初中数学知识点归纳总结(精华版)
初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。
3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。
-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。
4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。
-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。
5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。
6.算式计算-四则运算:加法、减法、乘法、除法。
-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。
7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。
-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。
8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。
-概率的计算:事件的概率等于事件发生次数除以总次数。
9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。
-代数式的值:给定变量值计算代数式的值。
10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。
-一元一次不等式的解:解不等式的基本步骤、不等式的性质。
11.二次根式与二次方程-二次根式的化简:完全平方、配方法。
-二次方程的解:因式分解法、配方法、求根公式。
12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。
初中数学必背知识点(精华版)

初中数学必背知识点(精华版)
一、整数
- 整数的概念和性质
- 整数的加减法运算规则
- 整数的乘法运算规则
- 整数的除法运算规则
- 整数的绝对值与相反数
- 整数的大小比较
- 整数的混合运算
二、分数
- 分数的概念和性质
- 分数的四则运算规则
- 分数的化简和比较大小
- 假分数和带分数的转化
- 分数和整数的混合运算
- 分数的分解与合并
三、小数
- 小数的概念和性质
- 小数的加减乘除法运算规则
- 小数的大小比较
- 小数和分数之间的转化
- 循环小数和无限不循环小数的表示和性质
四、代数
- 代数式的概念和性质
- 代数式的运算与化简
- 一元一次方程
- 一元一次方程的应用
- 一元一次方程组
- 平面直角坐标系和图形的表示
- 坐标的计算和性质
五、几何
- 平面与空间的基本概念
- 角的概念和性质
- 三角形的分类和性质
- 三角形的面积
- 圆的概念和性质
- 圆的周长和面积
- 空间几何体的分类和性质
- 空间几何体的表面积和体积
六、统计与概率
- 数据的收集和整理
- 直方图和折线图的绘制与分析
- 常见统计量的计算
- 概率的概念和性质
- 事件的概念和性质
- 概率的计算公式
- 独立事件和互斥事件的概率
以上是初中数学中的必背知识点精华版,掌握这些知识,可以帮助你更好地理解和运用数学,提高你的数学水平。
(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
初中数学总结归纳知识点(集锦8篇)

初中数学总结归纳知识点(集锦8篇)初中数学总结归纳知识点第1篇1、不在同一直线上的三点确定一个圆。
2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2:圆的两条平行弦所夹的弧相等3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合。
5、圆的内部可以看作是圆心的距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的点的集合。
7、同圆或等圆的半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
12、①直线L和⊙O相交d ②直线L和⊙O相切d=r ③直线L和⊙O 相离d>r13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14、切线的性质定理圆的切线垂直于经过切点的半径。
15、推论1经过圆心且垂直于切线的直线必经过切点。
16、推论2经过切点且垂直于切线的直线必经过圆心。
17、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
18、圆的外切四边形的两组对边的和相等外角等于内对角。
19、如果两个圆相切,那么切点一定在连心线上。
20、①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-rr) ④两圆内切d=R-r(R>r) ⑤两圆内含dr)21、定理相交两圆的连心线垂直平分两圆的公共弦。
22、定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
初中数学知识点总结最全版

初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
初中数学知识点归纳完整版免费

初中数学知识点归纳完整版免费中考数学重点知识点梳理1有理数1.有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
“大”减“小”是指绝对值的大小。
2.有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
3.有理数混合运算的四种运算技巧转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。
凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。
分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。
巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。
2圆1.圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)6.直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
初中数学知识点总结归纳(6篇)

初中数学知识点总结归纳一、构建完整的知识框架2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、初中数学知识重难点分析1.函数(一次函数、反比例函数、二次函数)特别是二次函数经常出现在各阶段的考试中,也是考试中的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题出现,二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
如果在这一环节掌握不好,将会直接影响代数的基础,会对考试的分数会造成很大的影响。
2.应用题,在各阶段考试中占有较大的比重,包括方程(组)应用、一元一次不等式(组)应用、函数应用、解三角形应用、概率与统计应用几种题型。
一般会出现2~3道解答题(30分左右)及2~3道选择、填空题(10分~15分),占考试总分的30%左右。
现在数学考试对数学实际应用的考查会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。
方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
3.整式、分式、二次根式的化简运算。
整式的运算、因式分解、二次根式、科学记数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解、因式分解和整式乘法运算的关系、分式的运算是难点。
在考试中一般以选择、填空形式出现,但却是解答题完整解答的基础。
初中数学知识点总结(完整版)

初中数学知识点总结 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:任何一个有理数都可以用数轴上的一个点来表示。
如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
有理数的运算:①同号相加,取相同的符号,把绝对值相加。
异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数与0相加不变。
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘得0。
乘积为1的两个有理数互为倒数。
0不能作除数。
先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数 无理数:无限不循环小数叫无理数平方根:一个正数有2个平方根/0的平方根为0/负数没有平方根。
立方根:正数的立方根是正数、0的立方根是0、负数的立方根是负数。
实数:实数分有理数和无理数。
每一个实数都可以在数轴上的一个点来表示。
3、代数式 代数式:单独一个数或者一个字母也是代数式。
合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
在合并同类项时,把同类项的系数相加,字母和字母的指数不变。
4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
初中数学知识点总结完整版

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0 相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0 相乘得0。
③乘积为1 的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0 不能作除数。
乘方:求N 个相同因数A 的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N 叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X 的平方等于A,那么这个正数X 就叫做A 的算术平方根。
②如果一个数X 的平方等于A,那么这个数X 就叫做A 的平方根。
③一个正数有2 个平方根/0 的平方根为0/负数没有平方根。
④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。
立方根:①如果一个数X 的立方等于A,那么这个数X 就叫做A 的立方根。
初中数学知识点大全(完整版)

展开立体图形 直线、射线、线段
几何图形
平面图形
平面图形
平面图形
等角的补角相等
角
角的度量
角的大小比较
余角和补角
角的平分线
等角的余角相等
第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程。
4.1 喜爱哪种动物的同学最多——全面调查举例 用划记法记录数据,“正”字的每一划(笔画)代表一个数据。 考察全体对象的调查属于全面调查。
的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相 应各项的符号相反。 1.4.2 有理数的除法
有理数除法法则: 除以一个不等于 0 的数,等于乘这个数的倒数。 a÷b=a· 1 (b≠0)
b 两数相除,同号得正,异号得负,并把绝对值相除。0 除以任何一个不等于 0 的数,都得 0。 因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。 乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
二、实施调查 将调查问卷复制足够的份数,发给被调查对象。 实施调查时要注意: ⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者; ⑵告诉被调查者你收集数据的目的。 三、处理数据 根据收回的调查问卷,整理、描述和分析收集到的数据。 四、交流 根据调查结果,讨论你们小组有哪些发现和建议? 五、写一份简单的调查报告
任何数同 0 相乘,都得 0。 乘积是 1 的两个数互为倒数。 几个不是 0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是 奇数时,积是负数。 两个数相乘,交换因数的位置,积相等。 ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 (ab)c=a(bc) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
初中数学知识点归纳总结(精华版)

初中数学知识点归纳总结(精华版)初中数学知识点归纳总结(精华版)作为初中学生,掌握数学基础知识是非常重要的。
数学不仅是一门学科,更是一种思维方式,培养我们的逻辑思维和分析能力。
在这篇文章中,我将对初中数学的各个重要知识点进行归纳总结,帮助你系统地掌握数学知识。
一、数的性质1.自然数、整数、有理数、无理数和实数的概念及其在数轴上的表示。
自然数是从1开始的正整数,整数是自然数和它们的相反数,有理数是可以表示为两个整数的比,无理数是不能表示为两个整数的比。
实数包括有理数和无理数,并可以在数轴上表示出来。
2.倍数、因数、质数和合数的概念。
一个数如果能够被另一个数整除,那么前一个数就是后一个数的因数,而后一个数就是前一个数的倍数。
质数是只有1和它本身作为因数的数,而合数是有除了1和它本身以外的因数的数。
3.最大公约数和最小公倍数的求法。
最大公约数是指两个或多个数的公共因数中最大的一个,而最小公倍数则是指能被两个或多个数整除的最小的数。
二、代数运算1.整式的加减和乘除运算。
整式是由数和字母通过加减乘除的运算构成的表达式,可以进行加减乘除运算。
在运算中,需要注意同类项的合并和约分。
2.代数式的因式分解和分式的求值。
因式分解是将一个代数式写成几个因式相乘的形式,而分式的求值是将代入具体数值后进行求解。
3.一元一次方程式及其应用。
一元一次方程式是指未知量的次数为一,且方程式中只有一个未知量的方程。
根据方程式的含义,可以解方程,求得未知量。
三、图形与几何1.平面图形的名称、性质和特点。
平面图形包括三角形、四边形、圆等,每个图形都有其特有的性质和特点,我们要了解它们的名称以及相应的性质。
2.线段、角、平行线和垂线的关系和性质。
线段是两个点间的线段,角是由两条射线的相交部分组成的图形,平行线是在同一个平面内永不相交的两条直线,垂线是与平行线相交并成直角的线。
3.相似和全等三角形的判定条件。
如果两个三角形的对应角相等并且对应边成比例,那么它们就是相似三角形。
初中数学知识点总结归纳(完整版

初中数学知识点总结归纳(完整版初中数学是建立在小学数学的基础上的,它是中学数学的起点。
初中数学包括了很多知识点,下面是初中数学知识点的完整总结。
1.数与代数1.1自然数:整数、形式化运算1.2有理数:绝对值、相反数、比较大小、加减乘除1.3分数:相等、约分、比较大小、加减乘除、分数在数轴上的表示1.4百分数:百分数的意义、百分数与分数、百分数的加减乘除1.5整数:加减乘除、整数在数轴上的表示1.6算式与方程:算式的意义、算式的运算、算式与方程的关系1.7代数式与代数方程:项、系数、次数、等式、解方程、解不等式1.8四则运算:整数四则运算、有理数四则运算、分数四则运算1.9编码与解码:字符的编码、解码的算法与应用2.图形与空间2.1图形的基本概念:点、线、面、多边形2.2平面图形:多边形的内角和、相似三角形的性质、平行四边形、正方形、直角三角形2.3立体几何:长方体、正方体、棱柱、棱锥、棱台、球的计算2.4向量与坐标:向量的定义、向量的加减法、向量的模、向量坐标、空间直角坐标系2.5坐标综合题:平面坐标系中的距离和中点、线段的垂直平分线、平行线和垂直线的性质3.数据与数理统计3.1数据的整理:调查和统计、频率分布表、频数和频率3.2数据的描述:离散型数据与连续型数据、极差、平均数、中位数、众数3.3概率:概率的意义、事件的概率、概率的加法、概率的乘法3.4抽样调查:简单随机抽样、比例估计、误差与精度3.5统计问题:问题的定量化、问题的分类、解决问题的步骤4.初等几何4.1相似与全等:相似的判定、相似的性质、相似的应用、全等的判定、全等的性质、全等的应用4.2几何证明:运用已知条件与证明结论、利用定义与性质证明、综合运用定理和公理证明4.3三角形:三角形的内外角、三角形的分类、三角形的性质、三角形的综合题4.4平行线与三角形:平行线的性质、平行线的判定、平行线与三角形的性质、平行线与平面图形的性质4.5连接与垂直:垂直线段的判定、垂直角的性质、垂直的判定定理、垂直线段的应用4.6圆的性质与计算:圆的中心与半径、弧长与扇形面积、圆与直角三角形5.函数与图像5.1一元一次方程与一元二次方程:解方程、解不等式、解方程的应用、解不等式的应用5.2一次函数与二次函数:函数的定义、函数的性质、函数的图象、函数关系、函数方程、函数的应用5.3幂函数与反比例函数:幂函数的图象、反比例函数的图象、幂函数与反比例函数的性质、幂函数与反比例函数的应用5.4函数的实际问题:函数模型、函数图象的应用、函数方程与不等式。
初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。
初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)初中数学知识点总结归纳1.菱形的定义:一组相邻边相等的平行四边形称为菱形。
2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷ 菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3.因式分解的定义:把一个多项式变换成几个代数表达式的乘积,叫做这个多项式的因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5.公因式:多项式的每一项所包含的公因式称为这个多项式的每一项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11.平方根和算术平方根的区别:定义不同,表述不同,数字不同,取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学重点知识归纳1、一元二次方程解法:(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a²-b²=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a²±2ab+b²=0→(a±b)²=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。
2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
3. 实数实数包括有理数和无理数,可以用数轴表示。
4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。
二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。
2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。
3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。
三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。
2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。
3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。
四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。
2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。
3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。
五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。
2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。
六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一、实数的倒数、相反数和绝对值 (3 分) 1、相反数 a+b=0,a=—b,反之亦成立。 2、绝对值:一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看
成它的相反数,若|a|=a,则 a≥0;若|a|=-a,则 a≤0。正数大于零,负数小于零,正数大于一切负数,两个
正数 a 的平方根记做“ a ”。
2、算术平方根
正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a 0)
a 0
a2 a
;注意 a 的双重非负性:
- a ( a <0)
a 0
3、立方根
如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
x)2 (x
x)2 ]
n1
2
n
(2)简化计算公式(Ⅰ):s 2 1 [(x 2 x 2 x 2 ) nx 2 ] or s 2 1 [(x 2 x 2 x 2 )] x 2
n1
2
n
n1
2
n
此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ): s 2 1 [(x'2 x'2 x'2 ) nx'2 ]
第1页
(4)线段的大小关系和它们的长度的大小关系是一致的。 3、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 考点二、角 (3 分) 1、角的度量:角的度量有如下规定:把一个平角 180 等分,每一份就是 1 度的角,单位是度,用“°” 表示,1 度记作“1°”,n 度记作“n°”。 把 1°的角 60 等分,每一份叫做 1 分的角,1 分记作“1’”。 把 1’ 的角 60 等分,每一份叫做 1 秒的角,1 秒记作“1””。 1°=60’=60” 2、角的平分线及其性质 一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理: (1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。
项。多项式中次数最高的项的次数,叫做这个多项式的次数。 2、同类项 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
第三章 一元一次方程
考点一、一元一次方程的概念 (6 分) 1、一元一次方程 只含有一个未知数,并且未知数的最高次数是
1 的整式方程叫做一元一次方程,其中方程
s s 2 1 [(x x)2 (x x)2 (x x)2 ]
n1
2
n
第十一章 三角形 第十二章 全等三角形
考点一、三角形 (3~8 分) 1、主要线段 角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段。 中线:在三角形中,连接一个顶点和它对边的中点的线段。 高线:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段。 2、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 3、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于 180°。推论:①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。
第一章 有理数
考点一、实数的概念及分类 (3 分)
1、实数的分类
正有理数
有理数 零
有限小数和无限循环小数
实数
负有理数
正无理数
无理数
无限不循环小数
负无理数
π 2、无理数: 7, 3 2 , +8,sin60o。
3
第二章 整式的加减
考点一、整式的有关概念 (3 分) 1、单项式 只含有数字与字母的积的代数式叫做单项式。
第4页
的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。 考点二、众数、中位数 (3~5 分)
1、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。 2、中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均 数)叫做这组数据的中位数。 考点三、方差 (3 分)
2、实数大小比较的几种常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设 a、b 是实数, a b 0 a b, a b 0 a b, a b 0 a b
(3)求商比较法:设 a、b
是两正实数,
a b
1
a
b; a b
1
a
b; a b
1
a
第五章 相交线与平行线
考点一、平行线 (3~8 分) 1、平行线公理及其推论 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 2、平行线的判定 平行线的判定公理:同位角相等,两直线平行。 平行线的两条判定定理:(1)内错角相等,两直线平行。(2)同旁内角互补,两直线平行。 补充平行线的判定方法: (1)平行于同一条直线的两直线平行。(2)垂直于同一条直线的两直线平行。(3)平行线的定义。 3、平行线的性质(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,
1、方差的概念:在一组数据 x , x ,, x ,中,各数据与它们的平均数 x 的差的平方的平均数,叫做
12
n
这组数据的方差。通常用“ s 2 ”表示,即 s 2 1 [(x x)2 (x x)2 (x x)2 ]
n1
2
n
2、方差的计算
1 (1)基本公式: s 2 [(x
x)2 (x
边都是整式,这样的不等式叫做一元一次不等式。 2、一元一次不等式的解法 解一元一次不等式的一般步骤: (1)去分母(2)去括号(3)移项(4)合并同类项(5)将 x 项的系数化为 1
考点二、一元一次不等式组 (8 分) 1、当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 2、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
2、科学记数法:把一个数写做 a 10n的形式,其中1 a 10 ,n 是整数,这种记数法叫做科学记
数法。 考点四、实数大小的比较 (3 分)
1、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺 一不可)。【解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一(4)绝对值比较法:设 a、b 是两负实数,则 a b a b 。
(5)平方法:设 a、b 是两负实数,则 a 2 b 2 a b 。
第七章 平面直角坐标系
考点一、平面直角坐标系 (3 分) 1、 平面直角坐标系 注意:x 轴和 y 轴上的点,不属于任何象限。
考点二、不同位置的点的坐标的特征 (3 分)
ax b (0 x为未知数,a 0)叫做一元一次方程的标准形式,a 是未知数 x 的系数,b 是常数项。
第四章 图形的初步认识
考点一、直线、射线和线段 (3 分) 1、点和直线的位置关系有线面两种: ①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 2、线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。
同旁内角互补。 考点二、命题、定理、证明 (3~8 分)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。 考点三、投影与视图 (3 分) 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。 2、视图 物体的三视图特指主视图、俯视图、左视图。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 a 3 a ,这说明三次根号内的负号可以移到根号外面。
考点三、科学记数法和近似数 (3—6 分) 1、有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的
数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
第十章 数据的收集、整理与描述
考点一、统计学中的几个基本概念 (4 分) 1、总体:所有考察对象的全体叫做总体。 2、个体:总体中每一个考察对象叫做个体。 3、样本:从总体中所抽取的一部分个体叫做总体的一个样本。4、样本容量:样本中个体的数目叫做
样本容量。5、样本平均数:样本中所有个体的平均数叫做样本平均数。6、总体平均数:总体中所有个体
(2)点 P(x,y)到 y 轴的距离等于 x (3)点 P(x,y)到原点的距离等于 x 2 y 2
第八章 二元一次方程组
考点一、二元一次方程组 (8~10 分) 二元一次方正组的解法 (1)代入法(2)加减法
第九章 不等式与不等式组
考点一、一元一次不等式 (6~8 分) 1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两
1 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如 4 a 2b ,这种