山东省各地市2013届高三文科数学试题分类汇编10:概率_Word版含答案
2013学年高考文科数学年山东卷答案
河南省2013年初中学业水平暨高级中等学校招生中考试试卷数学答案解析一、选择题 1.【答案】A【解析】2-的相反数是2,故选:A .【提示】根据相反数的定义:只有符号不同的两个数叫做互为相反数. 【考点】相反数 2.【答案】D【解析】A .不是中心对称图形,也不是轴对称图形,故本选项错误; B .不是中心对称图形,是轴对称图形,故本选项错误; C .是中心对称图形,不是轴对称图形,故本选项错误; D .既是中心对称图形又是轴对称图形,故本选项正确. 故选D .【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形,轴对称图形 3.【答案】D【解析】(2)(3)0x x -+=,20x -=,30x +=,12x =,23x =-,故选D . 【提示】根据已知得出两个一元一次方程,求出方程的解. 【考点】解一元二次方程的因式分解法故选C .【提示】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数. 【考点】中位数 5.【答案】B【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“3”与“5”是相对面,“1”与“6”是相对面. 故选B .【提示】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【考点】三视图 6.【答案】B【解析】不等式组解集为12x -<≤,其中整数解为0,1,2. 故最小整数解是0. 故选B .【提示】先求出不等式组的解集,再求其最小整数解即可. 【考点】一元一次不等式组的整数解 7.【答案】C【解析】A .∵CD 是O 的直径,弦AB CD ⊥于点G ,∴AG BG =,故正确; B .∵直线EF 与O 相切于点D ,∴CD EF ⊥,又∵AB CD ⊥∴AB EF ∥,故正确; C .只有当AC AD =弧弧时,AD BC ∥,当两个互不等时,则不平行,故选项错误; D .根据同弧所对的圆周角相等,可以得到ABC ADC ∠=∠.故选项正确. 故选C .【提示】根据切线的性质,垂径定理即可做出判断. 【考点】切线的性质,垂径定理,圆周角定理 8.【答案】A【解析】∵10a =-<,∴二次函数图像开口向下,又对称轴是直线1x =,∴当1x <时,函数图像在对称轴的左边,y 随x 的增大而增大. 故选A .【提示】抛物线221y x x =-++中的对称轴是直线1x =,开口向下,1x <x <1时,y 随x 的增大而增大.【考点】二次函数的性质 二、填空题 9.【答案】1【解析】原式32 1.=-= 故答案为:1【提示】分别进行绝对值的运算及二次根式的化简,然后合并即可. 【考点】实数的运算 10.【答案】15︒【解析】解:∵60A ∠=︒,45F ∠=︒,∴1906030∠=︒-︒=︒,904545DEF ∠=︒-︒=︒,∵ED BC ∥,∴2130∠=∠=︒,2453015CEF DEF ∠=∠-∠=︒-︒=︒故答案为:15︒【提示】根据直角三角形两锐角互余求出1∠,再根据两直线平行,内错角相等求出2∠,然后根据452CEF ∠=︒-∠计算即可得解.【考点】平行线的性质11.【答案】1故答案为11x - 【提示】原式通分并利用同分母分式的加法法则计算,约分即可得到结果. 【考点】分式的加减法12.【答案】8π故答案为:8π3【提示】根据弧长公式求出扇形的弧长. 【考点】弧长的计算13.【答案】2故答案为:23【提示】列表得出所有等可能的情况数,找出数字之积为负数的情况数,求出所求的概率. 【考点】列表法与树状图法 22OA ︒=⨯故答案为:12.【提示】根据平移的性质得出四边形APP A ''是平行四边形,进而得出AD ,PP '的长,求出面积即可. 【考点】二次函数图像与几何变换15.【答案】3或3【解析】解:当CEB '△为直角三角形时,有两种情况:故答案为:32或3. 【提示】当CEB '△为直角三角形时,有两种情况:①当点B '落在矩形内部时,如图1所示,连结AC ,先利用勾股定理计算出5AC =,根据折叠的性质得90AB E B '∠=∠=︒,而当CEB '△为直角三角形时,只能得到90EB C '∠=︒,所以点A 、B '、C 共线,即B ∠沿AE 折叠,使点B 落在对角线AC 上的点B '处,则EB EB '=,3AB AB '==,可计算出2CB '=,设B E x =,则E B x '=,4CE x =-,然后在Rt CEB '△中运用勾股定理可计算出x ,②当点B '落在AD 边上时,如图2所示,此时ABEB '为正方形. 【考点】翻折变换(折叠问题) 三、解答题 16.【答案】5【解析】解:原式22224441443x x x x x x =+-+-=-++,当x =235=+=.【提示】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将整式的混合运算—化简求值的值代入计算即可求出值. 【考点】整式的混合运算的化简求值 17.【答案】(1)40,100,15% (2)30万人 (3)概率是1答:随机抽查一人,则此人持C 组“观点”的概率是14【提示】求得总人数,然后根据百分比的定义,利用总人数100万,乘以所对应的比例即可求解,利用频率的计算公式.【考点】频数(率)分布表,用样本估计总体,扇形统计图,概率公式18.【答案】(1)证明:∵AG BC ∥,∴EAD DCF ∠=∠,∠AED=∠DFC ,∵D 为AC 的中点,∴AD CD =,∵在ADE △和CDF △中,EAD DCFAED DFC AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CDF AAS △≌△;(2)解:①若四边形ACFE 是菱形,则有6CF AC AE ===,则此时的时间616()t s =÷=; ②四边形AFCE 为直角梯形时,(Ⅰ)若CE AG ⊥,则3AE =,326BF =⨯=,即点F 与点C 重合,不是直角梯形(Ⅱ)若A F B C ⊥,∵ABC △为等边三角形,∴F 为BC 中点,即3BF =,∴此时的时间为32 1.5()s ÷=;故答案为:6;1.5【提示】由题意得到AD CD =,再由AG 与BC 平行,利用两直线平行内错角相等得到两对角相等,利用AAS 即可得证,①若四边形ACFE 是菱形,则有6CF AC AE ===,由E 的速度求出E 运动的时间即可;②分两种情况考虑:若CE AG ⊥,此时四点构成三角形,不是直角梯形;若AF BC ⊥,求出BF 的长度及时间t 的值.【考点】菱形的判定,全等三角形的判定与性质,等边三角形的性质,直角梯形.答:工程完工后背水坡坡底端水平方向增加的宽度AC 约为37.3米【提示】在Rt BAE △中,根据162BE =米,68BAE ∠=︒,解直角三角形求出AE 的长度,然后在Rt DCE △中解直角三角形求出CE 的长度,然后根据AC CE AE =-求出AC 的长度即可. 【考点】解直角三角形的应用的坡度坡角问题20.【答案】(1)32,2⎛⎫⎪⎝⎭(2)直线FB 的解析式2533y x =+ 【解析】解:(1)∵(2,3)BC x ∥轴,点B 的坐标为(2,3),∴2BC =,∵点D 为BC 的中点,∴1CD =,∴∴直线FB 的解析式2533y x =+ 【提示】首先根据点B 的坐标和点D 为BC 的中点表示出点D 的坐标,代入反比例函数的解析式求得k 值,然后将点E 的横坐标代入求得E 点的纵坐标即可,根据FBC DEB △∽△,利用相似三角形对应边的比相等确定点F 的坐标后即可求得直线FB 的解析式.【考点】反比例函数综合题21.【答案】(1)A 种品牌计算器30元每个,B 种品牌计算器32元每个(2)124y x =,232,(05)22.448,(5)x x y x x ≤≤⎧=⎨+>⎩(3)购买超过30个计算器时,B 品牌更合算,购买不足30个计算器时,A 品牌更合算【解析】解:(1)设A 、B 两种品牌的计算器的单价分别为a 元、b 元,根据题意得,231563122a b a b +=⎧⎨+=⎩,解得:3032a b =⎧⎨=⎩,答:A 种品牌计算器30元每个,B 种品牌计算器32元每个;(2)A 品牌:1300.824y x x ==;B 品牌:05x ≤≤,232y x =,5x >时,253232(5)0.722.448y x x =⨯+⨯-⨯=+ 所以,124y x =,232,(05)22.448,(5)x x y x x ≤≤⎧=⎨+>⎩;(3)当12y y =时,2422.448x x =+,解得30x =,购买30个计算器时,两种品牌都一样,购买超过30个计算器时,B 品牌更合算,购买不足30个计算器时,A 品牌更合算【提示】设A 、B 两种品牌的计算器的单价分别为a 元、b 元,然后根据156元,122元列出二元一次方程组,A 品牌,根据八折销售列出关系式即可,B 品牌分不超过5个,按照原价销售和超过5个两种情况列出关系式整理,先求出购买两种品牌计算器相同的情况,然后讨论求解. 【考点】一次函数的应用,二元一次方程组的应用.22.【考点】全等三角形的判定与性质23.【答案】(1)272 2y x x=-++.(2)当m为值为1,2时,以O、C、P、F为顶点的四边形是平行四边形FN PFN FN CFM FN tan tan2∠=∠=点p有2个,如图2所示,注意不要漏解.在求点p坐标的时候,需要充分挖掘已知条件,构造直角三角形或相似三角形,解方程求出点p的坐标.【考点】二次函数综合题。
2013年高考文科数学山东卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013山东,文1)复数z =22i i(-)(i 为虚数单位),则|z |=( ).A .25 B.5 D2.(2013山东,文2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且(A ∪B )={4},B ={1,2},则A ∩=( ).A .{3}B .{4}C .{3,4}D .3.(2013山东,文3)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( ). A .2 B .1 C .0 D .-24.(2013山东,文4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如下图所示,则该四棱锥侧面积和体积分别是( ).A.8B.83C.,83D .8,85.(2013山东,文5)函数f (x )的定义域为( ). A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1] 6.(2013山东,文6)执行两次下图所示的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为( ).A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.87.(2013山东,文7)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,bc =( ).A..2 C.18.(2013山东,文8)给定两个命题p ,q .若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.(2013山东,文9)函数y =x cos x +sin x 的图象大致为( ).10.(2013山东,文10)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为( ).A .1169B .367C .36 D.11.(2013山东,文11)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A.16 B.8 C.3 D.312.(2013山东,文12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当zxy取得最小值时,x +2y -z 的最大值为( ).A .0B .98C .2D .94第2卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2013山东,文13)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为__________.14.(2013山东,文14)在平面直角坐标系xOy 中,M 为不等式组2360,20,0x y x y y +-≤⎧⎪+-≥⎨⎪≥⎩所表示的区域上一动点,则|OM |的最小值是__________. 15.(2013山东,文15)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB=(2,2).若∠ABO =90°,则实数t 的值为__________.16.(2013山东,文16)定义“正对数”:ln +x =0,01,ln ,1,x x x <<⎧⎨≥⎩现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ;②若a >0,b >0,则ln +(ab )=ln +a +ln +b ; ③若a >0,b >0,则ln a b ⎛⎫⎪⎝⎭+≥ln +a -ln +b ; ④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2.其中的真命题有__________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.17.(2013山东,文17)(本小题满分12分)某小组共有A ,B ,C ,D ,E 五位同学,他们的身高(单位:米)及体重指标(2(1)从该小组身高低于(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(2013山东,文18)(本小题满分12分)设函数f (x )2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值; (2)求f (x )在区间3ππ,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.19.(2013山东,文19)(本小题满分12分)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点. (1)求证:CE ∥平面PAD ;(2)求证:平面EFG ⊥平面EMN .20.(2013山东,文20)(本小题满分12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式; (2)若数列{b n }满足1212112n n n b b b a a a +++=- ,n ∈N *,求{b n }的前n 项和T n .21.(2013山东,文21)(本小题满分12分)已知函数f (x )=ax 2+bx -ln x (a ,b ∈R ). (1)设a ≥0,求f (x )的单调区间;(2)设a >0,且对任意x >0,f (x )≥f (1).试比较ln a 与-2b 的大小.22.(2013山东,文22)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为2. (1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB E 为线段AB 的中点,射线OE 交椭圆C 于点P .设OP =tOE,求实数t 的值.2013年普通高等学校夏季招生全国统一考试数学文史类(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:C解析:44i 134i43i i iz ---==--,所以|z | 5.故选C. 2. 答案:A解析:∵(A ∪B )={4},∴A ∪B ={1,2,3}. 又∵B ={1,2},∴A 一定含元素3,不含4. 又∵={3,4},∴A ∩={3}.3. 答案:D解析:∵f (x )为奇函数,∴f (-1)=-f (1)=111⎛⎫-+ ⎪⎝⎭=-2.4.答案:B解析:由正(主)视图数据可知正四棱锥的底面是边长为2的正方形,高也是2,如图:由图可知PO =2,OE =1,所以PE所以V =13×4×2=83,S =1422⨯5.答案:A解析:由题可知12030x x ⎧-≥⎨+>⎩⇒213x x ⎧≤⎨>-⎩⇒0,3,x x ≤⎧⎨>-⎩ ∴定义域为(-3,0].6. 答案:C解析:第一次:a =-1.2<0,a =-1.2+1=-0.2,-0.2<0,a =-0.2+1=0.8>0,a =0.8≥1不成立,输出0.8.第二次:a =1.2<0不成立,a =1.2≥1成立,a =1.2-1=0.2≥1不成立,输出0.2. 7. 答案:B解析:由正弦定理sin sin a b A B =得:1sin A =,又∵B =2A ,∴1sin A ==∴cos A A =30°,∴∠B =60°,∠C =90°,∴c 2. 8. 答案:A解析:由题意:q ⇒⌝p ,⌝p q ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A.9.答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 10. 答案:B解析:∵模糊的数为x ,则:90+x +87+94+91+90+90+91=91×7, x =4,所以7个数分别为90,90,91,91,94,94,87,方差为s 2=222229091291912949187917(-)+(-)+(-)+(-)=367.11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p⎛⎫== ⎪⎝⎭,故M 点切线的斜率为0x p =M 1,36p p ⎛⎫⎪ ⎪⎝⎭.由1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得p D. 12.答案:C解析:由x 2-3xy +4y 2-z =0得x 2+4y 2-3xy =z ,22443331z x y xyxy xy xy+=-≥-=-=, 当且仅当x 2=4y 2即x =2y 时,z xy有最小值1,将x =2y 代入原式得z =2y 2,所以x +2y -z =2y +2y -2y 2=-2y 2+4y , 当y =1时有最大值2.故选C.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:解析:如图,当AB 所在直线与AC 垂直时弦BD 最短,AC ==CB =r =2,∴BA =BD =14.解析:由约束条件可画出可行域如图阴影部分所示.由图可知OM 的最小值即为点O 到直线x +y -2=0的距离,即d min=. 15.答案:5解析:∵OA =(-1,t ),OB=(2,2),∴BA =OA-OB =(-3,t -2).又∵∠ABO =90°,∴BA ·OB=0,即(-3,t -2)·(2,2)=0, -6+2t -4=0, ∴t =5. 16.答案:①③④三、解答题:本大题共6小题,共74分. 17.解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A ,B ),(A ,C ),(B ,C ),共3个. 因此选到的2人身高都在1.78以下的概率为P =36=12. (2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C ,D ),(C ,E ),(D ,E ),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P =310. 18.解:(1)f (x )2ωx -sin ωx cos ωx1cos 21sin 222x x ωω--ωx -12sin 2ωx=πsin 23x ω⎛⎫-- ⎪⎝⎭.因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2ππ=424ω⨯.因此ω=1. (2)由(1)知f (x )=πsin 23x ⎛⎫-- ⎪⎝⎭.当π≤x ≤3π2时,5π3≤π8π233x -≤.所以πsin 2123x ⎛⎫-≤-≤ ⎪⎝⎭,因此-1≤f (x .故f (x )在区间3ππ,2⎡⎤⎢⎥⎣⎦,-1.19.(1)证法一:取PA 的中点H ,连接EH ,DH . 因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB . 又AB ∥CD ,CD =12AB , 所以EH ∥CD ,EH =CD .因此四边形DCEH 是平行四边形, 所以CE ∥DH .又DH ⊂平面PAD ,CE 平面PAD , 因此CE ∥平面PAD . 证法二:连接CF .因为F 为AB 的中点, 所以AF =12AB . 又CD =12AB , 所以AF =CD . 又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD .又CF 平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点, 所以EF ∥PA .又EF 平面PAD , 所以EF ∥平面PAD . 因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE ⊂平面CEF , 所以CE ∥平面PAD .(2)证明:因为E ,F 分别为PB ,AB 的中点, 所以EF ∥PA .又AB ⊥PA ,所以AB ⊥EF . 同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥CD .又AB ∥CD ,所以MN ∥AB . 因此MN ⊥平面EFG . 又MN ⊂平面EMN ,所以平面EFG ⊥平面EMN . 20.解:(1)设等差数列{a n }的首项为a 1,公差为d ,由S 4=4S 2,a 2n =2a n +1得:11114684,212211,a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知1212112n n n b b b a a a +++=- ,n ∈N *, 当n =1时,1112b a =;当n ≥2时,111111222n n n n n b a -⎛⎫=---= ⎪⎝⎭.所以12n n n b a =,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =212nn -,n ∈N *. 又T n =23135212222nn -++++ ,231113232122222n n n n n T +--=++++ , 两式相减得2311122221222222n n n n T +-⎛⎫=++++- ⎪⎝⎭ 113121222n n n -+-=--, 所以T n =2332nn +-. 21.解:(1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得f ′(x )=221ax bx x+-.①当a =0时,f ′(x )=1bx x-.若b ≤0,当x >0时,f ′(x )<0恒成立, 所以函数f (x )的单调递减区间是(0,+∞). 若b >0,当0<x <1b时,f ′(x )<0,函数f (x )单调递减. 当x >1b时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的单调递减区间是10,b ⎛⎫ ⎪⎝⎭,单调递增区间是1,b ⎛⎫+∞ ⎪⎝⎭.②当a >0时,令f ′(x )=0,得2ax 2+bx -1=0.由Δ=b 2+8a >0得x 1=4b a -x 2=4b a-.显然,x 1<0,x 2>0.当0<x <x 2时,f ′(x )<0,函数f (x )单调递减; 当x >x 2时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的单调递减区间是⎛ ⎝⎭,单调递增区间是⎫+∞⎪⎪⎝⎭. 综上所述,当a =0,b ≤0时,函数f (x )的单调递减区间是(0,+∞);当a =0,b >0时,函数f (x )的单调递减区间是10,b ⎛⎫ ⎪⎝⎭,单调递增区间是1,b ⎛⎫+∞ ⎪⎝⎭;当a >0时,函数f (x )的单调递减区间是⎛ ⎝⎭,单调递增区间是⎫+∞⎪⎪⎝⎭. (2)由题意,函数f (x )在x =1处取得最小值,由(1)是f (x )的唯一极小值点,故4b a-=1,整理得2a +b =1,即b =1-2a . 令g (x )=2-4x +ln x ,则g ′(x )=14xx-, 令g ′(x )=0,得x =14.当0<x <14时,g ′(x )>0,g (x )单调递增;当x >14时,g ′(x )<0,g (x )单调递减.因此g (x )≤14g ⎛⎫⎪⎝⎭=1+1ln 4=1-ln 4<0,故g (a )<0,即2-4a +ln a =2b +ln a <0,即ln a <-2b . 22解:(1)设椭圆C 的方程为2222=1x y a b+(a >b >0),由题意知222,222,a b c ca b ⎧=+⎪⎪=⎨⎪=⎪⎩解得a b =1.因此椭圆C 的方程为22x +y 2=1.(2)当A ,B 两点关于x 轴对称时, 设直线AB 的方程为x =m ,由题意m <0或0<m将x =m 代入椭圆方程22x +y 2=1,得|y |所以S △AOB =|m =. 解得m 2=32或m 2=12.① 又OP =tOE =()12t OA OB + =12t (2m,0)=(mt,0), 因为P 为椭圆C 上一点,所以22mt ()=1.② 由①②得t 2=4或t 2=43.又因为t >0,所以t =2或t =3. 当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =kx +h . 将其代入椭圆的方程22x +y 2=1, 得(1+2k 2)x 2+4khx +2h 2-2=0,设A (x 1,y 1),B (x 2,y 2),由判别式Δ>0可得1+2k 2>h 2, 此时x 1+x 2=2412kh k -+,x 1x 2=222212h k -+, y 1+y 2=k (x 1+x 2)+2h =2212h k +,所以|AB |=因为点O 到直线AB 的距离d, 所以S △AOB =1|AB |d又S △AOB||h =③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0,解得n =4h 2或n =243h , 即1+2k 2=4h 2或1+2k 2=243h .④ 又OP =tOE =()12t OA OB + =12t (x 1+x 2,y 1+y 2)=222,1212kht ht k k ⎛⎫- ⎪++⎝⎭, 因为P 为椭圆C 上一点, 所以2222212121212kh h t k k ⎡⎤⎛⎫⎛⎫-+=⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎢⎥⎣⎦,即222112h t k =+.⑤将④代入⑤得t 2=4或t 2=43,又知t >0,故t =2或t .经检验,适合题意.综上所得t =2或t =3.。
2013年山东省高考数学试卷(文科)答案与解析讲解学习
2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()=,.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()4S=V=5.(5分)(2013•山东)函数f(x)=的定义域为()=6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,Bb==得:===cosA=8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q....x=时,10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()B=91(.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,B求出函数在,得),得,则抛物线的焦点与双曲线的右焦点的连线所在直线方程为处的切线的斜率为由题意可知,得).p=12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,代入=+,求得二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.=,2=214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.利用已知条件求出解:因为知,=,所以16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号),,.时,此时lnb=,此时则,此时,,<三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)2(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.p=p=18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.[]﹣,故周期为,所以)时,,,[]上的最大值和最小值分别为:19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.AB CD=20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.,+++++时,=时,=)﹣(==,+++,T++T+++)﹣﹣﹣21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.时,.可得出﹣<)上是减函数,在(),单调递增区间是(,,)上,导数小于在区间(,),单调递增区间是(,,),单调递增区间是(,)知,是函数的唯一极小值点故=1==0x=<<(22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.(Ⅰ)设椭圆的标准方程为,解出即可得到椭圆的方程.的关系,再利用(Ⅰ)由题意设椭圆的标准方程为,焦距为,解得,∴椭圆的方程为.,另一方面,==,∴,,∴,,解得,或,∴综上可得:。
2013年全国各地高考数学试题及解答分类汇编大全(15 概率、统计、统计案例、推理与证明)
2013年全国各地高考数学试题及解答分类汇编大全 (15概率、统计、统计案例、推理与证明)一、选择题:1.(2013安徽理)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) (A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C【解析】 对A 选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A 选项错。
对B 选项,系统抽样要求先对个体进行编号再抽样,所以B 选项错。
对C 选项,男生方差为40,女生方差为30。
所以C 选项正确。
对D 选项,男生平均成绩为90,女生平均成绩为91。
所以D 选项错。
所以选C2.(2013安徽文)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 (A )23 (B) 25 (C) 35 (D )910【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++== 【考点定位】考查古典概型的概念,以及对一些常见问题的分析,简单题.3.(2013福建文) 已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b y ˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b'<'<ˆ,ˆ 【答案】C【解析】本题考查的是线性回归方程.画出散点图,可大致的画出两条直线(如下图),由两条直线的相对位置关系可判断a a b b'>'<ˆ,ˆ.故选C4.(2013福建理) 某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++= 故分数在60以上的人数为600*0.8=480人.5.(2013广东理) 设整数4n ≥,集合{}1,2,3,,X n = .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( ) A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈ 【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.6.(2013湖北文) 四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+;③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①② B .②③ C .③④ D . ①④ 答案 D 解析 ①中,回归方程中x 的系数为正,不是负相关;④方程中的x 的系数为负,不是正相关,∴①④一定不正确.7. (2013湖南文) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。
山东省2014届高三文科数学备考之2013届名校解析试题分类汇编10:概率-Word版含答案
山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编10:概率一、选择题1•(【解析】山东省潍坊市2013 届高三上学期期末考试数学文(a ))已知集合21 xA x|2xx 3 0,Bx| y 1g,在区间 3,3上任取一实数 x ,贝x A B ”的概率x 3为(A) 1(B) 1 (C) 1 (D) 148 312【答案】C 【解析】Ax|2x 2 x 3 0 {x 1 x -},1 x 1 xB x|y 1g ——{x —— 0} {x (1 x )(x 3) 0} {x | 3 x 1}, 所 以x 3 | x 3AI B {x |1 x 1},因为x A B ,所以1 x 1 .根据几何概型可知x A B 的概率为 1 ( 1) 21,选 C.3 ( 3) 6 32 •(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题) 从1,2,3,4,5中随机选取一为5 2 3,选C.5 05二、填空题使得每一横行成等差数列,每一纵列成等比数列,则a b c 的值为个数为a 从2,3,4中随机选取一个数 b,则b a 的概率是 A. 4B.3C.2D. 1【答案】C 从两个集合中各选1 个数有 15 种,满足 b a 的数有,(1,2),(1,3),(2,3),(1, 4),(2, 4),(3, 4)共有6个,所以b a 的概率是62,选C.15 5设p 在0,5上随机地取值,则关于x 的方程x 2 px 10有实数根的概率为A1 r 234 A.B.C. 一D.55 55【答案】C方程有实根 ,则p 2 4 0,解得 p2(舍去).所以由几何概型可知所求的概率4 •(【解析】山东省青岛一中2013届高三1月调研考试文科数学)在如图的表格中,每格填上一个数字后3 •(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)1 1 32【答案】 2b11,所以2■ P¥a【解析】由题意知 2a•(【解析】 a=(1,-2),b=( 2.第三列和第五列的公比都为- m2,所以33 8,所5 3 16 16 山东省临沂市 5 —c 1616 ,所以IdaJ 321品1 —J ■心* 1 —L 4m 屮* 4匚亠*2013届高三3月教学质量检测考试(一模)x ,y ),若 x , y € [1,4],则满足 a b 0的概率为 数学 (文)试题)已知向量因为a b 0 ,所以x 2y °,又14.做出4域如图J1 {yT1 *■ 1 ■DrjiLk I-1 1J1 12 3【答案】 1 时,x 2,y2,即 B(2,0).当 x 4 时,yD(4,2),所以 BC 2,CD 1,即三角形 1BCD 的面积为1 2 1.所以由几何概型可知满足4 c 2 ,即2r ra b 0的概率为13 3三、解答题6 •(山东省淄博市 2013届高三复习阶段性检测(二模)数学(文)试题)某校从高一年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六 段:40,50 , 50,60 ,, 90,100 ,得到如图所示的频率分布直方图(I)若该校高一年级共有学生 1000人,试估计成绩不低于 (II)为了帮助学生提高数学成绩,学校决定在随机抽取的 50名学生中成立“二帮一”小组90,100中选两位同学,共同帮助40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙恰好被安排在同一小组的概率 【答案】解:(I )根据频率分布直方图, 成绩不低于60分的频率为110 (0.004 0.010) 0.86由于该校高一年级共有学生 1000人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于 60分的人数为1000 0.86 860人(n )成绩在 40,50分数段内的人数为 50 0.04 2人 成绩在90,100分数段内的人数为50 0.15人,[40,50)内有2人,记为甲、A [90,100)内有5人,记为乙、B C D E .则“二帮一”小组有以下 20种分组办法:甲乙B,甲乙C,甲乙D,甲乙E ,甲BC 甲 BD 甲 B E ,甲 CD 甲 C E ,甲 DE A 乙 BA 乙 CA 乙 D A 乙 E,ABCABDABE ACD ACE ADE其中甲、乙两同学被分在同一小组有4种办法:甲乙B,甲乙C,甲乙D 甲乙E4 1 所以甲乙两同学恰好被安排在同一小组的概率为P 4' 2057 .(【解析】山东省济宁市 2013届高三第一次模拟考试文科数学)某校从参加高三年级期中考试的学生中随机统计了 40名学生的政治成绩,这40名学生的成绩全部在 40分至100分之间,据此绘制了如图所示的 样本频率分布直方图.(I)求成绩在[80,90)的学生人数;(n )从成绩大于等于 80分的学生中随机选 2名学生,求至少有I 名学生成绩在[90,100]的概率.60分的人数;,即从成绩0.032 0.024 0X20 0.Q1Q 0.W4【答案】解:(I)因为各组的频率之和为1,所以成绩在区间[80,90)的频率为1 (0.005 2 0.015 0.020 0.045) 10 0.1,所以,40名学生中成绩在区间[80,90)的学生人数为40 0.1 4(人)(n)设A表示事件“在成绩大于等于80分的学生中随机选两名学生,至少有一名学生成绩在区间[90,100]内”,由已知和(I)的结果可知成绩在区间[80,90)内的学生有4人,记这四个人分别为a, b, c,d ,成绩在区间[90,100]内的学生有2人,记这两个人分别为e, f则选取学生的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(a, f ),(b,c),(b,d),(b,e),(b, f), (c,d),(c,e),(c, f), (d,e),(d,f),(e, f)基本事件数为15,事件“至少一人成绩在区间[90,100]之间”的可能结果为所以P(A) 9 158 .(【解析】山东省济南市2013中去图书馆A学习的次数和乙组届高三3月高考模拟文科数学)4名同学寒假假期中去图书馆MSF茎叶图记录了甲组3名同学寒假假期B学习的次数.乙组记录中有一个数据模【答案】解:(I)因为各组的频率之和为1,所以成绩在区间[80,90)的频率为(a,e),(a, f),(b,e),(b, f), (c,e),(c, f ),(d,e),(d, f ),(e, f),基本事件数为9,由 0.04 0.08 0.2 (m 170) 0.040.5得 m 174.5糊,无法确认,在图中以X 表示.甲组乙组JL 9x 89「2112第18题图(1)如果x =7,求乙组同学去图书馆学习次数的平均数和方差 ;⑵ 如果x =9,从学习次数大于 8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学 习的次数和大于 20的概率.【答案】解(1)当x =7时,由茎叶图可知,乙组同学去图书馆学习次数是78,9,12, 所以平均数为7 8 9 12 °x ——49;方差为 s 21[(7 9)2(8 9)2(9 9)2(12 9)2]7.42⑵ 记甲组3名同学为A,A 2,A 3,他们去图书馆学习次数依次为 9,12,11;乙组4名同学为B,B 2,B 3,B 4,他们去 图书馆学习次数依次为 9,8,9,12;从学习次数大于8的学生中人选两名学生,所有可能的结果有15个,它们 是:AA 2,A 1A 3,A 1B1 ,A 1B 3,A 1B 4,A 2A s ,A 2Bl ,A 2B 3,A 2B 4,A 3B 1 ,A 3B 3,A 3B 4, B 1 B 3,B 1 B 4,B 3B 4用C 表示:“选出的两名同学恰好在两个图书馆学习且学习的次数和大于 20”这一事件,则C 中的结果有5个,它们是:A1b,A 2B 4,A 2B 3,A2B,A 3B 4,51 故选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20概率为P(C) 51 . 15 3研修培训,在三个批次中男、女教师人数如下表所示(n )为了调查研修效果,现从三个批次中按1: 60的比例抽取教师进行问卷调查 ,三个批次被选取的人数分 别是多少?(川)若从(n )中选取的教师中随机选出两名教师进行访谈 ,求参加访谈的两名教师“分别来自两个批次”的概率.【答案】 解:(I ) x 360 0.15 54, y 360 0.1 36z 360 86 54 36 94 66 24(n )由题意知,三个批次的人数分别是180,120,60 ,所以被选取的人数分别为 3,2,1 (川)第一批次选取的三个教师设为 A 1,A 2,A 3,第二批次的教师为 B,B 2,第三批次的教师设为 C ,则从这69 .(山东省威海市 2013届高三上学期期末考试文科数学)某普通高中共有教师 360 人,分为三个批次参加全体教师中随机抽取1名,抽到第二、三批次中女教师 分别是0.15、0.1.x, y,z 的值;已知在的概率 (I)求名教师中随机选出两名教师的所有可能组成的基本事件空间为A1A2, A1A3, A1B1, A1B2, AC , A2A3, A2B1, A2B2, A2C, A3B1, A3B2, A3C, B1B2, B1C, B2C }共15 个“来自两个批次”的事件包括1 A B1, AB2 ‘ AC , A2B1, A2B2,A2C ,A3 B1,A3 B2 ,A3C, B1C , B2C }共11个'所以“来自两个批次”的概率p —1510.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155, 160),第二组[160, 165),,第八组[190, 195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(I)求第七组的频率;(n )估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;(川)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x, y ,事件E {|x y| 5},事件F {|x y| 15},求P(EUF).【答案】(I)第六组的频率为0.08 ,所以第七组的频率为501 0.08 5 (0.0082 0.016 0.04 2 0.06)0.06 ;(n)身高在第一组[155,160)的频率为0.008 5 0.04,身高在第二组[160,165)的频率为0.016 5 0.08,身高在第三组[165,170)的频率为0.04 5 0.2,身高在第四组[170,175)的频率为0.04 5 0.2,由于0.04 0.08 0.2 0.32 0.5, 0.04 0.08 0.2 0.2 0.52 0.5估计这所学校的800名男生的身高的中位数为m,则170 m 175所以可估计这所学校的800名男生的身高的中位数为174.5由直方图得后三组频率为0.06 0.08 0.008 5 0.18,所以身高在180cm以上(含180cm)的人数为0.18 800 144人(川)第六组[180,185)的人数为4人,设为a,b,c, d ,第八组[190,195]的人数为2人,设为A, B ,则有ab, ac, ad,bc, bd, cd, aA,bA,cA,dA, aB,bB, cB, dB, AB 共15 种情况,因事件E { |x y 5}发生当且仅当随机抽取的两名男生在同一组,所以事件E包含的基本事件为ab, ac, ad, bc, bd,cd, AB 共7 种情况,故p(E)—15由于|x y|max 195 180 15,所以事件F {|x y 15}是不可能事件,P(F) 0由于事件E和事件F是互斥事件,所以P(EU F) P(E) P(F)71511.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))(本小题满分12分)为了增强学生的环保意识,某中学随机抽取了50名学生举行了一次环保知识竞赛,本次竞赛的成绩(得分均为整数,满分100分)整理得到的频率分布直方图如下图•若图中第一组(成绩为[40,50))对应矩形高是第六组(成绩为[90,100])对应矩形高的一半.(1)试求第一组、第六组分别有学生多少人?(2)若从第一组中选出一名学生,从第六组中选出2名学生,共3名学生召开座谈会,求第一组中学生A和第六组中学生B1同时被选中的概率【答案】由0.04 0.08 0.2 (m 170) 0.04 0.5得m 174.512.(【解析】山东省枣庄市2013届高三3月模拟考试数学(文)试题) 有编号为A,A2,A3,,A 6的6位同学,其中成绩在13秒内的同学记为优秀.(1) 从上述6名同学中,随机抽取一名,求这名同学成绩优秀的概率;(2) 从成绩优秀的同学中,随机抽取2名,用同学的编号列出所有可能的抽取结果,并求这2名同学的成绩都在12.3秒内的概率.【答案】13.【解析】山东省济南市2013届高三上学期期末考试文科数学) 某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组13,14),第二组14,15),,第五组17,18 ,下图是按上述分组方法得到的频率分布直方图(1) 若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数12.(【解析】山东省枣庄市2013届高三3月模拟考试数学(文)试题) 有编号为A,A2,A3,,A 6的6位同学, (2) 若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.频率/组距【答案】解:⑴由频率分布直方图知,成绩在[14,16)内的人数为:50 0.28 50 0.36 32(人)所以该班成绩良好的人数为32人⑵由频率分布直方图知,成绩在[13,14)的人数为50 0.04 2 人,设为x、y ;成绩在[17,18)的人数为50 0.08 4人,设为A、B、C、D若m,n [13,14)时,有xy 1种情况;若m,n [17,18)时,有AB,AC, AD, BC,BD,CD 6种情况;若m,n分别在[13,14)和[17,18)内时,共有8种情况所以基本事件总数为15种,事件“|m n| 1 ”所包含的基本事件个数有8种.8P (| m n | 1)1514.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)有一个不透明的袋子,装有3个完全相同的小球,球上分别编有数字1,2,3.(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为2 2 1b,求直线ax+by+1=0与圆x + y = -有公共点的概率.9 【答案】15.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)某高校组织的自主招生考试,共有1000名同学参加笔试,成绩均介于60分到100分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分为4组:第1组[60,70),第2组[70,80),第3组[80,90),第4组[90,100].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在85分(含85分)以上的同学有面试资格.(I )估计所有参加笔试的1000名同学中,有面试资格的人数;(n)已知某中学有甲、乙两位同学取得面试资格,且甲的笔试比乙的高;面试时,要求每人回答两个问题,假设甲、乙两人对每一个问题答对的概率均为;2若甲答对题的个数不少于乙,则甲比乙优先获得高考加分资格.求甲比乙优先获得高考加分资格的概率.第20题图【答案】 解:(I )设第i(i 1,2,3,4)组的频率为f 「则由频率分布直方图知50 f 4 1 (0.014 0.03 0.036) 10 0.2所以成绩在85分以上的同学的概率 P - f 3 +f 40.036 100.2 0.38,2 2故这1000名同学中,取得面试资格的约有 1Q0Q X 0.38=380人. (n )设答对记为1,打错记为0,则所有可能的情况有: 甲 00乙00, 甲 00乙 10, 甲00乙01 , 甲00乙11 ,甲 10乙00,甲 10乙 10, 甲 10乙01,甲 10乙 11, 甲 01乙 00, 甲 01乙 10, 甲 01乙01 , 甲 01乙 11, 甲 11乙 00, 甲 11乙 10,甲11乙01,甲11乙11,共16个 甲答对题的个数不少于乙的情况有 :甲 00 乙 00, 甲 10 乙 00, 甲 10 乙 10, 甲 10 乙 01 , 甲 01 乙 00, 甲 01 乙 10, 甲 01 乙 01, 甲11乙00,甲11乙01,甲11乙10,甲11乙11 ,共11个16.(【解析】山东省潍坊市 2013届高三第二次模拟考试文科数学)时吃光盘子里的东西或打包带走,称为“光盘族”,否则称为“非光盘族”某班几位同学组成研究性学习(I)求a 、b 的值并估计本社区[25,55]岁的人群中“光盘族”人数所占的比例 ;(n )从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率•故甲比乙优先获得高考加分资格的概率为11 16若人们具有较强的节约意识,到饭店就餐【答案】 解:(1)第一组的人数为50,第一组的频率为0.05,所以n0.051000 人520所以光盘族占比为52%100017.(【解析】山东省德州市 2013届高三3月模拟检测文科数学)对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的 统计表和频率颁直方图如下 :(1求出表中M,p 及图中a 的值;(2)在所取样本中,从参加社区服务的次数不少于 20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.【答案】分组1频举[1035)'10 D. 25 [15.20)24L_ . JCp J[25,30]20.05 件计i118.(【解析】山东省青岛一中2013届高三1月调研考试文科数学) 某日用品按行业质量标准分成五个等级1,234,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率等级系数X依次为分布表如下:X12345(1)若所抽取的20件频率a0.20.45b c日用品中等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;⑵在⑴的条件下,将等级系数为4的3件日用品记为x i,X2,X3,等级系数为5的2件日用品记为y i,y 2,现从x i,X2,X3,y(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求i,y2这5件日用品中任取两件这两件日用品的等级系数恰好相等的概率•【答案】解答:(1)由频率分布表得a+0.2+0.45+b+c=1, a+b+c=0.353因为抽取的20件日用品中,等级系数为4的恰有3 件,所以b= 3 =0.15202等级系数为5的恰有2 件,所以c= 2 =0.120从而a=0.35-b-c=0.1所以a=0.1 b=0.15 c=0.1⑵从日用品X1 , X2 , X3 , ¥,丫2中任取两件,所有可能结果(X1,X2),( X1, X3),( X1,Y.),( X1,YJ,( X2, X3),( X2,Y1),( X2,YJ,( X3,Y I),( X3, Y^),(丫2)共10 种,¥,设事件A表示“从日用品X1, X2, X3, Y|, 丫2中任取两件,其等级系数相等”,则A包含的基本事件为(X1,X2),( X1, X3),( X1, X2),( 丫,篦)共4 个,4故所求的概率P(A)= —=0.41019.(山东省烟台市2013届高三3月诊断性测试数学文) 某学校组织500名学生体检,按身高(单位:cm)分组:第 1 组[155,160),第 2 组[160,165), 第 3 组[165,170),第 4 组[170,175), 第 5 组[175,180],得到的频率分布直方图如图所示•(1)下表是身高的频数分布表,求正整数m,n的值;区间i[155J60)165)[H55, 170)[ITO, 175)[I75r 1801人数5050tn15C(2) 现在要从第1,2,3组中用分层抽样的方法抽取6人,第1,2,3组应抽取的人数分别是多少(3) 在⑵ 的前提下,从这6人中随机抽取2人,求至少有1人在第3组的概率.20.(山东省青岛即墨市2013届高三上学期期末考试数学(文)试题)有六张纸牌,上面分别写有1,2,3,4,5,6六个数字,甲、乙两人玩一种游戏:甲先取一张牌,记下点数,放回后乙再取一张牌,记下点数•如果两个点数的和为偶数就算甲胜,否则算乙胜•(1) 求甲胜且点数的和为6的事件发生的概率;(2) 这种游戏规则公平吗?说明理由.【答案】解:(1)设"甲胜且点数的和为6”为事件A,甲的点数为x,乙的点数为y,则(x,y)表示一个基本事件两人取牌结果包括(1,1),(1,2),(1,5),(1,6),(2,1),(6,1),(6,6) 共36 个基本事件;A 包含的基本事件有(1,5),(2,4),(3,3)(4,2),(5,1) 共5 个,5所以P( A)-36所以,编号之和为6且甲胜的概率为-536⑵这种游戏公平•设“甲胜”为事件B, “乙胜”为事件 C.甲胜即两个点数的和为偶数所包含基本事件为以下18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3)(5,5) ,(6,2),(6,4),(6,6)181 181所以甲胜的概率为P(B) ——;乙胜的概率为P ( C) ——36 2 36 2P(B) P(C)这种游戏规则是公平的•21. (【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题) 甲、乙两名考生在填报志愿时都选中了A、B、C、D四所需要面试的院校,这四所院校的面试安排在同一时间•因此甲、乙都只能在这四所院校中选择一所做志愿,假设每位同学选择各个院校是等可能的,试求:(I)甲、乙选择同一所院校的概率;(n)院校A、B至少有一所被选择的概率【答案】22.(【解析】山东省潍坊市2013届高三上学期期末考试数学文( a)) M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.(I) 求男生成绩的中位数及女生成绩的平均值;(II) 如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?4 3■W 【答案】23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学) 为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取6人进行问卷调查,已知高一、高二、高三的家长委员会分别有54人、1 8人、36人.(I)求从三个年级的家长委员会中分别应抽的家长人数;(n )若从抽得的6人中随机抽取2人进行训查结果的对比,求这2人中至少有一人是高三学生家长的慨率• 【答案】解:(I )家长委员会人员总数为54+18+36=108,样本容量与总体中的个体数的比为-6- ,故从108 18三个年级的家长委员会中分别抽取的人数为3,1,2人(n)设A1, A2, A为从高一抽得的3个家长,B1为从高二抽得的1个家长,G,C2为从高三抽得的2个家长.则抽取的全部结果有:(AA),(人,人),(A,B),(AQ),( A,C2),(A2, A3 ),(A2,B ),(A2,C1),(A2,C2),( A3,B1 ),(A3,C1 ),(A,C2),( B1,C1),( B1,C2),( C1,C2)共15 种,令X “ 至少有一人是高三学生家长”,结果有(A1,G),( Ai ,C2),( A2, C1),( A2, C2),( A B,C1 ),( A3, C2),( B1Q), B1 ,C2),( C1, C2)共9 种所以这2人中至少有1人是高三学生家长的概率是P(X) -9- -3.15 5。
2013年全国各地高考文科数学试题分类汇编11:概率与统计含答案
2013年全国各地高考文科数学试题分类汇编11:概率与统计一、选择题1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23B.25C.35D.910【答案】D2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为()A.0.2 B.0。
4 C.0。
5 D.0.6【答案】B3 .(2013年高考湖南(文))已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB"发生的概率为.21,则ADAB=____ ( )A.12B.14C32D74【答案】D4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A .23B .13C . 12D .16【答案】C5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( ) A .9B .10C .12D .13【答案】D6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A .1169B .367C .36D【答案】B7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。
以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是8 7 79 4 0 1 0 9 1x0.04组距频率0.05组距频率0.04组距频率0.04组距频率0人数0.010.020.0351015202530354000.010.020.030.04510152025303540人数0人数0.010.020.031020304000.010.020.0310203040人数(B)(A)(C)(D)【答案】A8 .(2013年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( ) A .12B .13C .14D .16【答案】B9 .(2013年高考陕西卷(文))对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图。
【Word版解析】山东省威海市2013届高三上学期期末考试 文科数学
绝密★启用并使用完毕前高三文科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第Ⅰ卷(选择题 共60分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数z 满足1i z z ⋅=+,则z = (A )1+i (B )1i - (C )122i -- (D )122i+ 【答案】C由1i z z ⋅=+得(1)1i z -=,所以111111(1)(1)222i i z i i i i ++====----+-,选C. 2.已知R 为全集,{|(1)(2)0}A x x x =-+≤,则R C A = (A ){|21}x x x <->或 (B ){|21}x x x ≤-≥或 (C ){|21}x x -<< (D ){|21}x x -≤≤ 【答案】C因为{|A x x x =-+≤,所以{|(1)(2)R A x xxxx x =-+>=-+ð,选C. 3.已知(1,2),2(3,1)a a b =-= ,则a b ⋅=(A )2 (B )3 (C )4 (D )5 【答案】D因为(1,2),2a a b =-=,所以2(3,1)2(1,2)(3,1)(1,3)b a =-=-=-,所以(1,2)(1,3)1a b ⋅=⋅-=-+⨯=,选D.4.有一个容量为200的样本,其频率分布直方图如图所示,据图估计,样本数据在[)8,10内的频数为(A )38 (B )57(C )76 (D )95 【答案】C样本数据在[)8,10之外的频率为(0.020.050.090.15)20.62+++⨯=,所以样本数据在[)8,10内的频率为10.620.38-=,所以样本数据在[)8,10的频数为0.3820076⨯=,选C.5.{}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则10S =(A )40 (B )35 (C )30 (D )28 【答案】A设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =。
2013年普通高考山东文科数学试题及详细答案
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B)。
第Ⅰ卷(共60分)一、选择题:本大题共12题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1). 复数2(2)i z i-=(i 为虚数单位),则z =(A) 25 (B) (C) 5 (D) (2). 已知集合A ,B 均为全集{}1,2,3,4U =的子集,且{}()4U C A B = ,{}1,2B =, 则U A C B =(A) {}3 (B) {}4 (C) {}3,4 (D) ∅ (3). 已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=(A) 2 (B) 1 (C) 0 (D) 2- (4). 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示,则该四棱的侧面积和体积分别是(A),8 (B) 8,3(C) 841),3(D) 8,8(5). 函数()f x =的定义域为(A) (]3,0- (B) (]3,1- (C) ()(],33,0-∞-- (D)()(],33,1-∞-- (6). 执行两次右图所示的程序框图,若第一次输入的a的值为 1.2-,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的分别为(A) 0.2,0.2 (B) 0.2,0.8 (C) 0.8,0.2 (D) 0.8,0.8(7). ABC ∆的内角A ,B ,C 所对应边分别为a ,b ,c 。
2013年高考文科数学山东卷-答案
xy xy
xy
xy
当且仅当 x2 =4y2 即 x=2y 时, z 有最小值 1。将 x=2y 代入原式得 z=2y2 , xy
所以 x+2y-z=2y+2y-2y2 =-2y2 +4y ,当 y=1时有最大值 2。故选 C。
第Ⅱ卷
二、填空题 13.【答案】 2 2
【解析】如下图,当 AB 所在直线与 AC 垂直时弦 BD 最短, AC 3 22 1 22 2 , CB=r=2 ∴ BA 22 22 2 ,∴ BD=2 2 。
x1 b
b2 8a 4a
, x2
b
b2 8a 4a
。显然, x1 0 , x2
0。
当 0 x x2 时, f (x) 0 ,函数 f (x) 单调递减。当 x x2 , f (x) 0 ,函数 f (x) 单调递增。
所以函数
f
(x)
的单调递减区间是
62
(Ⅱ)从该小组同学中任选 2 人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,
E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共 10 个。由于每个人被选到的机会均等,
因此这些基本事件的出现是等可能的。选到的 2 人身高都在 1.70 以上且体重指标都在[18.5,23.9)中的事件
91,94,94,87,方差为 s2 290 912 291 912 294 912 87 912 36 。
7
7
11.【答案】D
【解析】设 M
1
x0
,
2
p
x0
2
2013年山东省高考文科数学真题及答案
2013年山东省高考数学试卷(文科)一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|()A.25 B. C.5 D.2.(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3}B.{4}C.{3,4}D.∅3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣24.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,85.(5分)函数f(x)=的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0)D.(﹣∞,﹣3)∪(﹣3,1)6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.87.(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.18.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.10.(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B.C.36 D.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y ﹣z的最大值为()A.0 B.C.2 D.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.20.(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()A.25 B. C.5 D.【分析】化简复数z,然后求出复数的模即可.【解答】解:因为复数z==,所以|z|==.故选C.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3}B.{4}C.{3,4}D.∅【分析】通过已知条件求出A∪B,∁U B,然后求出A∩∁U B即可.【解答】解:因为全集U={1.2.3.4.},且∁U(A∪B)={4},所以A∪B={1,2,3},B={1,2},所以∁U B={3,4},所以A={3}或{1,3}或{3,2}或{1,2,3}.所以A∩∁U B={3}.故选A.3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【分析】由条件利用函数的奇偶性和单调性的性质可得f(﹣1)=﹣f(1),运算求得结果.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选D.4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,8【分析】由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求.【解答】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选B.5.(5分)(2013•山东)函数f(x)=的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0)D.(﹣∞,﹣3)∪(﹣3,1)【分析】由函数解析式可得1﹣2x≥0 且x+3>0,由此求得函数的定义域.【解答】解:由函数f(x)=可得1﹣2x≥0 且x+3>0,解得﹣3<x≤0,故函数f(x)=的定义域为{x|﹣3<x≤0},故选A.6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.8【分析】计算循环中a的值,当a≥1时不满足判断框的条件,退出循环,输出结果即可.【解答】解:若第一次输入的a的值为﹣1.2,满足上面一个判断框条件a<0,第1次循环,a=﹣1.2+1=﹣0.2,第2次判断后循环,a=﹣0.2+1=0.8,第3次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环,不满足下面一个判断框条件a≥1,退出循环,输出a=0.8;第二次输入的a的值为1.2,不满足上面一个判断框条件a<0,退出上面的循环,进入下面的循环,满足下面一个判断框条件a≥1,第1次循环,a=1.2﹣1=0.2,第2次判断后不满足下面一个判断框的条件退出下面的循环,输出a=0.2;故选C.7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.1【分析】利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.【解答】解:∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2.故选B8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选A.9.(5分)(2013•山东)函数y=xcosx+sinx的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B.C.36 D.【分析】根据题意,去掉两个数据后,得到要用的7个数据,先根据这组数据的平均数,求出x,再用方差的个数代入数据和平均数,做出这组数据的方差.【解答】解:∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x.∴这组数据的平均数是=91,∴x=4.∴这这组数据的方差是(16+1+1+0+0+9+9)=.故选:B.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.【解答】解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选:D.12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0 B.C.2 D.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选:C.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.【分析】首先根据题意做出可行域,欲求|OM|的最小值,由其几何意义为点O (0,0)到直线x+y﹣2=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于.故答案为:.15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.【分析】利用已知条件求出,利用∠ABO=90°,数量积为0,求解t的值即可.【解答】解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t)=0.解得t=5.故答案为:5.16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【分析】(Ⅰ)写出从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人身高都在1.78以下的事件,然后直接利用古典概型概率计算公式求解;.(Ⅱ)写出从该小组同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件,利用古典概型概率计算公式求解.【解答】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在 1.70以上且体重指标都在[18.5,23.9)中的概率p=.18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.【分析】(Ⅰ)通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出ω的值(Ⅱ)通过x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解f (x)在区间[]上的最大值和最小值.【解答】解:(Ⅰ)函数f(x)=﹣sin2ωx﹣sinωxcosωx===.因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故周期为π又ω>0,所以,解得ω=1;(Ⅱ)由(Ⅰ)可知,f(x)=﹣sin(2x﹣),当时,,所以,因此,﹣1≤f(x),所以f(x)在区间[]上的最大值和最小值分别为:.19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.【分析】(Ⅰ)取PA的中点H,则由条件可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.再由直线和平面平行的判定定理证明CE∥平面PAD.(Ⅱ)先证明MN⊥平面PAC,再证明平面EFG∥平面PAC,可得MN⊥平面EFG,而MN在平面EMN内,利用平面和平面垂直的判定定理证明平面EFG⊥平面EMN.【解答】解:(Ⅰ)证明:∵四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点,取PA的中点H,则由HE∥AB,HE=AB,而且CD∥AB,CD=AB,可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.由于DH在平面PAD内,而CE不在平面PAD内,故有CE∥平面PAD.(Ⅱ)证明:由于AB⊥AC,AB⊥PA,而PA∩AC=A,可得AB⊥平面PAC.再由AB∥CD可得,CD⊥平面PAC.由于MN是三角形PCD的中位线,故有MN∥CD,故MN⊥平面PAC.由于EF为三角形PAB的中位线,可得EF∥PA,而PA在平面PAC内,而EF不在平面PAC内,故有EF∥平面PAC.同理可得,FG∥平面PAC.而EF 和FG是平面EFG内的两条相交直线,故有平面EFG∥平面PAC.∴MN⊥平面EFG,而MN在平面EMN内,故有平面EFG⊥平面EMN.20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.【分析】(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得到关于a1与d的方程组,解之即可求得数列{a n}的通项公式;(Ⅱ)由(Ⅰ)知,a n=2n﹣1,继而可求得b n=,n∈N*,于是T n=+++…+,利用错位相减法即可求得T n.【解答】解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得:,解得a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减得:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.【分析】(Ⅰ)由函数的解析式知,可先求出函数f(x)=ax2+bx﹣lnx的导函数,再根据a≥0,分a=0,a>0两类讨论函数的单调区间即可;(Ⅱ)由题意当a>0时,是函数的唯一极小值点,再结合对于任意x>0,f(x)≥f(1).可得出=1化简出a,b的关系,再要研究的结论比较lna与﹣2b的大小构造函数g(x)=2﹣4x+lnx,利用函数的最值建立不等式即可比较大小【解答】解:(Ⅰ)由f(x)=ax2+bx﹣lnx(a,b∈R)知f′(x)=2ax+b﹣又a≥0,故当a=0时,f′(x)=若b≤0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<,即函数在(0,)上是减函数,在(,+∞)上是增函数、所以函数的单调递减区间是(0,),单调递增区间是(,+∞),当a>0时,令f′(x)=0,得2ax2+bx﹣1=0由于△=b2+8a>0,故有x2=,x1=显然有x1<0,x2>0,故在区间(0,)上,导数小于0,函数是减函数;在区间(,+∞)上,导数大于0,函数是增函数综上,当a=0,b≤0时,函数的单调递减区间是(0,+∞);当a=0,b>0时,函数的单调递减区间是(0,),单调递增区间是(,+∞);当a>0,函数的单调递减区间是(0,),单调递增区间是(,+∞)(Ⅱ)由题意,函数f(x)在x=1处取到最小值,由(1)知,是函数的唯一极小值点故=1整理得2a+b=1,即b=1﹣2a令g(x)=2﹣4x+lnx,则g′(x)=令g′(x)==0得x=当0<x<时,g′(x)>0,函数单调递增;当<x<+∞时,g′(x)<0,函数单调递减因为g(x)≤g()=1﹣ln4<0故g(a)<0,即2﹣4a+lna=2b+lna<0,即lna<﹣2b22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.【分析】(Ⅰ)设椭圆的标准方程为,焦距为2c.由题意可得,解出即可得到椭圆的方程.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,利用判别式、根与系数的关系即可得到弦长|AB|,再利用点到直线的距离公式即可得到原点O到直线AB的距离,进而得到三角形AOB的面积,利用即可得到m,n,t的关系,再利用,及中点坐标公式即可得到点P的坐标代入椭圆的方程可得到m,n,t的关系式与上面得到的关系式联立即可得出t的值.【解答】解:(Ⅰ)由题意设椭圆的标准方程为,焦距为2c.则,解得,∴椭圆的方程为.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,则△=4m2n2﹣4(m2+2)(n2﹣2)=4(2m2+4﹣2n2)>0,(*),,∴|AB|===.原点O到直线AB的距离d=,∵,∴=,化为.(**)另一方面,=,∴x E=my E+n==,即E.∵,∴.代入椭圆方程得,化为n2t2=m2+2,代入(**)得,化为3t4﹣16t2+16=0,解得.∵t>0,∴.经验证满足(*).当AB∥x轴时,设A(u,v),B(﹣u,v),E(0,v),P(0,±1).(u>0).则,,解得,或.又,∴,∴.综上可得:.。
2013年全国普通高等学校招生统一考试文科数学(山东卷带解析)答案解析docx
2013年全国普通高等学校招生统一考试文科(山东卷)数学试题1、【答案】C【解析】【考点定位】本题考查复数的基本概念和运算,通过分母实数化思想来考查运算能力,要注意在运算中多次出现,符号确定容易出错.2、【答案】A【解析】,因为,所以中必有元素,【考点定位】本题考查集合的交集、并集和补集运算,考查推理判断能力.对于,这两个条件,可以判断集合中的元素有三种情形,而指出中必有元素,简化了运算,使结果判断更容易.3、【答案】D【解析】【考点定位】本题考查函数的奇偶性的应用,考查运算求解能力和转化思想. 根据直接运算而若求在上的解析式再求便“多余”了.【答案】B【解析】由正视图可知该四棱锥为正四棱锥,底面边长为,高为,侧面上的斜高为,所以【考点定位】本题考查三视图的应用,考查空间想象能力和运算能力. 因求体积的影响,可能会把求侧面积误认为全面积而选C. 此外棱锥体积运算时不要漏乘5、【答案】A【解析】由题意得,所以【考点定位】本题考查函数的定义域的求法,考查数形结合思想和运算能力. 根据函数解析式确定函数的定义域,往往涉及到被开放数非负、分母不能为零,真数为正等多种特殊情形,然后通过交集运算确定.6、【答案】C【解析】两次运行结果如下:第一次第二次【考点定位】本题考查程序框图的运行途径,考查读图能力和运算能力. 本题不同于以往所见试题,两次运行程序输出结果.针对类似问题可根据框图中的关键“部位”进行数据罗列,从而确定正确的输出结果.【答案】B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.8、【答案】A【解析】由且可得且,所以是的充分不必要条件.【考点定位】本题考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了转化思想的考查. 本题依据原命题的逆否命题进行判断较为简单,也可以依据题目条件构造一个满足“是的必要而不充分条件”的简单例子,进行转化比较,从而确定答案.9、【答案】D【解析】函数在时为负,排除A,由奇函数的性质可排除B,再比较C,D,不难发现在取接近于的正值时排除C.【考点定位】本题考查函数的奇偶性、函数的单调性、函数的值域等函数的重要性质,考查了函数图象的识别能力.本题可根据函数的性质对比图象进行逐一验证,若通过求导方法来研究该函数的图象和性质后再做准确判断,增加了运算负担.10、【答案】B【解析】由图可知去掉的两个数是,所以,【考点定位】本题考查茎叶图的识别、方差运算能统计知识,考查数据处理能力和运算能力. 确定被去掉的数据是解题的关键,本题给出的数据中最大,即便是处理方差运算时要对方差概念牢固掌握,避免与标准差混淆误选D.11、【答案】D【解析】画图可知被在点M处的切线平行的渐近线方程应为,设,则利用求导得又点共线,即点共线,所以,解得所以【考点定位】本题考查了抛物线和双曲线的概念、性质和导数的意义,进一步考查了运算求解能力.这一方程形式为导数法研究提供了方便,本题“切线”这一信号更加决定了“求导”是“必经之路”.根据三点共线的斜率性质构造方程,从而确定抛物线方程形式,此外还要体会这种设点的意义所在.12、【答案】C【解析】当且仅当时成立,因此所以【考点定位】本题考查基本不等式的应用,考查运算求解能力、推理论证能力和转化思想、函数和方程思想. 基本不等式的使用价值在于简化最值确定过程,而能否使用基本不等式的关键是中的是否为定值,本题通过得以实现.13、【答案】【解析】最短弦为过点与圆心连线的垂线与圆相交而成,,所以最短弦长为【考点定位】本题考查直线和圆的位置关系,考查数形结合思想和运算能力. 圆的半径、弦心距、半弦构成的直角三角形在解决直线和圆问题常常用到,本题只需要简单判断最短弦的位置就能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.14、【答案】【解析】确定可行域为点形成的三角形,因此的最小值为点到直线的距离,所以【考点定位】本题考查线性规划下的最值求法,考查数形结合思想、图形处理能力和运算能力. 线性规划问题的重点是确定可行域,要根据已知条件逐一画出直线并代点验证从而确定区域位于直线的某一侧,类比集合的交集运算确定公共部分,再按照研究方向求得结果.15、【答案】【解析】,所以【考点定位】本题考查平面向量的加减坐标运算和数量积坐标运算,考查转化思想和运算能力. 本题通过进行运算极易想到,但求时往往出现坐标的“倒减”,虽然不影响运算的结果,被填空题型所掩盖,但在解答题中就会被发现.16、【答案】①③④【解析】对于①可分几种情形加以讨论,显然时,依运算,成立,时亦成立.若,则成立.综合①正确.对于②可取特殊值验证排除.对于③分别研究在内的不同取值,可以判断正确;对于④根据在内的不同取值,进行判断,显然中至少有一个小于结论成立,当均大于时,,所以满足运算,结论成立.【考点定位】本题通过新定义考查分析问题解决问题的能力,考查了分类讨论思想,并对推理判断能力和创新意识进行了考查. “正对数”与“普通对数”的差异只在于内,因此在取值验证时要特别注意这一“差异”,对于“正对数”的四则运算法则才能作出正确判断.17、【答案】(Ⅰ)(Ⅱ)【解析】(I)可得到满足条件的基本事件有种情形,目标事件只有种,所以选到的人都在以下的概率为(II)把研究学生的人数扩大到人,基本事件个数增加到,并且要通过身高和体重两方面的限制确定目标事件,因此选到的人的身高都在以上且体重指标都在中的概率为【考点定位】本题考查古典概型的运算,通过对基本事件和目标事件的罗列考查数据处理能力和运算能力. 判断为古典概型后,根据题意罗列可能的结果组成的基本事件是关键.由于本题的两个问题研究的对象发生变化,在寻找基本事件和目标事件时要做到不重不漏.18、【答案】(Ⅰ) (Ⅱ) ,.【解析】因为图象的一个对称中心到最近的对称轴的距离为,又,所以(II)由(I)知,当时,,所以因此故在区间上的最大值和最小值分别为,.【考点定位】.本题考查三角函数的图象和性质,通过三角恒等变换考查转化思想和运算能力.第一问先逆用倍角公式化为的形式,再利用图象研究周期关系,从而确定第二问在限制条件下求值域,需要通过不等式的基本性质先求出的取值范围再进行求解.式子结构复杂,利用倍角公式简化时要避免符号出错导致式子结构不能形成这一标准形式,从而使运算陷入困境.19、【答案】见解析【解析】(I)取的中点,连接因为为的中点,所以,又,所以因此四边形是平行四边形.所以又平面,平面,因此平面.另解:连结.因为为的中点,所以又所以又,所以四边形为平行四边形,因此. 又平面,所以平面.因为分别为的中点,所以又平面,所以平面.因为,所以平面平面.(II)证明因为分别为的中点,所以,又因为,所以同理可证.又,平面,平面,因此平面.又分别为的中点,所以.又,所以因此平面,又平面,所以平面平面.【考点定位】本题考查空间直线与平面,平面与平面间的位置关系,考查推理论证能力和空间想象能力.要证平面,可证明平面与所在的某个平面平行,不难发现平面平面.证明平面平面时,可选择一个平面内的一条直线()与另一个平面垂直.线面关系与面面关系的判断离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系,中点形成的三角形的中位线等,都为论证提供了丰富的素材.20、【答案】(Ⅰ)(Ⅱ)【解析】(I) 设等差数列的首项为,公差为.由,得,解得因此(Ⅱ) 由可得当时,,当时,所以又,两式相减得所以【考点定位】本题考查等差数列的通项公式、错位相减求和方法,考查方程思想、转化思想和运算能力、推理论证能力.根据已知条件列出关于首项和公差的方程组,从而确该数列的通项公式,这一问相对简单,第二问通过递推关系得到数列的通项公式后再按照错位相减方法转化为等比数列的求和运算进行解决.本题第二问的条件因其结构复杂在使用上形成障碍,如果表示为数列的前项和的形式,则不难想到利用这一熟悉结构来处理.21、【答案】(Ⅰ) 单调递减区间是,单调递增区间是(Ⅱ)【解析】(Ⅰ)由得(1)当时,(i)若,当时,恒成立,所以函数的单调递减区间是.(ii)若,当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间是,单调递增区间是(2)当时,令得,由得显然当时,,函数单调递减;当时,,函数单调递增.所以函数的单调递减区间是,单调递增区间是.(Ⅱ)由题意知函数在处取得最小值,由(I)知是的唯一极小值点,故,整理得,令则由得当时,,单调递增;当时,,单调递减.因此故,即即【考点定位】本题考查导数法研究函数的单调性和相关函数值的大小比较,考查分类讨论思想、推理论证能力和运算求解能力.函数的单调区间判断必然通过导数方法来解决,伴随而来的是关于的分类讨论.比较与的大小时要根据已知条件和第一问的知识储备,构造新的函数利用单调性直接运算函数值得到结论.本题具备导数研究函数单调性的特征,必然按照程序化运行,即求导、关于参数分类讨论、确定单调区间等步骤进行.而第二问则是在第一问的基础上进一步挖掘解题素材,如隐含条件的发现、新函数的构造等,都为解决问题提供了有力支持.22、【答案】(I) (Ⅱ) 或【解析】(I)设椭圆的方程为,由题意知,解得因此椭圆的方程为(II)(1)当两点关于轴对称时,设直线的方程为,由题意知或,将代入椭圆方程得.所以解得或.又,因为为椭圆上一点,所以,或又因为所以或(2)当两点关于轴不对称时,设直线的方程为,将其代入椭圆方程得.设,由判别式可得,此时所以,因为点到直线的距离为,所以令,则解得或,即或.又,因为为椭圆上一点,所以,即,所以或又因为所以或经检验,适合题意.综上可知或【考点定位】本题基于椭圆问题综合考查椭圆的方程、直线和椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.第一问通过椭圆的性质确定其方程,第二问根据两点关于轴的对称关系进行分类讨论,分别设出直线的方程,通过联立、判断、消元等一系列运算“动作”达成目标.本题极易简单考虑设直线的形式而忽略斜率不存在的情况造成漏解.在联立方程得到后,后续运算会多次出现这一式子,换元简化运算不失为一种好方法,令,搭建了与的桥梁,使坐标的代入运算更为顺畅,使“化繁为简”这一常用原则得以完美呈现。
【Word版解析】山东省潍坊一中2013届高三12月月考测试 文科数学
高三过程性训练(三)数学试题(文科)第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==挝- ,则B 中所含元素的个数为A.3B.6C.8D.10【答案】D【解析】当2x =时,1y =。
当3x =时,1,2y =。
当4x =时,1,2,3y =。
当5x =时,1,2,3,4y =。
所以 B 中所含元素的个数为10个,选D.2.已知两非零向量,,a b 则“a ba b?”是“a 与b共线”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为cos a b a b a b a b,?<>=,所以cos 1a b ,<>=,所以0a b ,<>=,此时a 与b共线,若a 与b共线,则有0a b ,<>=或a b ,p <>=,当a b ,p <>=时,c o s a b a b a b a b ,?<>=-,所以“a b a b ?”是“a 与b 共线”的充分不必要条件,选A.3.已知直线()()1:3410l k x k y -+-+=与()2:23230l k x y --+=平行,则k 的值是 A.1或3 B.1或5C.3或5D.1或2【答案】C【解析】若3k =,则两直线为1y =-,32y =,此时两直线平行,所以满足条件。
当3k ≠时,要使两直线平行,则有3412(3)23k k k --=≠--,即141223k -=≠-,解得5k =,综上满足条件k 的值为3k =或5k =,选C.4.平面直角坐标系中,已知两点()()3,1,1,3A B -,若点C 满足12OC OA OB l l =+(O 为原点),其中12,R l l Î,且121l l +=,则点C 的轨迹是 A.直线 B.椭圆C.圆D.双曲线【答案】A【解析】因为12OC OA OB l l =+,所以设(,)C x y ,则有12(,)(3,1)(1,3)x y l l =+-,即121233x y λλλλ=-⎧⎨=+⎩,解得21310310y x y xλλ-⎧=⎪⎪⎨+⎪=⎪⎩,又121l l +=,所以3311010y x y x +-+=,即25x y +=,所以轨迹为直线,选A.5.已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,()2log g x x =,则函数()()f x g x ×的大致图象为【答案】D【解析】因为函数2()4f x x =-为偶函数,()y g x =为奇函数,所以()()f x g x ×为奇函数,图象关于原点对称,排除A,B.当2x >时,()1y g x =>,2()40f x x =-<,所以()()0f x g x ?,排除C ,选D.6.各项为正数的等比数列{}n a 中,2311,,2a a a 成等差数列,则4534a a a a ++的值为A.12B.12C.12-D.1122或 【答案】B【解析】因为2311,,2a a a 成等差数列,所以1233122a a a a +=?,即2111a a q a q+=,所以210q q --=,解得q =或0q =<(舍去)。
山东省泰安市2013届高三上学期期末考试文科数学试题
山东省泰安市2013届高三上学期期末考试数学试题(文)2013.1一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,0,1,0,1,2M N =-=,则如图所示韦恩图中的阴影部分所表示的集合为 A.{}0,1B. {}1,0,1-C. {}1,2-D.{}1,0,1,2-2.如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为A.13B.12C.16D.13.设0.533,log 2,cos 2a b c ===,则 A.c <b a < B.c a b << C.a <b c <D.b <c a <4.设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于A.13-B.13C.3-D.35. “1m =”是“直线0x y -=和直线0x my +=互相垂直”的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.下列函数()f x 中,满足“对任意的()1212,0,,x x x x ∈+∞<当时,都有()()12f x f x <”的是A.()1f x x=B. ()244f x x x =-+C.()2x f x =D.()12log f x x =7.函数212sin 4y x π⎛⎫=-- ⎪⎝⎭是A.最小正周期为π的偶函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数 D.最小正周期为2π的奇函数 8.下列命题正确的是 A.若两条直线和同一个平面所成的角相等,则这两条直线平行 B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D.若两个平面都垂直于第三个平面,则这两个平面平行 9.设a b <,函数()()2y x a x b =--的图象可能是10.不等式组210y x y x y ≤-+⎧⎪≤-⎨⎪≥⎩所表示的平面区域的面积为A.1B.12C.13D.1411.以双曲线22163x y -=的右焦点为圆心且与双曲线的线相切的圆的方程是A.(22x y +=B.(223x y += C.()223x y -+=D.()2233x y -+=12.函数()()sin f x A x ωϕ=+(其中0,2A πϕ><)的图象如图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象A.向右平移6π个长度单位 B.向右平移12π个长度单位 C.向左平移6π个长度单位D.向左平移12π个长度单位二、填空题 13.若双曲线221y x m-=的一个焦点与抛物线28y x =的焦点重合,则m 的值为_______. 14.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.15.已知向量,a b满足()()26,1,2a b a b a b +⋅-=-== 且,则a b 与的夹角为_________16.已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示若函数()y f x a =-有4个零点,则a 的取值范围为__________.三、解答题:17.(本小题满分12分)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,,n n Sb S q a b b +==求与;18.(本小题满分12分)ABC ∆的内角A 、B 、C 所对的边分别为,,a b c且sin sin sin sin a A b B c C B +=(I )求角C ;(IIcos 4A B π⎛⎫-+ ⎪⎝⎭的最大值.19.(本小题满分12分)如图,在45,ABC O ∆= 在AB 上,且23OB OC AB ==,又PO ⊥平面ABC ,DA//PO ,DA=AO=12PO .(I )求证:PB//平面COD ; (II )求证:平面POD ⊥平面COD. 20.(本小题满分12分)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该年每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25x -万元(国家规定大货车的报废年限为10年). (I )大货车运输到第几年年底,该车运输累计收入超过总支出? (II )在第几年年底将大货车出售,能使小王获得的年平均利润最大? (利润=累计收入+销售收入-总支出) 21.(本小题满分12分)已知椭圆2222:1x y C a b+=()0a b >>1F 、2F 分别为椭圆C 的左、右焦点,过F 2的直线与C 相交于A 、B 两点,1F AB ∆的周长为(I )求椭圆C 的方程;(II )若椭圆C 上存在点P ,使得四边形OAPB 为平行四边形,求此时直线的方程. 22.(本小题满分14分) 已知函数()ln f x x x =.(I )若函数()()g x f x ax =+在区间2,e ⎡⎤+∞⎣⎦上为增函数,求a 的取值范围;(II )若对任意()()230,,2x mx x f x -+-∈+∞≥恒成立,求实数m 的最大值.1、【答案】C 【解析】阴影部分为{}x x M N x M N ∈∉ 且,所以{1,0,1,2}M N =- ,{0,1}M N = ,所以{}{1,2}x x M N x M N ∈∉=- 且,选C.2、【答案】A 【解析】由三视图可知,该几何体是四棱锥,底面为边长为1的正方形,高为1的四棱锥,所以体积为1111133⨯⨯⨯=,选A.3、【答案】A【解析】0.531=>,,30log 21<<,,cos20<,所以c b a <<,选A.4、【答案】B 【解析】因为a b ⊥ ,所以2cos sin 0a b αα=-=,即tan 2α=。
山东省济宁市2013届高三第一次模拟考试 文科数学 Word版含答案
2013年济宁市高三模拟考试数学(文史类)试题 2013.03 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分l50分,考试时间l20分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答第I 卷前,考生务必将自己的姓名,考号填写在答题卡上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.第I 卷(选择题共60分)一、选择题:本大题共l2小题,每小题5分。
共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,则21-+在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设集合A={-1,0,a},B={01x|x <<},若A B ≠∅ ,则实数a 的取值范围是A{1} B .(-∞,0) C .(1,+∞) D .(0.1)3.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为 A .19、13 B .13、19 C .20、18 D .18、20 4.下列命题中是假命题的是A .02x (,),tan x sin x π∀∈> B .30x x R,∀∈>C .0002x R,sin x cos x ∃∈+=D .000x R,lg x ∃∈=5.点M 、N 分别是正方体ABCD —A 1B 1C 1D 1的棱A 1B 1、A 1D 1的中点,用过A 、M 、N 和D 、N 、C 1的两个截面截去正方体的两个角后得到的几何体如下图,则该几何体的正(主)视图、侧(左)视图、俯视图依次为A .①、②、③B .②、③、③C .①、③、④D .②、④、③6.实数x ,y 满足110x y a(a )x y ≥⎧⎪≤>⎨⎪-≤⎩,若目标函数z x y =+取得最大值4,则实数a 的值为A .4B .3C .2D .327.函数1f (x )ln(x )x=-的图象是8.执行右边的程序框图。
2013年山东省高考数学试卷(文科)
2013年山东省高考数学试卷(文科)一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|=()A.25 B. C.5 D.2.(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3}B.{4}C.{3,4}D.∅3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣24.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,85.(5分)函数f(x)=+的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0]D.(﹣∞,﹣3)∪(﹣3,1]6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.87.(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.18.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.10.(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B.C.36 D.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y ﹣z的最大值为()A.0 B.C.2 D.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则线段|OM|的最小值为.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.20.(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|=()A.25 B. C.5 D.【分析】化简复数z,然后求出复数的模即可.【解答】解:因为复数z==,所以|z|==.故选:C.【点评】本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.2.(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3}B.{4}C.{3,4}D.∅【分析】通过已知条件求出A∪B,∁U B,然后求出A∩∁U B即可.【解答】解:因为全集U={1.2.3.4.},且∁U(A∪B)={4},所以A∪B={1,2,3},B={1,2},所以∁U B={3,4},所以A={3}或{1,3}或{3,2}或{1,2,3}.所以A∩∁U B={3}.故选:A.【点评】本题考查集合的交、并、补的混合运算,考查计算能力.3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【分析】由条件利用函数的奇偶性和单调性的性质可得f(﹣1)=﹣f(1),运算求得结果.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选:D.【点评】本题主要考查函数的奇偶性的应用,属于基础题.4.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,8【分析】由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求.【解答】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选:B.【点评】本题考查了棱锥的体积,考查了三视图,解答的关键是能够由三视图得到原图形,是基础题.5.(5分)函数f(x)=+的定义域为()A.(﹣3,0]B.(﹣3,1]C.(﹣∞,﹣3)∪(﹣3,0]D.(﹣∞,﹣3)∪(﹣3,1]【分析】从根式函数入手,根据负数不能开偶次方根及分母不为0求解结果,然后取交集.【解答】解:根据题意:,解得:﹣3<x≤0∴定义域为(﹣3,0]故选:A.【点评】本题主要考查函数求定义域,负数不能开偶次方根,分式函数即分母不能为零,及指数不等式的解法.6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.8【分析】计算循环中a的值,当a≥1时不满足判断框的条件,退出循环,输出结果即可.【解答】解:若第一次输入的a的值为﹣1.2,满足上面一个判断框条件a<0,第1次循环,a=﹣1.2+1=﹣0.2,第2次判断后循环,a=﹣0.2+1=0.8,第3次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环,不满足下面一个判断框条件a≥1,退出循环,输出a=0.8;第二次输入的a的值为1.2,不满足上面一个判断框条件a<0,退出上面的循环,进入下面的循环,满足下面一个判断框条件a≥1,第1次循环,a=1.2﹣1=0.2,第2次判断后不满足下面一个判断框的条件退出下面的循环,输出a=0.2;故选:C.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.7.(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.1【分析】利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.【解答】解:∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2.故选:B.【点评】此题考查了正弦、余弦定理,二倍角的正弦函数公式,熟练掌握定理是解本题的关键.8.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选:A.【点评】本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.9.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.10.(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A. B.C.36 D.【分析】根据题意,去掉两个数据后,得到要用的7个数据,先根据这组数据的平均数,求出x,再用方差的个数代入数据和平均数,做出这组数据的方差.【解答】解:∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x.∴这组数据的平均数是=91,∴x=4.∴这这组数据的方差是(16+1+1+0+0+9+9)=.故选:B.【点评】本题考查茎叶图,当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.【解答】解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选:D.【点评】本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y ﹣z的最大值为()A.0 B.C.2 D.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选:C.【点评】本题考查基本不等式,将z=x2﹣3xy+4y2代入,求得取得最小值时x=2y是关键,考查配方法求最值,属于中档题.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:2【点评】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点与圆的位置关系,垂径定理,以及勾股定理,找出最短弦是解本题的关键.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则线段|OM|的最小值为.【分析】首先根据题意做出可行域,欲求|OM|的最小值,由其几何意义为点O (0,0)到直线x+y﹣2=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.【分析】利用已知条件求出,利用∠ABO=90°,数量积为0,求解t的值即可.【解答】解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t)=0.解得t=5.故答案为:5.【点评】本题考查向量的数量积的应用,正确利用数量积公式是解题的关键.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.【点评】本题考查新定义及对数的运算性质,理解定义所给的运算规则是解题的关键,本题考查了分类讨论的思想,逻辑判断的能力,综合性较强,探究性强.易因为理解不清定义及忘记分类讨论的方法解题导致无法入手致错.三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【分析】(Ⅰ)写出从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人身高都在1.78以下的事件,然后直接利用古典概型概率计算公式求解;.(Ⅱ)写出从该小组同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件,利用古典概型概率计算公式求解.【解答】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在 1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.【分析】(Ⅰ)通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出ω的值(Ⅱ)通过x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解f (x)在区间[]上的最大值和最小值.【解答】解:(Ⅰ)函数f(x)=﹣sin2ωx﹣sinωxcosωx===.因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故周期为π又ω>0,所以,解得ω=1;(Ⅱ)由(Ⅰ)可知,f(x)=﹣sin(2x﹣),当时,,所以,因此,﹣1≤f(x),所以f(x)在区间[]上的最大值和最小值分别为:.【点评】本题考查二倍角的三角函数以及两角和的正弦函数,三角函数的周期,正弦函数的值域与单调性的应用,考查计算能力.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.【分析】(Ⅰ)取PA的中点H,则由条件可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.再由直线和平面平行的判定定理证明CE∥平面PAD.(Ⅱ)先证明MN⊥平面PAC,再证明平面EFG∥平面PAC,可得MN⊥平面EFG,而MN在平面EMN内,利用平面和平面垂直的判定定理证明平面EFG⊥平面EMN.【解答】解:(Ⅰ)证明:∵四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点,取PA的中点H,则由HE∥AB,HE=AB,而且CD∥AB,CD=AB,可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.由于DH在平面PAD内,而CE不在平面PAD内,故有CE∥平面PAD.(Ⅱ)证明:由于AB⊥AC,AB⊥PA,而PA∩AC=A,可得AB⊥平面PAC.再由AB∥CD可得,CD⊥平面PAC.由于MN是三角形PCD的中位线,故有MN∥CD,故MN⊥平面PAC.由于EF为三角形PAB的中位线,可得EF∥PA,而PA在平面PAC内,而EF不在平面PAC内,故有EF∥平面PAC.同理可得,FG∥平面PAC.而EF 和FG是平面EFG内的两条相交直线,故有平面EFG∥平面PAC.∴MN⊥平面EFG,而MN在平面EMN内,故有平面EFG⊥平面EMN.【点评】本题主要考查直线和平面平行的判定定理的应用,平面和平面垂直的判定定理的应用,属于中档题.20.(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.【分析】(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得到关于a1与d的方程组,解之即可求得数列{a n}的通项公式;(Ⅱ)由(Ⅰ)知,a n=2n﹣1,继而可求得b n=,n∈N*,于是T n=+++…+,利用错位相减法即可求得T n.【解答】解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得:,解得a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减得:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.【点评】本题考查数列递推式,着重考查等差数列的通项公式与数列求和,突出考查错位相减法求和,考查分析运算能力,属于中档题.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.【分析】(Ⅰ)由函数的解析式知,可先求出函数f(x)=ax2+bx﹣lnx的导函数,再根据a≥0,分a=0,a>0两类讨论函数的单调区间即可;(Ⅱ)由题意当a>0时,是函数的唯一极小值点,再结合对于任意x>0,f(x)≥f(1).可得出=1化简出a,b的关系,再要研究的结论比较lna与﹣2b的大小构造函数g(x)=2﹣4x+lnx,利用函数的最值建立不等式即可比较大小【解答】解:(Ⅰ)由f(x)=ax2+bx﹣lnx(a,b∈R)知f′(x)=2ax+b﹣又a≥0,故当a=0时,f′(x)=若b≤0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<,即函数在(0,)上是减函数,在(,+∞)上是增函数、所以函数的单调递减区间是(0,),单调递增区间是(,+∞),当a>0时,令f′(x)=0,得2ax2+bx﹣1=0由于△=b2+8a>0,故有x2=,x1=显然有x1<0,x2>0,故在区间(0,)上,导数小于0,函数是减函数;在区间(,+∞)上,导数大于0,函数是增函数综上,当a=0,b≤0时,函数的单调递减区间是(0,+∞);当a=0,b>0时,函数的单调递减区间是(0,),单调递增区间是(,+∞);当a>0,函数的单调递减区间是(0,),单调递增区间是(,+∞)(Ⅱ)由题意,函数f(x)在x=1处取到最小值,由(1)知,是函数的唯一极小值点故=1整理得2a+b=1,即b=1﹣2a令g(x)=2﹣4x+lnx,则g′(x)=令g′(x)==0得x=当0<x<时,g′(x)>0,函数单调递增;当<x<+∞时,g′(x)<0,函数单调递减因为g(x)≤g()=1﹣ln4<0故g(a)<0,即2﹣4a+lna=2b+lna<0,即lna<﹣2b【点评】本题是函数与导数综合运用题,解题的关键是熟练利用导数工具研究函数的单调性及根据所比较的两个量的形式构造新函数利用最值建立不等式比较大小,本题考查了创新探究能力及转化化归的思想,本题综合性较强,所使用的方法具有典型性,题后应做好总结以备所用的方法在此类题的求解过程中使用.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.【分析】(Ⅰ)设椭圆的标准方程为,焦距为2c.由题意可得,解出即可得到椭圆的方程.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,利用判别式、根与系数的关系即可得到弦长|AB|,再利用点到直线的距离公式即可得到原点O到直线AB的距离,进而得到三角形AOB的面积,利用即可得到m,n,t的关系,再利用,及中点坐标公式即可得到点P的坐标代入椭圆的方程可得到m,n,t的关系式与上面得到的关系式联立即可得出t的值.【解答】解:(Ⅰ)由题意设椭圆的标准方程为,焦距为2c.则,解得,∴椭圆的方程为.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,则△=4m2n2﹣4(m2+2)(n2﹣2)=4(2m2+4﹣2n2)>0,(*),,∴|AB|===.原点O到直线AB的距离d=,∵,∴=,化为.(**)另一方面,=,∴x E=my E+n==,即E.∵,∴.代入椭圆方程得,化为n2t2=m2+2,代入(**)得,化为3t4﹣16t2+16=0,解得.∵t>0,∴.经验证满足(*).当AB∥x轴时,设A(u,v),B(﹣u,v),E(0,v),P(0,±1).(u>0).则,,解得,或.又,∴,∴.综上可得:.【点评】本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积公式、向量共线等基础知识与基本技能,考查了推理能力和计算能力、分类讨论的能力及化归思想方法.。
2013年高考数学各地名校文科立体几何试题解析汇编
2013年高考数学各地名校文科立体几何试题解析汇编各地解析分类汇编:立体几何1.【云南省玉溪一中2013届高三上学期期中考试文】设是平面内两条不同的直线,是平面外的一条直线,则“,”是“”的( )A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【答案】C【解析】若直线相交,则能推出,若直线不相交,则不能推出,所以“,”是“”的必要不充分条件,选C.2 【云南省玉溪一中2013届高三第四次月考文】已知某几何体的俯视图是如图所示的边长为的正方形,主视图与左视图是边长为的正三角形,则其全面积是()A.B.C.D.【答案】B【解析】由题意可知,该几何体为正四棱锥,底面边长为2,侧面斜高为2,所以底面积为,侧面积为,所以表面积为,选B.3 【云南省玉溪一中2013届高三第四次月考文】四面体中,则四面体外接球的表面积为()A.B.C.D.【答案】A【解析】分别取AB,CD的中点E,F,连结相应的线段,由条件可知,球心在上,可以证明为中点,,,所以,球半径,所以外接球的表面积为,选A.4 【山东省聊城市东阿一中2013届高三上学期期初考试】设直线m、n和平面,下列四个命题中,正确的是()A. 若B. 若C. 若D. 若【答案】D【解析】因为选项A中,两条直线同时平行与同一个平面,则两直线的位置关系有三种,选项B中,只有Mm,n相交时成立,选项C中,只有m垂直于交线时成立,故选D5 【山东省烟台市莱州一中20l3届高三第二次质量检测(文)】一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是A.①B.②C.③D.④【答案】C【解析】当俯视图为圆时,由三视图可知为圆柱,此时主视图和左视图应该相同,所以俯视图不可能是圆,选C.6 【云南省玉溪一中2013届高三第三次月考文】已知三棱锥的三视图如图所示,则它的外接球表面积为()A.16 B.4 C.8 D.2【答案】B【解析】由三视图可知该几何体是三棱锥,且三棱锥的高为1,底面为一个直角三角形,由于底面斜边上的中线长为1,则底面的外接圆半径为1,顶点在底面上的投影落在底面外接圆的圆心上,由于顶点到底面的距离,与底面外接圆的半径相等则三棱锥的外接球半径R 为1,则三棱锥的外接球表面积,选B.7 【山东省兖州市2013届高三9月入学诊断检测文】设是直线,a,β是两个不同的平面A. 若∥a,∥β,则a∥βB. 若∥a,⊥β,则a⊥βC. 若a⊥β,⊥a,则⊥βD. 若a⊥β, ∥a,则⊥β【答案】B【解析】根据线面垂直的判定和性质定理可知,选项B正确。
2013年山东高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(山东卷)文科数学一.选择题:本题共12个小题,每题5分,共60分.1.复数2(2i)iz -=(i 为虚数单位),则z = ( )A .25 B.41 C.5 D.5 【测量目标】复数的代数的四则运算,复数的基本概念(复数的模). 【考查方式】给出复数的乘方与除法形式,求复数的模. 【参考答案】C【试题解析】利用复数的乘方和乘除运算计算出z ,进而求出z ,2222(2i)44i+i 34i =43i,z (4)(3)5i i iz ---===--∴=-+-=.2.已知集合,A B 均为全集{}=1,2,3,4U 的子集,且{}()4U A B = ð,{}=1,2B ,则U A B = ð ( )A.{3}B.{4}C.{3,4}D.∅【测量目标】集合间的基本运算.【考查方式】集合的表示(列举法),给出集合间的四则运算结果,去计算A B 与的补集的交集.【参考答案】A【试题解析】利用所给条件计算出A 和U B ð,进而求交集{}{}=1,2,3,4,()4U U A B = ,ð(步骤1) {}{}{}{}1,2,3.=123123.A B B A ∴=∴⊆⊆ 又,,,,(步骤2) 又{}{}=34,3.U UB A B ∴= ,痧(步骤3)3.已知函数()f x 为奇函数,且当0x >时()21f x x x=+,则()1f -= ( ) A .2 B.1 C.0 D.-2【测量目标】函数奇偶性的综合运用.【考查方式】已知函数的部分解析式、利用函数的奇偶性,解决函数的求值问题. 【参考答案】D【试题解析】利用奇函数的性质()()f x f x -=-求解.当2210(),(1)11 2.x f x x f x>=+∴=+=时, ()f x 为奇函数.(1)(1)2f f ∴-=-=-4.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是 ( ) A .45,8 B.845,3C.84(51),3+ D. 8,8 【测量目标】由三视图求几何体表面积与体积.【考查方式】给出四棱锥的主视图,描述四棱锥棱的情况,求解四棱锥的侧面积与体积.【参考答案】B 【试题解析】有正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,21822.33V ∴=⨯⨯=四棱锥的侧面是全等的等腰三角形,底为2,高为15,=425=452S ∴⨯⨯⨯侧5.函数1()123xf x x =-++的定义域为 ( ) A.(-3,0] B. (-3,1] C. ()(],33,0-∞-- D. ()(],33,1-∞-- 【测量目标】函数的定义域.【考查方式】通过给定函数式,使每个部分有意义,求其定义域. 【参考答案】A【试题解析】求函数定义域就是是这个式子有意义的自变量x 的取值范围,由题意,自变量x 应满足120,30,x x ⎧-⎨+>⎩…解得0,303,x x x ⎧∴-<⎨>-⎩……6.执行右边的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为 ( )A.0.2,0.2B. 0.2,0.8C. 0.8,0.2D. 0.8,0.8 【测量目标】循环结构的程序框图.【考查方式】给出具体的算法流程图,求输出的结果.【参考答案】C【试题解析】根据输入a 的值的不同而执行不同的程序.当 1.20, 1.210.2,0,a a a a =-<∴=-+=-< 时,0.210.8,0.0.81,a a =-+=>< 输出0.8.a =当 1.21, 1.210.2.a a a =∴=-=时,…0.21,< 输出0.2.a =7.ABC △的内角A B C 、、的对边分别是a b c 、、,若=2,=1,=3,B A a b 则c = ( )A. 23B. 2C.2D.1【测量目标】用正余弦定理判断三角形形状,勾股定理,二倍角.【考查方式】已知三角形的边角关系求边长,考查正弦定理、二倍角公式. 【参考答案】B【试题解析】先利用正弦定理,求出角A ,进而求出角B 和角C ,得出角C 为直角,从而用勾股定理求出边c 由正弦定理得,2,1,3,sin sin a bB A a b A B==== 13.sin 2sin cos A A A∴=(步骤1) A 为三角形的内角3sin 0.cos 2A A ∴≠∴=,.(步骤2)ππ0π,2.63A A B A <<∴=∴==又,(步骤3)ππ2C A B ABC ∴=--=∴,△为直角三角形由勾股定理得221(3) 2.c =+=(步骤4)8.给定两个命题q p ,,p ⌝是q 的必要而不充分条件,则p 是q ⌝ ( ) A .充分而不必要条件 B.必要而不充分条件 C.充要条件 D.不充分也不必要条件 【测量目标】充分、必要条件,四种命题之间的关系.【考查方式】根据逻辑连接词,来主要考查命题的基本关系及充分必要条件. 【参考答案】A【试题解析】借助原命题与逆否命题等价判断.若p ⌝是q 的必要不充分条件,则q p ⇒⌝但p q ⌝≠,其逆否命题为,p q q p p q ⇒⌝⌝≠∴⌝但是的充分不必要条件.9.函数cos sin y x x x =+的图象大致为 ( )A B C D【测量目标】函数奇偶性的综合运用,函数图象的阅读及处理. 【考查方式】通过给定的函数式,确定函数的大概图象.【参考答案】D【试题解析】结合给出的函数图象,带入特殊值,利用排除法求解.π10,C 2π,1,B 2π,π0 A.Dx y x y x y ==>=-=-==-<时,排除当排除当排除故选10.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A.1169 B.367 C.36 D.677【测量目标】茎叶图、用样本数字特征估计总体数字特征(方差,平均数).【考查方式】给定茎叶图,里面含有未知数,给定去高去低后的平均数,求剩余分数的方差.【参考答案】B【试题分析】利用平均数为91,求出x 的值,利用方差的定义,计算方差,根据茎叶图.[]22222222187+94909190(90)9191, 4.7136(8791)(9491)(9091)(9191)(9091)(9491)(9191)77x x s ++++++=∴=⎡⎤=-+-+-+-+-+-+-=⎣⎦11.抛物线211:()2C y x p p=>0的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p = ( )A .316 B.38 C.233 D.433【测量目标】双曲线、抛物线的简单几何性质,抛物线与直线的位置关系.【考查方式】给定两抛物线交点位置,交点处的切线与抛物线的关系,去求抛物线中的未知数.【参考答案】D【试题解析】做出草图,数形结合,建立方程求解.双曲线2223x C y -:=1,∴右焦点为F (2,0),渐近线方程为33y x =±(步骤1) 抛物线21102C y x p p=>:(),焦点为(0,).2p F '(步骤2)设200001.2M x y y x p=(,), 020001222,.2113,|.3MF FF x x p p x p k k x y x y x p p ''=-=∴=-''=∴== 得433p =(步骤3) 12.设正实数,,x y z 满足22340x xy y z -+-=,当zxy取得最大值时,2x y z +-的最大值为()A .0 B.98 C.2 D.94【测量目标】基本不等式求最值.【考查方式】给定三个未知数满足的方程式,用基本不等式求式子的最大值. 【参考答案】B【试题解析】含三个参数,,x y z 消元,利用基本不等式及配方法求最值.222234(0,0,0),44323134z x xy y x y z xy xy x y x yz x xy y y x y x=-+>>>∴==+--=-+ …(步骤1) 当且仅当42x yx y y x==,时等号成立2222222223446422222242(1)2z x xy y y y y y x y z y y y y y y =-+=-+=∴+-=+-=-+=--+(步骤2)12y x y z ∴=+-,的最大值是2(步骤3)二.填空题:本大题共4小题,每小题4分,共16分13.过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________ 【测量目标】圆的简单几何性质.【考查方式】给定定点,与圆的标准方程,求过点的最短弦长. 【参考答案】22【试题解析】借助圆的几何性质,确定圆的最短弦位置,利用半径,弦心距及半弦长的关系求弦长.设A (3,1),可知圆心C (2,2),半径r =2,当弦过点A (3,1)且与CA 垂直时为最短弦22(23)(21)2CA =-+-=(步骤1)所以半弦长22=422r CA -=-=最短弦长为2214.在平面直角坐标系xOy 中,M 为不等式组2360200x y x y y +-⎧⎪+-⎨⎪⎩………所表示的区域上一动点,则直线OM 的最小值为_______【测量目标】二元线性规划求目标函数的最小值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值. 【参考答案】2 【试题解析】如图所示,M 为图中阴影部分的一个动点,由于点到直线的距离最短,所以OM 的最小值2==2215.在平面直角坐标系xOy 中,已知(1,),(2,2)OA t OB =-= ,若90ABO ∠=,则实数t 的值为______【测量目标】平面向量在平面几何中的应用,向量的坐标运算.【考查方式】给出两向量的坐标表示,两向量的垂直关系,求未知数t . 【参考答案】5【试题解析】利用向量垂直的充要条件,列方程求解.90,,0.ABO AB OB OB AB ∠=∴⊥∴=(2,2)(1,)(3,2),AB OB OA t t =-=--=-又(步骤1)(2,2)(3,2)62(2)0t t ∴-=+-= 5t ∴=(步骤2)16.定义“正对数”:()()0,01ln ln ,1x x x x +<<⎧⎪=⎨⎪⎩…,现有四个命题:①若0,a b >>0,则()lnlnba b a ++=;②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ln ln a a b b +++⎛⎫- ⎪⎝⎭… ④若0,0a b >>,则()lnln ln ln2a b a b ++++++…其中的真命题有____________(写出所有真命题的序号) 【测量目标】分段函数,对数的性质,不等式恒成立问题.【考查方式】给定分段函数,求所给的4个小命题的正确性,逐一论证. 【参考答案】○1○3○4【试题解析】本题是新定义型问题,解题时要严格按照所给定义,对每一个选项逐一论证或排除.○11,0,1,ln ()ln ln ln .bb b a b aa ab a b a ++>∴∴=== 当厖(步骤1)01,0,1,l n ()bba b a a +<<>∴<∴= 当(步骤2) ln 0,ln 0,ln ()ln ba b a a b a ++++=∴=∴=又(步骤3) 故○1正确. ○2112,,ln ()ln 0,42a b ab ++====当而ln ln 2,ln 0,ln ln ln 2a b a b ++++==∴+=(步骤4) 故○2不成立. ○3a.01,01,ln ln 0a b a b ++<<-=当剟而ln 0,ln ln ln a a a b b b ++++⎛⎫⎛⎫∴-⎪ ⎪⎝⎭⎝⎭厖(步骤5)b .当+01,1,ln ln ln 0a b a b b ++<>-=-<…而+ln ()0,ln ()ln ln a a a b bb +++=∴-…(步骤6)c .当1,01,1,aa b a b ><>剠(步骤7) ln ()ln()ln ln ln ln a a a a a b b b ++++∴===-…ln ()ln ln a a b b+++∴-… (步骤8)d .当1,1,,ln ()0a a b a b b+>><=且 ln ln 0,ln ()ln ln a a b a b b+++++-<∴-…(步骤9)e .当1,1,,1aa b a b b>>>>且时ln ()ln()ln ln ln ln a aa b a b b b +++∴==-=-(步骤10)综上:ln ()ln ln a a b b+++-…,故○3正确.○4a.01,01,01,ln ()0a b ab a b +<+<<∴+=当剟?ln ln ln 200ln 20a b ++++=++>+ln ()ln ln ln 2a b a b ++∴+<++(步骤11)b .1,a b +>当分下列三种情况:(i )当 11,12,a b a b b b b b <+++= 0,剠剟ln ()ln()ln 2ln ln ln 2a b a b b a b +++∴+=+=++…(步骤12) (ii)1,011+2,a b a b aa a a <++= 当时,厔剟+ln ()ln()ln 2ln ln 2ln ln ln 2a b a b a a a b ++∴+=+=+=++…(步骤13)(iii)01,012,ln 0,a ba b a +<<∴+=当时,且剟?ln 0.ln ()ln()ln 2ln ln ln 2b a b a b a b ++++=∴++=++剟(步骤14)综上:ln ()ln ln ln 2a b a b ++++++…,故○4正确.三.解答题:本大题共6小题,共74分, 17.(本小题满分12分) 某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:ABCDE身高 1.69 1.73 1.75 1.79 1.82 体重指标 19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率【测量目标】列举法、古典概型,随机事件与概率.【考查方式】给出五个学生的身高与体重,按照一定条件求概率.【试题分析】解(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有(,A B ),(,A C ),(,A D ),(,B C ),(,B D ),(,C D )共6个.(步骤1)由于每个人被选到的机会均等,因此这些基本事件的出现是均等的.选到的2人身高都在1.78以下的事件有(,A B ),(,A C ),(,B C ),共3人.(步骤2)因此选到的俩人身高都在1.78以下的概率为12p =(步骤3) (2)从该小组同学中人选两人,其组成成分有(,A B ),(,A C ),(,A D ),(,A E ),(,B C ),(,B D ),(,B E ),(,C D ),(,C E ),(,D E ),共10个(步骤4) 选到的2人的身高都在 1.70以上且体重指标都在[)18.5,23.9中的事件有(,C D ),(,C E ),(,D E ),共三个(步骤5)选到的2人的身高都在1.70以上且体重指标都在[)18.5,23.9中的概率310P =(步骤6) 18.(本小题满分12分)设函数23()3sin sin cos (0)2f x x x x ωωωω=-->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为π4,(1)求ω的值. (2)求()f x 在区间3ππ,2⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【测量目标】两角和与差的三角函数公式、二倍角公式、三角函数的图象与性质【考查方式】利用倍角公式化简函数式,数形结合求未知数ω再求函数在一段区间上的最值.【试题分析】(1)先利用倍角公式,两角和与差的三角公式把()f x 的解析式进行化简整理,再利用对称中心到最近的对称轴的距离为π4求出ω,(2)先根据x 的取值范围求出π23x -的取值范围,然后利用三角函数的图象,并结合其单调性求出()f x 的最值. 23()3sin sin cos 231cos 213sin 2222f x x x x x x ωωωωω=---=-- (1)31πcos 2sin 2sin 2223x x x ωωω⎛⎫=-=-- ⎪⎝⎭(步骤1) 因为图象的一个对称中心到最近的对称轴的距离为π4, 又2ππ0,424ωω>∴=⨯ 因此1ω=(步骤2)(2)由(1)知π()sin 2.3f x x ⎛⎫=-- ⎪⎝⎭当3π5ππ8ππ,2.2333xx -剟剟 3πsin 2 1.23x ⎛⎫∴-- ⎪⎝⎭剟(步骤3) 因此31()2f x -剟 故()f x 在区间3ππ,2⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为3,12-(步骤4) 19.(本小题满分12分)如图,四棱锥P ABCD -中,,,AB AC AB PA ⊥⊥,2,,,,,AB CD AB CD E F G M N = 分别为,,,,PB AB BC PD PC 的中点(Ⅰ)求证:CEPAD 平面 ;(Ⅱ)求证:EFG EMN ⊥平面平面【测量目标】线面平行的判定定理,线面垂直,面面垂直的判定定理,平行线的传递性.【考查方式】根据所给出的直线间的位置关系,用线线平行推导线面平行,根据线面垂直,去证明面面垂直.【试题分析】要证明线面平行,可考虑证明线线平行,也可先证明面面平行,进而转化为证线面平行,利用三角形的中位线或平行四边形的性质证明线线平行是证明平行问题首先要考虑的;要证明EFG EMN ⊥平面平面,可先考虑证明平面EMN 中的MN 垂直于平面EFG ,即转化为证明线面垂直,而要证明MN EFG ⊥平面,需要证明MN 垂直于平面EFG 中的两条相交直线(1):如图,取,PA H EH DH 的中点,连接E 为PB 的中点1,.2EH AB EH AB ∴= (步骤1)1,2AB CD CD AB =,.EH CD CD EH ∴= (步骤2)所以四边形DCEH 是平行四边形 (步骤3).CE DH ∴ (步骤4),DH PAD CE PAD ⊂又平面平面Ü CE PAD ∴平面 (步骤5)(2)因为,E F 分别为,PB AB 的中点,所以.,.EF PA AB PA AB EF ⊥∴⊥又 (步骤6)同理可证AB FG ⊥(步骤7),,EF FG F EF EFG FG =⊂⊂ 又平面平面EFGAB ⊥因此平面EFG (步骤8)又,M N 分别为,PD PC 的中点MN DC ∴ (步骤9) 又,,AB DC MN AB MN ∴∴⊥ 平面EFG (步骤10)MN ⊂又平面,EMN 所以平面EFG ⊥平面EMN (步骤11)20.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+. (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足*12121...1,2n n n b b b n a a a +++=-∈N ,求{}n b 的前n 项和n T . 【测量目标】等差数列通项公式及前n 项和公式,错位相减法求和.【考查方式】已知{}n a 为等差数列,给定{}2n n S a 与进行逆推{}n a ,再由题给出的{}{}n n a b 与的关系式错位相减求出结果.【试题分析】(1)由于已知{}n a 是等差数列,因此可以考虑用基本量1,a d 表示已知等式,进而求出{}n a 的通项公式.(2)先求出nnb a ,进而求出{}n b 的通项公式,再用错位相减法求{}n b 的前n 项和.解:(1)设等差数列{}n a 的首项为1a ,公差为d . 由422421,n n S S a a ==+,11114684,(21)22(1)1a d a d a n d a n d +=+⎧⎨+-=+-+⎩ 解得112a d =⎧⎨=⎩(步骤1) 因此,*21,n a n n =-∈N (步骤2)*121211111,,211,;21112,11222n n n n n n n n b b b n a a a b n a b n a -++⋅⋅⋅+=-∈==⎛⎫=---= ⎪⎝⎭N (2)由已知当当…*1,.2n n n b n a ∴=∈N (步骤3) 由*21,,n a n n =-∈N (1)*21,2n nn b n -∴=∈N (步骤4) 2313521,2222n n n T -∴=+++⋅⋅⋅+23113232122222n n n n n T --=++⋅⋅⋅++(步骤5) 两式相减,得231111122221()2222223121,222n n n n n n T n +-+-=+++⋅⋅⋅+--=--2332n nn T +∴=-(步骤6)21.(本小题满分12分)已知函数2()ln (,)f x ax bx x a b =+-∈R , (Ⅰ)设0a …,求()f x 的单调区间(Ⅱ) 设0a >,且对于任意0,()(1)x f x f >….试比较ln a 与2b -的大小【测量目标】利用导数求函数的单调区间,利用导数解决不等式问题. 【考查方式】用导数求含参数函数的单调区间,利用导数证明不等式.【试题分析】(1)求()f x 的单调区间,需要对()f x 求导.当()0,()f x f x '>是增函数,()0,()f x f x '<是减函数,但是需要对参数,a b 进行讨论(2)()f x 的最小值为(1)f ,当()f x 有唯一极小值点时,极小值就是最小值,然后构造函数求解.解:由2()ln ,(0,),f x ax bx x x =+-∈+∞221()ax bx f x x +-'=(步骤1)11.0,().bx a f x x-'==a .若0b …,当0x >,()0f x '<恒成立 所以函数()f x 的单调递减区间是()0,+∞.(步骤2)1b.0,0,()0b x f x b'><<<若当函数()f x 单调递减1,(),x f x b'>函数()f x 单调递增(步骤3)所以函数()f x 的单调递减区间1(0,)b ,单调递增区间是1(,)b+∞(步骤4)2.当20,()0,210.a f x ax bx '>=+-=令得(步骤5) 由280b a +>得221288,44b b a b b ax x a a--+-++==(步骤6) 显然120,0.x x <>当20,()0,x x f x '<<<函数()f x 单调递减2,()0,x x f x '>>当函数()f x 单调递增(步骤7)所以函数()f x 的单调递减区间是280,4b b a a ⎛⎫-++ ⎪ ⎪⎝⎭,单调递增区间是28,4b b a a ⎛⎫-+++∞⎪ ⎪⎝⎭(步骤8) 综上所述,当0,0a b =…,函数()f x 的单调递减区间是()0,+∞当0,0a b =>,函数()f x 的单调递减区域是10,b ⎛⎫ ⎪⎝⎭,单调递增区域是1,b ⎛⎫+∞ ⎪⎝⎭当0a >,函数()f x 的单调递减区间是280,4b b a a ⎛⎫-++ ⎪ ⎪⎝⎭,单调递增区间是28,4b b a a ⎛⎫-+++∞⎪ ⎪⎝⎭.(步骤9) (2)由题意知函数()1f x x =在处取最小值,由284b b a a-++(1)知是()f x 的唯一极小值点(步骤10)故28=14b b a a-++.整理,21,a b +=即12.b a =-(步骤11)令14()24ln ,().xg x x x g x x-'=-+=则(步骤12) 令1()0,4g x x '==得(步骤13) 10,()0,()4x g x g x '<<>单调递增1,4x >()0g x '<,()g x 单调递减.(步骤13)因此11()()1ln 1ln 4044()0,24ln 2ln 0,g x g g a a a b a =+=-<<-+=+<即… 即ln 2a b <-(步骤14)22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22(I)求椭圆C 的方程(Ⅱ),A B 为椭圆C 上满足AOB △的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 与点P ,设OP tOE =,求实数t 的值.【测量目标】椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,点到直线的距离公式,向量的线性运算,平面向量在平面几何中的应用.【考查方式】给出椭圆的位置情况,短轴及离心率,用待定系数法去求椭圆方程,(Ⅱ)中给出AOB △的面积及部分支线的几何位置,求满足向量方程的未知数. 【试题解析】(1)可用待定系数法求出,a b ,进而求出椭圆C 的方程.(2)设出直线AB 的方程,带入椭圆方程,设而不求,利用根与系数的关系转化,但要注意AB 与x 轴垂直时的情况.解:(1)设椭圆C 的方程为22221(0),x y a b a b+=>>由题意 2222,222a b c cab ⎧=+⎪⎪=⎨⎪=⎪⎩解得21a b ⎧=⎪⎨=⎪⎩ 因此椭圆C 的方程为 22 1.2x y +=(步骤1) (2)(i )当,A B 两点关于x 轴对称,设直线AB 的方程为x m =. 由题意得20m <<-或02m <<(步骤2)将x m =带入椭圆方程22221,22x m y y -+==(步骤3) 226.24AOBm S m -∴== △解得223122m m ==或 ○1 (步骤4) 11()(2,0)(,0),22OP tOE t OA OB t m mt ==+==又P 为椭圆C 上一点212mt ∴=() ○2 (步骤5)由○1○2,得22443t t ==或 又230,23t t t >∴==或 (步骤6) (ii )当,A B 两点关于x 轴不对称时,设直线AB 的方程为y kx h =+将其代入椭圆的方程2212x y +=,得 ()222124220.k xkhx h +++-=(步骤7)设1122(,),(,).A x y B x y 由判定式0∆>可得2212k h +>(步骤8)21212221212222121242,,12122()2,121()4kh h x x x x k khy y k x x h k AB k x x x x +=-=+++=++=+∴=+⨯+-222212221.12k h k k+-=⨯+⨯+(步骤9) 因为点O 到直线AB 的距离21h d k=+,2221122212AOBk h S AB d h k +-∴==⨯⨯+△(步骤10) 2221+262124k h h k -∴⨯⨯=+ ○3 (步骤11) 212,n k =+令代入○3整理得224316160n h n h -+= 解得22443n h n h ==或, 即222241241+23k h k h +==或 ○4 (步骤12) 121211()(,)22OP tOE t OA OB t x x y y ==+=++222,1212khtht k k ⎛⎫=- ⎪++⎝⎭(步骤13) 又P 为椭圆C 上一点,2222212()121212kh h t k k ⎡⎤⎛⎫∴-+=⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦即222112h t k=+ ○5(步骤13) 将○4代入○5,得22443t t ==或 (步骤14) 230,2.3t t t >==又故或(步骤15) 经检验,符合题意23i ii 23t t ==综合()(),得或(步骤16)。
【Word版解析】山东省济南市2013届高三上学期期末考试 文科数学
2013年1月高三教学质量调研考试文 科 数 学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 训练时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:柱体的体积公式:V S h =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数31ii+=+ A .i 21+ B .i 21- C .i +2 D .i -2【答案】D 【解析】3(3)(1)4221(1)(1)2i i i iii i i ++--===-++-,选D.2.已知集合{}320A x x =+>,()(){}130B x x x =+->,则A B = A .(),1-∞- B. 21,3⎛⎫-- ⎪⎝⎭ C. 2,33⎛⎫- ⎪⎝⎭D .()3,+∞ 【答案】D【解析】{}2320{}3A x x x x =+>=>-,()(){}130{31}B x x x x x x =+->=><-或,所以{3}A B x x => ,选D.3.设()2,02,0x x x f x x ⎧<=⎨≥⎩,则()1f f -⎡⎤⎣⎦= A. 1 B. 2 C4 D. 8【答案】B【解析】2(1)(1)1f -=-=,所以()11(1)22f f f -===⎡⎤⎣⎦,选B.4.已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3aA. -10B. 6C. 10D. 14【答案】C【解析】22332231(221)10a S S =-=⨯--⨯-=,选C. 5.在ABC ∆中,若ab b c a 3222=+-,则C= A. 30° B . 45°C. 60°D. 120°【答案】A【解析】由ab b c a 3222=+-得,222cos 2a b c C ab +-===30C =,选A.6.如图在程序框图中,若输入6n =, 则输出k 的值是A .2B .3C .4D .5 【答案】B【解析】输入6n =,则第一次循环0,26113k n ==⨯+=,第二次循环1,213127k n ==⨯+=,第三次循环2,227155k n ==⨯+=,第四次循环3,2551111k n ==⨯+=,此时满足条件,输出3k =,选B.7.设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线()2:140l x a y +++=平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】若12//l l ,则21114a a -=≠+,解得1a =或2a =-。
山东高考-山东师大附中2013届高三押题卷 文科数学 试题Word版答案
答案及试题:2013年6月山师大附中高考模拟试题文 科 数 学参考答案一、选择题:ADAAB,BDDCA,AC 二、填空题:2,6,3π,41 三、解答题17.解:(I )()()1cos 21323cos 2422x f x x π⎛⎫-- ⎪⎝⎭=--⨯-------------2分 1311s i n 2c o s 2s i n 222226x x x π⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭------------------------4分 由222262k x k πππππ-≤-≤+可得,63k x k k z ππππ-≤≤+∈--------5分()f x 的单调递增区间为:,,63k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦-------------------------6分(II )()1,sin 21263f B B B ππ⎛⎫=∴-=∴= ⎪⎝⎭------------------------8分 在ABC ∆中,由余弦定理:222242cos 2a c ac B a c ac ac ac ac =+-=+-≥-=----10分133sin 43244ABC S ac B ac ∆==≤⨯=所以ABC ∆面积的最大值为3 -----------------------------------------------12分 18. 解:(I )∵33.02000=a,∴ 660=a ---------------1分 ∵50090660776732000=----=+c b , -----------------------------2分∴ 应在C 组抽取样个数是902000500360=⨯(个); -------------------------4分 (II )∵500=+c b ,465≥b ,30≥c ,∴(b ,c )的可能性是(465,35),(466,34),(467,33),(468,32),(469,31),(470,30),共6种----------------------7分 若测试通过,则1800%902000673=⨯≥++b a ,解得467≥b , (b ,c )的可能性是(467,33),(468,32),(469,31),(470,30),共4种------10FE DCBA分通过测试的概率是3264=. -------12分 19.(I )证明:设AC 与BD 相交于点O ,连结FO.因为四边形ABCD 为菱形,所以BD AC ⊥, …………1分 又FA=FC ,且O 为AC 中点.所以FO AC ⊥. …………2分因为BDEF BD BDEF FO O BD FO 平面,平面⊂⊂=⋂,,所以BDEF AC 平面⊥. ……………………………4分 (II )证明:因为四边形ABCD 与BDEF 均为菱形,所以//,//,AD BC DE BF又AD EAD DE EAD AD DE D ⋂=⊂⊂,平面,平面,所以平面//FBC EAD 平面 ………………………………6分 又FC FBC ⊂平面所以//FC EAD 平面. ………………………………8分 (Ⅲ)解:因为四边形BDEF 为菱形,且60DBF ∠=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省各地市2013届高三文科数学试题分类汇编10:概率一、选择题1 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))已知集合{}⎭⎬⎫⎩⎨⎧+-==<--=311|,032|2x x g y x B x x x A ,在区间()3,3-上任取一实数x ,则“B A x ⋂∈”的概率为 (A)41(B)81(C)31 (D)121 【答案】C 【解析】{}23|230{1}2A x x x x x =--<=-<<,11|1{0}{(1)(3)0}{31}33x x B x y g x x x x x x x x --⎧⎫===>=-+>=-<<⎨⎬++⎩⎭,所以{11}A B x x =-<<,因为B A x ⋂∈,所以11x -<<.根据几何概型可知B A x ⋂∈的概率为1(1)213(3)63--==--,选C.2 .(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b,则b a >的概率是 A.45B.35C.25D.15【答案】C 从两个集合中各选1个数有15种,满足b a >的数有,(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)共有6个,所以b a >的概率是62155=,选C. 3 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)设[]0,5p 在上随机地取值,则关于x 的方程210x px ++=有实数根的概率为 A.15B.25C.35D.45【答案】C 方程有实根,则240p ∆=-≥,解得2p ≥或2p ≤-(舍去).所以由几何概型可知所求的概率为523505-=-,选C. 二、填空题4 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)在如图的表格中,每格填上一个数字后,使得每一横行成等差数列,每一纵列成等比数列,则a b c ++的值为________________.【答案】1【解析】由题意知21a=,所以12a =.第三列和第五列的公比都为12,所以3133()28m =⨯=,所以1352488b =+=,即516b =.4133()216c =⨯=,所以153121616a b c ++=++=.5 .(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知向量a=(1,-2),b=(x ,y ),若x ,y ∈[1,4],则满足0a b ⋅>的概率为_____.【答案】19 因为0a b ⋅>,所以20x y ->,又1414x y ≤≤⎧⎨≤≤⎩.做出可行域如图,当1y =时,2,2x y ==,即(2,0)B .当4x =时,4222x y ===,即(4,2)D ,所以2,1BC CD ==,即三角形BCD 的面积为11212⨯⨯=.所以由几何概型可知满足0a b ⋅>的概率为11339=⨯. 三、解答题6 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)某校从高一年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)[)[]40,50,50,60,,90,100⋅⋅⋅,得到如图所示的频率分布直方图.(I)若该校高一年级共有学生1000人,试估计成绩不低于60分的人数;(II)为了帮助学生提高数学成绩,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙恰好被安排在同一小组的概率. 【答案】解:(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为110(0.0040.010)0.86-⨯+=由于该校高一年级共有学生1000人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数为10000.86860⨯=人(Ⅱ)成绩在[)40,50分数段内的人数为500.042⨯=人 成绩在[]90,100分数段内的人数为500.15⨯=人,[40,50)内有2人,记为甲、A .[90,100)内有5人,记为乙、B 、C 、D 、E .则“二帮一”小组有以下20种分组办法:甲乙B ,甲乙C ,甲乙D ,甲乙E , 甲BC ,甲BD ,甲B E ,甲CD , 甲C E , 甲DE , A 乙B ,A 乙C ,A 乙D ,A 乙E,ABC ,ABD ,ABE , ACD , ACE , ADE 其中甲、乙两同学被分在同一小组有4种办法:甲乙B ,甲乙C ,甲乙D ,甲乙E 所以甲乙两同学恰好被安排在同一小组的概率为41205P == 7 .(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )某校从参加高三年级期中考试的学生中随机统计了40名学生的政治成绩,这40名学生的成绩全部在40分至l00分之间,据此绘制了如图所示的样本频率分布直方图.(I)求成绩在[80,90)的学生人数;(Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有l 名学生成绩在 [90,100]的概率.SBCDA MN【答案】解:(Ⅰ)因为各组的频率之和为1,所以成绩在区间[80,90)的频率为1(0.00520.0150.0200.045)100.1-⨯+++⨯=,所以,40名学生中成绩在区间[80,90)的学生人数为400.14⨯=(人)(Ⅱ)设A 表示事件“在成绩大于等于80分的学生中随机选两名学生,至少有一名学生成绩在区间[90,100]内”,由已知和(Ⅰ)的结果可知成绩在区间[80,90)内的学生有4人, 记这四个人分别为,,,a b c d ,成绩在区间[90,100]内的学生有2人,记这两个人分别为,e f 则选取学生的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a c a d a e a f b c b d b e b f (,),(,),(,)c d c e c f , (,),(,),(,)d e d f e f基本事件数为15,事件“至少一人成绩在区间[90,100]之间”的可能结果为:(,),(,),(,),(,),a e a f b e b f (,),(,),(,),(,),(,)c e c f d e d f e f ,基本事件数为9, 所以93()155P A == 8 .(【解析】山东省济南市2013届高三3月高考模拟文科数学)以下茎叶图记录了甲组3名同学寒假假期中去图书馆A 学习的次数和乙组4名同学寒假假期中去图书馆B 学习的次数. 乙组记录中有一个数据模糊,无法确认,在图中以x 表示.(1)如果x =7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x =9,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.【答案】解(1)当x =7时,由茎叶图可知,乙组同学去图书馆学习次数是:7,8,9,12,所以平均数为;9412987=+++=x方差为.27])912()99()98()97[(4122222=-+-+-+-=s(2)记甲组3名同学为A 1,A 2,A 3,他们去图书馆学习次数依次为9,12,11;乙组4名同学为B 1,B 2,B 3,B 4,他们去图书馆学习次数依次为9,8,9,12;从学习次数大于8的学生中人选两名学生,所有可能的结果有15个,它们是:A 1A 2,A 1A 3,A 1B 1,A 1B 3,A 1B 4,A 2A 3,A 2B 1,A 2B 3,A 2B 4,A 3B 1,A 3B 3,A 3B 4, B 1 B 3,B 1B 4,B 3B 4用C 表示:“选出的两名同学恰好在两个图书馆学习且学习的次数和大于20”这一事件,则C 中的结果有5个,它们是:A 1B 4,A 2B 4,A 2B 3,A 2B 1,A 3B 4,故选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20概率为.31155)(==C P 9 .(山东省威海市2013届高三上学期期末考试文科数学)某普通高中共有教师360人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示: 已知在全体教师中随机抽取1名,抽到第二、三批次中女教师分别是0.15、0.1.的概率(Ⅰ)求,,x y z 的值;(Ⅱ)为了调查研修效果,现从三个批次中按1:60的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.【答案】解:(Ⅰ)3600.1554,3600.136x y =⨯==⨯=360865436946624z =-----=(Ⅱ)由题意知,三个批次的人数分别是180,120,60,所以被选取的人数分别为3,2,1(Ⅲ)第一批次选取的三个教师设为123,,A A A ,第二批次的教师为12,B B ,第三批次的教师设为C ,则从这6x 8 29 乙组 第18题图名教师中随机选出两名教师的所有可能组成的基本事件空间为{1213111212321222313231212,,,,,,,,,,,,,,}A A A A A B A B AC A A A B A B A C A B A B A C B B B C B C Ω=共15个“来自两个批次”的事件包括{111121212223132312,,,,,,,,,,}A B A B AC A B A B A C A B A B A C B C B C Ω=共11个,所以“来自两个批次”的概率1115p =10.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人. (Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm)的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求()P EF .【答案】(Ⅰ)第六组的频率为40.0850=,所以第七组的频率为 10.085(0.00820.0160.0420.06)0.06--⨯⨯++⨯+=;(Ⅱ)身高在第一组[155,160)的频率为0.00850.04⨯=, 身高在第二组[160,165)的频率为0.01650.08⨯=, 身高在第三组[165,170)的频率为0.0450.2⨯=, 身高在第四组[170,175)的频率为0.0450.2⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=> 估计这所学校的800名男生的身高的中位数为m ,则170175<<m 由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m所以可估计这所学校的800名男生的身高的中位数为174.5由直方图得后三组频率为0.060.080.00850.18++⨯=,所以身高在180cm 以上(含180cm)的人数为0.18800144⨯=人(Ⅲ)第六组[180,185)的人数为4人,设为,,,a b c d ,第八组[190,195]的人数为2人, 设为,A B ,则有,,,,,,ab ac ad bc bd cd ,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,因事件=E {5x y -≤}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为,,,,,,ab ac ad bc bd cd AB 共7种情况,故7()15P E =由于max 19518015x y -=-=,所以事件F ={15->x y }是不可能事件,()0P F = 由于事件E 和事件F 是互斥事件,所以7()()()15P EF P E P F =+=11.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))(本小题满分l2分)为了增强学生的环保意识,某中学随机抽取了50名学生举行了一次环保知识竞赛,本次竞赛的成绩(得分均为整数,满分100分)整理得到的频率分布直方图如下图.若图中第一组(成绩为[40,50))对应矩形高是第六组(成绩为[90,100])对应矩形高的一半.(1)试求第一组、第六组分别有学生多少人?(2)若从第一组中选出一名学生,从第六组中选出2名学生,共3名学生召开座谈会,求第一组中学生A 1和第六组中学生B 1同时被选中的概率.【答案】12.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)有编号为A 1,A 2,A 3,,A 6的6位同学,进行100米赛跑,得到下面的成绩:其中成绩在13秒内的同学记为优秀.(l)从上述6名同学中,随机抽取一名,求这名同学成绩优秀的概率;(2)从成绩优秀的同学中,随机抽取2名,用同学的编号列出所有可能的抽取结果,并求这2名同学的成绩都在12.3秒内的概率. 【答案】13.(【解析】山东省济南市2013届高三上学期期末考试文科数学)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),,第五组[]17,18,下图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.【答案】解:(1)由频率分布直方图知,成绩在[14,16)内的人数为:500.28500.3632⨯+⨯=(人)所以该班成绩良好的人数为32人(2)由频率分布直方图知,成绩在[13,14)的人数为500.042⨯=人,设为x 、y ; 成绩在[17,18) 的人数为500.084⨯=人,设为A 、B 、C 、D 若,[13,14)m n ∈时,有xy 1种情况;若,[17,18)m n ∈时,有,,,,,AB AC AD BC BD CD 6种情况;秒若,m n 分别在[13,14)和[17,18)内时,共有种情况所以基本事件总数为15种,事件“||1m n ->”所包含的基本事件个数有8种. ∴P (||1m n ->)158=14.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)有一个不透明的袋子,装有3个完全相同的小球,球上分别编有数字l,2,3.(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x 2+ y 2=19有公共点的概率. 【答案】15.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)某高校组织的自主招生考试,共有1000名同学参加笔试,成绩均介于60分到100分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分为4组:第1组[60,70),第2组[70,80),第3组[80,90),第4组[90,100].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在85分(含85分)以上的同学有面试资格. (Ⅰ)估计所有参加笔试的1000名同学中,有面试资格的人数;12(Ⅱ)已知某中学有甲、乙两位同学取得面试资格,且甲的笔试比乙的高;面试时,要求每人回答两个问题,假设甲、乙两人对每一个问题答对的概率均为 ;若甲答对题的个数不少于乙,则甲比乙优先获得高考加分资格.求甲比乙优先获得高考加分资格的概率.【答案】解:(Ⅰ)设第(1,2,3,4)i i =组的频率为i f ,则由频率分布直方图知41(0.0140.030.036)100.2f =-++⨯=所以成绩在85分以上的同学的概率P ≈340.03610+0.20.38,22f f ⨯=+=故这1000名同学中,取得面试资格的约有1000×0.38=380人. (Ⅱ)设答对记为1,打错记为0,则所有可能的情况有:甲00乙00,甲00乙10,甲00乙01,甲00乙11,甲10乙00,甲10乙10,甲10乙01, 甲10乙11,甲01乙00,甲01乙10,甲01乙01,甲01乙11,甲11乙00,甲11乙10, 甲11乙01,甲11乙11,共16个甲答对题的个数不少于乙的情况有:甲00乙00,甲10乙00,甲10乙10,甲10乙01,甲01乙00,甲01乙10,甲01乙01, 甲11乙00,甲11乙01,甲11乙10,甲11乙11,共11个 故甲比乙优先获得高考加分资格的概率为1116. 16.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)若人们具有较强的节约意识,到饭店就餐时吃光盘子里的东西或打包带走,称为“光盘族”,否则称为“非光盘族”某班几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n 人进行了一次调查得到如下统计表:(I)求a 、b 的值并估计本社区[ 25,55]岁的人群中“光盘族”人数所占的比例;(Ⅱ)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)与[ 40,45)两个年龄段的概率.第20题图【答案】解:(1)第一组的人数为50,第一组的频率为0.05,所以5010000.05n==人所以光盘族占比为52052% 1000=17.(【解析】山东省德州市2013届高三3月模拟检测文科数学)对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率颁直方图如下:(1求出表中M,p及图中a的值;(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.【答案】18.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.【答案】解答:(1)由频率分布表得a+0.2+0.45+b+c=1, a+b+c=0.35 因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15 等级系数为5的恰有2件,所以c=220=0.1 从而a=0.35-b-c=0.1所以a=0.1 b=0.15 c=0.1 (2)从日用品1X ,2X ,3X ,1Y ,2Y 中任取两件,所有可能结果(1X ,2X ),(1X ,3X ),(1X ,1Y ),(1X ,2Y ),(2X ,3X ),( 2X ,1Y ),(2X ,2Y ),(3X ,1Y ),(3X ,2Y ),(1Y ,2Y )共10种,设事件A 表示“从日用品1X ,2X ,3X ,1Y ,2Y 中任取两件,其等级系数相等”,则A 包含的基本事件为(1X ,2X ),(1X ,3X ),(1X ,2X ),(1Y ,2Y )共4个,X 1 2 3 4 5 频率 a 0.2 0.45 b c故所求的概率P(A)=410=0.419.(山东省烟台市2013届高三3月诊断性测试数学文)某学校组织500名学生体检,按身高(单位:cm)分组:第1组[155,160),第2组[160,165),第3组[165,170),第4组[170,175),第5组[175,180],得到的频率分布直方图如图所示.(1)下表是身高的频数分布表,求正整数m,n的值;(2)现在要从第1,2,3组中用分层抽样的方法抽取6人,第1,2,3组应抽取的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人,求至少有1人在第3组的概率.【答案】20.(山东省青岛即墨市2013届高三上学期期末考试数学(文)试题)有六张纸牌,上面分别写有1,2,3,4,5,6六个数字,甲、乙两人玩一种游戏:甲先取一张牌,记下点数,放回后乙再取一张牌,记下点数.如果两个点数的和为偶数就算甲胜,否则算乙胜.(1)求甲胜且点数的和为6的事件发生的概率; (2)这种游戏规则公平吗?说明理由.【答案】解:(1)设“甲胜且点数的和为6”为事件A,甲的点数为x,乙的点数为y,则(x,y)表示一个基本事件两人取牌结果包括(1,1),(1,2),(1,5),(1,6),(2,1),(6,1),(6,6)共36个基本事件; A 包含的基本事件有(1,5),(2,4),(3,3)(4,2),(5,1)共5个, 所以365=)(A P 所以,编号之和为6且甲胜的概率为365 (2)这种游戏公平.设“甲胜”为事件B,“乙胜”为事件C.甲胜即两个点数的和为偶数 所包含基本事件为以下18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3)(5,5),(6,2),(6,4),(6,6) 所以甲胜的概率为213618;213618)(====)(乙胜的概率为C P B P )()(C P B P =∴.这种游戏规则是公平的∴21.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)甲、乙两名考生在填报志愿时都选中了A 、B 、C 、D 四所需要面试的院校,这四所院校的面试安排在同一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设每位 同学选择各个院校是等可能的,试求: (Ⅰ)甲、乙选择同一所院校的概率;(Ⅱ)院校A 、B 至少有一所被选择的概率. 【答案】22.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))M 公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作. (I)求男生成绩的中位数及女生成绩的平均值;(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?【答案】23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取6人进行问卷调查,已知高一、高二、高三的家长委员会分别有54人、1 8人、36人.(I)求从三个年级的家长委员会中分别应抽的家长人数;(Ⅱ)若从抽得的6人中随机抽取2人进行训查结果的对比,求这2人中至少有一人是高三学生家长的慨率.【答案】解:(Ⅰ)家长委员会人员总数为54+18+36=108,样本容量与总体中的个体数的比为6110818=,故从三个年级的家长委员会中分别抽取的人数为3,1,2人(Ⅱ)设123,,A A A 为从高一抽得的3个家长,1B 为从高二抽得的1个家长,12,C C 为从高三抽得的2个家长. 则抽取的全部结果有:(12,A A ),(13,A A ),(11,A B ),(11,A C ),(12,A C ),(23,A A ),(21,A B ),(21,A C ),(22,A C ),(31,A B ),(31,A C ),(32,A C ),(11,B C ),(12,B C ),(12,C C )共15种,令X =“至少有一人是高三学生家长”,结果有(11,A C ),(12,A C ),(21,A C ),(22,A C ),(31,A C ),(32,A C ),(11,B C ),(12,B C ),(12,C C )共9种所以这2人中至少有1人是高三学生家长的概率是93().155P X ==。