春人教版数学七下第五章《相交线与平行线》word全章教案
新版人教版七年级下册数学精品教案 第5章 相交线与平行线 全章教案 改好
新版人教版七年级下册数学精品教案若:=2:3,,则=2如图,直线AB 、CD 相交于点O则5 . 1.3 同位角、内错角、同旁内角教学建议一、知识结构二、重点难点分析本节教学的重点是同位角、内错角、同旁内角的概念.难点为在较复杂的图形中辨认同位角、内错角、同旁内角.掌握同位AOC ∠AOE ∠ 130=∠EOD BOC ∠ 30,90=∠=∠=∠AOC FOB COE =∠EOF(三)教学过程创设情境,复习导入回答下列问题:1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?3.如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角?4.如图,三条直线AB、CD、EF两两相交,则图中有几对对项角,有几对邻补角?5.三条直线相交除上述两种情况外,还有其他相交的情形吗?学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线CD,使CD与EF相交于某一点(如图),直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF 所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系.【板书】 2.3同位角、内错角、同旁内角【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况.认识事物间是发展变化的辩证关系.尝试指导,学习新知1.学生自己尝试学习,阅读课本第67页例题前的内容.2.设计以下问题,帮助学生正确理解概念.(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?(4)同位角和同分内角在位置上有什么相同点和不同点?内错角和同旁内角在位置上有什么相同点和不同点?(5)这三类角的共同特征是什么?3.对上述问题以小组为单位展开讨论,然后学生间互相评议.4.教师对学生讨论过程中所发表的意见进行评判,归纳总结.在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(F、Z、U)判断问题就迎刃而解.【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性.学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力.投影显示(投影片2)例题如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练.变式训练,巩固新知投影显示(投影片3)【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是c,即a和b被c所截,如c 和a被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提.投影显示(投影片4)【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角.这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位.这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形.如第2题由已知条件结合所求部分,对各个小题分别分解图5 . 2.1 平行线[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a ,b 被直线c 所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是 . 2.在同一平面内,三条直线的交点个数可能是 . 3.下列说法正确的是( )A .经过一点有且只有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行4.若∠与∠是同旁内角,且∠=50°,则∠的度数是( ) A .50° B .130° C .50°或130° D .不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( ) A .1 B .2 C .3 D .4 6.如图,直线AB ,CD 被DE 所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角.如果∠5=∠1,那么∠1 ∠3. 七、小结让学生独立总结本节内容,叙述本节的概念和结论. αβαβ八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)5 . 2.2直线平行的条件(一)[教学目标]3.借助用直尺和三角板画平行线的过程,,得出直线平行的条件.4.会用直线平行的条件来判定直线平行.5.激发学生学习数学的兴趣.[教学重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用[教学设计]提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.下面说法中正确的是 ( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种(2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直(4) 在同一平面内,不相交的两条直线一定不垂直3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.导言:上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,如果∠4+∠2=180°, a∥ b吗?三种方法可以简单地说成:例题已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.解:因为∠1=∠2,所以 AB ∥CD.又因为∠3+∠1=180°,所以 AB ∥ EF.从而 CD ∥EF (为什么?).课堂练习:1.下列判断正确的是 ( ).A.因为∠1和∠2是同旁内角,所以∠1+∠2=180°B.因为∠1和∠2是内错角,所以∠1=∠2C.因为∠1和∠2是同位角,所以∠1=∠2D.因为∠1和∠2是补角,所以∠1+∠2=180°2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么?(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗?为什么?(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么?3.4.如图所示:(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.第4题图第5题图5.如图,(1)如果∠1=________,那么DE∥ AC;(2) 如果∠1=________,那么EF∥ BC;(3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF.6.7.课后作业:习题5.2 第1,2,4题.补充练习:已知:如图,AB ∥CD,EF分别交 AB、CD于 E、F,EG平分∠ AEF ,FH平分∠ EFD EG与 FH平行吗?为什么?5 . 2.2 直线平行的条件 (第2课时)一.教学目标(1)使学生进一步理解并掌握判定两条直线平行的方法;(2)了解简单的逻辑推理过程.二.教学重点与难点重点:判定两条直线平行方法的应用;难点:简单的逻辑推理过程.三.教学过程复习提问:1.判定两条直线平行的方法有哪些?2.如图(1)(1) 如果∠1=∠4,根据_________________,可得AB ∥CD ; (2) 如果∠1=∠2,根据_________________,可得AB ∥CD ; (3) 如果∠1+∠3=1800,根据______________,可得AB ∥CD .3.如图(2)(1) 如果∠1=∠D ,那么______∥________; (2) 如果∠1=∠B ,那么______∥________; (3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________;新课:例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?答:这两条直线平行. 如图所示理由如下: ∵b ⊥a ,c ⊥a∴∠1=∠2=900(垂直定义)A D如图(2) A B CDEF12 3 4 如图(1)ab c┐1 ┐2∴b ∥c (同位角相等,两直线平行)思考:这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800. (1) 求∠2的度数;(2)FC 与AD 平行吗?为什么?巩固练习1. 教科书19页练习2.如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC 与DE 平行吗?AB 与CD 平行吗?3. 如图所示,已知∠D=∠A ,∠B=∠FCB ,试问ED 与CF 平行吗?AB C D E1 2E D C FA B4.如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线.作业:教科书19页习题5.2第7、8题5. 3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程 一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗? 二、新授1.实验观察,发现平行线第一个性质 请学生画出下图进行实验观察.12 3 45m nlab设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF .分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证. 证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,87654132FED CBA A BCD又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以,,故.即 ∠1+∠2=90°. (理由略)2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 作业:1.如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,为什么?3.如图,已知AD ∥BC ,可以得到哪些角的和为180°?已知AB ∥CD ,可以得到哪些角相等?并简述理由.112BAC ∠=∠122ACD ∠=∠001112()1809022BAC ACD ∠+∠=∠+∠=⨯=5 . 3平行线性质(二)[教学目标]6.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8.能够综合运用平行线性质和判定解题[教学重点与难点]重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用[教学设计]一.复习引入1.平行线的判定方法有哪些?2.平行线的性质有哪些? 3.完成下面填空已知:BE 是AB 的延长线,AD//BC ,AB//CD ,若 则4.那么a ,c 的位置关系如何? 二.新课1.例1,已知a//c,直线b 与c 垂直吗?为什么? 例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张个格子的方格纸。
(完整word版)七年级数学下册第五章相交线与平行线教学计划书(新版)新人教版
相交线与平行线一、课程学习目标1、结合具体情境,理解邻补角、对顶角的概念,探索并掌握对顶角相等;理解垂线、垂线段等概念, 掌握“过一点有且仅有一条直线垂直于已知直线”的基本事实,会用三角尽或量角器过一点画一条直线的 垂线,了解垂线段最短的性质,了解点到直线距离的意义并会度量点到直线的距离2、理解平行线的概念,了解平行公理及其推论,会用三角尺和直尺过直线外一点画这条直线的平行线;会识别同位角、内错角、同旁内角;探索并掌握平行线的性质和判定方法,会量度两条平行线之间的距离。
3、通过具体实例认识平移,理 解对应点连线平行且相等的性质,能按要求做出简单平面图形平移后 的图形,能利用平移进行简单的图案设计,认识和欣赏平移在现实生活中的应用。
4、了解命题的概念,能初步区分命题的题设和结论;理解本章学过的关于描述图形形状和位置的语 句,会用这些语句画出图形;能结合一些具体内容进行说理和简单推理,初步养成言之有据的习惯。
5、能初步用本章所学的知识解释生活中的现象及解决简单实际问题,体会研究几何图形的意义;在观察、操作、想象、推理、交流的过程中,发展空间观念,初步形成积极参与 数学活动、与他人合作交流 的意识,激发学习图形与几何 的兴趣。
三、内容安排本章包括4节内容,前三节主要讲座平面内两条直线的位置关系,重点是垂直和平行关系,第 有关平移变换的内容。
平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上, 继续研究平 面内两条直线的位置关系, 对于相交的情形,首先探究了两条直线相交所成的角的位置和大小关系,给出了邻补 角和对顶角概念,得出了“对顶角相等”的结论;垂直作为两条直线相交的特殊情形,与它有关的概念和结论是学习下一章“平面直角坐标 系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直 线垂直”“垂三条直銭所歳 S3被第4节是 6、结合“垂线段最短",渗透节能意识。
人教版七年级数学下册第5章相交线与平行线(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。
【推荐】新人教版七年级下册第五章《相交线与平行线》全章教案(共12份) (1)
第五章 相交线与平行线(总第一课时)5.1.1相交线一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章 相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a 、b ,用钉子将它们钉在一起,并且能随意张开. 生:画出图形,并用几何语言描述所画的图形. 师:思考所画的图形中有几个小于平角的角? 生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?年级 七年级课题5.1.1相交线课型新授教 学 目 标知识 技能 1.理解对顶角与邻补角概念,能在图形中辨认对顶角和邻补角. 2.掌握对顶角性质及其推证过程,并能运用它进行计算.过程 方法 经历对顶角、邻补角的概念及性质的探索过程,体会分类思想,在探究过程中发展学生的抽象概括能力,进一步培养说理能力.情感 态度 激发学生求知欲,感受数学与生活的联系,培养学生独立思考与合作交流的能力,让学生享受成功的喜悦,感悟数学学习是一种美的享受.教学重点 邻补角和对顶角的概念,对顶角的性质及其应用. 教学难点 对顶角性质的探索,在复杂图形中找出对顶角和邻补角. 教学方法 启发、讨论、探究教学手段多媒体教 学 过 程 设 计12 121 2O121 2121 2生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边.....邻补角:有公共顶点且有一公共边......“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.ABECD O1 221ABFCD OEa b1 42 324、如图,三条直线AB 、CD 、EF 相交于点O , ∠AOE 的对顶角是 , ∠EOD 的邻补角是 .【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型) 生:相等. 师:为什么? 生:(讨论交流)生1:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义), ∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义), ∴∠l =∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质. 【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a 、b 相交,∠l =40°,求∠2、∠3、∠4的度数.2. 变式1:把∠l =40°变为∠l =90°,求∠2、∠3、∠4的度数.变式2:把∠l =40°变为∠l =n°,求∠2、∠3、∠4的度数.变式3:把∠l =40°改为∠2是∠l 的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB 、CD 相交于O 点,OE 平分∠AOD , 若∠1=20°,那么∠2=______.A BFCD O E变式5:如图,直线AB 、CD 相交于O 点,∠AOE =90°,若 ∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB 的度数,但人不能进入围墙,如何测量? 5. 如图,三条直线AB 、CD 、EF 相交于点O ,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑? 生:……七:布置作业,分层发散1.课本:P 7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n 条直线呢?【教学反思】:(总第二课时)5.1.2垂线(第1课时)年级七年级课题 5.1.2垂线(1)课型新授教学目标知识技能1.理解垂直、垂足、垂线的概念,会用三角尺或量角器过一点画已知直线的垂线.2.掌握垂线的性质1“过一点有且只有一条直线与已知直线垂直”的结论.过程方法经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力,培养学生准确作图的能力.情感态度激发学生学习兴趣,给学生创造成功的机会,体验成功的快乐.教学重点垂线的概念、性质和作图.教学难点垂线的作图.教学方法启发、讨论、画图教学手段多媒体教学过程设计问题与情境师生活动情景引入提出问题:1.如下图:(1)∠AOC的对顶角是哪个角?这两个角的关系是什么?(2)∠AOC的邻补角有几个?是哪几个角?2.当∠AOC=90°,口答∠BOD、∠AOD、∠BOC等于多少度?为什么?直线AB、CD的位置关系怎样?学生回答完后,引入课题【板书】5.2.2垂线因为对顶角、邻补角及对顶角的性质,是建立垂直概念的基础之上,所以在讲新课前要复习巩固这些内容。
新人教版数学七年级下册第五章《相交线与平行线》全章教案
1.【探究一】
合
作 如图,怎样描述直线 AB、CD 和 EF 的位置关系? 学生讨论、回答:
探
究
直线 AB、CD 被直线 EF
所截
师概括为三线八角
2.【探究二】
引导学生观察得出
(1)观察图中的∠1 和∠5 与截线及两条 这 两 个 角 分 别 在 直 线
教学反思:
, 的垂线.
C
A
D
B
B
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(2)
教学目标
了解垂线段、点到直线的距离的概念,会利用三角尺画垂线段,会量点到 直线的距离.
教学重、难点
重点:两个结论的探究、垂线段和点到直线距离的概念. 难点:经历探究“垂线段最短”的过程,掌握垂线性质 2
教 学 过 程设计
角两边的反向延长线。
互为邻补角的两个角的特点:①两个角有一个公共顶点②两个角有一条公共边
(邻)③两个角在公共边两侧④两个角和为
五、布置作业:、 教学反思:
(补)
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(1)
教学目标
1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的 垂线。 2、掌握点到直线的距离的概念,并会度量点到直线的距离。 3、掌握垂线的性质,并会利用所学知识进行简单的推理。
(5)如图直线 AB、CD、EF 相交于点 O,∠BOE 的对顶角是______,∠COF 的邻
a 补角是____ ,若∠AOE=30°,那么∠BOE=_____,∠BOF=_______。 E 2
2017春人教版数学七下第五章《相交线与平行线》word全章教案
5.1.1 相交线〔教学目标〕1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。
〔重点难点〕重点:对顶角、邻补角的概念和“对顶角相等”;难点:正确区别互为邻补角与互为补角和运用“对顶角相等”说理〔教学过程〕一、情景导入下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。
“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。
相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。
我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。
二、邻补角和对顶角下面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图。
上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4。
量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、∠1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是1800;∠1和∠3、∠2和∠4为二类,它们相等。
第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。
第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线。
具有这种位置关系的角,互为对顶角。
思考:下列图形中,∠1和∠2是对顶角的是〔 〕1 2 3 4 O B AC D 1 2 1 2 1 2 12A B C D注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。
三、对顶角的性质在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。
人教版七年级下册第五章相交线与平行线教案
第五章相交线与平行线5.1相交线[教学目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力。
2. 了解邻补角、对顶角以及同位角,内错角,同旁内角,能找出图形中的这些角,理解并能运用它解决一些简单问题。
[教学重难点]重点:邻补角与对顶角,垂线与及同位角,内错角,同旁内角的概念。
难点:理解对顶角相等的性质的探索,垂线的画法。
考点知识1.邻补角:有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
对顶角:有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角;对顶角相等。
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线:⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
C符号语言记作:如图所示:AB⊥CD,垂足为OOA BD⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
(完整word版)新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才二次备课能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是二次备课∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
2024年人教版七年数学下册教案(全册)第5章 相交线与平行线平行线及其判定
5.2.1平行线课时目标1.掌握平行线的概念、符号表示.2.会用三角尺和直尺过已知直线外一点画这条直线的平行线.3.掌握平行公理以及平行公理的推论,会用符号语言表示平行公理推论.4.经历观察、操作、归纳等活动,进一步发展空间观念、用几何语言准确表达的能力,培养学生准确作图的能力.5.培养学生的合作意识、提高学生们的归纳总结能力,体会数学与实际生活的联系.学习重点平行线的概念、画法以及平行公理及其推论.学习难点平行线的画法以及用数学语言来描述平行线的推论.课时活动设计情境引入在同一平面内,两条直线有怎样的位置关系呢?解:在同一平面内,两条直线的位置关系有相交和不相交两种.你能举出一些生活中两直线不相交的例子吗?设计意图:通过现实生活背景,让学生初步感受相交与不相交直线的特殊位置关系,为新课的学习埋下伏笔.回顾旧知1.同一平面内,两条直线有什么位置关系?2.两条直线相交时的一种特殊情形叫什么?我们怎么用数学语言描述这种位置关系?设计意图:通过已经学习过的知识回顾,可以激发学生们的学习兴趣,将学生的注意力转移到课堂上来.探究新知探究1:思考如图,分别将木条a,b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线,转动a,在这个过程中,直线a与b之间的位置关系有几种可能性?什么叫做平行线呢?解:在同一平面内,不相交的两条直线叫做平行线.平行线的表示方法.解:a∥b(读作a平行于b).请举出实际生活中我们可以将它们看成是两条平行线的例子.探究2:问题1:再一次转动手中的木条,观察并思考在转动木条a的过程中,有几个位置能使直线a与b平行?组内交流看法.问题2:用直尺和三角尺动手画一画平行线.如下图.已知:直线a,点B,点C.过点B画直线a的平行线,能画几条?过点C画直线a的平行线,它与过点B的平行线平行吗?通过动手操作、观察、画图,你能得出什么结论?(1)归纳平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)比较平行公理和垂线性质的区别和联系.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果b∥a,c∥a,那么b∥c.设计意图:1.深入理解平行线的概念,培养学生的抽象概括能力.2.学生经历动手操作、观察、思考,总结出画平行线的方法.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.归纳总结1.在同一平面内,不相交的两条直线叫做平行线.平行线的概念包含三层含义:①“在同一平面内”,是前提条件;②“不相交”,就是没有交点;③平行线指的是“两条直线”,而不是两条射线或线段.2.过已知直线外一点画直线的平行线的步骤:①“一重合”:三角尺的一边与已知直线重合;②“二靠紧”:把直尺靠紧三角尺的另一边;③“三移动”:沿直尺移动三角尺,使三角尺与直线重合的边过已知点;④“四画线”:沿三角尺过已知点的边画直线.3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.几何语言:如果b∥a,c∥a,那么b∥c.设计意图:培养学生的语言表达能力,并将文字语言转化为符号语言.典例精讲例如图,CD∥AB,CE∥AB,试说明C,D,E三点共线.解:因为CD∥AB,CE∥AB,所以CD∥CE∥AB.因为CD和CE在同一条直线上(平行公理).所以C,D,E三点共线.设计意图:通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.巩固训练1.在同一平面内,两条直线的位置关系是(B)A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交2.经过一点A画已知直线a的平行线,能画(D)A.0条B.1条C.2条D.0条或1条3.如图所示,AD∥BC,E为AB的中点,(1)过点E作EF∥BC,交CD于点F;(2)EF和AD平行吗?请说明理由;(3)用测量法比较DF和CF的大小.解:(1)如图.(2)平行.因为AD∥BC,EF∥BC,所以EF∥AD(平行公理的推论).(3)DF=CF.设计意图:这个环节是巩固本节课知识点,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦.课堂小结1.今天我们学习的内容是什么?2.我们学到了哪些呢?设计意图:通过小结,使学生梳理本节课所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第12页练习,第15,16页习题5.2第3,8,9题.2.七彩作业.5.2.1平行线1.平行线:在同一平面内,两条直线不相交,我们说这两条直线互相平行.记作a∥b.2.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.3.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果a∥b,c∥b,那么a∥c.教学反思5.2.2平行线的判定课时目标1.理解两条直线平行的条件,掌握平行线的三种判定方法,会用符号语言简单的说理.2.经历探索两条平行线平行的过程,理解两条直线平行的条件.3.体会几何图形与数字结合起来的特点,利用数形结合思想来解决相关问题.学习重点掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行.学习难点在学习直线位置关系的判定过程中,感受逻辑推理,逐步学习证明的方法.课时活动设计情境引入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘c垂直,那么木条a 与墙壁边缘c的夹角为多少度时,才能使木条a与木条b平行?解:木条a与墙壁边缘c的夹角为90°时,才能使木条a与木条b平行.设计意图:通过现实生活背景,让学生初步感受如何判断两条直线平行,为引出新课的学习埋下伏笔.回顾旧知1.两条直线被第三条直线所截,我们说形成了什么?解:三线八角.2.形成了哪几种位置关系的角呢?解:同位角、内错角、同旁内角.3.同位角、内错角、同旁内角的概念是什么?解:同位角在截线的同一侧,在被截线的同一方.内错角在截线的两侧,在两条被截线之间.同旁内角在截线的同一侧,在两条被截线之间.设计意图:通过对学习过的知识回顾,可以激发学生们的学习兴趣,将学生的注意力转移到课堂上来.探究新知探究1:你还记得如何用直尺和三角尺画平行线吗?教师提问,邀请一名学生回答问题,回答结束,其他学生补充,最后教师讲解并播放课件.在画图过程中,三角尺起着什么样的作用?解:使∠1=∠2.教师将制作好的课件进行放映,学生通过观察,很容易得到∠1=∠2,接下来给出平行线的判定方法1的文字语言和符号语言.文字语言:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.符号语言:∵∠1=∠2(已知),∴AB∥CD(同位角相等,两直线平行).注意:此处符号“∵”表示因为,符号“∴”表示“所以”.想一想:如图,你能说出木工用图中的角尺画平行线的道理吗?教师展示课件,并说明角尺用途,让学生解释其中的道理.解:同位角相等,两直线平行.探究2:能否利用内错角、同旁内角来判定两条直线平行呢?1.如图,如果∠2=∠3,能得出a∥b吗?分析:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.2.如图,如果∠2+∠4=180°,能得出a∥b吗?分析:∵∠2+∠4=180°(已知),∠1+∠4=180°(邻补角的定义),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师对学生板书不规范的步骤,进行纠正并讲解,最后总结判定方法.设计意图:学生经历观察、思考,总结出平行线判定的方法1,2和3.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.并进一步体会如何将文字语言转化为符号语言.归纳总结两条直线平行的判定方法:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.教师对三种方法进行总结归纳,并课件演示.设计意图:使学生深刻理解判定定理的内容,并对本节知识进行梳理.典例精讲例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?解:这两条直线平行.方法1:∵b⊥a,∴∠1=90°.同理,得∠2=90°.∴∠1=∠2.∵∠1和∠2是同位角,∴b∥c(同位角相等,两直线平行).方法2:如图,∵b⊥a,∴∠1=90°.又∵c⊥a,∴∠3=90°.∴∠1+∠3=180°.∴b∥c(同旁内角互补,两直线平行).在学生独立写完说理过程后,教师板书解题方法1,强调说理过程的规范性.设计意图:通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.巩固训练1.如图,BE是AB的延长线.(1)由∠CBE=∠A可以判定哪两条直线平行?根据是什么?(2)由∠CBE=∠C可以判定哪两条直线平行?根据是什么?解:(1)AD∥BC.根据“同位角相等,两直线平行”;(2)AE∥CD.根据“内错角相等,两直线平行”.2.如图,点E在AC的延长线上,下列条件中能判断BD∥AE的是(D)A.∠1=∠2B.∠2=∠3C.∠A=∠DCED.∠3=∠43.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c4.如图,四条直线组成该图形,其中∠1=∠2=∠3,请判断一下有哪两条直线平行,请说明理由.解:l1∥l2,理由是∠1=∠2,即同位角相等,两条直线平行;a∥b,理由是∠2=∠3,即同位角相等,两条直线平等.教师给出练习,先观察学生情况给予相应的指导,再给出答案,最后根据学生完成情况适当分析讲解.设计意图:这个环节是巩固本节课知识点,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦.课堂小结1.今天我们学习的内容是什么?2.我们学到了哪些呢?设计意图:通过小结,使学生梳理本节课所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第14,15页练习第2,3题,第15,16,17页习题5.2第1,2,4,5,12题.2.七彩作业.5.2.2平行线的判定平行线的判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.教学反思。
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案一. 教学内容:相交线与平行线二. 主要概念:1. 邻补角有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
2. 对顶角一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角。
3. 垂线两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
4. 垂线段过直线外一点,作已知直线的垂线,这点和垂足之间的线段。
5. 点到直线的距离直线外一点到这条直线的垂线段的长度。
6. 平行线在同一平面内,不相交的两条直线叫做平行线。
7. 命题判断一件事情的语句叫做命题。
8. 平移把一个图形整体沿着某一方向平行移动,这种移动叫做平移变换,简称平移。
三. 主要性质:1. 对顶角的性质对顶角相等。
2. 邻补角的性质互为邻补角的两个角和为180°。
3. 垂线的基本性质(1)经过一点有且只有一条直线垂直于已知直线;(2)垂线段最短。
4. 平行线的判定与性质【典型例题】一. 选择题1. 如图,下列条件中,能判断直线∥的是()A. =B. =C. =D. +=2. 如图,直线a、b都与直线c相交,给出下列条件:(1)=;(2)=;(3)+=;(4)+=,其中能判断a∥b的是()A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)3. 如图,AB∥EF∥DC,EG∥DB;则图中与相等的角(除外)共有()A. 6个B. 5个C. 4个D. 3个4. 如图,若AB∥CD,则()A. =+B. =-C. ++ =D. -+=5. 如图,AB∥EF∥DC,EH⊥CD于H,BAC+ACE+CEH=()A. 180°B. 270°C. 360°D. 450°6. 已知两个角的两边分别垂直,其中一个角比另一个角的3倍少8,那么这个角的度数是()A. 47°或4°B. 133°或4°C. 47°或133°D. 以上都不对7. 下列条件中,能得到互相垂直的是()(1)对顶角的平分线(2)邻补角的平分线(3)内错角的平分线(4)同旁内角的平分线(5)同位角的平分线A. 0个B. 1个C. 2个D. 3个8. 如图,AB∥EF,C=90,则1、2和3的关系是()A. =1+ 3B. +1+ 3 =C. +1- 3 =90D. +3- 1 =909. 若直线a、b分别与直线c、d相交,且+=,-=,=115,那么=()A. 55°B. 65°C. 75°D. 85°10. 如图,已知a∥b,且AB⊥a,ABC=130,则1=()A. 30°B. 40°C. 50°D. 60°11. 下列命题不正确的是()A. 两条不相交的直线是平行线B. 在同一平面内不平行的两条直线必相交C. 在同一平面内不相交的两条直线必平行D. 在同一平面内两条直线的位置关系只有两种:相交、平行12. 一条道路经过两次转弯后,与原来的方向平行,若第一次拐弯为150°,那么第二次转弯度数应为()A. 150°B. 30°C. 150°或30°D. 以上都不对答案:1—5 CDBAB 6—10 ABCBB 11—12 AC二. 解答题:1. 如图所示,图中有几对同旁内角?分析:我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角。
人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计
优质资料欢迎下载第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标1.通过动手观察、操作、推断、交流等数学活动 , 进一步发展空间观念 , 培养识图能力、推理能力和有条理表达能力 .2.在具体情境中了解邻补角、对顶角 , 能找出图形中的一个角的邻补角和对顶角 , 理解对顶角相等 , 并能运用它解决一些问题 .重点、难点重点 : 邻补角、对顶角的概念 , 对顶角性质与应用 .难点 : 理解对顶角相等的性质的探索.教学手段与方法师生共同探讨教学准备三角尺课件教学过程一、读一读 , 看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片 , 阅读其中的文字 .师生共同总结 : 我们生活的世界中, 蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征 , 相交线的一种特殊形式即垂直 , 垂线的性质 , 研究平行线的性质和平行的判定以及图形的平移问题 .二、观察剪刀剪布的过程, 引入两条相交直线所成的角教师出示一块布片和一把剪刀, 表演剪刀剪布过程 , 提出问题 : 剪布时 , 用力握紧把手 , 引发了什么变化 ?进而使什么也发生了变化?学生观察、思想、回答, 得出 :握紧把手时 , 随着两个把手之间的角逐渐变小 , 剪刀刃之间的角边相应变小 . 如果改变用力方向 , 随着两个把手之间的角逐渐变大 , 剪刀刃之间的角也相应变大 .教师点评 : 如果把剪刀的构造看作两条相交的直线, 以上就关系到两条相交直线所成的角的问题, 本节课就是探讨两条相交线所成的角及其特征 .三、认识邻补角和对顶角, 探索对顶角性质1.学生画直线 AB、CD相交于点 O,并说出图中 4 个角 , 两两相配共能组成几对角 ? 各对角的位置关系如何?根据不同的位置怎么将它们C B分类 ?OA D(1)学生思考并在小组内交流, 全班交流 .当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达, 如:∠AOC和∠ BOC有一条公共边 OC,它们的另一边互为反向延长线 .∠AOC和∠ BOD有公共的顶点 O,而是∠ AOC的两边分别是∠BOD两边的反向延长线 .2.学生用量角器分别量一量各个角的度数 , 以发现各类角的度数有什么关系 , 学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等 .3.学生根据观察和度量完成下表 :两直线相交所形成的角分类位置关系数量关系134AOD教师再提问 : 如果改变∠ AOC的大小 , 会改变它与其它角的位置关系和数量关系吗 ?4.概括形成邻补角、对顶角概念 .(1)师生共同定义邻补角、对顶角 .有一条公共边 , 而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线 , 那么这两个角叫对顶角.(2)初步应用 .练习 1: 下列说法 , 你同意吗 ?如果错误 , 如何订正 .①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角, 互补的两个角也是邻补角?5.对顶角性质 .(1)教师让学生说一说在学习对顶角概念后 , 结果实际操作获得直观体验发现了什么 ?并说明理由 .(2)教师把说理过程 , 规范地板书 :在图 1 中, ∠AOC的邻补角是∠ BOC和∠ AOD,所以∠ AOC与∠ BOC 互补 , ∠AOC与∠ AOD 互补 , 根据“同角的补角相等”, 可以得出∠AOD=∠BOC,类似地有∠ AOC=∠BOD.教师板书对顶角性质 : 对顶角相等 .强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系 , 对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象 .四、巩固运用1. 例: 如图 , 直线 a,b 相交 , ∠1=40°, 求∠ 2, ∠3, ∠43的度2数 .a14b 教学时 , 教师先让学生辨让未知角与已知角的关系, 用指出通过什么途径去求这些未知角的度数的, 然后板书出规范的求解过程.2.练习 :(1)课本 P5练习.(2)补充 : 判断下列图中是否存在对顶角 .11122221五、作业课本 P9.1,2,P10.7,8.垂线第五章第一节第二课时教学目标一、素质教育目标(一)知识教学点1.使学生掌握垂线的概念。
新人教版七年级下册第五章《相交线与平行线》全章教案(
(此文档为word格式,下载后您可任意编辑修改!)第五章相交线与平行线(总第一课时)5.1.1相交线教学过程设计一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.生:画出图形,并用几何语言描述所画的图形.师:思考所画的图形中有几个小于平角的角?生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边...........邻补角:有公共顶点且有一公共边“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.4、如图,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是,∠EOD的邻补角是.【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型)生:相等.师:为什么?生:(讨论交流)生1:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a、b相交,∠l=40°,求∠2、∠3、∠4的度数.2.变式1:把∠l=40°变为∠l=90°,求∠2、∠3、∠4的度数.变式2:把∠l=40°变为∠l=n°,求∠2、∠3、∠4的度数.变式3:把∠l=40°改为∠2是∠l的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB、CD相交于O点,OE平分∠AOD,若∠1=20°,那么∠2=______.变式5:如图,直线AB、CD相交于O点,∠AOE=90°,若∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?5.如图,三条直线AB、CD、EF相交于点O,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑?生:……七:布置作业,分层发散1.课本:P7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n条直线呢?【教学反思】:(总第二课时)5.1.2垂线(第1课时)计教学过程设(总第三课时)5.1.2垂线(第2课时)教学过程设计(总第四课时)5.1.3同位角、内错角、同旁内角教学过程设计3.如图,∠6和∠2是_________角,∠(总第五课时)5.2.1平行线教学过程设计(总第六课时)5.2.2平行线的判定(一)教学过程设计(总第七课时)5.2.2平行线的判定(二)教学过程设计(总第八课时)5.3.1平行线的性质(第1课时)教学过程设计(总第九课时)5.3.1平行线的性质(第2课时)教学过程设计(总第十课时)5.3.2命题、定理、证明学过程设计教(总第十一课时)5.4平移教学过程设计2.欣赏并说出下列各商标图案哪些是利用平移来设计的?(总第十二课时)第五章小结与复习教学过程设计第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
最新人教版初一下册数学 第五章 相交线与平行线 全单元教案设计
5. 1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠;BODAOC ∠∠与有公共的顶点O ,而且AOC ∠的两边分别是BOD ∠两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表:教师提问:如果改变AOC ∠的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用 练习: 下列说法对不对(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,∠,求41=40∠的度数。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)44086
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是Array∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案
人教版七年级下册数学第五章《相交线与平行线》优秀教案5.1 相交线5.1.1 相交线【教学目标】1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.【重难点】重点邻补角、对顶角的概念,对顶角的性质与应用.难点理解对顶角相等的性质的探索.【教学设计】一、创设情境,引入新课引导语:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.二、尝试活动,探索新知教师出示一块布片和一把剪刀,表演剪刀剪布的过程.教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.教师提问:我们可以把剪刀抽象成什么简单的图形?学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)学生根据观察和度量完成下表:教师提问:如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?学生思考回答:只会改变数量关系而不会改变位置关系.师生共同定义邻补角、对顶角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.教师提问:你同意下列说法吗?如果错误,如何订正?1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.3.邻补角是互补的两个角,互补的两个角也是邻补角.学生思考回答:1、2是对的,3是错的.第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.教师把说理过程规范地板书:在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书对顶角的性质:对顶角相等.强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.。
春七年级数学下册第五章相交线与平行线教案(新版)新人教版【精品教案】.docx
第五章相交线与平行线5.1相交线5. 1.1相交线1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.重点邻补角、对顶角的概念,对顶角的性质与应用.难点理解对顶角相等的性质的探索.一、创设情境,引入新课引导语:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.二、尝试活动,探索新知教师出示一块布片和一把剪刀,表演剪刀剪布的过程.教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.教师提问:我们可以把剪刀抽象成什么简单的图形?学生回答:画成两条相交的直线,学生画直线AB、CD相交于点 O,并说出图中 4 个角.教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?( 学生得出结论:相邻的两个角互补,对顶的两个角相等)学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变∠ AOC的大小,会改变它与其他角的位置关系和数量关系吗?学生思考回答:只会改变数量关系而不会改变位置关系.师生共同定义邻补角、对顶角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.教师提问:你同意下列说法吗?如果错误,如何订正?1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补” ,就是这两个角的另一条边在同一条直线上.2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.3.邻补角是互补的两个角,互补的两个角也是邻补角.学生思考回答:1、 2 是对的, 3 是错的.第3 个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.教师把说理过程规范地板书:在右图中,∠ AOC的邻补角是∠ BOC和∠ AOD,所以∠ AOC与∠ BOC互补,∠ AOC与∠AOD 互补,根据“同角的补角相等” ,可以得出∠ AOD=∠ BOC,类似地有∠ AOC=∠ BOD.教师板书对顶角的性质:对顶角相等.强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.三、例题讲解【例】如图,直线a,b 相交,∠ 1= 40°,求∠ 2,∠ 3,∠ 4 的度数.【答案】由邻补角的定义,得∠2= 180°-∠ 1= 180°- 40°= 140°;由对顶角相等,得∠ 3=∠ 1= 40°,∠ 4=∠ 2= 140° .四、巩固练习1.判断下列图中是否存在对顶角.2.按要求完成下列各题.(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.!!,(2))(2)如,若∠ AOD= 90 °,那么直 AB与 CD的位置关系如何?【答案】1.都不存在角.2.(1)角,角.角:∠ AOC和∠ BOD,∠ AOD和∠ BOC.角:∠ AOC和∠ AOD,∠ AOC和∠ BOC,∠ AOD和∠ BOD,∠ BOC和∠ BOD.(2)垂直.五、堂小教引学生行本的小并角的概念与角的性不能混淆:角的概念是确定两角的位置关系,角的性是确定互角的两角的数量关系.通本的学,大部分学生能极主地参与到学活中来,并能极主地提出各并解决,达到了基本的教学效果.但是由于新概念的理解不是很深刻,所以在用方面存在不足,一情况,教典型的例,解,指学生探求解的思路和方法,加深概念的理解,做到熟的用.5. 1.2垂( 1)1.了解垂直的概念,能出垂的性“ 一点,能画出已知直的一条垂,并且只能画出一条垂” .2.会用三角尺或量角器一点画一条直的垂.重点两条直互相垂直的概念、性和画法.点两条直互相垂直的性和画法.一、情境,引入新老引学生行有关的思考:教室里的桌面、黑板面相的两条,方格的横和⋯⋯ 些大家留下什么印象?在小内行.二、活,探索新知教出示相交的模型,演示模型,并能引学生察思考有关的:固定木条 a,木条b,当 b 的位置化,a、b 所成的角α是如何化的?其中会有特殊情况出?当种情况出,a、 b 所成的四个角有什么特殊关系?教师再组织学生交流,并能引导学生明白:当b 的位置变化时,角α从锐角变为钝角,其中角α是直角是特殊情况.教师补充其特殊之处还在于:当角α是直角时,它的邻补角、对顶角都是直角,即a、b 所成的四个角都是直角.教师引导学生总结并给出垂直的定义及垂直的表示方法:垂直用符号“⊥”来表示,结合课本图 5.1 - 5 说明“直线 AB垂直于直线 CD,垂足为 O”,则记为 AB⊥ CD,垂足为 O,并在图中任意一个角处作上直角记号,如图:教师引导学生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线” ;如果一条直线是另一条直线的“垂线” ,则它们必定“互相垂直” .画图实践,探究垂线的性质:教师引导学生用三角尺或量角器画已知直线l 的垂线.已知直线 l( 教师在黑板上画一条直线l) ,画出直线l 的垂线.找学生上黑板画出直线l 的垂线.教师追问学生:还能画出直线l 的垂线吗?能画几条?通过师生交流,学生明确直线l 的垂线有无数条,即存在,但有不确定性.师:怎样才能确定直线l 的垂线位置?生:在直线l 上方取一点A,过点 A 画直线 l 的垂线. ( 动手画出图形)教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作将所得的两个结论合并成一个,并板书:垂线性质 1:过一点有且只有一条直线与已知直线垂直.三、尝试反馈,理解新知1.过点 P 画射线 AM的垂线, Q为垂足.2.过点 P 画射线 BN的垂线,交射线BN的反向延长线于Q点.3.过点 P 画线段 AB 的垂线,交线段AB 的延长线于Q点.学生画完图后,教师归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.四、巩固练习判断以下两条直线是否互相垂直:两条直线相交所成的四个角中有一个是直角;两条直线相交所成的四个角相等;两条直线相交,有一组邻补角相等;两条直线相交,对顶角互补.【答案】上述说法中的两条直线均互相垂直.五、课堂小结本节课学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线的一个性质,你能说出相关的内容吗?通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各种方法解决问题,达到了基本的教学效果,但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.5. 1.2垂线( 2)1.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义.2.学会度量点到直线的距离.重点垂线段最短的性质,点到直线的距离的概念及其简单应用.难点对点到直线的距离的概念的理解.一、创设情境,引入新课教师展示课本图 5.1 -8,提出问题:要把河中的水引到农田P 处,如何挖渠能使渠道最短?学生看图、思考.教师以问题的形式,启发学生思考.问题 1:上学期我们曾经学过什么最短的知识,还记得吗?问题 2:如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线l ,那么原问题就是怎么连线的数学问题.学生说出:两点之间,线段最短.二、尝试活动,探索新知学生能在教师的引导下用数学眼光思考:在连接直线l 外一点 P 与直线 l 上各点的线段中,哪一条最短?教演示教具,学生直的感受.如:在硬板上固定木条l , l 外有一点P,的木条 a 一端固定在点P.使木条 l 与 a 相交,左右木条 a,l 与 a 的交点 A 随之化,段 PA的度也随之化. PA最短,a 与 l 的位置关系如何?用三角尺.教引学生画操作:学生看,得出:(1)画出直 l 及 l 外的一点 P;(2)P 点作 PO⊥ l ,垂足 O;(3)点 A1、 A2、 A3⋯⋯在 l 上,接 PA1、 PA2、PA3⋯⋯(4)用叠合法或度量法比 PO、 PA1、PA2、 PA3⋯⋯的短.教同学与内的同学行充分的配合,相的,并派代表言.教引学生交流,得出垂的另一个性.教板:接直外一点与直上各点的所有段中,垂段最短.成:垂段最短.三、反,理解新知关于垂段,教引学生思考:(1)垂段与垂的区与系;(2)垂段与段的区与系.合本形 ( 5.1 - 9) ,深入垂段 PO: PO⊥ l ,∠ POA1= 90°, O垂足,垂段 PO与其他段PA1、 PA2⋯⋯相比,度是最短的.教根据两点的距离的意出点到直的距离命名.教板:直外一点到条直的垂段的度,叫做点到直的距离.教,在 5.1 - 9 中, PO的度是点 P 到直 l 的距离, PA1、 PA2⋯⋯的度都不是点 P 到直 l 的距离.四、提升判断下列法是否正确,如果正确,明理由;如果,正.(1)直外一点与直上一点的段的度是一点到条直的距离;(2)如,段 AE 的是点 A 到直 BC的距离;(3)如,段 CD是点 C到直 AB的距离.【答案】(1)错误,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;(2)正确;(3)错误,线段 CD的长是点 D 到直线 BC的距离.五、课堂小结本节课学习了哪些新的知识,对于垂线段的理解有没有什么收获?是不是学会了如何作出垂线段?你还有哪些没有解决的问题呢?大部分学生经历观察、操作、想象、归纳、交流等活动,进一步发展空间观念,培养用几何语言准确表达的能力并且了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,但是度量点到直线的距离的方法掌握得还不够好.5.1.3同位角、内错角、同旁内角明确构成同位角、内错角、同旁内角的条件,了解其命名的含义.重点同位角、内错角、同旁内角的概念.难点各对角之间关系的辨认以及复杂图形的辨认.一、创设情境,引入新课中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角,这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系.学生能由教师的叙述认真地观察风筝的图形并能抽象出以下图形.二、尝试活动,探索新知教师组织学生讨论:两条直线和第三条直线相交的关系.如图:直线a1、 a2被直线 a3所截,构成了八个角.学生在教师的组织下完成以下活动:观察∠ 1与∠ 5 的位置:它们都在第三条直线a3的同侧,并且分别位于直线a1、 a2的同一侧,这样的一对角叫做“同位角” .观察∠ 3与∠ 5 的位置:它们分别在第三条直线 a 的异侧,并且都位于两条直线 a 、 a312之间,这样的一对角叫做“内错角” .观察∠ 2与∠ 5 的位置:它们都在第三条直线a的同旁,并且都位于两条直线 a 、a之312间,这样的一对角叫做“同旁内角”.学生通过小组合作交流,讨论以下各对角的关系:∠1 与∠ 5;∠ 2 与∠ 6;∠ 2 与∠ 5;∠ 2 与∠ 8;∠3 与∠ 5;∠ 3 与∠ 7;∠ 3 与∠ 8;∠ 4 与∠ 8.教师总结:同位角:∠ 1 和∠ 5,∠ 2 和∠ 6,∠ 3 和∠ 7,∠ 4 和∠ 8.内错角:∠ 2 和∠ 8,∠ 3 和∠ 5.同旁内角:∠ 2 和∠ 5,∠ 3 和∠ 8.三、尝试反馈,理解新知教师出示以下问题:在下面的同位角、内错角、同旁内角中任选一对,请你说说这对角的四条边与“前提”中的“三线”有什么关系?学生思考,教师总结:四边所在的直线正好是前提中的三线,并且有两条边所在的直线是同一条直线.四、巩固练习找出∠ 1、∠ 2、∠ 3 中哪两个是同位角、内错角、同旁内角.【答案】∠1、∠ 3 是同位角,∠2、∠ 3 是内错角,∠1、∠ 2 是同旁内角.五、课堂小结本节课的内容你都掌握了吗?适当地强调有关的知识点.如何确定“三线”构成的“八角”( 注意“一个前提”) ?如何根据“关系角”确定“三线”( 注意找“前提” )?本节课的教学内容量有点大,学生认识角的问题有一定的难度,所以本节课的教学效果一般,小组同学的合作学习效果还可以.通过本节课的学习,大部分学生能明确构成同位角、内错角、同旁内角的条件,并能在各类图形中找出各类角.5. 2平行线及其判定5. 2.1平行线了解平行线的概念、平面内两条直线相交和平行的两种位置关系,知道平行公理以及平行公理的推论.重点探索和掌握平行公理及其推论.难点对平行线本质属性的理解,用几何语言描述图形的性质.一、创设情境,引入新课教师提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答:两条直线相交有且仅有一个交点.在平面内,两条直线除了相交外,有其他的位置关系吗?学生思考回答:不相交的情况.二、尝试活动,探索新知教师演示教具:顺时针转动木条 b 两圈,教师组织学生交流并达成共识.学生思考:把 a, b 想象成两端可以无限延伸的两条直线,顺时针转动 b 时,直线 b 与直线 a 的交点的位置将发生什么变化?在这个过程中,有没有直线 b 与 c 不相交的情况?可以想象一定存在一个直线 b 的位置,使它与直线 a 没有交点.学生结合演示的结论,与教师共同用数学语言描述平行的定义:同一平面内,存在一个直线 a 与直线 b 不相交的位置,这时直线 a 与 b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线,直线 a 与 b 是平行线,记作“∥” ,这里“∥”是平行符号.教师板书:平行线的定义及表示方法.教师应强调平行线定义的本质属性:第一,同一平面内的两条直线;第二,没有交点的两条直线.同一平面内,两条直线的位置关系:教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.教师引导学生完成以下活动:1.在转动教具木条 b 的过程中,有几个位置能使 b 与 a 平行?直线 b 绕直线 a 外一点 B 转动,有且只有一个位置使 a 与 b 平行.2.用直尺和三角尺画平行线:已知:直线a,点 B,点 C.(1) 过点 B 画直线 a 的平行线,能画几条?(2) 过点 C 画直线 a 的平行线,它与过点 B 的平行线平行吗?3.通过观察画图,归纳平行公理及其推论.(1)学生对照垂线的第一性质说出画图所得的结论,并在充分交流后,归纳平行公理.(2)在学生充分交流后,教师板书:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质:共同点:都是“有且只有一条直线” ,这表明过一点与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点” 要在已知直线外;垂线性质中对“一点” 没有限制,可在直线上,也可在直线外.三、尝试反馈,理解新知师生共同归纳平行公理的推论:(1)学生直观判定过 B 点、 C 点的直线 a 的平行线 b、c 是互相平行的.(2) 从直线 b、 c 作图的过程说明直线b∥直线 c.(3)学生用三角尺与直尺用平推的方法验证b∥ c.(4)师生用数学语言表达这个结论,教师板书:两条直线都与第三条直线平行,那么这两条直线也互相平行.结合图形,教师引导学生用符号语言表达平行公理的推论:如果 b∥ a, c∥a,那么 b∥ c.四、课堂小结本节课主要学习了平行线的概念及其表示方法,并学习了用直尺和三角尺画平行线,通过具体的操作活动,加深了学生对本节内容的理解,并能灵活运用.通过本节课的教学,学生了解了平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论的内容并能在实际问题中予以正确的运用,但是个别同学的学习态度不端正,教师要加以引导与教育.5. 2.2平行线的判定( 1)掌握两直线平行的判定条件,并能解决一些问题.重点探索并掌握直线平行的条件.难点掌握直线平行的条件.一、创设情境,引入新课教师出示有关的几个问题,复习巩固上节课的知识:学生思考下列问题:1.填空:经过直线外一点,________与这条直线平行.2.画图:已知直线 AB,点 P 在直线 AB外,用直尺和三角尺画过点 P 的直线 CD,使 CD ∥AB.3.反思:在用直尺和三角尺画平行线的过程中,三角尺起什么样的作用?学生讲出是为画∠PHF,使所画的角与∠BGF相等.教师指出:既然两个角相等与两条直线平行能联系起来,那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法?这是本课要研究的内容之一.二、尝试活动,探索新知1.根据上图,分析问题.(1)让学生先描述∠ 1、∠ 2 的方位.(2)教师指出像∠ 1、∠ 2 这样分别位于直线 CD、 AB的下方,又在直线 EF 的右侧,也就是位置相同的两个角叫做同位角.(3)让学生识别图中其他的同位角,并标记出它们,要求正确而又不遗漏.2.归纳利用同位角判定两条直线平行的方法.(1)学生根据同位角的意义以及平推三角尺画出平行线的活动,叙述判定两条直线平行的方法.教师引导学生正确表达平行线的判定方法1,并板书:方法 1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.(2) 教师引导学生,结合图形用符号语言表述两直线平行的判定方法1:如果∠ 1=∠ 2,那么 AB∥ CD.教师强调两直线平行判定方法 1 的条件中有两层意思:第一层意思是这两个角是这两条直线被第三条直线所截而成的一对同位角;第二层意思是这两个角相等,两者缺一不可.(3) 简单应用教师表演木工用角尺画平行线的过程,让学生说出用角尺画平行线的道理( 结合课本图5. 2 - 7) .教师板书规范的说理过程:因为∠DCB与∠ FEB是直线 CD、 EF 被直线 AB所截而成的同位角,而且∠DCB=∠ FEB,即同位角相等,根据直线平行的判定方法,从而得 CD∥ EF. 三、尝试反馈,理解新知1.探索两条直线平行的其他方法:(1)演示教具,使学生体会当内错角相等时,两条直线平行.(2)师生归纳判定两条直线平行的方法:学生思考:为什么内错角相等时,两条直线平行?你能用学过的两直线平行的判定方法 1 来说明吗?学生猜想、讨论,教师引导学生说理.2.教师板书:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.学生思考、讨论:同旁内角数量上满足什么关系时,两直线平行?(1)因为∠ 4+∠ 2= 180°,而∠ 4+∠ 3 = 180°,根据同角的补角相等,所以有∠ 3=∠ 2,即内错角相等,从而 a∥ b.(2)因为∠ 4+∠ 2= 180°,而∠ 4+∠ 1= 180°,根据同角的补角相等,所以有∠ 2=∠ 1,即同位角相等,从而 a∥ b.结合图形,用符号语言表达:如果∠4+∠ 2= 180°,那么a∥b.3.师生归纳两条直线平行的判定方法:教师板书:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单记为:同旁内角互补,两直线平行.四、提升练习已知直线 a、 b 被直线 c 所截,且∠ 1+∠ 2= 180°,试判断直线 a、b 的位置关系,并说明理由.【答案】a∥ b,可以用平行线的三种判定方法加以说明,其一:因为∠1+∠ 2= 180°,又∠ 3=∠ 1( 对顶角相等 ) ,所以∠ 2+∠ 3= 180°,所以a∥ b( 同旁内角互补,两直线平行) ,其他略.五、课堂小结可以采用师生问答的方式或先让学生归纳,然后教师补充的方式进行,发挥学生的主体作用,培养学生的归纳能力.学生能由教师的引导思考:通本的学,你学了什么知?你有什么收呢?你有哪些困惑呢?能一你的想法?通本的学,学生理解并掌握了平行的三种判定方法,在教学程中运用例引及提思考的教学方式,学生的活极性,使学生能更深入理解并运用新知.5. 2.2平行的判定( 2)探索两直平行的条件,并能用其解决一些.重点直平行的条件的用.点取适当的判定直平行的方法行理.一、复引入:我学哪些判定两直平行的条件?生:同位角相等,两直平行;内角相等,两直平行;同旁内角互,两直平行.二、活,探索新知【例】在同一平面内,如果两条直都垂直于同一条直,那么两条直平行?什么?要判定两条直是否平行,先考学哪些判定平行的方法,中的条件与某种判定方法的条件是否相同?学生先口述判断的理由,教正,并范板两步推理的程:如.因 b⊥ a, c⊥a,所以∠ 1=∠ 2=90°,从而 b∥ c.教明:个理程有两个因⋯⋯,所以⋯⋯,第一个“因”、“所以”是根据垂直的定,第二个只写出“所以”的内容b∥c,中省略一个“因”的内容,个内容就是第一个“所以”中的∠ 1=∠ 2. 理是使理表达更,第二个“因” 、“所以”是根据同位角相等,两直平行.三、反,理解新知例解后,提:你能利用其他方法明b∥ c ?教鼓励学生模仿本方法用 (1) 内角相等的方法写出理由,用 (2) 同旁内角互的方法写出理由.13如果∠ 1、∠ 2 不是同位角,也不是内错角、同旁内角,如图(3) ,教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由:如图 (3) ,因为 a⊥ b, c⊥a,所以∠ 1= 90°,∠ 2= 90° .因为∠ 3=∠ 1=90°,所以∠ 3=∠ 2.从而 b∥ c( 同位角相等,两直线平行) .四、提升练习已知:如图,直线 a、b 被直线 c 所截,且∠ 1+∠ 2 =180°,那么直线 a 与 b 平行吗?为什么?【答案】a∥ b,理由略.五、课堂小结通过本节课的学习,你学习了什么知识?你有什么收获呢?对于平行的判定是否有了一个清晰的思路,针对不同的情况,学生应该选取适当的定理进行平行的判定.通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足.针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.5. 3平行线的性质5. 3.1平行线的性质( 1)掌握平行线的三个性质,并能用它们进行简单的推理和计算.重点探索并掌握平行线的性质,能用平行线的性质进行简单的推理和计算.难点能区分平行线的性质和判定方法,平行线的性质与判定的混合应用.一、创设情境,引入新课现在同学们已经掌握了利用同位角相等、内错角相等或者同旁内角互补判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又如何表达?二、尝试活动,探索新知教师引导学生进行画图活动:用直尺和三角尺画出两条平行线 a∥b,再画一条截线 c 与直线 a、b 相交,标出所形成的八个角 ( 如图所示 ) .学生测量这些角的度数,把结果填入表内.角∠ 1∠ 2∠ 3∠ 4度数角∠ 5∠ 6∠ 7∠ 8度数学生根据测量所得的数据做出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在仔细分析后,让学生写出猜想.学生由教师的引导进行小组活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?学生结合上图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定方法.师生共同归纳平行线的性质,教师板书:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补,简称为两直线平行,同旁内角互补.三、尝试反馈,理解新知教师引导学生理清平行线的性质与平行线的判定方法的区别.交流后在小组内归纳:两者的条件和结论正好相反.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1 相交线
〔教学目标〕1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。
〔重点难点〕重点:对顶角、邻补角的概念和“对顶角相等”;
难点:正确区别互为邻补角与互为补角和运用“对顶角相等”说理
〔教学过程〕 一、情景导入
下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。
“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。
相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。
我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。
二、邻补角和对顶角
下面是一把剪刀,你能联想到什么几何图形?
两条直线相交,如图。
上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:
∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4。
量一量各个角的度数,你能将上面的六对角分类吗?
可分为两类:∠1和∠2、∠1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是1800
;∠1和∠3、∠2和∠4为二类,它们相等。
第一类角有什么共同的特征?
一条边公共,另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
讨论:邻补角与补角有什么关系?
邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。
第二类角有什么共同的特征?
有公共的顶点,两边互为反向延长线。
具有这种位置关系的角,互为对顶角。
思考:下列图形中,∠1和∠2是对顶角的是〔 〕
A B C D
注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。
三、对顶角的性质
在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。
在这过程中,两个把手之间的角与剪刀刃之间的角有什么关系?
1
B 2 3
B 4 O B
A
C D
1
2
1
2
1
2
1
2 B B
为了回答这个问题,我们先来研究下面的问题。
如图,直线AB 和直线CD 相交于点O ,∠1和∠3有什么关系?为什么?
∠1和∠3相等。
∵∠1+∠2=1800 ,∠2+∠3=1800 、
∴∠1=∠3(同角的补角相等) 同理∠2和∠4相等。
这就是说:对顶角相等。
你能利用这个性质回答上面的问题吗?
因为剪刀的构造可以看成两条相交的直线,所以两个把手之间的角与剪刀刃之间的角互为对顶角,由于对顶角相等,因此,两个把手之间的角与剪刀刃之间的角始终相等。
四、例题
如图,直线a 、b 相交,∠1=400
,求∠2、∠3、∠4的度数。
分析:∠1和∠2有什么关系?∠1和∠3有什么关系?∠2和∠4有什么关系?
解:∵∠1+∠2=1800,∴∠2=1800—∠1=1800—400=1400
.
∠3=∠1=400,∠4=∠2=1400
. 五、课堂练习
1、一个角的对顶角有 个,邻补角最多有 个,而补
角
则可以有 个。
2、下图中直线AB 、CD 相交于O ,∠BOC 的对顶角是 ,邻补角是
六、课堂小结
1、什么是邻补角?邻补角与补角有什么区别?
2、什么是对顶角?对顶角有什么性质? 作业:
1
B 2 3
B 4 O B
A
C D
1
B 2 3
B 4 O B
A
C D
1
2 A
C B
D
E O。