数学建模MATLAB算法

合集下载

Matlab中的数学建模方法

Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。

Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。

本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。

一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。

在Matlab中,可以使用regress函数来拟合线性回归模型。

例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。

首先,我们需要收集一组已知的身高和体重数据作为训练集。

然后,可以使用regress函数来计算回归模型的参数,并进行预测。

最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。

二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。

在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。

在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。

例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。

首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。

然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。

最后,可以使用拟合后的模型来进行预测和分析。

三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。

在Matlab中,可以使用fmincon函数来求解最优化问题。

例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。

可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。

通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。

四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。

matlab 有效数字法

matlab 有效数字法

matlab 有效数字法
MATLAB 有效数字法是数学建模的重要工具,一般在高级数学计算中常常有应用。

为了确保精确的计算结果,在表示或计算数值时,文本文件、终端或图形用户界面显示的数值结果,通常以有效数字的形式表示。

它可以帮助我们有效地减少数值误差,体现出公认的准确性、可靠的结果,成为严谨的数学理论的关键,被广泛应用在科学计算、物理运算、45计算机科学等领域。

MATLAB有效数字法以截断规则方式工作,借助适当对待科学计数法及进度格式来区分具有相同数值但不同表示法的数值。

原理是将同一数字的小数和指数表达方式做舍入,将其分解为以10为底的正小数、负小数和0,以确定数组中值的精确数。

MATLAB有效数字法的有效性,取决于它的乘方算法。

该算法采用科学计数法来表示乘方的计算结果,使数字的表达格式在数值改变的同时,精度仍不会明显降低,满足了有效性的要求。

此外,MATLAB有效数字法还支持十进制和二进制两种表达方式的转换,有助于提高运算精度。

综上所述,MATLAB有效数字法可以有效地减少数值误差,以体现出可靠的计算结果,极大地提高了数值计算的准确性,为数学模型建模提供了便捷的工具,因而受到科学界的广泛重视。

数学建模10种常用算法

数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。

参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。

在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。

本文将介绍MATLAB 数学建模中的常用模型及编程方法。

二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。

1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。

矩阵的转置运算符是单撇号(’)。

2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。

3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。

matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。

4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。

5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。

其中,|a|表示矩阵a 的行列式,I 是单位矩阵。

在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。

三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。

基于MATLAB的数学建模竞赛计算

基于MATLAB的数学建模竞赛计算
模型评估与选择
可以进行模型评估与选择,如交叉 验证、网格搜索等。
04
信号处理工具箱
信号滤波器设计
可以设计各种信号滤波器,如低通、高通、 带通等。
信号变换
可以进行信号的傅里叶变换、拉普拉斯变换 等。
信号特征提取
可以提取信号的各种特征,如频率、能量等。
信号处理算法
支持多种信号处理算法,如离散余弦变换、 小波变换等。
用于数值计算。
1990年代
随着计算机技术的快速发展, Matlab逐渐扩展到数据可视化、 算法开发、控制系统设计等领域。
2000年代至今
Matlab不断更新迭代,增加了更多 高级功能和工具箱,广泛应用于科 学计算、数据分析、机器学习等领 域。
Matlab的主要特点
数值计算
Matlab提供了高效的数值计算 功能,支持多种数值算法。
重要性
数学建模是解决实际问题的重要手段 ,能够提高分析问题和解决问题的能 力,促进跨学科合作和创新。
数学建模的基本步骤
问题分析
对实际问题进行深入分析,明确问题的目标、条件和限 制。
求解模型
利用数学方法和计算机技术,求解建立的数学模型,得 出结果。
ABCD
建立模型
根据问题分析的结果,选择适当的数学语言、符号、公 式和图表等工具,建立数学模型。
基于Matlab的数学建模竞赛计算
目录 Contents
• Matlab简介 • 数学建模基础 • 基于Matlab的数学建模工具箱 • 基于Matlab的数学建模竞赛案例分析 • 基于Matlab的数学建模竞赛技巧与策略
01
Matlab简介
Matlab的发展历程
1980年代初
由Cleve Moler教授在 MathWorks公司开发,最初主要

数学建模2020c题matlab源程序

数学建模2020c题matlab源程序

数学建模2020c题是一项涉及到数学、计算机等多个学科知识的综合性竞赛题目。

在这次比赛中,参赛者需要应用数学建模方法,解决实际问题,并编写相应的程序进行模拟和计算。

其中,matlab作为一种强大的数学软件工具,被广泛应用于数学建模的程序编写中。

一、问题分析在数学建模2020c题中,通常会给出一个实际问题,同时要求参赛者利用数学建模的方法进行分析和求解。

在编写matlab源程序时,需要遵循以下几个步骤:1. 问题理解与建模: 首先要对问题进行深入理解,明确问题的要求和限制条件,然后进行数学建模,将实际问题转化为数学模型。

2. 程序框架设计: 根据数学模型的建立,设计matlab程序的框架结构,确定程序的主要功能和模块划分。

3. 算法设计与实现: 针对数学模型所需的运算和计算过程,设计相应的算法,并在matlab中进行实现。

4. 程序测试与优化: 编写完程序后,需要进行充分的测试,验证程序的正确性和稳定性,并对程序进行优化,提高程序的运行效率。

二、matlab源程序编写在数学建模竞赛中,matlab源程序往往会涉及到各种数学方法和算法,如数值计算、优化算法、模拟仿真等。

下面以一个示例问题为例,介绍matlab源程序的编写过程。

示例题目:某市的交通拥堵问题问题描述:某市的交通拥堵问题日益严重,为了解决交通拥堵问题并提高交通效率,需要对该市的交通流进行合理规划和控制。

假设该市的道路网络和车辆流量情况已知,请设计一个算法,模拟和优化该市的交通流,并给出相应的交通规划建议。

1. 问题理解与建模根据问题描述,需要对该市的道路网络和车辆流量进行建模。

首先将道路网络抽象为一个图结构,节点表示道路交叉口,边表示道路连通关系;然后对车辆的流动进行建模,考虑车辆的速度、车流密度等因素。

2. 程序框架设计根据问题的数学模型,设计matlab程序的框架结构。

程序主要包括道路网络的表示与初始化、车辆流动模拟与优化算法、交通规划建议输出等模块。

数学建模算法的matlab代码

数学建模算法的matlab代码

二,hamiton回路算法提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。

bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。

由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。

%%%%%%bianquan.m%%%%%%%N=13;for i=1:Nfor j=1:NC(i,j)=inf;endendfor i=1:NC(i,i)=0;endC(1,2)=6.0;C(1,13)=12.9;C(2,3)=5.9;C(2,4)=10.3;C(3,4)=12.2;C(3,5)=17.6;C(4,13)=8.8;C(4,7)=7.4;C(4,5)=11.5;C(5,2)=17.6;C(5,6)=8.2;C(6,9)=14.9;C(6,7)=20.3;C(7,9)=19.0;C(7,8)=7.3;C(8,9)=8.1;C(8,13)=9.2;C(9,10)=10.3;C(10,11)=7.7;C(11,12)=7.2;C(12,13)=7.9;for i=1:Nfor j=1:Nif C(i,j) < infC(j,i)=C(i,j);endendendfor i=1:NC(i,i)=0;endR=[4 7 6 5 3 2 1 13 12 11 10 9 8];<pre name="code" class="plain">%%%%%%%%jiaohuan3.m%%%%%%%%%%n=0;for I=1:(N-2)for J=(I+1):(N-1)for K=(J+1):Nn=n+1;Z(n,:)=[I J K];endendendR=1:Nfor m=1:(N*(N-1)*(N-2)/6)I=Z(m,1);J=Z(m,2);K=Z(m,3); r=R;if J-I~=1&K-J~=1&K-I~=N-1 for q=1:(J-I)r(I+q)=R(J+1-q);endfor q=1:(K-J)r(J+q)=R(K+1-q);endendif J-I==1&K-J==1r(K)=R(J);r(J)=R(K);endif J-I==1&K-J~=1&K-I~=N-1 for q=1:(K-J)r(I+q)=R(I+1+q); endr(K)=R(J);endif K-J==1&J-I~=1&K~=Nfor q=1:(J-I)r(I+1+q)=R(I+q); endr(I+1)=R(K);endif I==1&J==2&K==Nfor q=1:(N-2)r(1+q)=R(2+q);endr(N)=R(2);endif I==1&J==(N-1)&K==Nfor q=1:(N-2)r(q)=R(1+q);endr(N-1)=R(1);endif J-I~=1&K-I==N-1for q=1:(J-1)r(q)=R(1+q);endr(J)=R(1);endif J==(N-1)&K==N&J-I~=1r(J+1)=R(N);for q=1:(N-J-1)r(J+1+q)=R(J+q);endendif cost_sum(r,C,N)<cost_sum(R,C,N)R=rendendfprintf('总长为%f\n',cost_sum(R,C,N))%%%%%%cost_sum.m%%%%%%%%functiony=cost_sum(x,C,N)y=0;for i=1:(N-1)y=y+C(x(i),x(i+1));endy=y+C(x(N),x(1));三,灰色预测代码<pre name="code" class="plain">clearclcX=[136 143 165 152 165 181 204 272 319 491 571 605 665 640 628];x1(1)=X(1);X1=[];for i=1:1:14x1(i+1)=x1(i)+X(i+1);X1=[X1,x1(i)];endX1=[X1,X1(14)+X(15)]for k=3:1:15p(k)=X(k)/X1(k-1);p1(k)=X1(k)/X1(k-1);endp,p1clear kZ=[];for k=2:1:15z(k)=0.5*X1(k)+0.5*X1(k-1);Z=[Z,z(k)];endZB=[-Z',ones(14,1)]Y=[];clear ifor i=2:1:15Y=[Y;X(i)];endYA=inv(B'*B)*B'*Yclear ky1=[];for k=1:1:15y(k)=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1); y1=[y1;y(k)];endy1clear kX2=[];for k=2:1:15x2(k)=y1(k)-y1(k-1);X2=[X2;x2(k)];endX2=[y1(1);X2]e=X'-X2m=abs(e)./X's=e'*en=sum(m)/13clear ksyms ky=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1)Y1=[];for j=16:1:21y11=subs(y,k,j)-subs(y,k,j-1);Y1=[Y1;y11];endY1%程序中的变量定义:alpha是包含α、μ值的矩阵;%ago是预测后累加值矩阵;var是预测值矩阵;%error是残差矩阵; c是后验差比值function basicgrey(x,m) %定义函数basicgray(x)if nargin==1 %m为想预测数据的个数,默认为1 m=1;endclc; %清屏,以使计算结果独立显示if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';endn=length(x); %取输入数据的样本量x1(:,1)=cumsum(x); %计算累加值,并将值赋及矩阵be for i=2:n %对原始数列平行移位 Y(i-1,:)=x(i,:);endfor i=2:n %计算数据矩阵B的第一列数据z(i,1)=0.5*x1(i-1,:)+0.5*x1(i,:);endB=ones(n-1,2); %构造数据矩阵BB(:,1)=-z(2:n,1);alpha=inv(B'*B)*B'*Y; %计算参数α、μ矩阵for i=1:n+m %计算数据估计值的累加数列,如改n+1为n+m可预测后m个值ago(i,:)=(x1(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1, :)*(i-1))+alpha(2,:)/alpha(1,:);endvar(1,:)=ago(1,:);f or i=1:n+m-1 %可预测后m个值var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下m个预测值end[P,c,error]=lcheck(x,var); %进行后验差检验[rela]=relations([x';var(1:n)']); %关联度检验ago %显示输出预测值的累加数列alpha %显示输出参数α、μ数列var %显示输出预测值error %显示输出误差P %显示计算小残差概率 c %显示后验差的比值crela %显示关联度judge(P,c,rela) %评价函数显示这个模型是否合格<pre name="code" class="plain">function judge(P,c,rela) %评价指标并显示比较结果if rela>0.6'根据经验关联度检验结果为满意(关联度只是参考主要看后验差的结果)'else'根据经验关联度检验结果为不满意(关联度只是参考主要看后验差的结果)'endif P>0.95&c<0.5'后验差结果显示这个模型评价为“优”'else if P>0.8&c<0.5'后验差结果显示这个模型评价为“合格”'else if P>0.7&c<0.65'后验差结果显示这个模型评价为“勉强合格”' else'后验差结果显示这个模型评价为“不合格”' endendendfunction [P,c,error]=lcheck(x,var)%进行后验差检验n=length(x);for i=1:nerror(i,:)=abs(var(i,:)-x(i,:)); %计算绝对残差c=std(abs(error))/std(x); %调用统计工具箱的标准差函数计算后验差的比值cs0=0.6745*std(x);ek=abs(error-mean(error));pk=0;for i=1:nif ek(i,:)<s0pk=pk+1;endendP=pk/n; %计算小残差概率%附带的质料里有一部分讲了关联度function [rela]=relations(x)%以x(1,:)的参考序列求关联度[m,n]=size(x);for i=1:mfor j=n:-1:2x(i,j)=x(i,j)/x(i,1);endfor i=2:mx(i,:)=abs(x(i,:)-x(1,:)); %求序列差endc=x(2:m,:);Max=max(max(c)); %求两极差Min=min(min(c));p=0.5; %p称为分辨率,0<p<1,一般取p=0.5for i=1:m-1for j=1:nr(i,j)=(Min+p*Max)/(c(i,j)+p*Max); %计算关联系数endendfor i=1:m-1rela(i)=sum(r(i,:))/n; %求关联度end四,非线性拟合function f=example1(c,tdata)f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata));<pre name="code" class="plain">function f=zhengtai(c,x) f=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c( 2)^2));x=1:1:12;y=[01310128212]';c0=[2 8];for i=1:1000c=lsqcurvefit(@zhengtai,c0,x,y);c0=c;endy1=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c (2)^2));plot(x,y,'r-',x,y1);legend('实验数据','拟合曲线')x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]';y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]';f=@(c,x)c(1)*(exp(-c(2)*x)-exp(-c(3)*x));c0=[114 0.1 2]';for i=1:50opt=optimset('TolFun',1e-3);[c R]=nlinfit(x,y,f,c0,opt)c0=c;hold onplot(x,c(1)*(exp(-c(2)*x)-exp(-c(3)*x)),'g')endt=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];c0=[1 1 1];for i=1:50 c=lsqcurvefit(@example1,c0,t,y);c0=c;endy1=c(1)*(exp(-c(2)*t)-exp(-c(3)*t));plot(t,y,' +',t,y1);legend('实验数据','拟合曲线')五,插值拟合相关知识在生产和科学实验中,自变量及因变量间的函数关系有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。

matlab递推算法

matlab递推算法

matlab递推算法Matlab(矩阵实验室)是一款强大的数学建模软件,可用于处理复杂的数学问题。

它的递推算法是高效处理数学问题的一种方法,是Matlab最重要的功能之一。

本文将介绍Matlab递推算法的基本模型和实现过程,分析递推算法在数学计算中的应用以及它所带来的优势。

Matlab递推算法的基本模型可以概括为:在一系列递推步骤中,对特定对象的状态、属性或性质的值递推向前推导,从而使用得到各个步骤的状态、属性或性质的值。

Matlab递推算法的实现过程由几个步骤组成:首先,确定算法的输入和输出;其次,定义待求解的初始值,并预定递推步骤数;紧接着,编写递推算法代码,完成递推求解;最后,输出解析结果。

在数学计算中,Matlab递推算法得到了广泛的应用,主要表现在四个方面。

首先,它可以有效地求解一些复杂的极限问题,包括积分、微分方程求解、及其混合问题;其次,它可以用于处理数值分析方面的复杂问题,如积分方程、差分方程、偏微分方程等;第三,它可以用于处理多元函数的最大值和最小值问题,以及特殊函数、非线性方程等的极值问题;最后,它还可以用于概率统计、随机模型分析、系统仿真等。

Matlab递推算法的几大优势使其在数学计算领域的应用遍及各个角落。

首先,Matlab递推算法的性能优异,可以快速高效地求解各种数学问题;其次,Matlab递推算法的使用非常简单,只需要用户编写好Matlab代码和输入参数,即可获得精确的求解结果;第三,Matlab有丰富多样的内置函数,可以更加方便快捷地实现复杂的数学模型;最后,Matlab的可视化功能和数据处理能力极强,可以让用户快速查看复杂的数学模型。

总之,Matlab递推算法可以用于处理各种复杂数学问题,其优越的性能和良好的可视化表现在数学计算工作中发挥着重要作用,是数学计算分析中不可或缺的重要工具。

在Matlab递推算法的基础上,还可以研究其他更多功能,探索出更强大的数学计算技术。

如何在Matlab中进行数学建模和优化问题求解

如何在Matlab中进行数学建模和优化问题求解

如何在Matlab中进行数学建模和优化问题求解在当今信息时代,数学建模和优化问题求解在各个领域都扮演着重要的角色。

而Matlab作为一种功能强大的数学软件,在数学建模和优化问题求解方面具有广泛的应用和影响力。

本文将介绍如何在Matlab中进行数学建模和优化问题求解的具体步骤以及一些常用的工具和技巧。

一、数学建模数学建模是指将实际问题转化为数学模型,并通过数学方法对问题进行分析和求解的过程。

在Matlab中进行数学建模,首先要明确问题的数学模型。

一般来说,数学模型分为离散模型和连续模型两种类型。

离散模型主要是指离散的数据,比如图论、网络流等问题。

在Matlab中,关于离散模型的建模和求解可以使用图论和最短路径算法等工具函数来实现。

比如可以使用graph函数构建图,再使用相应的算法来求解最短路径等问题。

连续模型主要是指连续的函数或方程,比如微分方程、优化问题等。

在Matlab 中,关于连续模型的建模和求解可以使用符号计算工具箱和优化工具箱来实现。

符号计算工具箱可以用来求解微分方程,而优化工具箱可以用来求解优化问题,比如线性规划、非线性规划等。

在进行数学建模时,还需要考虑问题的目标函数和约束条件。

目标函数表示问题的目标是最大化还是最小化,而约束条件则是限制问题解的条件。

在Matlab中,可以使用符号计算工具箱和优化工具箱提供的函数来定义和处理目标函数和约束条件。

比如可以使用syms函数定义符号变量,再使用fmincon函数来求解带有约束条件的优化问题。

在实际进行数学建模时,通常会遇到数据不完整或不准确的情况。

因此,对于这种情况,可以使用插值和拟合技术来对数据进行处理和修复。

在Matlab中,可以使用interp1函数进行插值和拟合,并使用polyfit函数进行多项式拟合。

二、优化问题求解优化问题求解是指在给定的约束条件下,寻找使目标函数达到最优的解。

在Matlab中,有多种常用的优化算法可以用于求解优化问题,比如线性规划、非线性规划、整数规划等。

matlab数学建模方法与实践

matlab数学建模方法与实践

matlab数学建模方法与实践Matlab是一种功能强大的数学软件,被广泛应用于数学建模领域。

在数学建模过程中,Matlab提供了一套完整的工具和函数,帮助研究人员进行模型建立、模型求解和模型分析。

以下是关于Matlab数学建模方法与实践的详细内容。

首先,Matlab数学建模的第一步是建立数学模型。

数学模型是对实际问题的抽象和归纳,并用数学语言描述出来。

Matlab提供了丰富的数学建模函数和工具箱,可以帮助研究人员快速建立各种数学模型。

例如,可以使用符号计算功能进行代数方程的建立,使用数值方法求解微分方程等。

其次,Matlab数学建模的第二步是进行模型求解。

Matlab可以根据建立的数学模型,使用不同的求解方法进行模型求解。

例如,可以使用线性代数方法求解线性方程组,使用优化方法求解最优化问题,使用数值积分方法求解微分方程等。

Matlab中提供了丰富的数值计算和优化函数,可以很方便地进行模型求解。

然后,Matlab数学建模的第三步是进行模型分析和评估。

模型建立和求解后,需要对模型结果进行分析和评估。

Matlab提供了绘图、统计分析、数据可视化等功能,可以对模型结果进行可视化和统计分析。

例如,可以使用绘图函数将模型结果绘制成曲线或图表,以便更直观地理解模型结果;可以使用统计分析函数对模型结果进行相关性分析或预测评估等。

另外,Matlab还具备模型仿真和验证的能力。

在建立数学模型之后,可以使用Matlab中的仿真工具对模型进行验证和测试。

仿真可以模拟实际系统的行为,并进行各种场景测试和参数敏感性分析,从而评估模型的可靠性和准确性。

Matlab提供了Simulink工具,可以方便地进行系统级仿真和模型验证。

此外,Matlab还支持与其他工具的集成和数据交换,使得数学建模过程更加灵活和高效。

例如,可以将Matlab与其他CAD、CAE软件进行集成,进行多领域联合仿真;可以将Matlab与数据库进行数据交换,实现数据驱动的数学建模。

matlab常用算法大全(数学建模)

matlab常用算法大全(数学建模)

本文总结了matlab常用的几个算法,希望对数学建模有帮助。

利用matlab编程FFD算法完成装箱问题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。

建立box_main.mfunction[box_count,b]=box_main(v) vmax=100;sort(v,'descend');n=length(v);b=zeros(1,n);for i=1:nb(i)=vmax;endbox_count=1;for i=1:nfor j=1:box_countif v(i)<=b(j) %可以放入 b(j)=b(j)-v(i);break;else%不可放入时continue;endendif j==box_countbox_count=box_count+1;endendbox_count=box_count-1;end主程序为:v=[60 45 35 20 20 20];[box_count,b]=box_main(v)结果:box_count =3 b =5 15 80 100 100 100所以,使用的箱子数为3, 使用的箱子的剩余空间为5,15 ,80。

“超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3 , 奖品i 占用的空间为wi dm3 ,价值为vi 元, 具体的数据如下:vi = { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}wi = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。

matlab数学建模方法与实践

matlab数学建模方法与实践

matlab数学建模方法与实践1. 引言1.1 概述本篇长文旨在介绍并探讨Matlab数学建模方法的基本概念、实践步骤和相关技巧。

数学建模作为现代科学和工程领域中重要的问题解决方法,通过构建适当的数学模型来揭示问题背后隐藏的规律,并进一步求解和分析这些模型以得出有价值的结论。

1.2 文章结构本文将分为五个主要部分,每个部分均包含多个子章节,以便系统地介绍Matlab 数学建模方法和其应用实践。

以下是各部分内容的简要描述:2. Matlab数学建模方法:此部分将对Matlab进行介绍,并探讨数学建模的基本概念和原理,以及Matlab在数学建模中的应用和优势。

3. 实践步骤:在此部分中,我们将详细说明进行数学建模时需要遵循的实践步骤。

首先是确定问题与目标阶段,了解需要解决的具体问题并确立目标;接下来是收集数据与背景信息阶段,获取所需数据并深入了解研究领域;最后是建立数学模型与方程组阶段,在Matlab环境下构建数学模型和相应的方程组来描述现实问题。

4. 模型求解与分析结果:本部分将涉及参数估计与拟合优度检验、数值求解技巧和优化算法选择以及模型验证与灵敏度分析。

这些步骤将有助于我们对所建模型进行求解和分析,从而得出科学而可靠的结论。

5. 结论与展望:在此部分中,我们将总结文章中的研究成果,并进一步探讨当前方法的局限性以及未来发展的方向。

这将帮助读者了解Matlab数学建模方法在实践中的价值和潜力。

1.3 目的本篇文章旨在帮助读者深入理解并掌握Matlab数学建模方法,并能够在实际问题中运用这些方法进行科学建模、求解和分析。

通过阅读本文,读者将能够了解Matlab作为一种重要工具在数学建模中的应用,并获得为实际问题提供可靠解决方案所需的基本知识和技能。

2. Matlab数学建模方法:2.1 Matlab介绍Matlab是一种强大且广泛应用于科学、工程和数据分析领域的编程语言与环境。

它提供了丰富的数值计算、图形绘制、数据处理和模拟等功能,使得它成为数学建模过程中最常用的工具之一。

数学建模matlab编程三

数学建模matlab编程三

数学建模matlab编程三水仙花数水仙花数是指一个3位自然数,其各位数字的立方和等于该数本身,输出1000以内的水仙花数,并求其个数。

y=[];%空矩阵count=0;for i=100:999a=rem(i,10);b=rem(fix(i/10),10);c=fix(i/100);if(a^3+b^3+c^3==i)y=[y,i];%不断扩充count=count+1;endendy,count突变素数当一个素数(只有两个正因数(1和自己)的自然数即为素数)与其前一个素数的差值大于等于5时,将其称之为“突变素数”(2不是“突变素数”),求10000以内的“突变素数”的个数.y=[];k=0;count=0;for i=1:10000if isprime(i)==1if (i-k)>=5y=[y,i];count=count+1;endk=i;endendy,count结果:count=820方差分析1试验3种猪饲料的饲养效果,得到9头猪的增重(单位:kg)如下:用matlab编程做作方差分析,估计各个总体的未知参数μi 和μ。

(不允许用anova1工具箱)先用sas得到结果方便后面检验:data ex;do a=1 to 3;input n@@;do i=1 to n;input x@@;output;end;end;cards;4 51 40 43 483 23 25 262 23 28;proc anova data=ex;class a;model x=a;run;sst——(每个因素的均值-总均值)^2的和ssa——每个水平的个数*(每个水平的均值-总均值)^2的和sse=sst-ssaf=(ssa/(r-1))/(sse/(n-r)) r为水平个数a1=[51,40,43,48];a2=[23,25,26];a3=[23,28];a=[a1,a2,a3];n=length(a);b=[1 1 1 1 2 2 2 3 3];sst=0;for i=1:nsst=sst+(a(i)-mean(a))^2;endssa=0;for i=1:3an=a(b==i);num=length(an);ssa=ssa+num*(mean(an)-mean(a))^2;endsse=sst-ssa;f=(ssa/2)/(sse/(n-3));p=1-fcdf(f,2,n-3);ssa,sse,sst,f,p可以看出和sas所得结果一样方差分析2测定4种种植密度下金皇后玉米的千粒重(单位:g)如下:用matlab编程做作方差分析,估计各个总体的未知参数mi和μ。

matlab中的一些经典算法

matlab中的一些经典算法

matlab中的一些经典算法在MATLAB中,有许多经典算法可以用于各种数学和工程问题。

以下是一些常见的经典算法:1. 最小二乘法(Least Squares Method),用于拟合数据和解决过定系统的线性方程组。

MATLAB中的`polyfit`和`lsqcurvefit`函数可以实现最小二乘拟合。

2. 快速傅里叶变换(Fast Fourier Transform, FFT),用于信号处理和频域分析。

MATLAB中的`fft`函数可以对信号进行快速傅里叶变换。

3. 线性规划(Linear Programming),用于优化问题的求解,例如最大化/最小化线性目标函数的线性约束问题。

MATLAB中的`linprog`函数可以用于线性规划求解。

4. 非线性最小二乘法(Nonlinear Least Squares),用于拟合非线性模型到数据。

MATLAB中的`lsqnonlin`函数可以用于非线性最小二乘拟合。

5. 最优化算法(Optimization Algorithms),MATLAB提供了许多优化算法,包括梯度下降、共轭梯度、拟牛顿等算法,用于解决无约束和约束优化问题。

6. 插值算法(Interpolation),MATLAB中的`interp1`和`interp2`函数可以用于一维和二维数据的插值。

7. 微分方程求解(Differential Equation Solving),MATLAB中的`ode45`和`ode15s`等函数可以用于求解常微分方程和偏微分方程。

8. 图像处理算法(Image Processing Algorithms),MATLAB提供了丰富的图像处理工具箱,包括滤波、边缘检测、图像分割等经典算法。

以上列举的算法只是 MATLAB 中众多经典算法的一小部分,它们在数学建模、信号处理、优化、图像处理等领域有着广泛的应用。

希望这些信息能够帮助到你。

MATLAB数学建模14个范例

MATLAB数学建模14个范例

1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。

然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。

不是一般性,假设一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。

matlab四种不同算法计算结果比较表

matlab四种不同算法计算结果比较表

MATLAB是一种功能强大的数学软件,它提供了各种各样的数学和工程计算功能,包括不同的算法。

在实际应用中,我们经常需要根据具体的情况选择合适的算法来进行计算,以获得最优的结果。

本文将介绍MATLAB中四种不同的算法,并通过比较它们的计算结果,以帮助读者更好地选择合适的算法来解决实际问题。

二、算法介绍1. 算法A算法A是一种基于数学模型的算法,它通过建立数学方程来描述问题,并使用数值方法进行求解。

算法A适用于一般的数学和工程计算问题,可以在较短的时间内获得结果。

2. 算法B算法B是一种优化算法,它通过迭代计算的方式寻找问题的最优解。

算法B适用于需要求解最优化问题的情况,可以找到全局最优解或局部最优解。

3. 算法C算法C是一种统计算法,它通过对数据进行分析和建模来进行计算。

算法C适用于需要对大量数据进行分析和预测的情况,可以得到数据的统计特性和趋势。

算法D是一种机器学习算法,它通过对已有数据进行学习和训练来进行计算。

算法D适用于需要进行模式识别和预测的情况,可以根据已有数据来预测未来的结果。

三、算法比较在实际应用中,我们经常需要根据具体的情况选择合适的算法来进行计算。

下面将通过一个实际的案例来比较四种不同算法的计算结果。

案例背景:假设有一组数据,需要对其进行分析和预测。

1. 算法A的计算结果通过算法A的计算,得到数据的统计特性和趋势,进而进行预测和分析。

2. 算法B的计算结果通过算法B的计算,得到数据的最优解,进而进行优化和规划。

3. 算法C的计算结果通过算法C的计算,得到数据的统计特性和趋势,进而进行预测和分析。

4. 算法D的计算结果通过算法D的计算,得到数据的模式和规律,进而进行模式识别和预测。

四、结果分析根据对四种不同算法的计算结果进行分析和比较,可以得出以下结论:1. 算法A适用于对数据进行分析和预测,能够获得数据的统计特性和趋势。

2. 算法B适用于对问题进行优化和规划,能够得到问题的最优解。

数学建模中常用函数(MATLAB)

数学建模中常用函数(MATLAB)

内部数学常数pi 圆周率exp(1)自然对数的底数e i 或j 虚数单位Inf或 inf 无穷大2 基本数学运算符a+b 加法a-b减法a*b矩阵乘法a.*b数组乘法a/b矩阵右除a\b矩阵左除a./b数组右除a.\b数组左除a^b 矩阵乘方a.^b数组乘方-a负号’ 共轭转置.'一般转置3 关系运算符==等于<小于>大于<=小于或等于>=大于或等于~=不等于4 常用内部数学函数 指数函数exp(x)以e 为底数log(x)自然对数,即以e 为底数的对数log10(x)常用对数,即以10为底数的对数对数函数log2(x)以2为底数的x 的对数开方函数sqrt(x)表示x 的算术平方根绝对值函数abs(x)表示实数的绝对值以及复数的模sin(x)正弦函数cos(x)余弦函数三角函数(自变量的单位为弧度)tan(x)正切函数cot(x)余切函数sec(x)正割函数csc(x)余割函数asin(x)反正弦函数acos(x)反余弦函数反三角函数atan(x)反正切函数acot(x)反余切函数asec(x)反正割函数acsc(x)反余割函数sinh(x)双曲正弦函数cosh(x)双曲余弦函数双曲函数tanh(x)双曲正切函数coth(x)双曲余切函数sech(x)双曲正割函数csch(x)双曲余割函数asinh(x)反双曲正弦函数acosh(x)反双曲余弦函数反双曲函数atanh(x)反双曲正切函数acoth(x)反双曲余切函数asech(x)反双曲正割函数acsch(x)反双曲余割函数求角度函数atan2(y,x)以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围为(,]gcd(a,b)两个整数的最大公约数数论函数lcm(a,b)两个整数的最小公倍数排列组合函数factorial(n)阶乘函数,表示n的阶乘real(z)实部函数imag(z)虚部函数abs(z)求复数z的模angle(z)求复数z的辐角,其范围是(,]复数函数conj(z)求复数z的共轭复数ceil(x)表示大于或等于实数x的最小整数floor(x)表示小于或等于实数x的最大整数求整函数与截尾函数round(x)最接近x的整数最大、最小函数max([a,b,c ,...])求最大数min([a ,b ,c ,..])求最小数符号函数sign(x)5 自定义函数-调用时:“[返回值列]=M 文件名(参数列)”function 返回变量=函数名(输入变量)注释说明语句段(此部分可有可无)函数体语句6.进行函数的复合运算 compose(f,g) 返回值为f(g(y))compose(f,g,z) 返回值为f(g(z))compose(f,g,x,.z) 返回值为f(g(z))compose(f,g,x,y,z) 返回值为f(g(z))7 因式分解syms 表达式中包含的变量factor(表达式)8 代数式展开 syms 表达式中包含的变量expand(表达式)9 合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量)10 进行数学式化简 syms 表达式中包含的变量simplify(表达式)11 进行变量替换syms 表达式和代换式中包含的所有变量subs(表达式,要替换的变量或式子,代换式) 12 进行数学式的转换调用Maple中数学式的转换命令,调用格式如下:maple(‘Maple的数学式转换命令’) 即:maple(‘convert(表达式,form)’’)将表达式转换成form的表示方式maple(‘convert(表达式,form, x)’) 指定变量为x,将依赖于变量x的函数转换成form的表示方式(此指令仅对form为exp与sincos的转换式有用)13 解方程 solve(’方程’,’变元’)注:方程的等号用普通的等号: =14 解不等式调用maple中解不等式的命令即可,调用形式如下:maple('maple中解不等式的命令')*具体说,包括以下五种:maple(' solve(不等式)')maple(' solve(不等式,变元)' )maple(' solve({不等式},变元)' )maple(' solve(不等式,{变元})' )maple(' solve({不等式},{变元})' )15 解不等式组调用maple中解不等式组的命令即可,调用形式如下:maple('maple中解不等式组的命令')即:maple(' solve({不等式组},{变元组})' )16 画图方法1:先产生横坐标x的取值和相应的纵坐标y的取值,然后执行命令: plot(x,y)方法2:fplot('f(x)',[xmin,xmax])fplot('f(x)',[xmin,xmax,ymin,ymax])方法3:ezplot('f(x)')ezplot('f(x)' ,[xmin,xmax])ezplot('f(x)' ,[xmin,xmax,ymin,ymax])17 求极限(1)极限:syms xlimit(f(x), x, a)(2)单侧极限:左极限:syms xlimit(f(x), x, a,’left’)右极限:syms xlimit(f(x), x, a,’right’) 18 求导数 diff('f(x)')diff('f(x)','x')或者:Syms xDiff(f(x))syms xdiff(f(x), x)19 求高阶导数 diff('f(x)',n)diff('f(x)','x',n)或者:syms xdiff(f(x),n)syms xdiff(f(x), x,n)20 在MATLAB中没有直接求隐函数导数的命令,但是我们可以根据数学中求隐函数导数的方法,在中一步一步地进行推导;也可以自己编一个求隐函数导数的小程序;不过,最简便的方法是调用Maple中求隐函数导数的命令,调用格式如下:maple('implicitdiff(f(x,y)=0,y,x)')*在MATLAB中,没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数的求导公式一步一步地进行推导;或者,干脆自己编一个小程序,应用起来会更加方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法:
B:兰色楼房(居民数:100)
R:红色楼房(居民数:200)
G:绿色楼房(居民数:300)
Y:黄色楼房(居民数:400)
原则:
1.尽量使得黄色楼房最多,绿色和红色次之,蓝色最少;
2.先全部建造蓝楼,然后针对每一步得到的结果,依次用红楼、绿楼、黄楼替换;
首先全部造成蓝色的
B B B B B
B B B B B
B B B B B
B B B B B
B B B B B
然后造红楼
B R R R B
B B B B B
R B R B R
B B B B B
B R R R B
建造绿楼,原则上中间一个应该为绿楼,但是由于绿楼周围必须有红楼和蓝楼,所以暂时不改变。

G R R R G
B B B B B
R B B B R
B B B B B
G R R R G
造黄楼(在绿楼两边)因为造黄楼时,周围必须有绿楼、蓝楼、红楼,所以需要将第一行G 和R 之间的R 换成Y。

因为对称型,四个角同理。

如下图所示:
G Y R Y G
Y G B G Y
R R G R R
Y G B G Y
G Y R Y G
中间的绿楼上下左右的房子改成黄楼,由于黄楼周围必须有绿楼、蓝楼、红楼,所以中间一个改成蓝楼。

G Y R Y G
Y G Y G Y
R Y B Y R
Y G Y G Y
G Y R Y G
最终结果为:
G Y R Y G
Y G Y G Y
R Y B Y R
Y G Y G Y
G Y R Y G
B蓝色楼房(100人)R红色楼房(200)G:绿色楼房(300)Y黄色楼房(400)
1 4 8 12。

相关文档
最新文档