全等三角形模型(教案)(完整资料).doc
数学全等三角形教案

数学全等三角形教案数学全等三角形教案(通用10篇)作为一名教学工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?下面是小编为大家整理的数学全等三角形教案,希望对大家有所帮助。
数学全等三角形教案1一、引言根据《全日制义务教育数学课程标准》具体目标,结合学生已有的知识经验和认知水平,提供具有探究性的问题,让学生主动参与到解决问题的数学活动中,理性思考、大胆猜测,合理推断,从何培养学生的逻辑思维能力,发展学生的数学观念和数学思想,使学生形成良好的思维品质,达到启迪思维、开发智力的目的。
此案例就构造三角形全等为例,谈谈在课堂教学中如何发展学生的直觉思维,培养其创新意识。
二、全等三角形知识点的地位和作用全等三角形体现的是一种十分重要的保距变换,许多图形中线段之间,角之间的相互关系经常通过三角形全等来判断、得出,三角形全等还是基本尺规作图的根本依据。
由于全等三角形的判定及对全等三角形边、角之间的关系处理涉及推理,因此通过学习全等三角形知识对培养学生的逻辑推理和表达能力有着非常重要的作用。
三、全等三角形判定教学例子假设情景:某次组织学生参加生日聚会,需要裁剪小旗帜,如何让小旗帜和第一个剪裁的大小完全相同呢?由学生尝试把实际问题转化为数学问题:怎样画一个三角形与已知三角形全等?在解决这个问题的过程中,鼓励学生大胆猜想,激发同学们的主动性和创造性。
学生可能会提出:测出参照三条边的长度,或量出三个角的度数,或测量一条边、一个角的方案等。
对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过已知三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。
学生的思维在此产生碰撞:谁的想法可行呢?要使两个三角形全等到底需要满足哪些条件?进一步明确本节课研究的方向,引出课题。
学生在探究过程中会根据已有的知识积累,利用“几何画板”作图探究,举出反例来说明已知一个条件或两个条件画出的三角形与已知三角形不一定全等,这时教师鼓励学生画出尽可能类型的反例,并引导学生将举出的反例进行分类,初步体验分类的数学思想,为下一步已知三个条件画出三角形与已知三角形全等打下基础。
人教版数学八年级上册第十二章全等三角形证明三角形全等的基本模型教学设计

此外,学生在解决实际问题时,可能缺乏将问题转化为全等三角形问题的能力,需要教师在教学中注重培养学生的应用意识和实践能力。通过激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养学生独立思考、合作交流的良好习惯,为全等三角形的学习创造有利的条件。
2.各小组针对以下问题进行讨论:
-举例说明全等三角形在实际生活中的应用。
-总结全等三角形的判定方法,并尝试用自己的语言解释。
-讨论如何运用全等三角形的判定方法解决实际问题。
3.教师巡回指导,解答学生疑问,引导学生深入探讨全等三角形的性质和判定方法。
(四)课堂练习
1.设计具有代表性的练习题,涵盖全等三角形的判定方法及性质。
- SAS判定法:引导学生从SSS判定法出发,思考当已知两边和夹角时,如何判定两个三角形全等。
- ASA判定法:通过具体例题,让学生掌握角-边-角判定全等三角形的方法。
- AAS判定法:类比ASA判定法,引导学生发现并掌握角-角-边判定全等三角形的方法。
(三)学生小组讨论
1.将学生分成若干小组,每组选出一个组长,负责组织和协调小组讨论。
4.引导学生总结全等三角形的性质、判定方法和解题技巧,培养学生的归纳总结能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生主动探索、积极思考的学习态。
2.培养学生严谨、踏实的科学态度,使学生认识到数学的严密性和逻辑性。
3.引导学生运用所学知识解决实际问题,增强学生的应用意识和实践能力。
(完整版)全等三角形教案

《全等三角形》授课设计授课内容: 《全等三角形》的复习课程目标: 1、回顾全等三角形的定义、性质和判断2、会依照规定书写全等三角形的证明过程3、认识中考中全等三角形的相关例题, 并学会用辅助线合理构造全等三角形。
授课重点: 全等三角形证明的书写格式,合理构造全等三角形。
授课难点: 经过条件搜寻全等关系,或构造全等关系。
授课准备: ppt 课件学情解析:该部分内容为初三中考前的复习,学生对内容已经比较认识,只需要加强记忆和牢固复习。
同时也需要学生掌握中考动向,认识全等三角形在中考中的出题种类。
授课过程:前面我们已经对三角形的性质和特点进行了特地的复习,那么今天我们要对两个三角形的关系——三角形的全等关系进行复习。
我们都知道两个三角形能都完满重合我们就说这两个三角形全等, 而在本质应用中全等的三角形常常是经过平移或旋转获取。
既然能够重合,那么我们也就获取三角形的性质是对应边相等, 对应角也相等。
而在这六个关系中我们只需要获取指定的三种等量关系就可以判断两个三角形全等。
那我们一起来看看书上57 页,一起完成知识梳理的内容。
一、知识梳理: (该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。
时间为 3 分钟) 1、全等三角形:能够完满重合的三角形叫全等三角形。
2、三角形全等的判断方法: SSS、SAS 、 ASA 、 AAS 。
直角三角形全等的判断除以上的方法还有 HL。
3、全等三角形的性质:全等三角形 对应边相等 、 对应角也相等 。
4、全等三角形的面积 相等 、周长相等、对应高、 对应边的中线应角的角均分线 相等。
二、预习自测: (该部分内容由学生自行完成,时间为 2 分钟) 1、如图以下条件中,不能够证明△ ABD △ ACD 的是( D)A.BD=DC,AB=ACB. ∠ ADB= ∠ ADC,BD=DCC.∠ B=∠ C, ∠ BAD= ∠ CADD. ∠ B=∠ C,BD=DC2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形BABCD 是一个筝形, 其中 AD=CD,AB=CB, 詹姆斯在研究筝形的性质时, 获取以下结论:① AC ⊥ BD ;② AO=CO=1AC; ③△ ABD ≌△ CBD ,其中2A正确的结论有(D )、 对AD CDCOBA.0 个个个个三、典例解析:例 1、 (该题比较简单,由教师引导解题思路学生自行解答,不在课堂安排时间)已知:在四边形ABCD 中 AB ∥ CD, E 是 BC 的中点,直线AE 与 DC 的延长线交于点 F. 求证: AB=CF.解析:求证△ CFE≌△ BAE例 2、(该题将作为本节课一道证明三角形全等的典型例题进行解析,主要要修业生在证明题过程书写时吻合规范,时间设计为 3 分钟)如图。
初二数学全等三角形教案(五篇)

初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
一。
挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。
3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。
添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。
2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。
三。
熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。
稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。
全等三角形的基本模型教案

第2讲全等三角形的基本模型(一)
课程安排:
课程框架:
一、课前预习
思考一:等腰直角三角形斜边中线与斜边的关系
思考二:赵爽弦图复习
二、课程目标:3+3+3
等腰直角三角形模型(3):3种使用等腰三角形模型的常见思路
三垂直模型(3):3种常见的三垂直模型
三等角模型(3):3种常见的三等角模型
三、本讲知识脑图
略
四、本讲内容梳理
1、课前内容
①复习倍长中线与截长补短
②第一讲例7
③本讲知识介绍与梳理
2、第一小节
【等腰直角三角形模型】
【讲解】
①等腰直角三角形的性质及其与其他几何图形的关联(等腰三角形,直角三角形,正
方形)
②等腰直角三角形模型的常用思路来源
等腰三角形:三线合一,旋转类全等(手拉手)
直角三角形:斜边中线是斜边的一半
正方形:旋转类全等
【练习】例1,例2,
【总结】
3、第二小节
【三垂直模型】
【讲解】
①介绍三种常见的三垂直
②三垂直与赵爽弦图的关联
③三垂直中的倒角思路(复习几种常见的倒角)
【练习】例3,例5
【总结】
4、第三小节
【三等角模型】
【讲解】
①将三垂直中的直角普通化
②锐角的情况
③钝角的情况
【练习】例4
【总结】
三垂直模型经常可以设计成动态的几何问题,需要找好对应的条件进行解决五、本讲内容复习
等腰直角三角形模型(3):3种使用等腰三角形模型的常见思路
三垂直模型(3):3种常见的三垂直模型
六、作业布置
勤思:思维碰撞2、4,实战演练
敏学:实战演练
七、板书设计。
第十二章全等三角形中的全等模型(教案)

一、教学内容
第十二章全等三角形中的全等模型(教案)
1.全等三角形的定义及判定定理
(1)SSS(Side-Side-Side)判定定理
(2)SAS(Side-Angle-Side)判定定理
(3)ASA(Angle-Side-Angle)判定定理
(4)AAS(Angle-Angle-Side)判定定理
(3)识别全等模型
-难点:学生在识别全等模型时,容易忽略关键信息,导致无法正确运用全等定理。
-解决方法:通过丰富的练习题,训练学生的观察能力,提高识别全等模型的能力。
(4)几何证明中的逻辑推理
-难点ห้องสมุดไป่ตู้学生在几何证明过程中,逻辑推理不严密,容易出错。
-解决方法:教授学生如何运用已知条件和全等三角形的性质,进行严密的逻辑推理。
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA、AAS这四个判定定理和全等三角形的性质这两个重点。对于难点部分,我会通过具体例题和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示全等三角形的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定定理、性质以及在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对全等三角形全等模型的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
全等三角形模型教案-全整理

全等三角形证明目录类型1平移模型 (2)类型2一线三等角模型 (3)类型3一线三垂直模型 (4)类型4对称模型 (6)类型5旋转型模型 (9)类型6半角旋转模型 (12)类型7手拉手模型 (16)类型8倍长中线模型 (21)类型1平移模型解题思路:此模型的特征是有一组边共线或部分重合,另两组边分别平行,需要在移动方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.1.如图,点B ,E ,C ,F 在同一直线上,A D ∠=∠,AB DE ∥,BE CF =.求证:AB DE =.题1图题2图2.如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,AB DE ∥.(1)求证:ABC DEF ≌△△;(2)若65A ∠=︒,82B ∠=︒,求F ∠的度数.习题:1.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):O E DCB A1.(1)如图1,直线m 经过等边三角形ABC 的顶点A,在直线m 上取两点D,E,使得∠ADB=60°,∠AEC=60°.求证:BD+CE=DE;(2)将(1)中的直线m 绕着点A 逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC=120°.若BD=3,CE=7,求DE 的长.题1图题2图2.如图,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE的面积之和.1.如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),则B 点的坐标为.题1图2.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,于点C ,于点E ,与直线交于点P ,求证:.ND 90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥DE l ⊥NP DP =l 图题23.如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC CEB △△≌;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明..4类型4对称模型所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意其隐含条件,即公共边、公共角、对顶角相等或角平分线等.1.如图1,已知,BD平分∠ABC和∠ADC,若AB=3,则BC=.图1图2图32.如图2,点D在AB上,点E在AC上,AB AC=,∠C=20°,求∠B.=,BD CE3.如图3,在四边形ABCD中,CB AB⊥于点D,点E,F分别在⊥于点B,CD ADAB,AD上,AE AF=.=,CE CFCD=,求四边形AECF的面积;(1)若8AE=,6(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想4.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.5.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE题5图题6图6.P 是∠BAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB习题:1.在四边形ABDC 中,AC =AB ,DC =DB ,∠CAB =60°,∠CDB =120°,E 是AC 上一点,F 是AB 延长线上一点,且CE =BF .(1)试说明:DE =DF :(2)在图中,若G 在AB 上且∠EDG =60°,试猜想CE ,EG ,BG 之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB =60°,∠CDB =120°改为∠CAB =α,∠CDB =180°﹣α,G 在AB 上,∠EDG 满足什么条件时,(2)中结论仍然成立并证明?题1图题2图2.在四边形ABDE 中,点C 是BD 边的中点.(1)如图①,AC 平分BAE ∠,90ACE ∠=︒,写出线段AE ,AB ,DE 间的数量关系及理由;(2)如图②,AC 平分BAE ∠,EC 平分AED ∠,120ACE ∠=︒,写出线段AB ,BD,P DA CBDE ,AE 间的数量关系及理由.3.已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BEA B C DEF 21题3图题4图4.已知:BC=DE,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠25.已知:AD 平分∠BAC,AC=AB+BD,求证:∠B=2∠CCD B 题5图题6图6.已知:AP 平分∠MAN,AC>AB,PB=PC,求证:∠BAC+∠BPC=180°A类型5旋转型模型解题思路:此模型特征是可以通过旋转一定角度重合,需要找对顶角或找互余互补角,通过角度加减得等角。
新人教版八级数学第章全等三角形教案(全章)

第1课时全等三角形第2课时三角形全等的判定(1)第3课时三角形全等的判定(2)只用无刻度的直尽和圆规作图的方法称为尺规作图。
问:你能验证你所作的角与已知角相等吗?【问题2】作一个已知角∠AOB的平分线OC。
,∠EOC=∠DOC,即OC平的平分线OC,在于怎样第4课时三角形全等的判定(3)第5课时三角形全等的判定(4)第6课时三角形全等的判定(5)综合探究)两直线平行,同位角或内错角相等;)等腰三角形两底角相等根据本题的图形,应考虑去证明三角形全等,由已知条第7课时三角形全等的判定(6)为半径画弧,交射线C′N于点【学生活动】画图分析,寻找规律.如下:下面是三个同学的思考过程,你能明白他们的意思吗?→△ABC≌△DEF→∠ABC→∠DEF→∠ABC+有一条直角边和斜边对应相等,所以△ABC与△DEF ,也就是∠ABC+∠DEF=90°.第8课时角的平分线的性质(1)即为所求..在上面作法的第二步中,去掉“大于1MN的长”这个在直角三角形中画锐角的平分线的方法.他的方法是这样交AC于D,有的同学对小明的画法表示怀疑,你认为他的画法对不本节课中我们利用已学过的三角形全等的知识,•探究得到了角平分线第9课时角的平分线的性质(2)【探究】小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果到三边的距离是哪些线段,那么图中画实线,第10-11课时《全等三角形》小结与复习ED CB A,请你从下面三个条件中,再选出两GF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程一、课堂导入【问题】如图,你能感觉到哪两个三角形全等吗?【思考】△ABD≌△ACE二、复习预习【问题】工人师傅常用角尺平分一个任意角,作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON.移动角尺,使角尺两边相同的刻度分别与M、N重合.则过角尺顶点P 的射线OP便是∠AOB的角平分线,为什么?请你说明理由.【解答】OP平分∠AOB理由如下:∵OM=ON,PM=PN,OP=OP∴△MOP≌△NOP(SSS)∴∠MOP=∠NOP∴OP平分∠MON(即OP是∠AOB的角平分线)三、知识讲解考点1全等三角形性质:全等三角形的对应边相等,对应角相等,对应边上的高、中线相等,对应角的平分线相等。
考点2全等三角形的判定:所有三角形SAS、ASA、AAS、SSS;直角三角形HL四、例题精析【例题1】【题干】如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.【答案】证明:∵正方形ABCD,∴∠ABC=∠C=90°,AB=BC.∵AE⊥BF,∴∠AGB=∠BAG+∠ABG=90°,∵∠ABG+∠CBF=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,BAE CBFAB CBABE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△BCF(ASA),∴AE=BF.【解析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案.【例题2】【题干】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)求证:AE⊥CF.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,AB BCABE CBF BE BF=⎧⎪∠=∠⎨⎪=⎩∴△AEB≌△CFB(SAS),∴AE=CF.(2)延长AE交BC于O,交CF于H,∵△AEB≌△CFB,∴∠BAE=∠BCF,∵∠ABC=90°,∴∠BAE+∠AOB=90°,∵∠AOB=∠COH,∴∠BCF+∠COH=90°,∴∠CHO=90°,∴AE⊥CF【解析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用全等三角形对应角相等、对顶角相等、等量代换即可证明.【例题3】【题干】(2014•顺义区一模)已知:如图1,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D.求证:CD=AB.【答案】:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.主要根据“SSS”判定三角形的全等.(2)如图3,延长DA至E,使得AE=CB,连结CE.∵∠ACB+∠CAD=180°,∠DAC DAC +∠EAC=180°∴∠BAC BCA =∠EAC在△EAC和△BAC中,AE CEAC CAEAC BCN=⎧⎪=⎨⎪∠=∠⎩∴△AECEAC≌△BCA (SAS),∴∠B=∠E,AB=CE∵∠B=∠D,∴∠D=∠E,∴CD=CE,∴CD=AB.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.【例题4】再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.∴∠EAF=∠GAF,五、课堂运用【基础】1.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.【答案】证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,BC CDBCH DCECE CH=⎧⎪∠=∠⎨⎪=⎩,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,又∵∠CGB=∠MGD,∴∠DMB=∠BCD=90°,∴BH⊥DE.【解析】(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.2.(1)操作发现如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN,猜想∠ABC与∠ACN有何数量关系?并证明你的结论;(2)类比探究如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中的结论是否仍然成立?请说明理由.【答案】(1)∵在等边△ABC中,AB=AC,∠BAC=∠BAM+∠MAC=60°在等边△AMN中,AM=AN,∠MAN=∠NAC+∠MAC=60°∴∠BAM=∠NAC=60°-∠MAC,在△ABM和△ACN中,AB ACBAM NACAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠ABC=∠ACN.(2)∵在等边△ABC中,AB=AC,∠BAM=∠BAC+∠MAC=60°+∠MAC在等边△AMN中,AM=AN,∠NAC=∠NAM+∠MAC=60°+∠MAC,∴∠BAM=∠NAC=60°+∠MAC,在△ABM和△ACN中,AB ACBAM NACAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠ABC=∠ACN.【解析】(1)由全等三角形可以判定AB=AC,AM=AN,即可求证△ABM≌△ACN,即可求得∠ABC=∠ACN;(2)和(1)同理,由全等三角形可以判定AB=AC,AM=AN,即可求证△ABM≌△ACN,即可求得∠ABC=∠CAN.【巩固】1.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【答案】∵△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,【答案】如图,过点D作DG∥AB交AC于G,∵△ABC是等边三角形,∴∠GDC=∠ABC=∠C=60°,AC=BC,∴△CDG是等边三角形,∴DG=CD=CG,∠AGD=120°,∴BD=AG,∵CD=BE,∴BE=DG,又∵△BEF是等边三角形∴∠EBF=60°,∴∠EBD=∠DGA=120°,在△EBD和△DGA中.BD AGEBD AGD EB DG=⎧⎪∠=∠⎨⎪=⎩.∴△EBD≌△DGA(SAS),∴∠EDB=∠CAD.【解析】过点D作DG∥AB交AC于G,求出∠EBD=∠AGD=120°,BD=AG,根据SAS证△EBD ≌△DGA,根据全等三角形的性质推出即可.【拔高】正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)∵点E 、F 分别是边AD 、AB 的中点,G 是BC 的中点,∴AE=AF=BF=BG ,在△AEF 和△BFG 中,AE BG A B AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BFG (SAS ), ∴EF=FG ,∠AFE=∠BFG=45°,∴EF ⊥FG ,EF=FG ;(2)BF+EQ=BP .理由:如图2,取BC 的中点G ,连接FG ,则EF ⊥FG ,EF=FG ,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3, 在△FQE 和△FPG 中,13FQ FPEF FG=⎧⎪∠=∠⎨⎪=⎩,∴△FQE ≌△FPG (SAS ),∴QE=PG 且BF=BG ,∵BG+GP=BP ,∴BF+EQ=BP ;(3)如图3所示,BF+BP=EQ .【解析】(1)根据线段中点的定义求出AE=AF=BF=BG,然后利用“边角边”证明△AEF和△BFG全等,根据全等三角形对应边相等可得EF=FG,全等三角形对应角相等可得∠AFE=∠BFG=45°,再求出∠EFG=90°,然后根据垂直的定义证明即可;(2)取BC的中点G,连接FG,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△FQE和△FPG全等,根据全等三角形对应边相等可得QE=FG,BF=BG,再根据BG+GP=BP 等量代换即可得证;(3)根据题意作出图形,然后同(2)的思路求解即可.课程小结1.全等三角形的性质2.全等三角形的判定【最新整理,下载后即可编辑】。