的加强作用外,更重要的是起到了改变建筑造型的作用。

尤其是谷索和脊索的灵活设置会给整个建筑带来奇妙的视觉效果。

支架结构最常采用的是钢结构,也可采用混凝土结构,甚至在某些情况下可以采用木结构或其他结构。

支架结构除满足将索膜体系的内力传递到基础这一结构要求以外,其形式可以采取变化多样的形式,以实现不同的建筑造型效果。

简述大跨度空间结构的主要形式及特点

简述大跨度空间结构的主要形式及特点

简述大跨度空间结构的主要形式及特点摘要:大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。

其结构形式主要包括网架结构、网壳结构、悬索结构、膜结构、薄壳结构等五大空间结构及各类组合空间结构。

形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。

关键词:大跨度空间结构形式特点1网架结构由多根杆件按照某种规律的儿何图形通过节点连接起来的空间结构称之为网格结构,其中双层或多层平板形网格结构称为网架结构或网架。

它通常是采用钢管或型钢材料制作而成。

1.1网架结构的形式(1)平而桁架系组成的网架结构。

主要有:两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。

(2)四角锥体组成的网架结构。

主要有:正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。

(3)三角锥组成的网架结构。

主要有:三角锥网架、抽空三角锥网架(分1型和11型)、蜂窝形三角锥网架等型式。

(4)六角锥体组成的网架结构。

主要形式有:正六角锥网架。

1.2网架结构的主要特点空间工作,传力途径简捷;重量轻、刚度大、抗震性能好;施工安装简便;网架杆件和节点便于定型化、商品化、可在工丨中成批生产,有利于提高生产效率;网架的平而布置灵活,屋盖平整,有利于吊顶、安装管道和设备;网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。

2网壳结构曲而形网格结构称为网壳结构,有单层网壳和双层网壳之分。

网壳的用材主要有钢网壳、木网壳、钢筋混凝土网壳等。

2.1网壳结构的形式主要有球而网壳、双曲而网壳、圆柱而网壳、双曲抛物而网壳等。

2.2网壳结构主要特点兼有杆系结构和薄壳结构的主要特性,杆件比较单一,受力比较合理;结构的刚度大、跨越能力大;可以用小型构件组装成大型空间,小型构件和连接节点可以在工)预制;安装简便,不需大型机具设备,综合经济指标较好;造型丰富多彩,不论是建筑平而还是空间曲而外形,都可根据创作要求任意选取。

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点郝飞【摘要】大跨度空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中应用广泛.本文就大跨度空间结构的形式主要包括网架结构、网壳结构、悬索结构、膜结构、薄壳结构等五大空间结构及各类组合空间结构做简单介绍.【期刊名称】《内蒙古石油化工》【年(卷),期】2011(037)003【总页数】2页(P82-83)【关键词】大跨度;空间结构【作者】郝飞【作者单位】内蒙古铁道勘察设计院有限公司,内蒙古呼和浩特 010050【正文语种】中文【中图分类】TU393.3现代大跨度空间结构的发展虽然起步较晚,但由于其特殊的优越性和挑战性,在世界各国发展十分迅速。

进入21世纪后,我国大跨度空间结构建设在数量、跨度、型式等方面都有了较大的进展。

伴随着我国基础设施建设正进入一个新的发展高潮的同时,也对大跨度空间结构的建筑技术水平提出了更高的要求。

其结构形式主要包括网架结构、网壳结构、悬索结构、膜结构、薄壳结构等五大空间结构及各类组合空间结构。

形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。

由多根杆件按照一定的网格形式通过节点连结而成的高次超静定空间结构体系,其中双层或多层平板形网格结构称为网架结构或网架。

它通常是采用钢管或型钢材料制作而成。

目前中国的网架结构绝大部分采用板型网架结构。

1.1.1 平面桁架系组成的网架结构。

主要有:两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。

1.1.2 四角锥体组成的网架结构。

主要有:正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。

1.1.3 三角锥组成的网架结构。

主要有:三角锥网架、抽空三角锥网架(分I型和II 型)、蜂窝形三角锥网架等型式。

1.1.4 六角锥体组成的网架结构。

主要形式有:正六角锥网架。

空间工作,传力途径简捷;重量轻、刚度大、抗震性能好;施工安装简便;网架杆件和节点便于定型化、商品化、可在工厂中批量生产,有利于提高生产效率;网架的平面布置灵活,屋盖平整,有利于吊顶、安装管道和设备;网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。

浅谈大跨度空间钢结构施工知识分享

浅谈大跨度空间钢结构施工知识分享

浅谈大跨度空间钢结构施工摘要:文章详细介绍了大跨度空间钢结构的施工技术,通过对大跨度空间钢结构类型及其施工特征进行介绍,结合钢结构的主要施工方法类别,对钢结构施工技术中的关键工序进行重点分析、归纳与总结,包括吊装、滑移、拼装、焊接等工序,仅供相关工作人员参考。

关键词:大跨度空间钢结构;施工技术;滑移;拼装当前,随着经济及科技的不断发展,我国建筑行业也随之不断发展,加上借鉴国外先进技术及经验、理念等,越来越多的新型建筑出现,尤其是大型公共建筑,包括机场建筑、体育馆等都采用大跨度空间钢结构作为建筑物的屋盖结构体系。

现就大跨度空间钢结构及其具体施工技术进行分析。

1大跨度空间钢结构类型大跨度空间钢结构建筑是指横向跨越30m以上空间的各类结构形式的建筑,其结构形式多种多样,当前世界上使用大跨度空间钢结构的各大建筑中,最典型的代表即奥运建筑,大跨度空间结构技术对多种多样、形式丰富的奥运建筑起着推动作用。

其中,奥运历史上著名的罗马体育馆主要采用装配现浇式钢筋混凝土薄壳结构,而巴塞罗那圣乔地体育馆采用了网壳结构。

其中,大跨度钢结构的类别主要如下所述:1.1网架结构网架结构主要指的是由多根杆件按照一定的网格形式通过节点连结而成的空间结构。

网架结构具有工业化程度高、自重轻、稳定性好、外形美观的特点。

1.2网壳结构网壳结构与空间杆系结构较为相似,平板网架型的空间杆结构是通过杆件根据规律而组成网格,并结合壳体结构布置成一定的空间架构,因此,它不仅具备杆系的性质,而且同时具备壳体的性质。

网壳结构主要通过壳内两个方向的拉力、压力或剪力进行逐点传力。

例如: 1967年建成的郑州体育馆,采用肋环形穹顶网壳,其平面直径64 m,矢高9.14m,此为国内跨度最大的单层球面网。

又如1988年建成的北京体院体育馆,主要采用带斜撑的四块组合型双层扭网壳,其平面尺寸为59.2m2,矢高3.5m,挑檐3.5m,此为我国跨度最大的四块组合型扭网壳。

空间框架演讲稿

空间框架演讲稿

空间框架演讲稿尊敬的各位领导、各位来宾:大家好!今天我非常荣幸能够站在这里,与大家分享关于空间框架的一些想法和见解。

空间框架作为一种重要的建筑结构形式,对于建筑的稳定性、美观性以及功能性都起着至关重要的作用。

在我看来,空间框架不仅仅是一种结构形式,更是一种艺术,一种对空间和力的完美诠释。

首先,让我们来看一下空间框架的历史。

空间框架最早可以追溯到古罗马时期的圆形剧场和大型公共建筑,这些建筑采用了穹顶和拱形结构,为后来空间框架的发展奠定了基础。

随着科学技术的进步,空间框架结构逐渐得到了发展和完善,从最初的木质结构到现在的钢结构,空间框架已经成为了现代建筑中不可或缺的一部分。

其次,空间框架的设计理念也在不断地演变和完善。

在过去,人们更多地关注空间框架的功能性和结构稳定性,但随着建筑设计理念的变革,人们开始将空间框架与艺术、文化相结合,赋予了空间框架更多的美学价值。

比如,现代的空间框架建筑不仅具有良好的结构性能,还可以通过灵活的设计手法,创造出独特的建筑风格和视觉效果,成为城市的地标和文化的符号。

最后,我想强调的是空间框架在未来的发展方向。

随着人们对建筑环境的要求越来越高,空间框架作为一种灵活多变的建筑形式,将会有更广阔的发展空间。

未来,我们可以期待空间框架在更多领域的应用,比如体育馆、会展中心、甚至是居住建筑,它将为人们创造出更加舒适、美观、环保的建筑环境。

总的来说,空间框架作为一种重要的建筑结构形式,不仅具有良好的结构性能,还具有丰富的艺术和文化内涵。

在未来,空间框架将会在建筑领域发挥越来越重要的作用,为人们创造出更加美好的生活环境。

让我们共同期待空间框架在未来的发展中展现出更加绚丽多彩的风采!谢谢大家!。

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点
部门职责 1、政府教育处:政府、教育行业的招投标、采购工作; 2、企业客户处:各行业的销售 3、技术安装组:公司销售机器的安装、调试,新产品的宣传, 方案的撰写,网站建设,公司内部网络的维护。
膜结构的主要形式
膜结构形式上主要有气 压式膜结构、气承式膜 结构、混合式膜结构和 悬挂薄膜结构。
膜结构主要特点
膜结构主要有自重轻、跨度 大,建筑造型自由、丰富,施工 方便,具有良好的经济性和较高 的安全性,透光性和自结性好, 耐久性较差等特点。
团结 信赖 创造 挑战
4、悬索结构
悬索结构是以能受拉的索作为基本承重构件并将索 按照一定规律布置所构成的一类结构体系。悬索屋 盖结构通常由悬索系统、屋面系统和支撑系统三部 分构成。用于悬索结构的钢索大多采用由高强钢丝 组成的平行钢丝束、钢绞线或钢缆绳等,也可采用 圆钢、型钢、带钢或钢板等材料。
团结 信赖 创造 挑战
国家大剧院
团结 信赖 创造 挑战
悉尼歌剧院
团结 信赖 创造 挑战
本次结构分析总结
相对而言,网架结构和网壳结构在施工、结构
上比较简单,方便,稳定。但在造型上相对单
一,变化不大。而膜结构,悬索结构在造型上
较多变,灵活,适合多种形式,但对于结构受
力等要求更高。
在本次设计上,我们认为这几种结构对于我们
团结 信赖 创造 挑战
2、网壳结构
曲面形网格结构称为网壳结构。有单层网 壳和双层网壳之分,网壳的用材主要有钢网 壳、木网壳、钢筋混凝土网壳等。
团结 信赖 创造 挑战
球面网壳
双曲面网壳
圆柱面网壳
双曲抛物面鞍型网壳
单块扭网壳ຫໍສະໝຸດ 四块组合型扭网壳团结 信赖 创造 挑战
网壳结构主要特点

大跨度建筑结构体系简述-各种大跨度结构类型

大跨度建筑结构体系简述-各种大跨度结构类型

大跨度空间结构是目前发展最快的结构类型。

大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。

而大跨度结构的表现形式是多种多样的。

大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;膜结构一、拱券结构及穹隆结构从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。

古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。

券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。

罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。

拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。

例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。

很明显,这必然会影响空间组合的灵活性。

为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。

而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。

到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。

神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。

在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。

从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。

大跨度空间结构概述

大跨度空间结构概述

1975年建成的美国新奥尔良“超级 穹顶”(Superdome),直径 207m,长期被认为是世界上最大的 球面网壳。
美国新奥尔良“超级穹顶”
东京代代木国立体育中心莫斯 Nhomakorabea中央红军之家综合体育馆
巴塞罗那圣乔地体育馆
3.大跨空间结构问题及解决方法
多种作用耦合情况对结构影响(温度应力,风载,焊接残余应力等)
70年代以来,由于结构用织物材料的改进,膜结构或索 -膜结构(用索加强的膜结构)获得了发展: 1988年东京建成的“后乐园”棒球馆,就采用这种结构, 技术尤为先进,其近似圆形平面的直径为202m; 1996年,美国亚特兰大为奥运会修建的“佐治亚穹顶” (Geogia Dome,1992年建成)采用新颖的索穹顶结构,其 准椭圆形平面的轮廓尺寸达192mX241m。
第29届奥运会主场馆:北京奥林匹克体育场
悉尼超级穹顶体育馆是被作为 2000年奥林匹克运动会的多功能 体育馆进行设计的。 菲利普· 考克斯与其合作者们 把大穹顶体育馆想象成一座庞大、 水平且半透明的建筑。建筑外形 呈鼓状,由24根钢柱支撑着的放 射状网架结构形成了遮盖赛场的 轻型屋盖体系。为使其尺度不至 于过大,他们在两侧设置了环抱 体育场的轻质廊道,这就给这个 大尺度的表皮添上了一些人性化 的细部。但是要欣赏大穹顶还是 需要一定的角度和高度,所以他 们在设计时运用了一种类似桅杆 的结构,就像是一个花冠围绕在 体育馆的周围。他们以其纤细但 不失强度的悬索和自由排列的柱 廊强调大穹顶的整体外观。支撑 柱廊的是树状的柱子,屋顶采用 了有拉索支撑的桁架结构,大尺 度出挑的屋檐为场馆提供了阴凉 的空间。
扩展内容:
空间网格结构 网壳结构的出现早于平板网架结构。在国外,传统的肋环型穹顶已有一百多 年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。中国第 一批具有现代意义的网壳是在50和60年代建造的,但数量不多。当时柱面网壳大 多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和 l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。球面网壳 则主要采用肋环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m) 和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)可能是仅有的两个规模较大 的球面网壳。自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。 相对而言,平板网架结构自60年代后期起获得较多应用,1967年建成的首都体育 馆和1973年建成的上海体育馆是早期成功采用平板网架结构的杰出代表,对这种 结构形式在其后一段时期的持续发展有很大影响。80年代后期北京为迎接1990亚 运会兴建的一批体育建筑中,多数仍采用平板网架结构。随着经济和文化建设需 求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑 时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑 功能和建筑造型多样化的要求。这种现实需求对网壳结构、悬索结构等多种空间 结构形式的发展起了良好的刺激作用。

大跨度空间结构网壳结构的历史与发展

大跨度空间结构网壳结构的历史与发展

大跨度空间结构在建筑工程中也有广泛的应用。例如,国家体育馆“鸟巢”, 采用钢结构设计,总跨度达到296米,成为全球最大的钢结构体育馆。这种结构 形式以其卓越的性能和美观的造型,为我国的建筑事业增添了一道亮丽的风景线。
3、隧道工程
隧道工程也是大跨度空间结构的重要应用领域之一。例如,上海长江隧道是 中国第一条越江隧道,全长8.9公里,采用盾构法施工,其跨度达到14.9米。这 种大跨度隧道结构的设计和施工需要解决许多技术难题,对我国的隧道工程技术 水平提出了更高的要求。
结论
大跨度空间结构网壳结构作为一种独特的建筑形式和结构体系,在现代建筑 中占有重要的地位。从历史背景来看,这种结构形式经历了从简单到复杂的发展 过程,并逐渐成为了现代建筑的一种重要表达方式。而在现代应用中,大跨度空 间结构网壳结构在体育场馆、展览中心、交通建筑等大型公共建筑中得到了广泛 应用,充分展现了其独特的优势和魅力。
随着科技的进步和建筑业的发展,大跨度空间结构在众多领域的应用越来越 广泛。这种结构以其独特的优势和性能,在建筑、桥梁、隧道、航空航天等领域 发挥着重要的作用。本次演示主要探讨大跨度空间结构的工程实践以及学科发展 的趋势。
一、大跨度空间结构的概述
大跨度空间结构是指跨度超过一定限制的建筑结构,通常在桥梁、厂房、体 育馆、机场等大型公共设施中应用较为广泛。这种结构形式具有受力合理、自重 轻、施工速度快、经济性高等优点,因此在现代大型建筑工程中倍受青睐。
1、初始阶段:20世纪初至中期,以钢筋混凝土和钢构为主,代表作品有美 国的金门大桥等。
2、成熟阶段:20世纪中后期,结构设计理论和施工技术不断提高,出现了 许多新型结构形式,如悬索结构、网架结构等。
3、拓展阶段:进入21世纪,大跨度空间结构的应用范围逐渐扩大,涉及到 建筑、交通、能源等多个领域。

大跨度空间结构建筑构造概述

大跨度空间结构建筑构造概述



当 代


筑 设

计 语

汇 解 析

1
第四章 大跨度空间结构建筑构造概述
第四章 大跨度空间结构建筑构造概述
第二节大跨度建筑的结构形式与建筑造型
六.折板结构及其建筑造型
折板是以一定倾斜度整体连接的一种 薄板体系,一般采用钢筋混凝土或钢 丝网水泥建造。 (一)受力特点、优缺点和适用范围 1. 受力特点
第四章 大跨度空间结构建筑构造概述
第二节大跨度建筑的结构形式与建筑造型
八.悬索结构及其建筑造型 (二)悬索结构的形式
24
第四章 大跨度空间结构建筑构造概述
第四章 大跨度空间结构建筑构造概述
第二节大跨度建筑的结构形式与建筑造型
八.悬索结构及其建筑造型 (二)悬索结构的形式
25
第四章 大跨度空间结构建筑构造概述
第四章 大跨度空间结构建筑构造概述
第二节大跨度建筑的结构形式与建筑造型
九 .张拉膜结构及其建筑造型 张拉膜结构是利用骨架、索网将各种
现代薄膜材料绷紧形成建筑空间的一种结 构。
作为新的建筑形式于本世纪五十年代 在国际上开始出现,至今已有四十多年的 历史,特别是到了七十年代以后,膜结构 的应用得到了迅速发展。膜结构重量只是 传统建筑的三十分之一,造型自由轻巧、 制作简易、安装快捷,阳光的照射下,由 膜覆盖的建筑物内部充满自然漫射光,无 强反差的着光面与阴影的区分,室内的空 间视觉环境开阔和谐 。因而使它在世界 各地受到广泛应用。
4. 双曲抛物面壳 双曲抛物面壳是马鞍形薄壳
结构,由壳面和边缘构件组成。 从双曲抛物面壳上取一部分进 行组合,则可以形成各种形式 的扭壳结构。
11

时空结构演讲稿

时空结构演讲稿

时空结构演讲稿尊敬的评委、亲爱的同学们:大家好!我今天要向大家介绍的是时空结构。

首先,我们来了解一下什么是时空结构。

时空结构又称为时间和空间结构,简单来说,它是一种在文学和艺术作品中常用的手法,通过对时间和空间的处理,使得故事更加复杂、更有层次感。

时空结构可以把一个故事分为不同的时间段、不同的地点,将这些不同的元素以有序的方式组织起来,从而让读者或观众更好地理解和体验作品所要传达的信息。

接下来,我将以两部经典的电影作品为例展示时空结构的艺术魅力。

第一部是《盗梦空间》。

该电影以奇幻和悬疑的方式展现了一个意识与梦境交织的故事。

导演克里斯托弗·诺兰通过交错处理不同的时间层次,将主人公们对梦境的探索过程展示给观众。

这种时空结构的处理方式使得观众与主人公们一同陷入梦境的迷离感中,增强了观众的参与感和代入感。

第二部电影是《阿甘正传》。

这部电影以一个智力低下但心地善良的主人公为中心,通过回忆的方式将不同时期的故事串联在一起。

通过时空结构的运用,观众们可以在故事中跟随主人公的成长和变化,感受到时间对人物和故事的影响。

这种时空结构的运用使得观众对主人公的情感有了更深的体验,也更能理解故事所要表达的深层含义。

除了电影,时空结构在文学作品中也得到了广泛的运用。

比如莎士比亚的戏剧作品《哈姆雷特》,故事跳跃性地展示了主人公的内心矛盾和挣扎,使得观众更能感受到主人公的复杂情感。

又比如卡夫卡的小说《变形记》,通过描述主人公从一个普通人突然变成昆虫的故事,引发了观众对人性、社会等方面的思考。

在时空结构的运用中,对于作者或导演来说,要注重故事的逻辑性和连贯性。

不能仅仅追求悬念或刺激,而忽视故事的整体性。

同时,也要注意观众对时间和空间的接受能力,不要过于拗口或复杂,以免让观众产生困惑和无法理解的情况。

在观众角度来看,我们要保持开放的心态,积极投入到作品中去。

要有耐心,从片中的细节中获取信息,把握住时间和空间的线索。

同时,也要思考作者或导演想要传达给观众的信息,发现作品中的深层含义。

大跨度空间结构

大跨度空间结构
工程实例: 工程实例: 1:佛山罗村文化广场 : 2:南宁澳海蓝湾 :
佛山罗村 文化广场
大梅沙 体育公园
索穹顶结构
索穹顶结构实质是用一个周边受压环梁来平衡张拉 体系的结构。索穹顶较之于其它结构形式, 体系的结构。索穹顶较之于其它结构形式,具有特殊 优越性。首先, 优越性。首先,它大量采用预应力钢索而较少使用压 能够充分利用钢材的抗拉刚度, 杆,能够充分利用钢材的抗拉刚度,若能避免柔性结 构有可能的结构松弛, 构有可能的结构松弛,索穹顶结构便不存在弹性失稳 问题。其次,使用薄膜等轻质材料作为屋面材料, 问题。其次,使用薄膜等轻质材料作为屋面材料,使 得结构自重相当轻。 得结构自重相当轻。
兰伯特圣路易市 航空港候机室
展览馆(波形装配式薄壳) 都灵 展览馆(波形装配式薄壳)
网架结构
使用比较普遍的一种大跨度屋顶结构。 网架屋顶结构 使用比较普遍的一种大跨度屋顶结构。这种结构 整体性强,稳定性好,空间刚度大,防震性能好。 整体性强,稳定性好,空间刚度大,防震性能好。网构架高度 较小,能利用较小杆形构件拼装成大跨度的建筑, 较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用 建筑空间。适合工业化生产的大跨度网架结构, 建筑空间。适合工业化生产的大跨度网架结构,外形可分为平 板型网架和壳形网架两类,能适应圆形、方形、 板型网架和壳形网架两类,能适应圆形、方形、多边形等多种 平面形状。平板型网架多为双层,壳形网架有单层和双层之分, 平面形状。平板型网架多为双层,壳形网架有单层和双层之分, 并有单曲线、双曲线等屋顶形式。 并有单曲线、双曲线等屋顶形式。
工程实例: 工程实例: 1:北京工人体育馆悬索屋盖 : 2:德国法兰克福国际航空港飞机库(斜拉索) :德国法兰克福国际航空港飞机库(斜拉索)

大跨度空间结构

大跨度空间结构

4.空间结构的发展、种类及应用大跨度空间结构具有受力合理、自重轻、造价低、结构形体和品种多样, 是建筑科学技术水平的集中表现, 因此各国科技工作者都十分关注和重视大跨度空间结构的发展历程、科技进步、结构创新、形式分类与实践应用.(一)谈到空间结构的发展历史, 就要追溯到公元前14 年建成的罗马万神殿, 是一幢由砖、石、浮石、火山灰砌成的拱式结构, 圆形结构, 直径43*5m, 净高43* 5m, 顶部厚度120cm, 半球根部支承在620cm 厚的墙体上,穹顶的平均厚度370cm,我国用砖石砌成代表工程是建于明洪武14 年( 公元1381年) 南京无梁殿, 平面尺寸38m * 54m, 净高22m . 以穹顶屋盖结构为主轴线, 时间跨度从公元前14年到2009 年共二千多年. 从中可以看出, 各种类型的空间结构只在近百年来有所发展, 特别是近二三十年来, 开拓和创新的速度更趋频繁.( 1) 以砖、石等建筑材料筑成的拱式穹顶, 充分利用拱券合理传力的原理, 有连环拱、交叉拱、拱上拱、大拱套小拱. 自罗马万神殿建成以后, 如1612 年建成的罗马圣彼得教堂和建于约300 年前的伦敦圣保罗大教堂, 其跨度均比罗马万神殿小, 但是装修更庄重、屋顶更高. 因此, 以砖、石等筑成的拱式穹顶,长期来基本上没有更进一步的发展和创新.( 2) 自1925 年在德国耶拿玻璃厂建成历史上第一幢直径40m 的钢筋混凝土薄壳结构以后, 到二十世纪五六十年代, 世界各国的薄壳结构发展到了高潮. 罗马奥运会小体育馆的平面直径59* 2m 的带肋薄壳( 图3) 以及北京火车站35m * 35m 的双曲扁壳是当时特别推荐的. 一般来说, 40m~ 50m 跨度的钢筋混凝土薄壳穹顶, 其混凝土的折算厚度约为8cm~ 10cm, 是罗马万神殿平均厚度的1/ ( 50~40) ; 结构自重约为( 200~ 250) kg / m2 , 是罗马万神殿平均自重的1/ ( 50~ 30) . 前苏联和我国还编制出版颁发了钢筋混凝土薄壳结构设计行业规程, 以便广大设计人员推广薄壳结构的应用( 3) 生铁、普通钢、高强钢、铝合金等建筑材料的生产和工程应用, 研究开发了网架网壳等格构式空间结构. 1924 年建成了世界上第一个直径为15m 的半球形单层网壳, 采用生铁材料, 用于德国耶那蔡司天文馆. 由于网格结构刚度大, 用材省、性能好, 便于工厂制作现场装配, 至二十世纪六、七十年代网格结构有了蓬勃的发展. 当时, 有代表性的工程如1970 年建成的日本大阪博览会展馆六柱支承108m* 292m 网架, 1968 年建成的首都体育馆99m*112* 2m 网架, 1973 年建成的名古屋国际展览馆134m 直径圆形平面网壳, 1967 年建成的郑州体育馆64m 直径圆形平面助环型单层网壳. 60m 左右跨度网格结构自重约为( 40~ 50) kg / m2 , 是同等跨度薄壳结构自重的1/ ( 4~ 5) . 1997 年从美国引进建成了铝合金的上海体操馆, 68m 直径的圆形平面单层网壳, 自重仅12kg/ m2 , 是相应跨度钢网壳自重的1/ ( 4~ 5) .( 4) 悬索结构要追溯到我国在公元前285 年建成跨越四川岷江的灌县竹索桥-----安澜桥和1703年建成跨越大渡河的铁链桥----- 泸定桥. 但在房屋建筑上的应用要首推于1953 年建成的美国北卡州瑞雷竞技馆, 近似圆形平面直径91* 5m 的鞍形索网结构. 此后, 在二十世纪六七十年代我国建成了当时著名的三大悬索结构: 1961 年建成跨度94m双层车辐式圆形平面的北京工人体育馆,1967 年建成跨度60m * 80m 鞍形索网式椭圆平面的浙江人民体育馆, 1979 年建成跨度61m 双层车辐式( 索与内孔相切) 圆形平面的成都城北体育馆. 悬索结构自重小、屋盖轻、施工也比较方便成熟, 无需大型的机具设备, 是有推广应用前景的空间结构.1988 年在加拿大加尔加里建成当时跨度最大的悬索结构冰球馆, 是一幢135*3m * 129* 4m 椭圆平面鞍形索网悬挂薄壳( 5) 二十世纪七八十年代气承式充气膜结构发展到一个高潮, 在美国、加拿大和日本共建成了超百米跨度的十余幢大型体育场馆. 其中有代表性的是美国在1975 年建成的168m *220m 长椭圆平面庞提亚克体育馆和日本在1988 年建成的180m * 180m 方椭圆平面东京后乐园棒球馆. 由于气承式膜结构要不时地耗能充气, 以及庞提亚克体育馆曾发生垮塌事故, 二十世纪九十年代后已基本不再兴建气承式充气膜结构.( 6) 为1988 年汉城奥运会的召开, 1986 年建成了120m 跨度圆形平面的索穹顶综合馆用钢指标13.5kg/ m2 ; 为1996 年亚特兰大奥运会召开, 1995 年建成了192m* 240m 椭圆平面的索穹顶主赛馆, 用钢指标25kg/ m2 . 这二幢索穹顶的建立使空间结构的科技水平达到了一个崭新的高峰, 结构体系新颖、高效, 其用钢指标仅约为跨度L的12L/ 100( 跨度L 以m 计, 用钢指标以kg / m2 计,例如100m 跨度的索穹顶, 其用钢指标约为12kg/m2 ) . 索穹顶在中国大陆尚属空白, 国外的技术一直保密, 然而浙江大学、同济大学、建研院等高校、科研单位已进行了十余年的研究和试验工作, 对索穹顶的受力特性和分析计算已有比较完整的认识.(二)刚性空间结构的组成、分类与实践应用空间结构是由基本单元组成或集合而成, 基本单元( 也是基本构件) 有刚性基本单元: 板壳单元、梁单元和杆单元, 也有柔性基本单元: 索单元和膜单元. 可以说, 由刚性基本单元组成的空间结构可称为刚性空间结构.(1)仅由一种板壳单元组成的刚性空间结构, 现在有三种具体结构形式a)薄壳结构:通常指光面的、但可包括等厚度和变厚度的钢筋混凝土薄壳结构. 根据其几何外形又可分为旋转壳、球面壳、柱面壳、双曲扁壳、鞍形壳、扭壳和劈锥壳等. 典型工程如当时我国跨度最大的球面薄壳结构是60m 直径圆形平面的新疆某机械厂金工车间b) 折板结构:用于工业厂房和车站站台较多的是一种比较简单的V 形折板, 非预应力的可做到27m 跨度, 预应力的可做到36m 跨度. 折板结构的截面还可采用多折线的, 此外也可采用多面体空间折板结构.c)波形拱壳结构:波形拱壳结构的特点使截面的抗弯刚度可大幅度的增加, 提高整个结构的刚度和稳定性. 有钢筋混凝土波形拱壳结构, 如1960 年建成的罗马奥运会大体育馆, 为球面波形拱壳结构, 跨度100m. 也有薄钢板的柱面波形拱壳结构.(2)仅由一种梁单元组成的刚性空间结构, 现有五种具体结构形式a)单层网壳:工程中应用最多的是单层钢网壳, 其几何外形类同于薄壳结构的几何外形. 网格形式对于球面网壳有助环型、助环斜杆型、三向网格型和短程线型等; 对于柱面网壳有联方网格型、纵横斜杆型、三向网格型和米字网格型等 b) 空腹网架:通常是由钢筋混凝土的平面空腹桁架发展而来, 主要有两向空腹网架和三向空腹网架, 可用于屋盖结构也用于楼层结构.c) 空腹网壳.d)树状结构,这是近年来采用的一种新结构,实际上是一种多级分支的立柱结构,柱杆和枝支杆都可由梁单元集成。

大跨度空间结构设计

大跨度空间结构设计
大跨度空间结构设计
contents
目录
• 引言 • 大跨度空间结构的特点与类型 • 大跨度空间结构的设计理念 • 大跨度空间结构的材料选择 • 大跨度空间结构的施工方法 • 大跨度空间结构的案例分析 • 大跨度空间结构的发展趋势与挑战

01 引言
主题简介
大跨度空间结构是指跨越较大空间的建筑结构,通常用于大型公共设施、工业厂 房、桥梁等。
其他建筑
大跨度空间结构还广泛应用于其他类型的建筑中,如机场航站楼、工业厂房、商业中心等。这些建筑 通常需要大跨度的屋盖结构或跨越障碍物的桥梁结构,以满足建筑的功能需求。
其他建筑的大跨度空间结构设计通常采用多种结构形式的组合,如预应力混凝土和钢结构的组合、混 合结构等。这些结构形式能够满足建筑的承载能力和稳定性要求,同时保证建筑的安全性和经济性。
大跨度空间结构设计涉及多个学科领域,如结构工程、材料科学、计算机科学等 ,需要综合考虑多种因素,如结构安全性、经济性、施工可行性等。
重要性及应用领域
大跨度空间结构设计在现代建筑中具 有重要意义,能够满足大型设施的建 筑需求,提高空间利用率和功能性。
应用领域包括大型体育场馆、会展中 心、机场航站楼、工业厂房等,这些 设施需要大跨度空间来满足多功能需 求和高效利用空间。
07 大跨度空间结构的发展趋 势与挑战
新材料的应用
高强度钢材
高强度钢材具有更高的屈服强度 和抗拉强度,能够减轻结构自重,
提高结构承载能力。
复合材料
如碳纤维、玻璃纤维等复合材料, 具有轻质、高强、耐腐蚀等特点, 可应用于大跨度空间结构的节点
和连接部位,提高结构性能。
智能材料
如形状记忆合金、光纤等智能材 料,能够实现自适应调节和实时 监测,提高大跨度空间结构的稳

大跨空间结构的主要形式及特点

大跨空间结构的主要形式及特点

悬索结构形式
北京工人体育馆
悬索结构的特点
悬索结构的受力特点是仅通过索的轴向拉伸 来抵抗外荷载的作用!结构中不出现弯距和 剪力效应,可充分利用钢材的强度,悬索结 构形式多样布置灵活,并能适应多种建筑平 面。由于钢索的自重很小,屋盖结构较轻, 安装不需要大型起重设备,但悬索结构的分 析设计理论与常规结构相比,比较复杂,限 制了它的广泛应用"
3、膜结构
薄膜结构也称为织物结构,是20世纪中叶发展 起来的一种新型大跨度空间结构形式。它以性能优良 的柔软织物为材料, 由膜内空气压力支承膜面,或利 用柔性钢索或刚性支承结构使膜产生一定的预张力, 从而形成具有一定刚度、能够覆盖大空间的结构体系。
膜结构的主要形式
膜结构形式上主要有气 压式膜结构、气承式膜 结构、混合式膜结构和 悬挂薄膜结构。
大跨度空间结构往往是衡量一个国家或 地区建筑技术水平的重要标志。其结构 形式主要包括网架结构、网壳结构、悬 索结构、膜结构和薄壳结构等
五大空间结构及各类组合空间结构,形 态各异的空间结构在体育场馆、会展中 心、影剧院、大型商场、工厂车间等建 筑中得到了广泛的应用。
1、 网架结构
由多根杆件按照某种规律的几何图形通 过节点连接起来的空间结构称为网格结构。 其中双层或多层平板形网格结构称为网架 结构或网架。通常采用钢管或型钢材料制 作而成。
网架结构的主要特点
空间工作,传力途径简捷。重量轻、刚度大、抗 震性能好、施工安装简便。网架杆件和节点便定 型化、商品化、可在工厂中成批生产,有利于提 高生产效率。网架的平面布置灵活,屋盖平整, 有利于吊顶、安装管道和设备。网架的建筑造型 轻巧、美观、大方。便于建筑处理和装饰。
2、网壳结构
曲面形网格结构称为网壳结构。有单层网 壳和双层网壳之分,网壳的用材主要有钢网 壳、木网壳、钢筋混凝土网壳等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i=2
n
S :作用在网架上的组合荷载效应设计值
永久荷载标准值
γ 0 :结构重要性系数,分别取1.1、1.0、0.9 SG :永久荷载效应设计值 SG = γ G SGk
永久荷载分项系数
SQ1 SQi :第一个可变荷载和第 i 个可变荷载效应设计值 SQ1 = γ Q SQ1K SQi = γ Q SQik
沿周边2—3个网格区域内杆件的长细比不应大于180: 在地震作用下,周边杆件地震作用效应的动静力比(地震作用 效应与静力作用效应之比)都大于1,常常会发生杆件内力变 号,故容许长细比均按压杆考虑 有檩体系屋盖的檩条必须与网架可靠连接,并应有足够的 支承长度,若采用焊接,焊缝长度不应小于60mm; 无檩体系屋盖的钢筋混凝土屋面板必须保证与网架三点焊 牢,屋面板搁置长度不应小于80mm 网架屋面排水坡度的形成宜采用变高度或整个网架起拱办 法,在上弦节点上加小立柱的办法将使屋面质量集中在小立 柱顶端,对网架抗震不利
2.地震作用下的内力计算
•振型分解反应谱法 •时程分析法 •简化计算方法
规程推荐的简化计算方法: (1)竖向地震作用 作用在网架节点上 i 的竖向地震作用标准值 FEVki = ±ψ i Gi
Gi :节点 i 的重力荷载代表值,恒载取100%,雪荷载及
屋面积灰荷载取50%,不考虑屋面活荷载
ψ i :竖向地震作用系数
1.0l 1.0l 1.0l
0.9l 0.9l 0.8l
1.0l 1.0l 0.8l
(3)网架杆件的容许长细比
λ = l0 / rmin
长细比 杆件计算长度
杆件截面最小回转半径
λ ≤ [λ ]
杆件 容许长细 比 受压杆件
网架杆件的容许长细比
受拉杆件 一般杆件 400 支座附近 直接承受动 杆件 力荷载杆件 300 250
(1)焊接空心球节点 (2)螺栓球节点 (3)焊接钢板节点
焊接空心球节点
螺栓球节点
(1)焊接空心球节点
节点外形 无肋空心球剖面
有肋空心球剖面
节点外形 优点: 构造简单,球体外形美观,具有万向性
缺点: 用钢量较大,节点用钢量占网架总用钢量的20%—25% 冲压焊接费工,焊接质量要求高
空心球体尺寸:
Piz = ∑ P = ∑ − EΔ tαAik cos γ ik
k =1 k iz k =1
因温度变化而引起的节点不平衡力列向量
{P }= [P
t
1x
Py 1
P z L Pix 1
Piy
Piz L Pnx
Pny
Pnz
]
T
3. 将节点不平衡力反向作用在节点上
由节点不平衡 力而引起的节 点位移列向量
作用于网架节点 i 上的水平地震作用标准值:
Gi Fi = FEK ∑ Gi Gi :作用于节点 i 上的节点重力荷载代表值
(3)网架的抗震构造要求 建造在抗震地区的网架结构,必须满足如下构造要求: 抗震设防烈度为7度和7度以上时, 网架在其支承平面周边区段宜设置水平支撑
正交正放类网架
正交斜放类网架
组合系 数值
0.5
0.5
1.0
0.5
0.3
八、网架结构的杆件和节点
1. 杆件的设计与构造 2. 杆件节点的设计与构造 3. 支座节点
1. 杆件的设计与构造
(1)网架杆件材料与截面形式
钢材:Q235、Q345 截面形式:圆管、双角钢、单角钢、H型钢、方管
(2)网架杆件的计算长度
杆件 弦杆 支座腹杆 腹杆 节点 螺栓球节点 焊接空心球节点 板节点
钢管杆件传来的 轴心压力设计值
N σc = ≤ f An
钢材的抗压强度
紧固螺钉孔处的 净截面面积
当网架所有节点均被约束时,因温度变化而引起杆件
1 N ij = − EΔ tαAij
ij
的固端内力为:
E
:钢材的弹性模量 :钢材的线膨胀系数
Δ t :温差(℃),以升温为正
α
杆件
α = 1.2 ×10 −5 / 0C
O
Aij
i
:杆件的截面积
X
ij 在 i
端的固端节点力为
Y
Z
1 Pixj = N ij cos α ij = − EΔ tαAij cos α ij 1 Piyj = N ij cos β ij = − EΔ tαAij cos β ij 1 Pizj = N ij cos γ ij = − EΔ tαAij cos γ ij
七、网架结构的荷载、作用与效应组合
1. 永久荷载 2. 可变荷载 3. 温度作用 4. 地震作用 5. 荷载效应组合
1. 永久荷载
(1) 网架杆件自重与节点自重 γ = 78.5kN / m 3 按钢材容重估算,钢材容重为 (2) 楼面或屋面覆盖材料自重 (3) 吊顶材料自重 (4) 设备管道自重
ψ c :可变荷载的组合系数,当有风荷载参与组合时取0.6,
当没有风荷载参与组合时取1.0
可变荷载分项系数
可变荷载标准值
对于抗震设计,荷载效应组合的一般表达式为:
重力荷载代表值 水平地震作用标准值 竖向地震作用标准值
S = γ 0 (γ G CG GE + γ EhC Eh Ehk + γ EvC Ev Evk )
设防烈度 8 9 场地类别 Ⅰ —— 0.15 Ⅱ 0.08 0.15 Ⅲ 0.10 0.20
(2)水平地震作用 将网架当作一块刚性平板简化为单质点体系 结构的总水平地震作用标准值:
FEK = α1GE
α1 :相应于结构基本自振周期的水平地震影响系数,
按建筑抗震设计规范确定
GE :作用于屋盖上的全部重力荷载代表值
[K ]{δ } = −{P t } {δ } = [u1 v1 w1 L
{δ } = −[K ]−1 {P t }
ui
vi
wi L un
vn
wn ]
T
由节点不平衡力而引起的杆件内力为
N =
2 ij
EAij lij
[(u
j
− ui )cos α ij + (v j − vi )cos β ij + (w j − wi )cos γ ij
第二部分 网架结构
Spatial Grid Structures
五、网架结构在温度作用下的内力计算
将网架各节点约束: 求出因温度变化引起的杆件固端内力和各节点的不平衡力
取消约束:将节点不平衡力反向作用在节点上, 求出由节点不平衡力引起的杆件内力
将杆件的固端内力和由节点不平衡力引起的杆件内力叠加
1. 因温度变化而引起的杆件固端内力
α 1 β γ N ij
N1 ji
j
2. 因温度变化而引起的节点不平衡力
设与节点
m
i
相连的杆件有 m 根
m
O
X
Pix = ∑ P = ∑ − EΔ tαAik cos α ik
k =1 m k ix k =1 m
Y
i
Z
Piy = ∑ Piyk = ∑ − EΔ tαAik cos β ik
k =1 m k =1 m
180
(4)网架杆件的最小截面尺寸
圆钢管: 角钢:
Φ 48mm × 3mm L56mm × 36mm × 3mm 2mm L 45mm × 3mm
薄壁型钢:壁厚不小于
(5)杆件截面计算
承载力(强度与稳定性)要求:
N σ= ≤ f ϕA
压杆稳定系数, 对拉杆为1.0
刚度要求:
λ ≤ [λ ]
2. 杆件节点的设计与构造
⎛ t 2d 2 ⎞ ⎟ ≥ N c max N c = η c ⎜ 400td − 13.3 ⎜ D ⎟ ⎠ ⎝
承载力提高系数 不加肋取1.0;加肋取1.4 与空心球相连的杆 件的最大轴心拉力
N t = 0.55ηt tdπf ≥ N t max
承载力提高系数 不加肋取1.0;加肋取1.1
圆钢管与空心球的连接: 当焊缝质量达到二级时,钢管与焊缝等强,按对接焊缝计算 否则按斜角角焊缝计算:
(2) 螺栓球节点
优点: 节点小、重量轻,节点用钢量占网架用钢量的10% 运输、安装方便,可拆卸 缺点: 球体加工复杂,零部件多,加工精度高,价格较贵
受力特点:
拧紧螺栓的过程,相当于对节点施加预应力,螺栓受预拉力,套 筒受预压力,在节点上形成自相平衡的内力 当网架受荷后,拉杆拉力通过螺栓受拉传递,随着荷载增加,套筒预 压力减小,破坏时拉杆拉力全由螺栓承受 对于压杆,通过套筒受压传力,螺栓预拉力随荷载增加减小,到破 坏时,杆件压力全由套筒承受
抗拉强度 设计值 杆件的最大 拉力设计值
N = ψAeff f t ≥ N max
b t b
螺栓直径对承载力的影响系数 直径<30mm时取1.0 直径>30mm时取0.93 螺栓的有效截面积
套筒的设计:
套筒的长度:
通常取6mm
Ln = a + b1 + b2
滑槽长度
通常取4mm
套筒的设计: 套筒的抗压强度:
μ s :风荷载体形系数 μ z :风压高度变化系数
w 0 :基本风压,按50年一遇的风压采用, 不得小于 0 . 3 kN / m 2
根据厂房性质考虑积灰荷载 (4) 积灰荷载 (5) 吊车荷载
5. 荷载效应组合
对于非抗震设计,荷载效应组合的一般表达式为:
S = γ 0 ( SG + SQ1 + ψ c ∑ SQi )
重力荷载代表值: 取结构和构配件自重标准值与各可变荷载组合值之和 可变荷载组合系数值
屋 面 活 荷 载 不 考 虑 按实际情况 考虑的楼面 活荷载 按等效均布荷载考 虑的楼面活荷载 藏书 库、档 案库 0.8 其它民用 建筑 吊车悬吊物 重力 硬钩 吊车 软钩 吊车 不考 虑
相关文档
最新文档