天津一中2012届高三第三次月考文科数学试题
天津市第一中学2023届高三上学期第一次月考数学试题 Word版含答案
【答案】
【14题答案】
【答案】
【15题答案】
【答案】
三、解答题(本大题共5小题,共75分)
【16题答案】
【答案】(1)
(2) , 或 ,
【17题答案】
【答案】(1)证明ቤተ መጻሕፍቲ ባይዱ解析
(2)
(3)正弦值为1
【18题答案】
【答案】(1)
(2)
(3)
【19题答案】
【答案】(1)答案见解析
(2)证明见解析(3)
C. D.
4.已知函数 是偶函数,则 的值是()
A. B. C.1D.2
5.已知函数 是 上的偶函数,且 ,当 时, ,则 的值为()
A.1B.2C. D.0
6 已知函数 ,则()
A. B.
C. D.
7.已知 且 ,则a的值为()
A. B. C. D.
8.设函数 ,不等式 对 恒成立,则实数a的最大值为()
【2题答案】
【答案】A
【3题答案】
【答案】B
【4题答案】
【答案】A
【5题答案】
【答案】A
【6题答案】
【答案】B
【7题答案】
【答案】C
【8题答案】
【答案】D
【9题答案】
【答案】B
二、填空题(本大题共6小题,每小题5分,共30分)
【10题答案】
【答案】
【11题答案】
【答案】
【12题答案】
【答案】 ##20立方米
每户每月用水量
水价
不超过 的部分
3元/
超过 但不超过 部分
6元/
超过 部分
9元/
若某户居民本月交纳的水费为90元,则此户居民本月用水量为___________.
天津市第一中学2022-2023学年高三上学期第三次月考数学试题(解析版)
天津一中2022-2023-1高三年级第三次月考数学试卷(答案)本试卷总分150分,考试用时120分钟。
考生务必将答案涂写在答题卡上,答在试卷上的无效。
一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合3{Z |Z}1A x x=∈∈-,2{Z |60}B x x x =∈--≤,则A B ⋃=( ) A .{2} B .}{2,0,2- C .{}2,1,0,1,2,3,4-- D .}{3,2,0,2,4--【详解】{A x =∈2Z |x x --{2,1,0,1,2,3,4--.,b ,c 为非零实数,则“A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【分析】根据不等式的基本性质可判定“a >b >c ”能推出“a +b >2c ”,然后利用列举法判定“a +b >2c ”不能推出“a >b >c ”,从而可得结论.【解答】解:∵a >b >c ,∴a >c ,b >c ,则a +b >2c , 即“a >b >c ”能推出“a +b >2c ”,但满足a +b >2c ,取a =4,b =﹣1,c =1,不满足a >b >c , 即“a +b >2c ”不能推出“a >b >c ”,所以“a >b >c ”是“a +b >2c ”的充分不必要条件, 故选:A .3、已知2log 0.8a =,0.12b =,sin 2.1c =,则( )A .a b c <<B .a c b <<C .c a b <<D .b<c<a 【答案】B【详解】因为22log 0.8log 10<=,0.10122>=,0sin 2.11<<, 所以a c b <<, 故选:B 4、函数2sin ()1x xf x x -=+的图象大致为 ( )A .B .C .D .【答案】A 【解析】【分析】根据函数的定义域、奇偶性以及2f π⎛⎫⎪⎝⎭的值来确定正确选项. 【详解】由题意,函数2sin ()1x xf x x -=+的定义域为R , 且22sin()sin ()()()11x x x xf x f x x x -----===--++,所以函数()f x 奇函数,其图象关于原点对称,所以排除C 、D 项,2120212f πππ-⎛⎫=> ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以排除B 项. 故选:A5、已知1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,1221::2:3:4F F F M F M =,则双曲线E 的渐近线方程为 ( ) A .2y x =± B .12y x =±C.y = D.y =【答案】C【解析】由题意,1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,且满足1221:||:2:3:4F F F M F M =,可得122F F c =,23F M c =,14F M c =, 由双曲线的定义可知21243a F M F M c c c =-=-=,即2c a =,又由b ==,所以双曲线的渐近线方程为y =.故选:C .6、设n S 是等比数列{}n a 的前n 项和,若34S =,4566a a a ++=,则96S S = ( )A .32B .1910 C .53D .196【答案】B【解析】设等比数列{}n a 的公比为q ,若1q =,则456133a a a a S ++==,矛盾. 所以,1q ≠,故()()33341345631111a q a q q a a a q S qq--++===--,则332q=, 所以,()()()63113631151112a q a q S q S qq--==+⋅=--, ()()()9311369311191114a q a q S q q S qq--==++=--, 因此,9363192194510S S S S =⋅=.故选:B . 7、直线1y kx =-被椭圆22:15x C y +=截得最长的弦为( ) A .3 B .52C .2D【答案】B【解析】联立直线1y kx =-和椭圆2215xy +=,可得22(15)100k x kx +-=,解得0x =或21015kx k =+,则弦长21015kl k =+,令215(1)k t t +=≥,则10l === 当83t =,即k =,l 取得最大值55242⨯=, 故选:B8、设函数()sin()(0)4f x x πωω=->,若12()()2f x f x -=时,12x x -的最小值为3π,则( )A .函数()f x 的周期为3πB .将函数()f x 的图像向左平移4π个单位,得到的函数为奇函数 C .当(,)63x ππ∈,()f x的值域为D .函数()f x 在区间[,]-ππ上的零点个数共有6个 【答案】D【解析】由题意,得23T π=,所以23T π=,则23T πω==,所以()sin(3)4f x x π=-选项A 不正确; 对于选项B :将函数()f x 的图像向左平移4π个单位,得到的函数是 ()sin[3()]cos344f x x x ππ=+-=为偶函数,所以选项B 错误;对于选项C :当时(,)63x ππ∈,则33444x πππ<-<,所以()f x的值域为,选项C 不正确;对于选项D :令()0,Z 123k f x x k ππ=⇒=+∈,所以当3,2,1,0,1,2k =---时,[,]x ππ∈-,所以函数()f x 在区间[,]-ππ上的零点个数共有6个,D 正确, 故选:D .9、设函数()(),01,,10,1xx mf x x x m x ⎧≤<⎪⎪=⎨-⎪-<<+⎪⎩,()()41g x f x x =--.若函数()g x 在区间()1,1-上有且仅有一个零点,则实数m 的取值范围是( )A .(]11,1,4⎡⎫--⋃+∞⎪⎢⎣⎭B .(]1,1,4⎡⎫-∞-+∞⎪⎢⎣⎭C .{}11,5⎡⎫-⋃+∞⎪⎢⎣⎭D .{}11,15⎛⎫-⋃ ⎪⎝⎭【答案】C 【详解】令()()410g x f x x =--=,则()41f x x =+,当01x ≤<时,41xx m=+,即4x mx m =+,即函数1y x =与24y mx m =+的交点问题,其中24y mx m =+恒过A 1,04⎛⎫- ⎪⎝⎭.当10x -<<时,()411x x m x -=++,即1114mx m x -+=++,即函数3111x y =-++与24y mx m =+的交点问题 分别画出函数1y ,2y ,3y 在各自区间上的图象: 当2y 与3y 相切时,有且仅有一个零点,此时()411xx m x -=++,化简得:()24510mx m x m +++=,由()2251160m m ∆=+-=得:11m =-,219m =-(舍去)当直线2y 的斜率,大于等于直线1y 的斜率时,有且仅有一个零点,把()1,1B 代入24y mx m =+中,解得:15m =,则15m ³综上,m 的取值范围是{}11,5⎡⎫-⋃+∞⎪⎢⎣⎭故选:C二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10、已知复数z 满足()2i i z -=,则5i z -=___________.【答案】3【解析】因为圆22:20(0)C x ax y a -+=>的标准方程为:()222x a y a -+=,所以圆必坐标为(,0)a ,半径为a ,由题意得:32a a += 解得:3a = ,故答案为:3.12、已知3π3sin 85α⎛⎫-= ⎪⎝⎭,则πcos 24α⎛⎫+= ⎪⎝⎭________. 【答案】725-【解析】2πcos 2cos 22cos 1488ππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦232cos 182ππα⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦223372sin 1218525πα⎛⎫⎛⎫=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭,故答案为:725- 13、直线l 与双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线平行,l 过抛物线2:4C y x =的焦点,交C 于A ,B 两点,若||5AB =,则E 的离心率为_______.【详解】依题意,点F 的坐标为(1,0),设直线l 的方程为1x my =+,联立方程组214x my y x=+⎧⎨=⎩,消去x 并整理得:2440y my --=,设1(A x ,1)y ,2(B x ,2)y ,则124y y m +=,124y y =-,则2212||()4(1)5AB y y m ++=,解得:12m =±,∴直线l 的方程为220x y +-=或220x y --=;直线的斜率为:2±.直线l 与双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线平行,可得2b a =,所以22224b a c a ==-,1e >,解得e =故14、已知1a >,1b >,且lg 12lg a b =-,则log 2log 4a b +的最小值为_______. 【答案】9lg2【解析】由已知,令lg 2log 2lg a m a ==,lg 4log 4lg b n b==, 所以lg 2lg a m =,lg 42lg 2lg b n n ==,代入lg 12lg a b =-得:lg 24lg 21m n+=, 因为1a >,1b >,所以lg 24lg 24log 2log 4()1()()5lg 2(lg 2lg 2)a b m nm n m n m n n m+=+⨯=++=++ 2lg 25lg 25lg 24lg 29lg 2n m≥+=+=.当且仅当4lg 2lg 2m n n m=时,即1310a b ==时等号成立. log 2log 4a b +的最小值为9lg2. 故答案为:9lg2.15、在Rt ABC 中,90C ∠=,若ABC 所在平面内的一点P 满足0PA PB PC λ++=,当1λ=时,222PA PB PC+的值为 ;当222PA PB PC+取得最小值时,λ的值为 .【答案】5;-1【解析】(1)如图5-26,以C 为坐标原点建立直角坐标系, 因为0PA PB PC λ++=,所以点P 为ABC 的重心,设BC a =,AC b =,所以(),0A b ,()0,B a ,易得,33a b P ⎛⎫⎪⎝⎭,所以222222222411499991199a b a b PA PBPC b a ++++=+5=. (2)设(,)P x y ,则(,),(,),(,)PA b x y PB x a y PC x y =--=--=--, 所以2,2,b x x a y y λλ-=⎧⎨-=⎩可得(2),(2),b x a y λλ=+⎧⎨=+⎩于是222222222||||()()||PA PB x b y x y a x y PC +-+++-=+()222222222x y bx ay a b x y +--++=+ 22222222(2)(2)2(2)2(2)2x y x y x y λλλλ+++-+-+=++()()222222222x y x y λλλλ+++=++ 2222(1)11λλλ=++=++…当1λ=-时取等号,所以222||||||PA PB PC +的最小值为1. 故答案为:5;-1.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16、如图,在平面四边形ABCD 中,对角线AC 平分BAD ∠,ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos cos cos 0B a C c A ++=. (1)求B ;(2)若2AB CD ==,ABC 的面积为2,求AD . 【答案】(1)34B π=;(2)4=AD .【分析】(1)利用正弦定理将边化角,再根据两角和的正弦公式及诱导公式即可得到cos B=出B;(2)由三角形面积公式求出a,再利用余弦定理求出AC,即可求出cos CAB∠,依题意cos cosCAB CAD∠=∠,最后利用余弦定理得到方程,解得即可;【详解】(1)cos cos cos0B aC c A++=,cos sin cos cos sin0B B AC A C++=,()cos sin0B B A C++=,cos sin0B B B+=,因为0Bπ<<,所以sin0B>,所以cos B=34Bπ=.(2)因为ABC的面积2S=,所以1sin22==ABCS ac B,2=,所以a=由余弦定理得AC==所以222cos2AB AC BCCABAB AC+-∠==⋅因为AC平分BAD∠,所以cos cosCAB CAD∠=∠,所以2222cosCD AC AD AC AD CAD=+-⋅⋅∠,所以24202AD AD=+-⨯28160AD AD-+=,所以4=AD.17、如图,在五面体ABCDEF中,四边形ABEF为正方形,DF⊥平面ABEF,//CD EF,2DF=,22EF CD==,2EN NC=,2BM MA=.(1)求证://MN平面ACF;(2)求直线AD与平面BCE所成角的正弦值;(3)求平面ACF与平面BCE夹角的正弦值.【答案】(1)见解析;(2;(3)45【详解】(1)证明:在EF上取点P,使2EP PF=,因为2EN NC=,所以//NP FC,于是//NP平面ACF,因为2BM MA=,四边形ABEF为正方形,所以//MP AF,所以//MP平面ACF,因为MP PN P =,所以平面//MNP 平面ACF ,因为MN ⊂平面MNP ,所以//MN 平面ACF ;(2)解:因为DF ⊥平面ABEF ,所以DF FA ⊥,DF EF ⊥, 又因为四边形ABEF 为正方形,所以AF EF ⊥,所以FA 、FE 、FD 两两垂直,建立如图所示的空间直角坐标系, (2AD =-,0,2),(2EB =,0,0),(0EC =,1-,2),设平面BCE 的法向量为(m x =,y ,)x , 2020EB m x EC m y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1z =,(0m =,2,1), 所以直线AD 与平面BCE所成角的正弦值为||2||||22AD m AD m ⋅=⋅⋅ (3)解:(2FA =,0,0),(0FC =,1,2), 设平面ACF 的法向量为(n u =,v ,)w ,2020FA n u FC n v w ⎧⋅==⎪⎨⋅=+=⎪⎩,令1w =-,(0n =,2,1)-, 由(1)知平面BCE 的法向量为(0m =,2,1), 设平面ACF 与平面BCE 所成二面角的大小为θ,||33cos ||||55m n m n θ⋅===⋅⋅,4sin 5θ==.所以平面ACF 与平面BCE 所成二面角的正弦值为45. 18、已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点为12,F F ,P 为椭圆上一点,且212PF F F ⊥,12tan PF F ∠=. (1)求椭圆C 的离心率;(2)已知直线l 交椭圆C 于,A B 两点,且线段AB 的中点为11,2Q ⎛⎫- ⎪⎝⎭,若椭圆C 上存在点M ,满足234OA OB OM +=,试求椭圆C 的方程.【答案】(1)e =(2)22551164x y +=.【分析】(1)由212tan 2b a PF F c ∠==222a c b -=,建立关于e 的方程,即可得到结果; (2)设()()()112200,,,,,A x y B x yM x y ,由(1)可知224a b =,可设椭圆方程为22244x y b +=,根据234OA OB OM +=,可得120120234234x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,设1:(1)2AB y k x =--将其与椭圆方程联立,由韦达定理和点M 满足椭圆方程,可求出2b ,进而求出结果.【详解】(1)解:因为2212tan 22b b a PF F c ac ∠==26b =,即()226a c -=, 则()261e -=,解得e =(2)设()()()112200,,,,,A x y B x y M x y ,由22234c e a ==,得2243a c =,所以222221134b a c c a =-==,所以224a b =设2222:14x y C b b+=,即22244x y b +=由于,A B 在椭圆上,则2221144x y b +=,2222244x y b +=,①由234OA OB OM +=,得120120234234x x x y y y +=⎧⎨+=⎩,即120120234234x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 由M 在椭圆上,则2220044x y b +=,即212222144232344x x y y b ⎛⎫+= ⎪++⎛⎫ ⎪⎝⎝⎭⎭, 即()()()222211121222441249464x y x x y y x y b +++++=,②将①代入②得:212124x x y y b +=,③线段AB 的中点为11,2Q ⎛⎫- ⎪⎝⎭,设1:(1)2AB y k x =--可知()22211244y k x x y b⎧=--⎪⎨⎪+=⎩ ()()22222148444410k x kk x k k b +-+++-+=212284121142k k x x k k ++==⨯⇒=+, 所以222220x x b -+-=,其中0∆>,解得212b >, 所以21222x x b ⋅=-,AB 方程为112y x =-又()2121212121111111122422b y y x x x x x x -⎛⎫⎛⎫=--=-++= ⎪⎪⎝⎭⎝⎭,④ 将④代入③得:22221422425b b b b --+⋅=⇒=, 经检验满足212b >, 所以椭圆C 的方程为22551164x y +=. 19、已知等差数列}{n a 的前n 项和为n S ,且455=S 455=S ,40342=+a a .数列}{n b 的前n 项和为n T ,满足n n b T 413=+)(*N n ∈.(1)求数列}{n a 、}{n b 的通项公式;(2)若1)23(+⋅-=n n n n n a a a b c ,求数列}{n c 的前n 项和n R ; (3)设n n n b S d =,求证:11248-=+-<∑n n k k n d . 【答案】(1)32+=n a n ,14-=n n b ;(2)51524-+=n R n n ;(2)证明见详解. 【详解】(2);(3)124n n n n n b c b b ++=, 112(3)44n n n n n n b n n c b b +-++∴==, 则12124)2(444--+=++<n n n n n n c ,122-+<n n . 设1122n n k k k S '-=+=∑, 11123422122nn k n k k n S '--=++∴==++⋯+∑ 213422222n n n S +'∴=++⋯+ 12111(1)121112422334122222221()2n n n n n n n n n S ---+++'∴=-+++⋯+=-+=--,1482n n n S -+'∴=- 综上,11248-=+-<∑n n k k n c . 20、已知函数()e cos x f x x =,()cos (0)g x a x x a =+<,曲线()y g x =在π6x =处的切线的斜率为32.(1)求实数a 的值;(2)对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()'()0f x g x -≥恒成立,求实数t 的取值范围; (3)设方程()'()f x g x =在区间()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 内的根从小到大依次为1x 、2x 、…、n x 、…,求证:12n n x x +->π.【答案】(1)1a =-;(2)1t ≥;(2)证明见详解.【分析】(1)由'π362g ⎛⎫= ⎪⎝⎭来求得a 的值. (2)由()'()0f x g x -≥,对x 进行分类讨论,分离常数t 以及构造函数法,结合导数求得t 的取值范围.(3)由()'()f x g x =构造函数()e cos sin 1x x x x ϕ=--,利用导数以及零点存在性定理,结合函数的单调性证得12n n x x +->π.【详解】(1)因为()cos (0)g x a x x a =+<,则()'1sin g x a x =-, 由已知可得'π131622g a ⎛⎫=-= ⎪⎝⎭,解得1a =-. (2)由(1)可知()'1sin g x x =+,对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()'()0tf x g x -≥恒成立, 即e cos 1sin x t x x ≥+对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立, 当2x π=-时,则有00≥对任意的R t ∈恒成立; 当π02x -<≤时,cos 0x >,则1sin e cos x x t x+≥, 令1sin ()e cos x x h x x +=,其中π02x -<≤, ()()2'2e cos e (cos sin )(1sin )e cos x x x x x x x h x x --+=2(1cos )(1sin )0e cos x x x x-+=≥且()'h x 不恒为零, 故函数()h x 在π,02⎛⎤- ⎥⎝⎦上单调递增,则max ()(0)1h x h ==,故1t ≥. 综上所述,1t ≥.(3)由()'()f x g x =可得e cos 1sin x x x =+,e cos 1sin 0x x x --=,令()e cos sin 1x x x x ϕ=--,则()'e (cos sin )cos x x x x x ϕ=--, 因为()ππ2π,2π32x n n n +⎛⎫∈++∈ ⎪⎝⎭N ,则sin cos 0x x >>,所以,()'0x ϕ<,所以,函数()ϕx 在()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 上单调递减,因为π2π3ππ2πe cos 2π33n n n ϕ+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭πsin 2π13n ⎛⎫-+- ⎪⎝⎭π2π31e 12n +=π2π3e 102+≥>,π2π202n ϕ⎛⎫+=-< ⎪⎝⎭, 所以,存在唯一的()ππ2π,2π32n x n n n +⎛⎫∈++∈ ⎪⎝⎭N ,使得()0n x ϕ=, 又1ππ2(1)π,2(1)π32n x n n +⎛⎫∈++++ ⎪⎝⎭()n +∈N ,则()1ππ2π2π,2π32n x n n n ++⎛⎫-∈++∈ ⎪⎝⎭N 且()10n x ϕ+=, 所以,()()12π112πe cos 2πn x n n x x ϕ+-++-=-()1sin 2π1n x +---12π11e cos sin 1n x n n x x +-++=--112π11e cos e cos n n x x n n x x ++-++=-()112π1e e cos 0n n x x n x ++-+=-<()n x ϕ=, 因为函数()ϕx 在()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 上单调递减, 故12n n x x +-π>,即12n n x x +->π.。
2014届天津市天津一中高三上学期第二次月考文科数学试题(含答案解析)
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题 目要求的 1.复数 z 满足: ( z − i )(2 − i ) = 5 ,则 z = ( A. −2 − 2i 2. 下列结论错误的是( B. −2 + 2i ) ) C. 2 − 2i D. 2 + 2i来自第 2 页 共 9 页
(Ⅰ)如果 X=8,求乙组同学植树棵数的平均数和方差 (Ⅱ)如果 X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为 19 的概率。
16. (本小题满分 13 分) 已知 △ ABC 中,内角 A, B, C 的对边分别为 a, b, c ,且 cos A = (Ⅰ)求 cos( A + B ) 的值
− x 2 + 4 x − 10( x ≤ 2) 13. 已知函数 f ( x) = ,若 f (6 − a 2 ) > f (5a) ,则实数 a 的取值范围是_______________ log 3 ( x − 1) − 6( x > 2)
14. 设函数 f ( x) = x −
A.命题“若 p ,则 q ”与命题“若 ¬q, 则 ¬p ”互为逆否命题;
x 2 B.命题 p : ∀x ∈ [0,1], e ≥ 1 ,命题 q : ∃x ∈ R, x + x + 1 < 0, 则 p ∨ q 为真;
C.“若 am < bm , 则 a < b ”的逆命题为真命题;
2 2
D.若 p ∨ q 为假命题,则 p 、 q 均为假命题. 3. 如下框图,当 x1 = 6, x2 = 9, p = 8.5 时, x3 等于( A. 7 B. 8 C.10 ) D.11 )
【解析】天津市天津一中2013届高三上学期一月考文科数学
天津一中2012-2013学年高三年级一月考数学试卷(文)一、选择题(每小题5分,共40分) 1.i 是虚数单位,复数2i1iz -==-( ) A .31i 22+ B .13i 22+ C .13i + D . 3i -【答案】A 【解析】2i (2i)(1+i)3311i (1i)(1+i)222i z i --+====+--,选A. 2.已知全集U R =,{|21}xA y y ==+,{||1||2|2}B x x x =-+-<,则()U C A B =( )A .∅B .1{|1}2x x <≤C .{|1}x x <D .{|01}x x <<【答案】B【解析】{21}{1}x A y y y y ==+=>,15{||1||2|2}{}22B x x x x x =-+-<=<<,所以{1}U A y y =≤ð,所以1(){1}2U A B xx =<≤ð,选B. 3. 0a <,0b <,则22b a p a b=+与q a b =+的大小关系为 ( )A. p q >B. p q ≥C. p q <D. p q ≤【答案】D【解析】22222222()b a b a b a a b p q a b a b a b a b a b---=+-+=-+-=+2222211()()()()()b a b a a b b a b a a b ab ab--+=--=-⨯=,因为0a <,0b <,所以0,0a b ab +<>,2()0b a -≥,所以0p q -≤,所以p q ≤,选D.4. 函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. 3,1-B.2,2-C. 33,2- D. 32,2- 【答案】C【解析】22()cos 22sin 12sin 2sin 2(sin sin )1f x x x x x x x =+=-+=--+2132(sin )22x =--+,因为1sin 1x -≤≤,所以当1sin 2x =时,函数有最大值32,当sin 1x =-时,函数有最小值3-,选C.5. 已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A .最小正周期为π的奇函数 B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为2π的偶函数【答案】D【解析】222211()(1cos 2)sin 2cos sin sin 2(1cos 4)24f x x x x x x x =+===-,所以函数为偶函数,周期2242T πππω===,选D. 6. 要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 B.横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度【答案】C 【解析】将函数)42sin(2π+=x y 的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到)4y x π=+,然后向左平移4π个单位得到函数442y x x x πππ=+++,选C.7. 函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )【答案】A【解析】函数为偶函数,图象关于y 轴对称,所以排除B,D.又0cos 1x <<,所以ln cos 0y x =<,排除C ,选A.8. 定义域为{|2}x R x ∈≠的函数()y f x =满足(4)()f x f x -=,(2)()0x f x '-<,若12x x <,且124x x +>,则 ( ).A .12()()f x f x < B. 12()()f x f x > C. 12()()f x f x =D. 1()f x 与2()f x 的大小不确定【答案】B【解析】由(4)()f x f x -=可知函数的关于2x =对称,当2x >时,'()0f x <,函数单调递减,当2x <时,'()0f x >,函数单调递增,因为12x x <,且124x x +>,所以讨论:若122x x <<,函数因为函数单调递减,则有12()()f x f x >,若122x x <<,由124x x +>得124x x >-,即2142x x -<<,函数在2x <时,单调递增,即21(4)()f x f x -<.即21()()f x f x <,综上可知,12()()f x f x >,选B.二、填空题(每小题5分,共30分) 9. 已知3,,4παβπ⎛⎫∈ ⎪⎝⎭,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ则cos ⎪⎭⎫ ⎝⎛+4πα=________.【答案】6556-【解析】因为3,,4παβπ⎛⎫∈⎪⎝⎭,所以3,22παβπ⎛⎫+∈ ⎪⎝⎭,所以cos()0αβ+>,即4cos()5αβ+=.又3244πππβ<-<,所以cos()04πβ-<,即5cos()413πβ-=-.又cos()cos[()()]cos()cos()sin()sin()4444ππππααββαββαββ+=+--=+-++-4531256()()51351365=⨯-+-⨯=-. 10. 在ABC △中,若1tan 3A =,150C =︒,1BC =,则AB = .【解析】由1tan 3A =,得sin A =,根据正弦定理得sin sin BC AB A C =,即01sin sin150ABA =,解得AB =11. 已知向量()()()2 111 2m =-=-=-a b c ,,,,,,若()+a b c ,则m = .【答案】1m =-【解析】()()2 11(1,1)m m +=-+-=-,,a b ,因为()+a bc ,所以12(1)(1)0m ⨯--⨯-=,即210m +-=,解得1m =-.12. 已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)=-,m ,(cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角B = .【答案】6π【解析】因为⊥m n,所以sin 0A A -=sin A A =,所以tan A =,所以3A π=.又cos cos sin a B b A c C +=,所以根据正弦定理得sin cos sin cos sin sin A B B A C C +=,即sin()sin sin A B C C +=,所以sin sin sin C C C =,即sin 1C =,所以2C π=,所以236B ππππ=--=.13.如右图,AB 是半圆的直径,点C 在半圆上,CD AB ⊥,垂足为D ,且5AD DB =,设COD θ∠=,则tan θ= .【解析】设圆的半径为R ,因为5AD DB =,所以2AD DB R +=,即62DB R =,所以13DB R =,23OD R =,53AD R =,由相交弦定理可得2259CD AD BD R ==,所以CD R =,所以tan CD OD θ===. 14. 在四边形ABCD 中,()1 1AB DC ==,,113BA BC BD BABCBD+=,则四边形ABCD 的面积为 . 【解析】由()1 1AB DC ==,,可知四边形ABCD 为平行四边形,2AB DC ==,因为113BA BC BD BABCBD+=,所以可知平行四边形ABCD 的角平分线BD 平分∠ABC,四边形为菱形,,且对角线BD倍,即BD==,则22212CE =-=,即CE =所以三角形BCD 的面积为12,所以四边形ABCD 的面积为2三、解答题:(15,16,17,18每题13分,19,20每题14分)15.已知a b c ,,为ABC △的三个内角A B C ,,的对边,且.21222ac b c a =-+(I )求B CA 2cos 2sin 2++的值;(Ⅱ)若b =2,求△ABC 面积的最大值.16.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域17.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(2sin B,2cos 2B)m =-,2B(2sin (), 1)42n π=+-, m ⊥n .(I )求角B 的大小;(Ⅱ)若a =1b =,求c 的值.18. 已知函数32()92f x ax bx x =-++,若()f x 在1x =处的切线方程为360 x y +-=.(I )求函数()f x 的解析式;(Ⅱ)若对任意的1[,2]4x ∈,都有2()21f x t t ≥--成立,求函数2()2g t t t =+-的最值.19.已知函数22()ln ().f x x a x ax a R =-+∈ (I )求()f x 的单调区间与极值;(Ⅱ)若函数()f x ∞在区间(1,+)上是单调减函数,求实数a 的取值范围.20.设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R ,其中1t ≤,将()f x 的最小值记为()g t .(I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值.天津一中2012—2013高三年级一月考数学试卷(文科)答案一、选择题:ABDCDCAB 二、填空题:(每小题5分,共30分)9.6556-1011.1m =- 12613 三、解答题:(15,16,17,18每题13分,19,20每题14分) 15.(I )由余弦定理:c o nB =14 si n 22A C ++c os2B = -14(II )由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38,S △ABC =12ac si nB ≤315(a =c 时取等号)故S △ABC 的最大值为315 16.(I )()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 2x x x x =++-1cos 22cos 22x x x =+-sin(2)6x π=- 2T 2ππ==周期∴ 对称轴方程 ()23k x k Z ππ=+∈ (II )5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,∴当12x π=-时,()f x 取最小值所以 函数 ()f x 在区间[,]122ππ-上的值域为[ 17.(I )20,4sin sin ()cos 22042Bm n m n B B π⊥∴⋅=∴⋅++-=222sin [1cos()]cos 220,22sin 2sin 12sin 20,15sin , 0, .266B B B B B B B B B ππππ∴-++-=∴++--=∴=<<∴=或(II )6,3π=∴>=B b a 此时,2222:::2cos ,320,2 1.,sin sin 12sin 0,,1332,,,2;36222,,, 1.3366b ac ac B c c c c b aB AA A A ABC c A C c b c πππππππππππ=+-∴-+=∴===∴=∴=<<∴====∴===--=∴=∴=方法一由余弦定理得或方法二由正弦定理得或若因为所以角边若则角边综上2 1.c c ==或18. (I )923)(2'+-=bx ax x f ,(1)3(1)3f f =⎧⎨'=-⎩解得412a b =⎧⎨=⎩32()41292f x x x x ∴=-++(II )2()122493(23)(21)f x x x x x '=-+=-- (),()f x f x '∴的变化情况如下表:min ()2f x = min ()2f x ∴=122--≥t t ,31≤≤-t 2()2g t t t ∴=+- (31≤≤-t ), 当12t =-时,最小值为94-,当3t =时,最大值为1019.(I )函数22()ln f x x a x ax =-+的定义域为(0,)+∞222121(21)(1)'()2a x ax ax ax f x a x a x x x-++-+-∴=-+==① 当0a =时,1'()0f x x=>,()f x ∴的增区间为(0,)+∞,此时()f x 无极值; ② 当0a >时,令'()0f x =,得1x a =或12x a=-(舍去)()f x ∴的增区间为(0,)a ,减区间为(,)a +∞()f x ∴有极大值为1()ln f a a=-,无极小值;③ 当0a <时,令'()0f x =,得1x a =(舍去)或12x a=-()f x ∴的增区间为(0,)2a -,减区间为(,)2a-+∞ ()f x ∴有极大值为1133()ln ln(2)2244f a a a ⎛⎫-=--=--- ⎪⎝⎭,无极小值; (II )由(1)可知:①当0a =时,()f x 在区间(1,)+∞上为增函数,不合题意;②当0a >时,()f x 的单调递减区间为1(,)a +∞,依题意,得110a a ⎧≤⎪⎨⎪>⎩,得1a ≥;③当0a <时,()f x 的单调递减区间为1,2a ⎡⎫-+∞⎪⎢⎣⎭,依题意,得1120a a ⎧-≤⎪⎨⎪<⎩,得12a ≤- 综上,实数a 的取值范围是1(,][1,)2-∞-+∞.法二:①当0a =时,1'()0f x x=>,∴()f x 在区间(1,)+∞上为增函数,不合题意; ②当0a ≠时,()f x 在区间(1,)+∞上为减函数,只需'()0f x ≤在区间(1,)+∞上恒成立.220210x a x ax >∴--≥只要恒成立,2211, 1.42210aa a a a a ⎧≤⎪∴≤-≥⎨⎪--≥⎩解得或20. (I )232()cos 4sin cos 43422x xf x x t t t t =--++-+ 222sin 12sin 434x t t t t =--++-+223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:由此可见,()g t 在区间12⎛⎫-- ⎪⎝⎭,和12⎛⎫ ⎪⎝⎭,单调增加,在区间22⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭.。
无锡新领航教育特供:天津市天津一中2013届高三上学期第三次月考
小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090
无锡新领航教育特供:天津一中2012—2013学年高三数学三月考
试卷(文科)
一、选择题:
1.复数2i
2i
-=+ A .34i 55- B .34i 55+ C .41i 5- D .31i 5+【答案】A 【解析】2(2)(2)
343
4
2(2)(2)555i
i i i
i i i i ----===-++-,选A.
2.“1m =-”是“直线(21)10mx m y +-+=和直线330x my ++=垂直”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 【答案】A
【解析】若0m =,两直线方程为1y =和1x =-,此时两直线垂直.若12m =,两直线方程为2x =-和13302x y +
+=,此时两直线相交.当0m ≠且12m ≠时,两直线方程为11212m
y x m
m =+--和33y x m m =--,两直线的斜率为12m m -和3m -.若两直线垂直,
则有3()112m m m ⨯-=--,解得1m =-,所以直线(21)10mx m y +-+=和直线330x m y ++=垂直时的条件为1m =-或0m =.所以1m =-是直线(21)1m x m y +-+=和直线330x my ++=垂直的充分不必要条件,选A.。
天津南开中学2024届高三第三次月检测答案
,
4
4
而
3
(125
4 3
4
− 803 )
210.2
,
3
(126
4 3
4
− 813 )
210.9
,
4
4
由[S] 的定义,得[S] = 211 ,
所以[S] 的值是 211.
6/6
=3
2,
解得 k =
2 2
,所以直线 l1
的斜率为
2. 2
所以
P
2c , 6 5
2c 5
,△APQ
的外接圆圆心
C
−
c 5
,
0
, kCP
=
62
5 3c
c
=
2
2,
5
因为 CP ⊥ PT ,所以直线 l2 的斜率为 k2 = −
2. 4
(3)设直线 l2 的方程为 y = −
2 x + 13 2 c ,与椭圆方程联立可得:
1
−
−
1 4
2
=
15 , 4
△ABC 的面积为 3
15
,可得
1 2
bc
sin
A
=
3
15 ,即 1 bc 2
15 = 3 15 ,则 bc = 24 , 4
联立 b − c = 2 ,解得 b = 6 , c = 4 ,
由
a2
=
b2
+
c2
−
2bc cos
A
=
36
+ 16
−
26
4
−
1 4
=
64
=1504 ;
天津市和平区天津一中2024届高三上学期第三次月考数学试题
天津市和平区天津一中2024届高三上学期第三次月考数
学试题
学校:___________姓名:___________班级:___________考号:___________
(1)求cos B ;
(2)求a ,c 的值;
(3)求()sin B C -的值.
17.如图,^AE 平面ABCD ,//CF AE ,//AD BC ,AD AB ^,1AB AD CF ===,2
AE BC ==
(1)求证:BF //平面
ADE ;(2)求直线
CE 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.
又()10f =,123x x x <<,所以12301x x x <<=<,所以131x x =,所以1231x x x =.
【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:
(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;
(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.
(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
2024届高三数学仿真模拟卷(天津卷)(全解全析)
2024年高考第三次模拟考试高三数学(天津卷)第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,2,本卷共9小题,每小题5分,共45分参考公式:•如果事件A 、B 互斥,那么()()()⋃=+P A B P A P B .•如果事件A 、B 相互独立,那么()()()P AB P A P B =.•球的体积公式313V R π=,其中R 表示球的半径.•圆锥的体积公式13V Sh =,其中S 表示圆锥的底面面积,h 表示圆锥的高。
一、选择题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2120A x x x =--<,(){}2R log 51B x x =∈-<,则()A B =R I ð()A .{}34x x -<≤B .{}34x x -≤<C .{}4x x ≥D .{}45x x ≤<【答案】D【解析】由2120x x --<,得34x -<<,所以{}34A x x =-<<;由()2log 51x -<,得052x <-<,解得35x <<,所以{}35B x x =<<.所以{R 3A x x =≤-ð或}4x ≥,所以(){}R 45A B x x ⋂=≤<ð.故选:D .2.已知等差数列{}n a 的公差为d ,其前n 项和为n S ,则“0d >”是“81092S S S +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】因为8109810991091092220S S S S S S a a a a a d +>⇔+-=+-=-=>,所以“0d >”是“81092S S S +>”的充要条件.故选:C.3.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A .sin ()3xf x =B .cos ()3xf x =C .sin 1()3xf x ⎛⎫= ⎪⎝⎭D .cos 1()3xf x ⎛⎫= ⎪⎝⎭【答案】A【解析】由函数图象可知,()y f x =的图象不关y 轴对称,而()()cos cos ()33x xf x f x --===,()()cos cos 11()33x xf x f x -⎛⎫⎛⎫-=== ⎪⎪⎝⎭⎝⎭,即这两个函数均关于y 轴对称,则排除选项B 、D ;由指数函数的性质可知3xy =为单调递增函数,13xy ⎛⎫= ⎪⎝⎭为单调递减函数,由sin y x =的图象可知存在一个极小的值00x >,使得sin y x =在区间()00,x 上单调递增,由复合函数的单调性可知,sin ()3xf x =在区间()00,x 上单调递增,sin 1()3xf x ⎛⎫= ⎪⎝⎭在区间()00,x 上单调递减,由图象可知sin ()3x f x =符合题意,故选:A .4.已知0.10.52log 3,log 3,2a b c -===,则,,a b c 的大小关系是()A .a c b <<B .c a b <<C .a b c <<D .b<c<a【答案】A【解析】由题意得0.5log y x =在(0,)+∞上单调递减,2log y x =在(0,)+∞上单调递增,2x y =在R 上单调递增,故0.10.50.0522102121log 3log ,log 3log ,02a b c -=<<==<=>==,故a c b <<,故选:A5.下列说法错误的是()A .若随机变量ξ、η满足21ηξ=-且()3D ξ=,则()12D η=B .样本数据50,53,55,59,62,68,70,73,77,80的第45百分位数为62C .若事件A 、B 相互独立,则()(|)P A B P A =D .若A 、B 两组成对数据的相关系数分别为0.95A r =、0.98B r =-,则A 组数据的相关性更强【答案】D【解析】对于A :因为21ηξ=-且()3D ξ=,所以()()()221212D D D ηξξ=-=⨯=,故A 正确;对于B :因为1045% 4.5⨯=,所以第45百分位数为从小到大排列的第5个数,即为62,故B 正确;对于C :若事件A 、B 相互独立,则()()()P AB P A P B =,所以()()()()()()(|)P AB P A P B P A B P A P B P B ===,故C 正确;对于D :若A 、B 两组成对数据的相关系数分别为0.95A r =、0.98B r =-,因为B A r r >,所以B 组数据的相关性更强,故D 错误.故选:D6的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将半径为1的鸡蛋(视为球)放入其中,蛋巢形状保持不变,则鸡蛋最高点与蛋巢底面的距离为()A .322+B .32C .322+D .322+【答案】D【解析】由题得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1.由于鸡蛋(球)的半径为12=,而垂直折起的4个小直角三角形的高为12,故鸡蛋最高点与蛋巢底面的距离为1312222++=+.故选:D .7.已知函数()()ππ2sin 222f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于点π,03⎛⎫⎪⎝⎭中心对称,将函数()f x 的图像向右平移π3个单位长度得到函数()g x 的图像,则下列说法正确的是()A .()f x 在区间ππ36⎛⎫- ⎪⎝⎭,上的值域是(]12-,B .()2sin2g x x=-C .函数()g x 在π5π1212⎡⎤-⎢⎥⎣⎦,上单调递增D .函数()g x 在区间[]ππ-,内有3个零点【答案】C【解析】 函数()f x 的图像关于点π,03⎛⎫⎪⎝⎭中心对称,π2π2sin 033f ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,2ππ,Z 3k k ϕ∴+=∈,即2ππ,Z 3k k ϕ=-+∈,又ππ22ϕ-<<,π3ϕ∴=,则()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭.当ππ,36x ⎛⎫∈- ⎪⎝⎭时,ππ2π2,333x ⎛⎫+∈- ⎪⎝⎭,πsin 2,13x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,()(2f x⎤∴∈⎦,故A 错误;将函数()f x 的图像向右平移π3个单位长度得到函数()π2sin 23g x x ⎛⎫=- ⎪⎝⎭的图像,故B 错误;令2223πππππ,22k x k k -+≤-≤+∈Z ,得π5πππ,1212k x k k -+≤≤+∈Z ,当0k =时,π51212πx -≤≤,∴函数()g x 在π5π,1212⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;令π2π,3x k k -=∈Z ,得ππ62k x =+,k ∈Z ,∴函数()g x 在区间[]π,π-内的零点有5π6x =-,ππ2π,,363x x x =-==,共4个,故D 错误.故选:C.8.记双曲线C :22221x y a b-=(0a >,0b >)虚轴的两个端点分别为M ,N ,点A ,B 在双曲线C 上,点E在x 轴上,若M ,N 分别为线段EA ,EB 的中点,且60AEB ∠=︒,则双曲线C 的离心率为()ABC.3D【答案】C【解析】由题意得,M ,N 关于x 轴对称,则,A B 也关于x 轴对称且4AB b =,不妨设点A 在双曲线C 的右支上且在第一象限,其纵坐标为2b ,又因为260AEB AEO ∠=∠=︒,所以30AEO ∠=︒,所以4AE BE b ==,则ABE 为等边三角形,故),2Ab ,代入22221x y a b-=中,得2253b a =,则双曲线C的离心率c e a ===C 正确.故选:C.9.已知函数()()()eln 010xx f x x x x ⎧>⎪=⎨⎪+≤⎩,若关于x 的方程()()210f x af x a -+⎣⎦-⎤=⎡有8个不相等的实数根,则实数a 的取值范围为()A.()1,1-B.)1,1C.()2,1D.()1,2+【答案】C【解析】令()eln xh x x =,则()()2e 1ln x h x x-'=,令()0h x '=,解得e x =,故当0e x <<时,()()0,h x h x '>单调递增,当e x >时,()()0,h x h x '<单调递减,所以()()max e 1h x h ==,且当1x >时,()0h x >,当01x <<时,()0h x <,结合绝对值函数的图象可画出函数()f x的大致图象,如图所示:令()t f x =,则方程()()210f x af x a ⎡⎤-+-=⎣⎦,即方程()210t at a -+-=*,()22Δ4144a a a a =--=+-,①当Δ0<时,()*式无实数根,直线y t =和()f x 的图象无交点,原方程无实数根;②当Δ0=时,()*式有两个相等的实数根,直线y t =和()f x 的图象最多有4个交点,因此要使()()210f x af x a ⎡⎤-+-=⎣⎦有8个不相等的实数根,则()*式有两个不相等的实数根,不妨设为12,t t ,且12t t <,则1201t t <<<.则22Δ440012101110a a a a a a ⎧=+->⎪⎪<<⎪⎨⎪->⎪-⨯+->⎪⎩,解得21a <<.故选:C.第II 卷注意事项1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分。
2012高考天津文科数学试题及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学文史类(天津卷)本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.参考公式: ·如果事件A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积, h 表示棱柱的高.·圆锥的体积公式V =13Sh . 其中S 表示圆锥的底面面积, h 表示圆锥的高.第Ⅰ卷本卷共8小题,每小题5分,共40分.一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数53i4i+=-( ) A .1-i B .-1+i C .1+i D .-1-i2.设变量x ,y 满足约束条件220,240,10,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则目标函数z =3x -2y 的最小值为( )A .-5B .-4C .-2D .33.阅读下边的程序框图,运行相应的程序,则输出S 的值为()A .8B .18C .26D .80 4.已知a =21.2,0.81()2b -=,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a 5.设x ∈R ,则“12x >”是“2x 2+x -1>0”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .e e 2x xy --=,x ∈RD .y =x 3+1,x ∈R7.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( )A .13 B .1 C .53D .2 8.在△ABC 中,∠A =90°,AB =1,AC =2.设点P ,Q 满足AP u u u r =λAB u u u r ,AQ uuur =(1-λ)AC u u u r ,λ∈R .若2BQ CP ⋅=-u u u r u u u r,则λ=( )A .13B .23C .43D .2第Ⅱ卷本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分. 9.集合A ={x ∈R ||x -2|≤5}中的最小整数为__________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m 3.11.已知双曲线C 1:22221x y b -=(a >0,b >0)与双曲线C 2:221416x y -=有相同的渐近线,且C 1的右焦点为F 0),则a =__________,b =__________.12.设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为__________.13.如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,32EF =,则线段CD 的长为__________.14.已知函数2|1|1x y x -=-的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a =2,c =cos 4A =-. (1)求sin C 和b 的值; (2)求cos(2A +π3)的值.17.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC =1,PC =,PD =CD =2.(1)求异面直线P A 与BC 所成角的正切值; (2)证明平面PDC ⊥平面ABCD ;(3)求直线PB 与平面ABCD 所成角的正弦值.18.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n >2).19.已知椭圆22221x y a b+=a >b >0),点P (5a ,2a )在椭圆上. (1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.20.已知函数f (x )=13x 3+12a -x 2-ax -a ,x ∈R ,其中a >0. (1)求函数f (x )的单调区间;(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围;(3)当a =1时,设函数f (x )在区间[t ,t +3]上的最大值为M (t ),最小值为m (t ),记g (t )=M (t )-m (t ),求函数g (t )在区间[-3,-1]上的最小值.1. C 2253i (53i)(4i)205i 12i 3i 1717i=1i 4i (4i)(4i)16i 17+++++++===+--+-. 2. B 由约束条件可得可行域:对于目标函数z =3x -2y , 可化为3122y x z =-, 要使z 取最小值,可知过A 点时取得. 由220,240,x y x y +-=⎧⎨-+=⎩得0,2,x y =⎧⎨=⎩即A(0,2),∴z =3×0-2×2=-4.3. C n =1,S =0+31-30=2,n =2; n =2<4,S =2+32-31=8,n =3; n =3<4,S =8+33-32=26,n =4; 4≥4,输出S =26. 4. A a =21.2,b =(12)-0.8=20.8, ∵21.2>20.8>1,∴a >b >1,c =2log 52=log 54<1. ∴c <b <a .5. A ∵2x 2+x -1>0,可得x <-1或12x >, ∴“12x >”是“2x 2+x -1>0”的充分而不必要条件. 6. B 对于A 项,y =cos2x 是偶函数,但在区间(1,π2)内是减函数,在区间(π2,2)内是增函数,不满足题意.对于B 项,log 2|-x |=log 2|x |,是偶函数,当x ∈(1,2)时,y =log 2x 是增函数,满足题意.对于C 项,()e e e e ()()22x x x xf x f x -------===-, ∴e e 2x xy --=是奇函数,不满足题意.对于D 项,y =x 3+1是非奇非偶函数,不满足题意. 7. D f (x )=sin ωx 的图象向右平移π4个单位长度得:y =sin [ω(x -π4)]. 又所得图象过点(3π4,0), ∴3ππsin ()044ω=[-]. ∴πsin 02ω=. ∴ππ2k ω=(k ∈Z ). ∴ω=2k (k ∈Z ).∵ω>0,∴ω的最小值为2. 8. B 设AB =u u u r a ,AC =u u u rb ,∴|a |=1,|b |=2,且a ·b =0.()()BQ CP AQ AB AP AC ⋅=-⋅-u u u r u u u r u u u r u u u r u u u r u u u r=[(1-λ)b -a ]·(λa -b )=-λa 2-(1-λ)b 2=-λ-4(1-λ)=3λ-4=-2,∴23λ=. 9.答案:-3解析:∵|x -2|≤5,∴-5≤x -2≤5,∴-3≤x ≤7,∴集合A 中的最小整数为-3. 10.答案:30解析:由几何体的三视图可知:该几何体的顶部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 棱柱+V 长方体=(12)12+⨯×4+4×3×2=6+24=30(m 3). 11.答案:1 2解析:∵C 1与C 2的渐近线相同,∴2b=.又C 1的右焦点为F 0),∴c =a 2+b 2=5.∴a 2=1,b 2=4,∴a =1,b =2. 12.答案:3解析:∵l 与圆相交所得弦的长为2=∴m 2+n 2=13≥2|mn |,∴|mn |≤16. l 与x 轴交点A (1m,0),与y 轴交点B (0,1n ),∴111111||||6322||2AOB S m n mn ∆=⋅=⋅≥⨯=. 13.答案:43解析:在圆中,由相交弦定理: AF ·FB =EF ·FC ,∴2AF FBFC EF⋅==, 由三角形相似,FC AFBD AB =, ∴83FC AB BD AF ⋅==. 由切割弦定理:DB 2=DC ·DA ,又DA =4CD , ∴4DC 2=DB 2=649. ∴43DC =.14.答案:(0,1)∪(1,2)解析:21,1|1||1||1||1|,111x x x x x y x x x x +>⎧-+-===⎨-+<--⎩ 函数y =kx 过定点(0,0).由数形结合可知:0<k <1或1<k <k OC , ∴0<k <1或1<k <2.15.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以31()155P B ==.16.解:(1)在△ABC 中,由cos A =,可得sin A =.又由sin sin a cA C=及a =2,c =sin C =. 由a 2=b 2+c 2-2bc cos A ,得b 2+b -2=0.因为b >0,故解得b =1.所以sin C =,b =1.(2)由cos 4A =-,sin 4A =,得cos2A =2cos 2A -1=34-,sin2A =2sin A cos A =所以,cos(2A +π3)=cos2A cos π3-sin2A sin π3=38-+.17.解:(1)如图,在四棱锥P -ABCD 中,因为底面ABCD 是矩形,所以AD =BC 且AD∥BC .又因为AD ⊥PD ,故∠P AD 为异面直线P A 与BC 所成的角.在Rt △PDA 中,tan 2PDPAD AD∠==. 所以,异面直线P A 与BC 所成角的正切值为2.(2)证明:由于底面ABCD 是矩形,故A D ⊥CD ,又由于AD ⊥PD ,CD ∩PD =D ,因此AD ⊥平面PDC ,而AD 平面ABCD ,所以平面PDC ⊥平面ABCD .(3)在平面PDC 内,过点P 作PE ⊥CD 交直线CD 于点E ,连接EB .由于平面PDC ⊥平面ABCD ,而直线CD 是平面PDC 与平面ABCD 的交线. 故PE ⊥平面ABCD ,由此得∠PBE 为直线PB 与平面ABCD 所成的角.在△PDC 中,由于PD =CD =2,23PC =,可得∠PCD =30°. 在Rt △PEC 中,PE =PC sin30°3.由AD ∥BC ,AD ⊥平面PDC ,得BC ⊥平面PDC , 因此BC ⊥PC .在Rt △PCB 中,2213PB PC BC =+=在Rt △PEB 中,39sin 13PE PBE PB ∠== 所以直线PB 与平面ABCD 所成角的正弦值为3913. 18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组3323227,86210,d q d q ⎧++=⎨+-=⎩解得3,2.d q =⎧⎨=⎩ 所以a n =3n -1,b n =2n ,n ∈N *.(2证明:由(1)得 T n =2×2+5×22+8×23+…+(3n -1)×2n ,①2T n =2×22+5×23+…+(3n -4)×2n +(3n -1)×2n +1.② 由①-②,得-T n =2×2+3×22+3×23+…+3×2n -(3n -1)×2n +1=6(12)12n ⨯---(3n -1)×2n +1-2=-(3n -4)×2n +1-8,即T n -8=(3n -4)×2n +1,而当n >2时,a n -1b n +1=(3n -4)×2n +1. 所以,T n -8=a n -1b n +1,n ∈N *,n >2.19.解:(1)因为点P (55a ,22a )在椭圆上,故2222152a a a b+=,可得2258b a =. 于是222222318a b b e a a -==-=,所以椭圆的离心率64e =.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得00220022,1,y kx x y ab =⎧⎪⎨+=⎪⎩消去y 0并整理得2220222a b x k a b =+.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 02=a 2,整理得(1+k 2)x 02+2ax 0=0,而x 0≠0,故0221a x k-=+,代入①,整理得(1+k 2)2=4k 2·22a b +4. 由(1)知2285a b =,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5.所以直线OQ 的斜率5k =±.20.解:(1)f ′(x )=x 2+(1-a )x -a =(x +1)(x -a ).由f ′(x )=0,得x 1=-1,x 2=a >0. 当x (-∞,-1) -1 (-1,a ) a (a ,+∞) f ′(x ) + 0 - 0 + f (x ) 极大值极小值 . (2)由(1)知f (x )在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f (x )在区间(-2,0)内恰有两个零点当且仅当(2)0,(1)0,(0)0,f f f -<⎧⎪->⎨⎪<⎩解得0<a <13.所以,a 的取值范围是(0,13). (3)a =1时,f (x )=13x 3-x -1.由(1)知f (x )在[-3,-1]上单调递增,在[-1,1]上单调递减,在[1,2]上单调递增.①当t ∈[-3,-2]时,t +3∈[0,1],-1∈[t ,t +3],f (x )在[t ,-1]上单调递增,在[-1,t +3]上单调递减.因此,f (x )在[t ,t +3]上的最大值M (t )=f (-1)=13-,而最小值m (t )为f (t )与f (t +3)中的较小者.由f (t +3)-f (t )=3(t +1)(t +2)知,当t ∈[-3,-2]时,f (t )≤f (t +3),故m (t )=f (t ),所以g (t )=f (-1)-f (t ).而f (t )在[-3,-2]上单调递增,因此f (t )≤f (-2)=53-,所以g (t )在[-3,-2]上的最小值为154(2)()333g -=---=. ②当t ∈[-2,-1]时,t +3∈[1,2],且-1,1∈[t ,t +3].下面比较f (-1),f (1),f (t ),f (t +3)的大小. 由f (x )在[-2,-1],[1,2]上单调递增,有 f (-2)≤f (t )≤f (-1),f (1)≤f (t +3)≤f (2).又由f (1)=f (-2)=53-,f (-1)=f (2)=13-,从而M (t )=f (-1)=13-,m (t )=f (1)=53-. 所以g (t )=M (t )-m (t )=43.综上,函数g (t )在区间[-3,-1]上的最小值为43.。
2024-2025学年天津市天津一中高三(上)统练数学试卷(一)(含答案)
2024-2025学年天津一中高三(上)统练数学试卷(一)一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“∀x ∈R ,x 2−3x +5≤0”的否定是( )A. ∃x 0∈R ,x 20−3x 0+5≤0B. ∃x 0∈R ,x 20−3x 0+5>0C. ∀x ∈R ,x 2−3x +5≤0D. ∀x 0∈R ,x 20−3x 0+5>02.已知集合A ={x ∈R|12<2x <8},B ={x ∈R|−1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A. m ≥2B. m ≤2C. m >2D. −2<m <23.已知a =log 23,b =log 34,c =log 45,则有( )A. a >b >cB. a <b <cC. b >c >aD. b >a >c 4.函数f(x)=sinx |x|的图象大致是( )A. B.C. D.5.若f(x)=x 3+ax 2+bx−a 2−7a 在x =1处取得极大值10,则b a 的值为( )A. −32或−12B. −32或12C. −32D. −126.如图是某校随机抽取100名学生数学月考成绩的频率分布直方图,据此估计该校本次月考数学成绩的总体情况(同一组中的数据用该组区间的中点值为代表),下列说法正确的是( )A. 平均数为74B. 众数为60或70C. 中位数为75D. 该校数学月考成绩80以上的学生约占25%7.已知某函数的图象如图所示,则下列函数中,图象最契合的函数是( )A. y =sin(e x +e −x )B. y =sin(e x −e −x )C. y =cos(e x −e −x )D. y =cos(e x +e −x )8.已知a ,b ,c 为正实数,则代数式a b +3c +b 8c +4a +9c 3a +2b 的最小值为( )A. 4748B. 1C. 3536D. 349.设f(x)是定义在R 上的偶函数,对任意的x ∈R ,都有f(x +4)=f(x),且当x ∈[−2,0]时,f(x)=(13)x−6,若在区间(−2,6]内关于x 的方程f(x)−log a (x +2)=0(a >1)恰有3个不同的实数根,求实数a 的取值范围是( )A. (1,2)B. (2,+∞)C. (1,34)D. (34,2)二、填空题:本题共6小题,每小题5分,共30分。
天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)
天津一中2023—2024-2高三年级第四次月考数学试卷本试卷总分150分,考试用时120分钟.考生务必将答案涂写在答题卡上,答在试卷上的无效.一、选择题(本大题共9小题,每小题5分,共45分)1. 已知集合,则( )A. B. C. D. 【答案】C 【解析】【分析】根据题意,求得集合,结合集合交集的运算,即可求解.【详解】由不等式,解得,所以,又由,所以.故选:C.2. 将收集到的天津一中2021年高考数学成绩绘制出频率分布直方图,如图所示,则下列说法中不正确的是( )A. B. 高三年级取得130分以上的学生约占总数的65%C. 高三年级的平均分约为133.2D. 高三年级成绩的中位数约为125【答案】D 【解析】【分析】对于A ,由各个矩形面积之和为1即可列式求解;对于B ,求最右边两个矩形面积之和即可验算;对于C ,D 分别由平均数计算公式、中位数计算方法即可判断.{}{}2|3100,33A x x x B x x =--<=-≤≤A B = (2,3]-[)3,5-{1,0,1,2,3}-{3,2,1,0,1,2,3,4}---{}1,0,1,2,3,4A =-23100x x --<25x -<<{}1,0,1,2,3,4A =-{}33B x x =-≤≤{}1,0,1,2,3A B ⋂=-0.028a =【详解】对于A ,,故A 正确;对于B ,高三年级取得130分以上的学生约占总数的,故B 正确;对于C ,高三年级的平均分约为,故C 正确;对于D ,设高三年级成绩的中位数为,由于,所以,故D 不正确.故选;D.3. 已知,条件,条件,则是的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】结合绝对值的性质,根据不等式的性质及充分条件、必要条件的定义分析判断即可.【详解】因为,所以由得,故由能推出;反之,当时,满足,但是;所以是的充分不必要条件.故选:A .4. 函数的图象大致为( )A. B.C. D.【答案】B 【解析】.()1100.0010.0090.0250.037100.028a =-⨯+++÷=⎡⎤⎣⎦()0.0280.03710100%65%+⨯⨯=()1050.0011150.0091250.0251450.0281350.03710133.2⨯+⨯+⨯+⨯+⨯⨯=x 0.010.090.250.350.500.350.370.72++=<<+=130140x <<0a >:p a b >2:q a ab >p q 0a >a b >2a ab ab >≥:p a b >2:q a ab >10,2a b =>=-212a ab =>=-122a =<-=p q ()21cos 31x f x x ⎛⎫=-⋅ ⎪+⎝⎭【分析】根据函数奇偶性即可排除CD ,由特殊点的函数值即可排除A.【详解】,则的定义域为R ,又,所以为奇函数,图象关于原点对称,故排除CD ,当时,,故排除A .故选:B.5. 已知函数是上的偶函数,且在上单调递增,设,,,则a ,b ,c 的大小关系是( )A. B. C. D. 【答案】B 【解析】【分析】结合偶函数的性质,函数单调性,只需比较对数、分数指数幂的大小即可得解.【详解】因为函数是上的偶函数,且在上单调递增,所以,即.故选:B.6. 多项式展开式中的系数为( )A. 985B. 750C. 940D. 680【答案】A 【解析】分析】由二项式定理即可列式运算,进而即可得解.【详解】多项式展开式中的系数为.故选:A.7. 已知斜三棱柱中,为四边形对角线的交点,设三棱柱的体积【2()(1)cos 31xf x x =-⋅+()f x ()()()22321cos 1cos 1cos 313131x x x xf x x x x f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()f x πx =()ππ22π1cos π103131f ⎛⎫-=< ⎪++⎝⎭=-+()f x R ()f x [0,)+∞12e a f ⎛⎫= ⎪⎝⎭12b f ⎛⎫= ⎪⎝⎭1ln 2c f ⎛⎫= ⎪⎝⎭a b c <<b<c<ac<a<bb a c<<()f x R ()f x [0,)+∞()()1211ln 2ln 1e 22b f f f c f ff a ⎛⎫⎛⎫⎛⎫=<==<<== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b<c<a ()52(71)52x x++2x ()52(71)52x x++2x 32350555C 712C 7159805985⋅⋅⋅+⋅⋅⋅=+=111ABC A B C -O 11ACC A 111ABC A B C -为,四棱锥的体积为,则( )A. B. C. D. 【答案】A 【解析】【分析】如图,延长,连接,则、,进而得,即可求解.【详解】如图,延长,连接,则,所以,又O 为的中点,所以点到平面的距离是点到平面的距离的2倍,则,所以,即故选:A8. 已知函数(为常数,且)的一个最大值点为,则关于函数的性质,下列说法错误的有( )个.1V 11O BCC B -2V 21:V V =1:31:41:62:31OA 11,,OB OB A B 111123A BCC B V -=11122A BCC B V V -=12223V V =1OA 11,,OB OB A B 11111111,3A ABC A BCCB A ABC V V V V V ---=+=111123A BCCB V -=1AC 1A 11BCC B O 11BCC B 11111222A BCC B O BCC B V V V --==12223V V =2113V V =()sin cos f x a x b x =+,a b 0,0a b >>π3x =()sin 2cos 2g x a x b x =+①的最小正周期为;②的一个最大值点为;③在上单调递增;④的图像关于中心对称.A. 0个 B. 1个C. 2个D. 3个【答案】B 【解析】【分析】根据三角函数的性质,求的关系,再根据辅助角公式化简函数,再利用代入的方法,判断函数的性质.【详解】函数,,平方后整理为,所以,,函数的最小正周期为,故①正确;当时,,此时函数取得最大值,故②正确;当时,,位于单调递增区间,故③正确;,故④错误,所以错误的只有1个.故选:B9. 已知双曲线的左焦点为,过作渐近线的垂线,垂足为,且与抛物线交于点,若,则双曲线的离心率为( )A.B.C.D.【答案】B 【解析】()g x π()g x π6()g x 2π,π3⎛⎫⎪⎝⎭()gx 7π,012⎛⎫⎪⎝⎭,a b ()g x ()sin cos f x a x b x =+12b +=()20a =a π()sin 2cos 22sin 26g x x b x b x ⎛⎫=+=+ ⎪⎝⎭0b >()g x 2ππ2=π6x =πππ2662⨯+=()g x 2π,π3x ⎛⎫∈⎪⎝⎭π3π13π2,626x ⎛⎫+∈ ⎪⎝⎭77ππ4π2sin 22sin 0121263g b b π⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭22221(0,0)x y a b a b-=>>1(,0)F c -1F P 212y cx =M 13PM F P =【分析】首先利用等面积法求出点坐标,再根据,求出坐标,再将坐标带入抛物线化简即可求解出双曲线离心率.【详解】据题意,不妨取双曲线的渐近线方程为,此时,,∴,且是直角三角形,设,则,,代入中,得,即;设,则,,由,则,,∴,则;又在抛物线上,,即,化简得,分子分母同时除以,,且,,.故选:B二、填空题(本大题共6小题,每小题5分,共30分)10. 已知,且满足(其中为虚数单位),则_________.【答案】2【解析】【分析】根据复数相等得到关于的方程组,解该方程组即可.【详解】由题意,可得,P 13PM F P =M M 212y cx =by x a=-1F P b =1OF c =OP a =1OPF (,)p p P x y 11122OPF p S ab cy== p aby c ∴=b y xa =-2p a x c =-2(,a ab P c c-(,)M xy 2,a ab PM x y c c ⎛⎫=+- ⎪⎝⎭ 221,,a ab b ab F P c cc c c ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ 13PM F P = 223a b x c c+=⋅3ab ab y c c -=⋅2234,b a ab x y c c -==2234(,)b a abM c c -M 212y cx =22243()12ab b a cc c-∴=()()()2222222222221612316123a b b aca c a c a a c ⎡⎤=-⇔-=--⎣⎦422491640c a c a -+=4a 4291640e e ∴-+=1e >2e ∴===e ∴=,R a b ∈(12i)(i)3i a b ++=-i 22a b +=,a b (12i)(i)3i a b ++=-(2)(2)i 3i a b a b -++=-所以,解得,所以.故答案为:211. 著名的“全错位排列”问题(也称“装错信封问题”是指“将n 个不同的元素重新排成一行,每个元素都不在自己原来的位置上,求不同的排法总数.”,若将个不同元素全错位排列的总数记为,则数列满足,.已知有7名同学坐成一排,现让他们重新坐,恰有两位同学坐到自己原来的位置,则不同的坐法有_________种【答案】【解析】【分析】根据数列递推公式求出项,再结合分步计数原理求解.【详解】第一步,先选出两位同学位置不变,则有种,第二步,剩下5名同学都不在原位,则有种,由数列满足,,则,,,则不同的做法有种.故答案为:.12. 已知在处的切线与圆相切,则_________.【答案】或【解析】【分析】根据导数的几何意义,求得切线方程,再由直线与圆相切,列出方程,即可求解.【详解】由函数,可得,则且,所以函数在处的切线方程为,即,又由圆,可得圆心,半径为,2321a b a b -=⎧⎨+=-⎩1575a b ⎧=⎪⎪⎨⎪=-⎪⎩222a b +=n n a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥9242776C 2121⨯==⨯5a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥()()321312a a a =-+=()()432419a a a =-+=()()5435144a a a =-+=2144924⨯=9242()ln f x x x =-1x =22:()4C x a y -+==a -0x y -=2()ln f x x x =-1()2f x x x=-'(1)1f '=(1)1f =()f x 1x =11y x -=-0x y -=22:()4C x a y -+=(,0)C a 2r =因为与圆,解得.故答案为:.13. 元旦前夕天津-中图书馆举办一年一度“猜灯谜”活动,灯谜题目中逻辑推理占,传统灯谜占,一中文化占,小伟同学答对逻辑推理,传统灯谜,一中文化的概率分别为,,,若小伟同学任意抽取一道题目作答,则答对题目的概率为______,若小伟同学运用“超能力”,抽到的5道题都是逻辑推理题,则这5道题目中答对题目个数的数学期望为______.【答案】 ①. ##②. 【解析】【分析】根据全概率公式求解概率,根据二项分布列的期望公式求解即可.【详解】设事件“小伟同学任意抽取一道题目作答,答对题目”,则.由题意小伟同学任意抽取一道逻辑推理题作答,则答对题目的概率为,根据二项式分布知,所以,即的数学期望为.故答案为:,14. 在中,设,,其夹角设为,平面上点满足,,交于点,则用表示为_________.若,则的最小值为_________.【答案】 ①. ②.【解析】【分析】由和三点共线,得到和,得出方程组,求得的值,得到,再由,化简得到,得出,结合基本不等式,即可求解.0x y -=C 2a =±±20%50%30%0.20.60.7X 0.5511201A =()0.20.20.50.60.30.70.55P A =⨯+⨯+⨯=0.2()5,0.2X B ~()50.21E X =⨯=X 10.551ABC ,AB a AC b ==u u u r r u u u r r θ,D E 2AD AB = 3AE AC =,BE DC O AO ,a b65AO DE DC BE ⋅=⋅ cos θ4355AO a b =+ ,,D O C ,,B O E 2(1)AO ta t b =+- ()33AO ua u b =+-2133t ut u =⎧⎨-=-⎩,t u 4355AO a b =+ 65AO DE DC BE ⋅=⋅ 2248209a b a b ⋅=+ 22209cos 48a b a bθ+=【详解】因为三点共线,则存在实数使得,又因为三点共线,则存在实数使得,可得,解得,所以,由,因为,可得,整理得,可得,所以又因为所以,当且仅当时,即时,等号成立,所以.故答案为:15. 设函数,若函数与直线有两个不同的公共点,则的取值范围是______.【答案】或或【解析】【分析】对于,当可直接去绝对值求解,当时,分和,,D O C t (1)2(1)AO t AD t AC ta t b =+-=+-,,B O E u ()()133AO u AB u AE ua u b =+-=+-2133t u t u =⎧⎨-=-⎩24,55t u ==4355AO a b =+ 32,2,3DE AE AD b a DC AC AD b a BE AE AB b a =-=-=-=-=-=- 65AO DE DC BE ⋅=⋅ 436()(32)(2)(3)555a b b a b a b a +⋅-=-⋅-2248209a b a b ⋅=+ 2248cos 209a b a b θ=+ 22209cos 48a b a bθ+=22209a b+≥ 22209cos 48a b a b θ+=≥ 22209a b = 3b cos θ4355AO a b =+ 22()21f x x ax ax =-++()y f x =y ax =a 2a <-21a -<<-2a >221y x ax =-+0∆≤0∆>a <-a >论,通过和图像交点情况来求解.详解】由已知,即,则必过点,必过,对于,当时,,此时恒成立,所以,令,即,要有两个不同的公共点,则,解得或或,当时,或当时,和图象如下:此时夹在其两零点之间的部分为,令,得无解,则有两个根有两个根,即有两个解,,符合要求;当和图象如下:【221y x ax =-+()1y ax x =-22()21f x x ax ax ax =-++=()2211x ax ax x -+=-()1y ax x =-()()0,0,1,0221y x ax =-+()0,1221y x ax =-+280a ∆=-≤a -≤≤2210x ax -+≥()222()2121f x x ax ax a x ax =-++=+-+()221a x ax ax +-+=()22210a x ax +-+=()21Δ442020a a a ⎧=-+>⎨+≠⎩2a -≤<-21a -<<-2a <≤280a ∆=->a <-a >a <-221y x ax =-+()1y ax x =-221y x ax =-+-2221x ax ax ax -+-=-+()221a x -=()2211x ax ax x -+=-()2211x ax ax x ⇔-+=-()22210a x ax +-+=()2Δ4420a a =-+>a <-a >221y x ax =-+()1y ax x =-或令,根据韦达定理可得其两根均为正数,对于①,则,解得,对于②,则,解得,综上所述,的取值范围是或或.【点睛】方法点睛:对于方程的根或者函数零点问题,可以转化为函数图象的交点个数问题,图象直观方便,对解题可以带来很大的方便.三、解答题(本大发共5小题,共75分)16. 已知中,角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求;(2)若,求的面积.【答案】(1(2【解析】【分析】(1)利用正弦定理求关系,再利用余弦定理求出,再利用两角和的正弦定理计算即可;(2)利用三角形的面积公式求解即可.【小问1详解】2210x ax -+=011⎧<<⎪⎪>3a >011⎧<<⎪⎪<3a <<a 2a <-21a -<<-2a >ABC sin cos sin 22C CB =2223a c b -=πsin 3B ⎛⎫+⎪⎝⎭1b =ABC ,,a b c cos B因为,所以,由正弦定理得,所以,即,所以,在中,,所以【小问2详解】由(1)得当时,,所以17. 已知四棱台,下底面为正方形,,,侧棱平面,且为CD 中点.(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求到平面的距离.【答案】(1)证明见详解 (2)sincos sin 22C CB =sin 2sinC B =2c b =2222223347b a b c b b +=+===a 222cos 2a cb B ac +-===ABC sin B ==π11sin sin 322B B B ⎛⎫+=== ⎪⎝⎭1b =2a c ==122ABC S =´´=1111ABCD A B C D -ABCD 2AB =111A B =1AA ⊥ABCD 12,AA E =1//A E 11BCC B 11ABC D 11BCC B E 11ABC D 15(3【解析】【分析】(1)直接使用线面平行的判定定理即可证明;(2)构造空间直角坐标系,然后分别求出两个平面的法向量,再计算两个法向量的夹角余弦值的绝对值即可;(3)使用等体积法,从两个不同的方面计算四面体的体积即可求出距离.【小问1详解】由于,,故,而,故四边形是平行四边形,所以,而在平面内,不在平面内,所以平面;【小问2详解】如上图所示,以为原点,为轴正方向,建立空间直角坐标系.则,,,,,,设平面与平面的法向量分别是和,则有和,1EAD B 11∥A B AB CE AB ∥11CEA B 1111122CE CD AB A B ====11CEA B 11A E B C ∥1B C 11BCC B 1A E 11BCC B 1//A E 11BCC B 1A 11111,,A A A D A B,,x y z ()2,0,0A ()10,1,0D ()2,0,2B ()10,0,1B ()10,1,1C ()()()()11110,0,2,2,1,0,2,0,1,0,1,0AB AD BB B C ==-=--=11ABC D 11BCC B ()1,,n p q r = ()2,,n u v w =11100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 212110n BB n B C ⎧⋅=⎪⎨⋅=⎪⎩即,,从而,,.故我们可取,,而,故平面与平面所成角的余弦值是.【小问3详解】设到平面的距离为,由于,而,所以.所以到平面18. 已知椭圆的左右顶点为A ,B ,上顶点与两焦点构成等边三角形,右焦点(1)求椭圆的标准方程;(2)过作斜率为的直线与椭圆交于点,过作l 的平行线与椭圆交于P ,Q 两点,与线段BM 交于点,若,求.【答案】(1)(2)【解析】【分析】(1)根据上顶点与两焦点构成等边三角形求出即可;(2)设出直线方程,利用弦长公式求出求出,,利用点到直线的距离求出点到直线的距离和点到直线的距离,再根据列式计算即可.【小问1详解】2020r p q =⎧⎨-+=⎩200u w v --=⎧⎨=⎩0r v ==2p q =20u w +=()11,2,0n = ()21,0,2n =-11cos ,5n 11ABC D 11BCC B 15E 11ABC D L 111111332E AD B AD B V LS L AD AB L -==⋅⋅⋅= 111142333E AD B B AD E AEB ABCD V V S S --==⋅⋅=⋅= 43=L =E 11ABC D 22221(0)x y a b a b +=>>(1,0)F A (0)k k >l M F N 2AMN BPQ S S =△△k 22143x y +=k =,a b AM PQ N AM B PQ 2AMN BPQ S S =△△由已知在等边三角形中可得,则椭圆的标准方程为为;【小问2详解】设直线的方程为:,联立消去得,则,得,,设直线的方程为:,设,联立,消去得,易知,则,所以,由得,所以直线的方程为,即,联立得,所以点到直线的22,a c b ====22143x y +=l ()2y k x =+()222143y k x x y ⎧=+⎪⎨+=⎪⎩y ()2222341616120k x k x k +++-=221612234M k x k --=+226834M k x k-=+226834Mk AM x k -=-=-=+PQ ()1y k x =-()()1122,,,P x y Q x y ()221143y k x x y ⎧=-⎪⎨+=⎪⎩y ()22223484120k x k x k +-+-=0∆>221212228412,3434k k x x x x k k-+==++PQ ==()2212134k k +=+226834M k x k -=+222681223434M k k y k k k ⎛⎫-=⋅+= ⎪++⎝⎭BM ()2221234268234kk y x k k +=---+()324y x k=--()()3241y x k y k x ⎧=--⎪⎨⎪=-⎩222463,4343k k N k k ⎛⎫+ ⎪++⎝⎭N AM点到直线,因为,所以,解得.【点睛】方法点睛:直线与椭圆联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与椭圆方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根的判别式.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.19. 已知数列满足对任意的,均有,且,,数列为等差数列,且满足,.(1)求,的通项公式;(2)设集合,记为集合中的元素个数.①设,求的前项和;②求证:,.【答案】(1),B PQ 2AMN BPQ S S =△△()221211122234k k +=⨯+k =∆0∆>{}n a *N n ∈212n n n a a a ++=12a =24a ={}n b 11b =2105b b a +={}n a {}n b {}*1N n n k n A k a b a +=∈<≤n c n A ()2n n n p b c =+{}n p 2n 2n P *N n ∀∈122121111176n n c c c c -++++< 2n n a =32n b n =-(2)①;②证明过程见解析【解析】【分析】(1)根据等比中项的性质,结合等差数列的通项公式、等比数列的通项公式进行求解即可;(2)①根据不等式的解集特征,结合累和法、等比数列的前项和公式分类讨论求出的表达式,最后根据错位相减法进行求解即可;②运用放缩法,结合等比数列前项和公式进行运算证明即可.【小问1详解】因为数列满足对任意的,均有,所以数列是等比数列,又因为,,所以等比数列的公比为,因此;设等差数列的公差为,由;【小问2详解】因为,,所以由,因此有,即有,,当时,有于是有当为大于2的奇数时,()2122122n n P n n +=-⋅+-12322,n n k k +*<-≤∈N n n c n {}n a *N n ∈212n n n a a a ++={}n a 12a =24a ={}n a 212a a =1222n n n a -=⨯={}n b d ()210511932313132n b d d d b b n n a ⇒+++=⇒=⇒=+-=+-=2n n a =32n b n =-11,2322,nn n k n a b a k k k *+*+<≤∈⇒<-≤∈N N {}{}{}{}{}123452,3,4,5,6,7,8,9,10,11,12,13,,22A A A A A ===== {}623,24,,43,A =1234561,1,3,5,11,21,c c c c c c ======234512233445562,42,82,162,322,c c c c c c c c c c +=+==+==+==+== 12,n n n c c ++= 2,N n n *≥∈112,n n n c c --+=1112,n n n c c -+--=n ()()()243122431122221n n n n n n n c c c c c c c c -----=-+-+-+=+++++,显然也适合,当为大于2的偶数时,,显然也适合.①,,,设,则有,两式相减,得,,;②设,显然,,当时,有,因此,12214211143n n -⎛⎫- ⎪+⎝⎭=+=-11c =n ()()()244222442222221n n n n n n n c c c c c c c c -----=-+-++-+=+++++ 122214211143nn ⎛⎫- ⎪-⎝⎭=+=-21c =()()()21,21,N 221,2,Nn n n n n n n k k p b c n n k k **⎧+=-∈⎪=+=⎨-=∈⎪⎩()()212342121321242n n n n n P P P P P P P P P P P P P --=++++++=+++++++ ()()132124212132321221222424222n nn n n n -⎡⎤⎡⎤=⨯++⨯+++-⋅+-+⨯-+⨯-++⋅-⎣⎦⎣⎦()()()123212122232212221234212n n n n n n -⎡⎤=⨯+⨯+⨯++-⋅+⋅+-+-+--⎣⎦ ()()12321212223221222n n S n n -=⨯+⨯+⨯++-⋅+⋅ ()()234221212223221222nn S n n +=⨯+⨯+⨯++-⋅+⋅ 123212212222222n n n S n -+-=+++++-⋅ ()()2212121222212212n n n S n S n ++-⇒-=-⋅⇒=-⋅+-()2122122n n P n n +=-⋅+-()()11321k k k k c *+=∈+-N ()11332121k k k k c +=≤-+-()4213224k k k --⨯=-4,N k k *≥∈()()344213224042132212kk kkkk k--⨯=->⇒->⨯⇒<-()1133421221k k k k k c +=≤<-+-所以当时,,即,显然当时,有成立.【点睛】关键点点睛:本题的关键由可以确定从第几项开始放缩,根据数列的通项公式的形式,得到,这样可以进行放缩证明.20. 已知函数.(1)讨论的单调区间;(2)已知,设的两个极值点为,且存在,使得的图象与有三个公共点;①求证:;②求证:.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)首先求函数的导数,再讨论,结合函数的定义域,即可求函数的单调区间;(2)①要证,即证,只需证,构造函数,,借助导数即可得证;②同①中证法,先证,则可得,利用、是方程的两根所得韦达定理,结合即可得证.【小问1详解】,,N k *∈4512321111111111143222k k k c c c c c -⎛⎫+++++<++++++ ⎪⎝⎭ 43123211111111122114312k k k c c c c c --⎛⎫- ⎪⎝⎭⇒+++++<+++⨯- 312321111171171171322326k k k c c c c c --⎛⎫+++++<+-<+= ⎪⎝⎭ 2k n =122121111176n n c c c c -++++< 171111632=+++()1133421221k k k k k c +=≤<-+-2()24ln f x x ax x =-+()f x [4,6]a ∈()f x ()1212,λλλλ<b ∈R ()y f x =y b =()123123,,x x x x x x <<1212x x λ+>31x x -<∆1212x x λ+>2112x x λ>-()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈2232x x λ+<()()2312123122x x x x x x λλ=++<---1λ2λ220x ax -+=[4,6]a ∈()()222422x ax f x x a x x-+'=-+=0x >其中,,当时,即,此时恒成立,函数在区间单调递增,当时,即或当时,在区间上恒成立,即函数在区间上单调递增,当,得或当时,,时,,所以函数的单调递增区间是和,单调递减区间是,综上可知,当的单调递增区间是;当的单调递增区间是和,单调递减区间是;【小问2详解】①由(1)知,当时,函数的单调递增区间是和,单调递减区间是,、是方程的两根,有,,又的图象与有三个公共点,故,则,()22tx x ax =-+28a ∆=-0∆≤a -≤≤()0f x '≥()f x ()0,∞+0∆>a <-a >a <-()0f x ¢>()0,∞+()f x ()0,∞+a >()0t x =1x =1x =0x <<x >()0f x ¢>x <<()0f x '<()f x ⎛ ⎝⎫+∞⎪⎪⎭a ≤()f x ()0,∞+a >()f x ⎛ ⎝⎫+∞⎪⎪⎭[4,6]a ∈()f x ()10,λ()2,λ+∞()12,λλ1λ2λ220x ax -+=122λλ=12a λλ+=()y f x =y b =()123123,,x x x x x x <<112230x x x λλ<<<<<1112x λλ->要证,即证,又,且函数在上单调递减,即可证,又,即可证,令,,由,则恒成立,故在上单调递增,即,即恒成立,即得证;②由,则,令,,则,故在上单调递增,即,1212x x λ+>2112x x λ>-1112x λλ->()f x ()12,λλ()()1122f x f x λ<-()()12f x f x b ==()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈()()()()212222422x ax x x f x x a x x xλλ-+--'=-+==()()()()()112211122222x x xx x g x x λλλλλλλ------'=+-()()()()()1221112222x x x x x x x λλλλλλ+--+-=-⋅-()()222211*********x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()12221111222420x x x x x x x λλλλλλλ--=-⋅=>--()g x '()10,λ()()()()111102g x g f f λλλλ<=--=()()1112f x f x λ<-112230x x x λλ<<<<<2322x λλ-<()()()22x h x f x f λ=--()2,x λ∈+∞()()()()()122221222222x x xx x h x x λλλλλλλ------'=+-()()()()()2112222222x x x x x x x λλλλλλ+--+-=-⋅-()()221122212222222x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()22112222222420x x x x x x x λλλλλλλ--=-⋅=>--()h x '()2,λ+∞()()()()222202h x h ff λλλλ>=--=即当时,,由,故,又,故,由,,函数在上单调递减,故,即,又由①知,故,又,故.【点睛】关键点点睛:最后一问关键点在于先证,从而借助①中所得,得到.()2,x λ∈+∞()()22x f x f λ>-32x λ>()()3232f x f x λ>-()()32f x f x =()()3222f x f x λ>-2322x λλ-<122x λλ<<()f x ()12,λλ2322x x λ<-2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---2122λλ-==≤=31x x -<2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---。
20.三角函数的化简求值
1.广东省2012年高考数学考前十五天每天一练(4) 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(D ) A . 43-B .54C .34-D .452.陕西省西工大附中2011届高三第八次适应性训练数学(文) 观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++= ; ②tan13tan35tan35tan 42tan 42tan131++= ; ③tan 5tan100tan100tan(15)+-tan(15)tan 51+-=;一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 .【答案】90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时3.陕西省咸阳市2012届高三上学期高考模拟考试(文科数学) sin 330 的值是( )A .12 B. 12- C. D. 【答案】B4.2012北京宏志中学高考模拟训练-数学理cos300= ( )(A)-12 (C)12【答案】C5.2012北京宏志中学高考模拟训练-数学理 已知2sin 3α=,则cos(2)πα-= ( )(A ) (B )19-6..山东省烟台市2012届高三五月份适应性练习 数学文(二)(2012烟台二模)22sin(250)cos 70cos 155sin 25-︒︒︒-︒的值为A .B .一12C .12D 【答案】C7.山东省烟台市2012届高三五月份适应性练习 数学文(三)已知倾斜角为α的直线的值为则平行与直线α2tan 022,y x l =+- A.54 B.34 C.43 D.32 【答案】A4.(福建省厦门市2012年高中毕业班适应性考试)已知a ∈(3,2ππ),且cos 5α=-,则tan α DA .43B .一43C .-2D .22.(2011年江苏海安高级中学高考数学热身试卷)已知tan 2α=,则s i n ()c o s ()s i n ()c o s ()παπααα++--+-= . 【答案】1贵州省五校联盟2012届高三年级第三次联考试题)10.如果33sin cos cos sin θθθθ->-,且()0,2θπ∈,那么角θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .3,24ππ⎛⎫ ⎪⎝⎭ C .5,44ππ⎛⎫ ⎪⎝⎭ D . 5,24ππ⎛⎫⎪⎝⎭C(贵州省五校联盟2012届高三第四次联考试卷) 5.已知πα<<0,21cos sin =+αα ,则α2cos 的值为 ( ) A.4- B.47 C.47± D.43- A(贵州省2012届高三年级五校第四次联考理) 13.函数sin y x x =-的最大值是 . 2(贵州省2012届高三年级五校第四次联考文) 4. 若4cos ,,0,52παα⎛⎫=∈- ⎪⎝⎭则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7 C .177或D .177-或-A洋浦中学2012届高三第一次月考数学理科试题13.已知函数22()1xf x x =+,则11(1)(2)(3)()()23f f f f f ++++= .25冀州市中学2012年高三密卷(一)6. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈ 则 =αtan ( )A. 3-B. 3C. 33D. 33±B冀州中学高三文科数学联排试题 10.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值为 A . 43- B .34- C .43或43- D .43-或34-A河北省南宫中学2012届高三8月月考数学(文) 6.已知2tan =α,则ααcos sian 的值为( )A.21B.32C.52D.1C冀州中学第三次模拟考试文科数学试题13. 已知2()4f x x x =-,则(sin )f x 的最小值为 -32012年普通高考理科数学仿真试题(三) 12.定义一种运算:⎩⎨⎧≤=⊗a b b a a b a ,,,令()()45sin cos 2⊗+=x x x f ,且⎥⎦⎤⎢⎣⎡∈2,0πx ,则函数⎪⎭⎫⎝⎛-2πx f 的最大值是 A.45B.1C.—1D.45-【答案】A2012年普通高考理科数学仿真试题(四) 17.(本小题满分12分)已知函数()().1cos 2267sin 2R x x x x f ∈-+⎪⎭⎫⎝⎛-=π (I )求函数()x f 的周期及单调递增区间;>b.(II )在△ABC 中,三内角A ,B ,C 的对边分别为a,b,c,已知点⎪⎭⎫ ⎝⎛21,A 经过函数()x f 的图象,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值. 【答案】9(广东省韶关市2012届第二次调研考试).已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=35_____________; tan(2)πα-=___247____________. 5(广东省深圳市2012高三二模文). tan 2012︒∈A. (0,3B. (3C. (1,3--D. (3- 【答案】B16(上海市财大附中2012届第二学期高三数学测验卷理)对任意的实数α、β,下列等式恒成立的是( ) AA ()()2sin cos sin sin αβαβαβ⋅=++-B .()()2cos sin sin cos αβαβαβ⋅=++-C .cos cos 2sinsin22αβαβαβ+-+=⋅ D .cos cos 2coscos22αβαβαβ+--=⋅17.(上海市财大附中2012届第二学期高三数学测验卷文)已知πα<<0,21cos sin =+αα ,则α2cos 的值为( ) A A .47- B .47 C .47± D .43-3.广东省中山市2012届高三期末试题数学文 已知233sin 2sin ,(,),52cos πθθθπθ=-∈且则的值等于 A .23 B .43 C .—23 D .—43AB7. 广东实验中学2011届高三考前 已知24sin 225α=-, (,0)4πα∈-,则s i n c o s αα+=A .15-B .51 C .75- D .5716. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题 已知函数R x x x x f ∈-=,cos sin 3)(,若1)(≥x f ,则x 的取值范围是 ⎭⎬⎫⎩⎨⎧∈+≤≤+z k k x k x ,232ππππ 15. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题若⎪⎩⎪⎨⎧>-≤=)0(21)0(6sin )(x x x x x f π,则=)]1([f f 21- 。
专题3 三角函数的图象与性质【高考文科数学】含答案
第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。
天津一中2013-2014学年高三年级四月考数学(文科)试卷
天津一中2013-2014学年高三年级四月考数学(文科)试卷一、选择题(每小题5分,共40分)1.设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则A B 等于( )A . {1,2,5}B .{l, 2,4, 5}C .{1,4, 5}D .{1,2,4}2.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 1003. 某程序框图如图所示,该程序运行后输出的值是( ) A .3 B .4 C .5 D .64. 下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥” B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件 C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D6. 某几何体的三视图如下图所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π7. 已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(lg g x g >,则x 的取值范围 是( ) A .),10(+∞ B .)10,101(C .)10,0(D .),10()101,0(+∞8. 已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a 的取值范围是( )A .[)8,-+∞B .[)4,-+∞C .[-4,0]D .(0,)+∞二、填空题(每小题5分,共30分)9.是虚数单位,复数ii 43)21(2-+的值是_______________________10. 在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2b =,3B π=且sin cos c A C =,则△ABC 的面积为 ________________11. 直线过抛物线)0(22>=p px y 的焦点,且交抛物线于B A ,两点,交其准线于C 点,已知AF 3,4||==,则=p ____________________12. 如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅=,则AE BF ⋅的值是 ____________13. 如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长是_________________14. 若实数,,222,2222,aba ba b c a b c a b c c ++++=++=满足则的最大值是 _____三、解答题:(15,16,17,18每题13分,19,20每题14分)15. 某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.16.已知函数())22sin cos 0f x x x x ωωωω=-+>,直线12,x x x x ==是函数()y f x =的图像的任意两条对称轴,且12x x -的最小值为2π. (I )求ω的值; (II )求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值.17. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F(1)证明PA//平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小AC18.已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .19.已知椭圆:C 22221(0)x y a b a b +=>>. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值; ②若点7(,0)3M -,求证:MA MB ⋅ 为定值.20.设函数()ln af x x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()()f x h x x=的单调性(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.四月考答案1.设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则A B 等于( ) A . {1,2,5} B .{l, 2,4, 5} C .{1,4, 5}D .{1,2,4}【答案】B【解析】当k =0时,x =1;当k =1时,x =2;当k =5时,x =4;当k =8时,x =5,故选B.2.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 100 【答案】D3. 某程序框图如图所示,该程序运行后输出的值是( ) A .3 B .4 C .5 D .6 【答案】B4.下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥” B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件 C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 【答案】C5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D 【答案】A【解析】圆的标准方程为22(3)4x y -+=,所以圆心坐标为(3,0)C ,半径2r =,双曲线的渐近线为b y x a=±,不妨取by x a =,即0bx ay -=,因为渐近线与圆相切,所以圆心到直线的距离2d ==,即22294()b a b =+,所以2254b a =,222245b a c a ==-,即2295a c =,所以29,5e e ==A.6.某几何体的三视图如下图所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π 【答案】C7.已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(lg g x g >,则x 的取值范围是 A .),10(+∞ B .)10,101(C .)10,0(D .),10()101,0(+∞ 【答案】B8.已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a 的取值范围是( )A .[)8,-+∞B .[)4,-+∞C .[-4,0]D .(0,)+∞【答案】B9.是虚数单位,复数ii 43)21(2-+的值是_________________【答案】 1-10.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2b =,3B π=且sin cos c A C =,则△ABC 的面积为 .11. 直线过抛物线)0(22>=p px y 的焦点,且交抛物线于B A ,两点,交其准线于C 点,已知BF CB AF 3,4||==,则=p __________【答案】 3812.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅=,则AE BF ⋅的值是 .13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长是_________.【解析】由图知DE ·DF=BD ·CD=1,同理EG ·FG=1.又DG=12AB=1,∴DE(1+FG)=1,FG(1+DE)=1,∴DE FG ==答案14.若实数,,222,2222,aba ba b c a b c a b c c ++++=++=满足则的最大值是【命题意图】本题考查基本不等式的应用,指数、对数等相关知识,考查了转化与化归思想,是难题.【解析】∵2a b+=22a b +≥2a b+≥4,又∵222ab c++=2a b c++,∴22a bc ++=22a bc+∙,∴221c c-=2a b +≥4,即221c c -≥4,即43221c c-⨯-≥0,∴2c≤43,∴c ≤24log 3=22log 3-,∴c 的最大值为22log 3-. 【答案】22log 3-15.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.【答案】解:(1) 第3组的人数为0.3×100=30,第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10. …………3分因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1. 所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(2)记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者为B 1,B 2,第5组的1名志愿者为C 1. 则从6名志愿者中抽取2名志愿者有:(A 1,A 2), (A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2), (A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有15种. …………8分 其中第4组的2名志愿者B 1,B 2至少有一名志愿者被抽中的有:(A 1,B 1), (A 1,B 2), (A 2,B 1), (A 2,B 2), (A 3,B 1), (A 3,B 2), (B 1,B 2), (B 1,C 1), (B 2,C 1),共有9种, …………10分 所以第4组至少有一名志愿者被抽中的概率为93.155=…………13分16.已知函数())22sin cos 0f x x x x ωωωω=-+>,直线12,x x x x ==是函数()y f x =的图像的任意两条对称轴,且12x x -的最小值为2π. (I )求ω的值; (II )求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值. 【答案】17. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F(1)证明PA//平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小(1)证明:连结AC ,AC 交BD 于O ,连结EO ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDBACAC(2)证明:∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD=DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线, ∴PC DE ⊥ ①同样由PD ⊥底面ABCD ,得PD ⊥BC∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC 而⊂DE 平面PDC ,∴DE BC ⊥ ② 由①和②推得⊥DE 平面PBC 而⊂PB 平面PBC ,∴PB DE ⊥又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD(3)解:由(2)知,DF PB ⊥,故EFD ∠是二面角C —PB —D 的平面角 由(2)知,DB PD EF DE ⊥⊥,设正方形ABCD 的边长为a ,则a BD a DC PD 2,===a BD PD PB 322=+=, a DC PD PC 222=+=a PC DE 2221==在PDB Rt ∆中,a aa a PB BD PD DF 3632=⋅=⋅=在EFD Rt ∆中,233622sin ===a aDF DE EFD ,∴3π=∠EFD 所以,二面角C —PB —D 的大小为3π18.已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T . 【答案】解(1)由题意知0,212>+=n n n a S a ………………1分 当1=n 时,21212111=∴+=a a a 当2≥n 时,212,21211-=-=--n n n n a S a S两式相减得1122---=-=n n n n n a a S S a ………………3分 整理得:21=-n na a ……………………4分 ∴数列{}n a 是以21为首项,2为公比的等比数列. 211122212---=⨯=⋅=n n n n a a ……………………5分(2)42222--==n b n na∴n b n 24-=,……………………6分nn n n n nn a b C 28162242-=-==- nn n nn T 28162824282028132-+-⋯+-++=- ① 13228162824202821+-+-+⋯++=n n n n n T ② ①-②得1322816)212121(8421+--+⋯++-=n n n nT ………………9分111122816)211442816211)2112184+-+-----=----⋅-=n n n n nn (( n n24=.………………………………………………………11分.28nn nT =∴…………………………………………………………………13分19. 已知椭圆:C 22221(0)x y a b a b +=>>. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值;②若点7(,0)3M -,求证:MA MB ⋅ 为定值.【答案】解:(Ⅰ)因为22221(0)x y a b a b +=>>满足222a b c =+,c a =,…………2分122b c ⨯⨯=2255,3a b ==,则椭圆方程为221553x y += ……………4分 (Ⅱ)(1)将(1)y k x =+代入221553x y +=中得 2222(13)6350k x k x k +++-=……………………………………………………6分 4222364(31)(35)48200k k k k ∆=-+-=+>2122631k x x k +=-+………………………………………… …………………7分因为AB 中点的横坐标为12-,所以2261312k k -=-+,解得k =…………9分(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ ……………11分2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++………………………………………12分2222222357649(1)()()313319k k k k k k k -=+++-++++20.设函数()ln af x x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()()f x h x x=的单调性(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.1.【解】(Ⅰ)2()ln a h x x x =+,233212()a x a h x x x x -'=-+=, ①00,()a h x '≤≥,函数()h x 在0(,)+∞上单调递增 ②0a >,0(),h x x '≥≥,函数()h x的单调递增区间为)+∞00(),h x x '≤<≤,函数()h x的单调递减区间为0((Ⅱ)存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立 等价于:12max [()()]g x g x M -≥,考察32()3g x x x =--,22'()323()3g x x x x x =-=-,由上表可知:min max 285()(),()(2)1327g x g g x g ==-==,12max max min 112[()()]()()27g x g x g x g x -=-=, 所以满足条件的最大整数4M =;(Ⅲ)当1[,2]2x ∈时,()ln 1af x x x x=+≥恒成立 等价于2ln a x x x ≥-恒成立, 记2()ln h x x x x =-,所以max ()a h x ≥'()12ln h x x x x =--, '(1)0h =.记'()(1)2ln h x x x =--,1[,1)2x ∈,10,ln 0,'()0x x x h x -><> 即函数2()ln h x x x x =-在区间1[,1)2上递增,记'()(1)2ln h x x x =--,(1,2]x ∈,10,ln 0,'()0x x x h x -<>< 即函数2()ln h x x x x =-在区间(1,2]上递减,1,()x h x =取到极大值也是最大值(1)1h =所以1a ≥另解()12ln m x x x x =--,'()32ln m x x =--, 由于1[,2]2x ∈,'()32ln 0m x x =--<, 所以()'()12ln m x h x x x x ==--在1[,2]2上递减, 当1[,1)2x ∈时,'()0h x >,(1,2]x ∈时,'()0h x <, 即函数2()ln h x x x x =-在区间1[,1)2上递增, 在区间(1,2]上递减,所以max ()(1)1h x h ==,所以1a ≥。
天津市各地市2012年高考数学最新联考试题分类大汇编(10)圆锥曲线
天津市各地市2012年高考数学最新联考试题分类大汇编(10)圆锥曲线一、选择题:7、(天津市六校2012届高三第三次联考文科)过双曲线22221(0,0)x y a b a b -=>>的右焦点F 作圆222a y x =+的切线FM (切点为M ), 交y 轴于点P ,若M 为线段FP 的中点,则双曲线的离心率是 A. 5 B. 2C. 3D. 2【答案】D6.(天津市六校2012届高三第三次联考理科)设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y a b-= (a >0,b >0)的一条渐近线的一个公共点,且AF ⊥x轴,则双曲线的离心率为( A ).2221,(0)x y a a-=>交于,A B 两点,点F 为抛物线的焦点,若△FAB 为直角三角形,则双曲线的离心率是( B )A C .2 D .37.(天津市天津一中2012届高三第三次月考文科)已知抛物线x y 42=的准线与双曲线1222=-y ax )0(>a 相交于B A ,两点,且F 是抛物线的焦点,若FAB ∆是直角三角形,则双曲线的离心率为( B ) A .3B .6C .2D .36.(天津市五区县2012届高三上学期期末考试文科)抛物线28y x =的焦点到双曲线221124x y -=的渐近线的距离为 ( A )A .1B C D 8.(天津市五区县2012届高三上学期期末考试理科)已知O 为坐标原点,双曲线22221(0,0)x y a b a b -=>>的右焦点F ,以OF 为直径作圆交双曲线的渐近线于异于原点O 的两点A 、B ,若()0AO AF OF +⋅=,则双曲线的离心率e 为( C )恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点. (Ⅰ)求椭圆的方程;(Ⅱ)在线段OF 上是否存在点(,0)M m ,使得||||MP MQ =?若存在,求出m 的取值范围;若不存在,请说明理由.19、解:(Ⅰ)因为椭圆的短轴长:221b b =⇒=,又因为两个焦点和短轴的两个端点恰为一个正方形的顶点,所以:2222b c a b c =⇒=+=;故椭圆的方程为:2212x y +=……………4分(Ⅱ)(1)若l 与x 轴重合时,显然M 与原点重合,0m =;(2)若直线l 的斜率0k ≠,则可设:(1)l y k x =-,设1122(,),(,)P x y Q x y 则: 22222(1)2(21)20220y k x x k x x x y =-⎧⇒+-+-=⎨+-=⎩所以化简得:2222(12)4220k x k x k +-+-=;2122412k x x k +=⇒+PQ 的中点横坐标为:22212k k +,代入:(1)l y k x =-可得: PQ 的中点为N 2222(,)1212k kk k -++, 由于||||MP MQ =得到1222+=k k m 所以:22211(0,)11222k m k k==∈++ 综合(1)(2)得到:1[0,)2m ∈ ……14分18.(天津市六校2012届高三第三次联考理科)(本小题满分13分)已知曲线)0()0,0(1:222222221≥=+≥>>=+x r y x C x b a by a x C :和曲线都过点A (0,-1),且曲线1C 所在的圆锥曲线的离心率为23. (Ⅰ)求曲线1C 和曲线2C 的方程;(Ⅱ)设点B,C 分别在曲线1C ,2C 上,21,k k 分别为直线AB,AC 的斜率,当124k k =时,问直线BC 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.18. (本小题满分13分)解:(Ⅰ)由已知得21b =,24a =,21r =. ……2分所以曲线1C 的方程为2214x y +=(0x ≥). ……3分所以212222221,11k k C k k ⎛⎫- ⎪++⎝⎭. ……9分19.(天津市天津一中2012届高三第三次月考理科)如图,在直角坐标系xOy 中有一直角梯形ABCD ,AB 的中点为O ,AD AB ⊥,AD BC ∥,4AB =,3BC =,1AD =,以,A B 为焦点的椭圆经过点C . (1)求椭圆的标准方程;(2)若点()0,1E ,问是否存在直线l 与椭圆交于,M N 两点且ME NE =,若存在,求出直线l 的斜率的取值范围;若不存在,请说明理由.19.解:∵AB=4, BC=3, ∴AC=5 ∴CA+CB=8∴a=4 ∵c=2 ∴b 2=121121622=+∴y x :椭圆∵|ME|=|NE| ∴EF ⊥MN ∴k EF ·k=-11434143322-=⋅+--+k k km k m∴m=-(4k 2+3)代入①∴16k 2+12>(4k 2+3)2∴16k 4+8k 2-3<02121<<-k 当k=0时符合条件,k 不存在(舍))21,21(-∈∴k17.(天津市天津一中2012届高三第三次月考理科)双曲线22221,(0,0)x y a b a b-=>>的一条渐近线方程是y ,坐标原点到直线AB 的距离为23,其中).,0(),0,(b B a A - (1)求双曲线的方程;(2)若1B 是双曲线虚轴在y 轴正半轴上的端点,过点B 作直线交双曲线于点,M N,(3)B (0,-3) B 1(0,3) M (x 1 , y 1) N(x 2 , y 2) ∴设直线l :y=kx-3⎩⎨⎧=--=∴93322y x kx y20.(天津市天津一中2012届高三第三次月考文科)(本小题满分14分)已知F 是椭圆)0(12222>>=+b a by a x 的左焦点,A 是椭圆短轴上的一个顶点,椭圆的离心率为21,点B 在x 轴上,AF AB ⊥,F B A ,,三点确定的圆C 恰好与直线033=++y x 相切.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过F 作斜率为k )0(≠k 的直线l 交椭圆于N M ,两点,P 为线段MN 的中点,设O 为椭圆中心,射线OP 交椭圆于点Q ,若OM ON OQ +=,若存在求k 的值,若不存在则说明理由.将(1)代入(2)可得:(3+4k 2)x 2+8k 2x+(4k 2-12)=0 2’'24362438222433)1('2434243820220222212221⎪⎪⎩⎪⎪⎨⎧+==+-==∴=∴=+=++=+=+-=+=∴+-=+k k y y k k x x O O O k kx k y k k x x x k k x x p p p p p 且又19、(天津市耀华中学2012届高三第二次月考文科) (本小题满分14分)设21F F 、分别是椭圆)0(12222>>=+b a by a x 的左、右焦点,P 为椭圆上的任意一点,满足|PF l |+|PF 2|=8,△PF 1F 2的周长为l2,(!)求椭圆的方程;(II)求21PF ∙的最大值和最小值;(III)已知点A(8,0),B(2,0),是否存在过点A 的直线l 与椭圆交于不同的两点C,D ,使得|BC |=|BD |?若存在,求直线的方程;若不存在,请说明理由. 19、(本小题满分14分)(Ⅲ)当直线l 的斜率不存在时,直线l 与椭圆无交点,所以若直线l 存在,则直线l 的斜率也存在,设直线l 的斜率为k .则直线l 的方程为y=k(x-8).20.(天津市五区县2012届高三上学期期末考试文科)(本小题满分14分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若右焦点到直线0x y -+=的距离为3。
天津市第一中学2022届高三上学期第三次月考语文试题 Word版含答案
Evaluation Only. Created with Aspose.Words. Copyright 2003-2016 Aspose Pty Ltd.天津一中、益中学校2020-2021-1高三班级语文学科三月考质量调查试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间150分钟。
考生务必将答案涂写答题纸或答题卡的规定位置上,答在试卷上的无效。
祝各位考生考试顺当!第Ⅰ卷(36分)一、(12分,每小题3分)1.下列各句中,没有错别字且加点字的注音全都正确的一项是A.吐.(tǔ)槽社会不公,埋怨怀才不遇,因而踟.(c hí)蹰不前,这不过是找一个堂皇的借口而已。
当你拂去往日心灵的积弊与尘垢,用婴儿水晶般的瞳孔端详世界的时候,你会发觉即使是在严冬季节,周遭仍旧暗涌着奇迹抽芽带来的层层新绿。
B.中华文明硕果累累(lěi),仰韶的彩陶、良渚(z hǔ)的玉器、唐之金银、宋之陶瓷,元明清不胜枚举,这些手艺不经意间将生活艺术化,让后人仰而视之,诚惶诚恐。
C.雄心期决胜,壮志在必克。
我们要多些一往无前的进取意识、乘.(chénɡ)势而上的机遇意识、敢于担当的责任意识,汇聚全体国民的磅礴力气,再接再厉,砥砺攻艰,铿(kēng)锵前行,争取更大的成功。
D.站在兵马俑(yǒng)坑前,我们观察的秦朝文物几近全部。
细心倾听,甚至可以听见金戈铁马的嘶杀声。
这令人震惊的兵马俑,不过是秦文明中的沧海一粟(sù)。
2.依次填入下面横线上的词语最恰当的一项是(1)为了搞清事故的缘由,公安部门打算立案。
(2)我们必需学会如何在纷繁简单的干扰中剥离出“演绎”的成分,去伪存真,真相,呈现出万事万物的真实状态。
(3)为了弄清这句话的出处,推断对方说法的真伪,老先生跑了很多图书馆,了大量的文献资料。
A.侦查厘清披阅B.侦查理清批阅C.侦察理清披阅D.侦察厘清批阅3.下列各句中,没有语病的一句是A.蓟县滑雪场九成以上受伤者为初学滑雪者,大部分在未接受专业指导或训练的情况下直接进入中高级滑道,从而导致自己受伤或撞伤他人概率更大。
【解析】天津市天津一中2013届高三上学期第二次月考数学文试题
天津一中2012-2013学年高三年级第二月考数学试卷(文)一、选择题(每小题5分,共40分) 1.如果复数212aii++的实部和虚部互为相反数,那么实数a 等于A B .2 C .-23 D .23【答案】D 【解析】2(2)(12)22(4)22412(12)(12)555ai ai i a a i a a i i i i ++-++-+-===+++-,因为实部和虚部为相反数,则有224=055a a +-+,解得23a =,选D. 2. 设,m n 是两条不同的直线,γβα、、是三个不同的平面.给出下列四个命题:①若m ⊥α,//n α,则m n ⊥;②若γβγα⊥⊥,,则βα//;③若//,//m n αα,则//m n ;④若//,//,m αββγα⊥,则m γ⊥.其中正确命题的序号是 A . ①和② B . ②和③ C .③和④ D .①和④ 【答案】D【解析】根据线面垂直的性质可知①正确。
②中两个平面αβ,不一定平行,所以错误。
③平行于同一个平面的直线可能会相交或异面,所以错误。
④正确。
3. 在正三棱锥P ABC -中,,D E 分别是,AB AC 的中点,有下列三个论断:①PB AC ⊥;②AC //平面PDE ;③AB ⊥平面PDE ,其中正确论断的个数为 ( ) A .3个 B .2个 C .1个 D .0个【答案】C【解析】过P 做PO ABC ⊥于O ,则PO AC ⊥,又正三角形中BE AC ⊥,所以AC PBE ⊥,AC PB ⊥所以①正确,②错误。
因为AB 与AC 相交,所以③不正确,所以正确的论断有1个,选C. 4. 数列{n a }中,12,111+==+n n a a a 且,则{n a }的通项为 ( )【答案】A【解析】由121n n a a +=+得11222(1)n n n a a a ++=+=+,所以数列{1}n a +是以2q =为公比,首项为112a +=的等比数列,所以11222n n n a -+=⨯=,所以21n n a =-,选A.5.在ABC ∆中,若cos 4cos 3A bB a ==,则ABC ∆是 A .等腰或直角三角形 B .等腰三角形 C .直角三角形D .钝角三角【答案】C 【解析】由cos 4cos 3A b B a ==和正弦定理可得cos sin cos sin A BB A=,即sin cos sin cos A A B B =,所以sin 2sin 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,即2C π=。
天津市天津一中2014-2015学年高三零月考考试数学(文)试题
天津市天津一中2014-2015学年高三零月考考试数学(文)试题一、 选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设i 为虚数单位,则51ii-+等于( ) A.-2-3i B.-2+3i C.2-3i D2+3i2.设变量x,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为( )A.6B.7C.8D.23 3.函数sin 22y x π⎛⎫=-⎪⎝⎭,x R ∈是( ) A.最小正周期为π的奇函数 B. 最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D. 最小正周期为2π的偶函数4.阅读右面的程序框图,则输出的S=( ) A.14 B.30 C.20 D.555.已知()f x 是定义在(),-∞+∞上的偶函数,且在(],0-∞上是增函数,设()()0.6412log 7,log 3,0.2a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是( )A.c<b<aB.b<c<aC.b<a<cD.a<b<c 6.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( ) A.5B.C.D. 547.函数()244,143,1x x f x x x x -≤⎧=⎨-+>⎩的图像和函数()2log g x x =的图像的交点个数是( )A.1B.2C.3D.48.定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)()[)21.5,0,10.5,x 1,2x x x x f x -⎧-∈⎪=⎨-∈⎪⎩,若[)4,2x ∈--时,()142t f x t ≥-恒成立,则实数t 的取值范围是( )A. [)()2,00,1-B. [)[)2,01,-+∞C. []2,1-D. (](],20,1-∞-二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.如左下图所示,是某校高三年级文科60名同学参加谋科考试所得成绩(分数均为整数)整理后得出的频率分布直方图,根据该图这次考试文科60分以上的同学的人数为 .10.某几何体的三视图如图所示,则该几何体的体积为 .11.在ABC ∆中,AB=2,AC=3,D 是边BC 的中点,则AD BC ⋅= .12.已知圆C 的圆心与抛物线24y x =的焦点关于直线y=x 对称,直线4x-3y-2=0与圆C 相交于A,B 两点,且6AB =,则圆C 的标准方程为: .13.如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E. 已知恒谦圆O 的半径为3,PA=2,则CD= .14.函数()10,1xy aa a -=>≠的图像恒过定点A ,若点A 在直线mx+ny-1=0(mn>0)上,则11m n+的最小值为 .二、解答题:(本大题共6小题,共80分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012-1天津一中高三年级第三次月考考试数学试卷(文)一、选择题(每小题5分,共40分) 1. i 是虚数单位,复数ii215-的虚部为( ) A .i B .i -C .1D .1-2.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≥,,032,1x y y x x 则目标函数y x z 2+=的最小值为( )A .2B .3C .5D .93.下列命题中,假命题是( ) A .0,>∈∀x e R xB .1sin ,≤∈∀x R xC .0lg ,=∈∃x R xD . 11,=+∈∃xx R x4.如图所示,运行相应的程序框图,则输出k 的值为( ) A .14 B .15 C .16 D .175.已知ααcos 21sin +=,且)2,0(πα∈,则)4sin(2cos παα-的值为 ( )A .214 B .214- C . 414 D .414- 6.已知函数,log )31()(2x x f x-=实数c b a ,,成公差为正数的等差数列,且满足:0)()()(<c f b f a f ;实数d 是方程0)(=x f 的一个解,那么下列四个判断:①;a d <②;b d >③;cd <④c d >中有可能成立的有( ) A .1个B .2个C .3个D .4个7.已知抛物线x y 42=的准线与双曲线1222=-y ax )0(>a 相交于B A ,两点,且F 是抛物线的焦点,若FAB ∆是直角三角形,则双曲线的离心率为( )A .3B .6C .2D .38. 已知二次函数x ax x f +=2)(,对任意R x ∈,总有1|)1(|2≤+x xf ,则实数a 的最大整数值为( ) A .2-B .0C .2D .4二、填空题(每小题5分,共30分)9.设集合},2|2||{R x x x A ∈≤-=, }21,|{2≤≤--==x x y y B则=)(B A C R .10.一个几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .11.如图,在ABC ∆中,D 为AC 边上的中点,BC AE //,ED 交AB 于点G ,交BC 延长线于点F ,若1:3:=GA BG ,10=BC ,则AE 的长为 .12.在ABC ∆中,角C B A ,,为所对的边分别是c b a ,,,若ABC ∆的面积)(41222c b a S -+=,则C ∠的度数为 .13.若正实数y x ,满足xy y x =++62,则xy 的最小值是 .14.已知ABC ∆内接于以O 为圆心,1为半径的圆,且0543=++OC OB OA ,则AB OC ⋅的值为 .三、解答题:15.(本小题满分13分)已知函数),,0(cos 2)2sin(sin 3sin )(22R x x x x x x f ∈>+++=ωωπωωω在y 轴右侧的第一个最高点的横坐标为6π. (Ⅰ)求ω的值;(Ⅱ)若将函数)(x f 的图象向右平移6π个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 的最大值及单调递减区间.16.(本小题满分13分)在两个袋内,分别装有编号为4,3,2,1四个数字的4张卡片,现从每个袋内任取一张卡片. (Ⅰ)利用卡片上的编号写出所有可能抽取的结果; (Ⅱ)求取出的卡片上的编号之和不大于4的概率;(Ⅲ)若第一个袋内取出的卡片上的编号记为m ,第二个袋内取出的卡片上的编号记为n ,求2+<m n 的概率.17.(本小题满分13分)如图,PA 垂直于矩形ABCD 所在的平面,,2==PA AD ,22=CD F E ,分别是AB 、PD 的中点.(Ⅰ)求证://AF 平面PCE ; (Ⅱ)求证:平面⊥PCE 平面PCD ; (Ⅲ)求二面角D EC F --的大小. 18.(本小题满分13分)已知各项均为正数的数列}{n a 满足11=a ,且02212121=-+++++n n n n n n a a a a a a .(Ⅰ)求32,a a 的值; (Ⅱ)求证:}1{na 是等差数列; (Ⅲ)若12++=n n nnn a a a b ,求数列}{n b 的前n 项和.19.(本小题满分14分)设函数)0()(223>+-+=a m x a ax x x f .(Ⅰ)若1=a 时函数)(x f 有三个互不相同的零点,求m 的取值范围; (Ⅱ)若函数)(x f 在]1,1[-∈x 内没有极值点,求a 的取值范围;(Ⅲ)若对任意的]6,3[∈a ,不等式1)(≤x f 在]2,2[-∈x 上恒成立,求m 的取值范围.20.(本小题满分14分)已知F 是椭圆)0(12222>>=+b a b y a x 的左焦点,A 是椭圆短轴上的一个顶点,椭圆的离心率为21,点B 在x 轴上,AF AB ⊥,F B A ,,三点确定的圆C 恰好与直线033=++y x 相切. (Ⅰ)求椭圆的方程;(Ⅱ)是否存在过F 作斜率为k )0(≠k 的直线l 交椭圆于N M ,两点,P 为线段MN 的中点,设O 为椭圆中心,射线OP 交椭圆于点Q ,若OM ON OQ +=,若存在求k 的值,若不存在则说明理由.2011-2012-1天津一中高三年级第三次月考考试数学试卷(文)答案一.选择题 1.C 2.B 3.D 4.B 5.B6.C7.B8.C二.填空题 9.{x|x ≠0} 10.18+π29 11.512.450 13.1814.51-三.解答题2215.(1)()sin cos 2cos 1'1cos 2()1223()sin(2)4'623()162sin()13636212'f x x x x x x f x x f x x f ϖϖϖϖϖϖπϖπππϖπππϖϖ=⋅++=++=++∴=+∴+=∴+=∴='123)621sin()(23)621sin()('123)62sin()(23]6)6(2sin[)(23)62sin()()2(211+-=∴+-=→+-=++-=→++=ππππππx x g x x f x x f x x f x x f'2)(]3104,344[:'225231)(max Z k k k x g ∈++=+=ππππ 单减区间16.(1)第一个袋内卡片分别为A 1、A 2、A 3、A 4第二个袋内卡片分别为B 1、B 2、B 3、B 4 (A 1B 1) (A 1B 2) (A 1B 3) (A 1B 4) (A 2B 1) (A 2B 2) (A 2B 3) (A 2B 4) (A 3B 1) (A 3B 2) (A 3B 3) (A 3B 4) (A 4B 1) (A 4B 2) (A 4B 3) (A 4B 4) 共16种 4‘(2)卡片之和不大于4(小于或等于4)共6种634'168(3)213135'16P n m P ==<+=共种 17.(1)取PC 中点G ∴AFGE 是□ ∴AF ∥EG ∴AF ∥平面PCE 4‘ (2)AF ⊥平面PCD ∴EG ⊥平面PCD∴平面PCE ⊥平面PCD 4‘63331Q tan )3(πθθ=∴===H FH H AD 中点取 5‘11111111111223318.(2)()()()0()()0011101111{}11(1)22113'3111(3)22((1)n n n n n n n n n n n n n n n n n n n n n nn n n n n a a a a a a a a a a a a a a a a a a a a a a AP a a a a a a b n n nn n n +++++++++++⋅++-⋅+=∴+⋅⋅+-=∴-+⋅=∴-+=∴-=∴=∴==∴==∴=⋅+=⋅+-+ 是 5' 2111)12n (1)2211n 11{}n :Sn+Tn=(1)221n n n n n n n n S n nT n n n nb n n +++⋅=-⨯+-=++∴-⨯+++{}的前项和:{}的前项和:前项和 6'19.(1)当a=1时,f(x)=x 3+x 2-x+m f ’(x)=3x 2+2x-1 令f ’(x)=0 则x 1=-1或x 2=31 x (-∞, -1) -1 (-1,31) 31 (31, +∞) f ’(x) + 0 - 0 + f(x) ↑ 极大值 ↓ 极小值 ↑ ∴y 极大值=f(-1)=-1+1+1+m=m+1 y 极小值=f(312753191271)-=+-+=m m105027515'27m m m +>⎧⎪∴⎨-<⎪⎩∴-<< (2) f ’(x)=3x 2+2ax-a 2 依题意:3x 2+2ax-a 2=0 在[-1, 1]上无实根'(1)0(0)'(1)035'f a f a -<⎧>⎨<⎩∴> (3)f ’(x) =(x+a)·(3x-a) (a>0) x (-∞, -a) -a (-a,3a ) 3a (3a,+∞) f ’(x) + 0 - 0 + f(x) ↑ 极大值 ↓ 极小值 ↑ a ∈[3, 6]3a∈[1, 2], -a ∈[-6, -3] x (-2, 3a ) (3a, 2]f ’(x) - + f(x) ↓ ↑ ∴f(x)max =max{f(-2), f(2)} f(-2)=-8+4a+2a 2+m f(2)=8+4a-2a 2+m f(2)-f(-2)=16-4a 2<0 ∴f(x)max =f(-2)=2a 2+4a-8+m依题意: f(x)max ≤1 ∴m ≤-2a 2-4a+9 当a=6时m ≤-87 4‘11120.(1),(,0)(0,)2220210()2:32330(,0)22AF AB AB e c a b F a A k k a l y x y x a B a =∴==∴--∴==∴=--∴=-+=∴=∴ 令221(,0),23013222143a r ax da d aa x y ∴=∴++=+==∴=∴+=圆心半径圆心到直线的距离椭圆方程为 6'⎩⎨⎧=++=)2(1243)1()1(:)2(22y x x k y l将(1)代入(2)可得:(3+4k 2)x 2+8k 2x+(4k 2-12)=0 2’'24362438222433)1('2434243820220222212221⎪⎪⎩⎪⎪⎨⎧+==+-==∴=∴=+=++=+=+-=+=∴+-=+k k y y k k x x O O O OP ON OM k kx k y k k x x x k k x x p p p p p 且又12)436(4)438(3134222222020=+++-∴=+kk k k yx 又3×64k 4+4×36k 2=12(4k 2+3)2 64k 4+48k 2=4(16k 4+24k 2+9) 48k 2=96k 2+362’-48k 2=36 ∴k 无解 ∴不存在。