Temporal Sequence Learning With Dynamic Synapses
基于模块化交通流组合预测模型
doi:10.3969/j.issn.1003-3114.2023.04.023引用格式:顾潮,肖婷婷,丁飞,等.基于模块化交通流组合预测模型[J].无线电通信技术,2023,49(4):761-772.[GU Chao,XIAO Tingting,DING Fei,et al.Traffic Flow Combination Prediction Model Based on Modularization [J].Radio Communi-cations Technology,2023,49(4):761-772.]基于模块化交通流组合预测模型顾㊀潮1,肖婷婷2,丁㊀飞1,周启航1,赵芝因1(1.南京邮电大学物联网学院,江苏南京210003;2.南京信息工程大学电子与信息工程学院,江苏南京210044)摘㊀要:短时交通流预测是智能交通系统的核心能力组件之一,为城市交通管理㊁交通控制和交通引导提供智能决策支撑㊂针对交通路网交通流呈现的非线性㊁动态性和时序相关性,提出一种基于模块化的交通流组合预测模型ICEEMDAN-ISSA-BiGRU㊂采用改进的基于完全自适应噪声集合经验模态分解(Improved Complete Ensemble EmpiricalMode Decomposition with Adaptive Noise,ICEEMDAN)方法对交通流非线性时间序列进行分解,获取本征模态分量(Intrin-sic Mode Functions,IMF);利用双向门控循环单元(Bi-directional Gate Recurrent Unit,BiGRU)挖掘交通流量序列中的时序相关性特征;基于动态自适应t 分布变异方法改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA),实现对BiG-RU 网络权值参数的迭代寻优,避免了短时预测结果陷入局部最优;基于公开PeMS 数据集对短时交通流预测性能进行性能评估与验证㊂实验结果表明,所提组合模型的短时交通流预测性能优于10个传统模型,改进后的交通流量预测平均绝对误差(Mean Absolute Error,MAE)指标接近10.98,平均绝对值百分误差(Mean Absolute Percentage Error,MAPE)指标接近10.12%,均方根误差(Root Mean Square Error,RMSE)指标接近12.42,且在不同数据集下所提模型具有较好的泛化性能㊂关键词:短时交通流预测;完全自适应噪声集合经验模态分解;本征模态分量;麻雀搜索算法;双向门控循环单元中图分类号:TP391㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)04-0761-12收稿日期:2023-03-16Traffic Flow Combination Prediction Model Based on ModularizationGU Chao 1,XIAO Tingting 2,DING Fei 1,ZHOU Qihang 1,ZHAO Zhiyin 1(1.School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;2.School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)Abstract :Short-term traffic flow prediction is one of the core competence components of intelligent transportation system,whichprovides intelligent decision support for urban traffic management,traffic control and traffic guidance.In this paper,Iceemdan-Isa-Bigru,a modular combined traffic flow prediction model,is proposed based on the nonlinear,dynamic and temporal correlation of traffic flow inthe traffic network.Firstly,an Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN)methodbased on fully adaptive noise set empirical Mode decomposition was used to decompose the nonlinear time series of traffic flows and ob-tain the intrinsic mode component.Secondly,bidirectional gated cycle unit is used to explore temporal correlation characteristics of traf-fic flow sequence.Then,based on the dynamic adaptive distributed variation method,the SSA algorithm is improved to achieve iterative optimization of the weight parameters of Bi-directional Gate Recurrent Unit (BiGRU)network,which avoids short-term prediction re-sults falling into local optimal.Finally,the short-time traffic flow prediction performance is evaluated and verified based on open PeMS data set.Experimental results show that the short-time traffic flow prediction performance of the proposed combined model is better than that of the 10traditional models.The improved Mean Absolute Error (MAE)index is close to 10.98,the Mean Absolute Percentage Er-ror (MAPE)index is close to 10.12%,and the Root Mean Square Error (PMSE)index is close to 12.42.The proposed model has bet-ter generalization performance under different data sets.Keywords:short-term traffic flow prediction;complete ensemble empirical mode decomposition with adaptive noise;intrinsic mode function;sparrow search algorithm;BiGRU0 引言随着城市化的发展,城市人口和机动车数量逐渐增加,道路利用率趋于饱和状态,尤其是早晚高峰时段,形成了城市 交通病 ㊂为解决这一问题,研究人员提出智能交通系统(Intelligent Traffic System, ITS)[1],通过计算机㊁通信㊁传感㊁控制㊁电子等技术手段,集成道路㊁汽车㊁驾驶员等各种资源㊂大数据与人工智能技术的发展,ITS已经开始向数据驱动型ITS转变[2]㊂其中,短期交通流预测是未来ITS 的核心能力组件之一,为交通管理㊁交通控制和交通引导提供决策依据,为智慧出行提供智力支持㊂现有交通流预测模型主要包括两类:统计模型和机器学习模型[3]㊂统计模型可分为线性理论模型和非线性理论模型㊂线性理论模型包括自回归移动平均模型(Autoregressive Integrated Moving Aver-age Model,ARIMA)及其变体[4-6]㊂非线性理论模型包括K近邻非参数回归(K-Nearest Neighbors, KNN)[7]㊁卡尔曼滤波器(Kalman Filter,KF)[8]㊁支持向量机(Support Vector Machine,SVM)[9]和人工神经网络(Artificial Neural Network,ANN)[10]㊂ITS 的建设与发展,针对道路感知能力正在获得有力提升,如地磁线圈㊁雷达检测器㊁视频监控以及车辆GPS数据等,为交通流预测提供了大量基础数据㊂由于数据多源㊁异质以及区域离散分布,采用传统线性和非线性方法进行短时交通流预测存在技术挑战基于机器学习的深度学习方法[11-12]适应于大样本量交通数据集的特征提取与分类识别,目前受到业界的广泛关注㊂考虑到深度网络相较于单层网络更能挖掘物理量的时空特征,李静宜等人[13]对长短时记忆(Long Short-Term Memory,LSTM)神经网络架构进行深度设计,采用3层LSTM神经网络结构,融入遗传算法对LSTM层数㊁Dense层数㊁隐藏层神经元数和Dense层神经元数进行寻优,能更好捕获路网交通流的波动特性,从而实现更准确的短时交通流预测精度㊂由于交通流的内在变化规律是复杂的,通过深度网络捕获长期的历史信息占用了大量的训练时间和内存㊂因此研究人员对交通流时间序列进行分解,简化预测模型的结构,全面有效地提取特征㊂Rilling等人[14]提出了经验模态分解(Empirical Mode Decomposition,EMD),将信号中不同尺度的趋势或波动逐步分解为一系列具有不同频率的本征模态分量(Intrinsic Mode Functions,IMF)㊂理论上,非线性和随机性的信号可以被分解;然而,传统的EMD分解不完整,会引起混合和假模态的问题㊂因此,研究人员在EMD基础上进行改进与优化,取得了很好的效果㊂例如,Wei等人[15]将EMD和反向传播神经网络(Back Propagation Neural Network, BPNN)相结合,选择与原始数据高度相关的模态以提高预测效率,表现出显著的性能㊂同样,Chen等人[16]采用集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)对交通流时间序列进行分解,去除高频模态的同时引入LSTM,对左侧重构模态进行预测㊂因为每个本征模态分量在时间序列中都起着重要作用,过早放弃某些分量会导致交通流特征信息不足㊂针对这一问题,Lu等人[17]通过XGBoost方法对经过完全自适应噪声集合经验模态分解(Complete Ensemble Empirical Mode Decomposi-tion with Adaptive Noise,CEEMDAN)后的各车道交通流IMF进行预测,有效提取了其中的先验特征㊂Wang等人[18]将CEEMDAN与最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)相结合,有效地提高了非线性非平稳公路交通流量的预测精度㊂Huang等人[19]提出了通过K-means算法将CEEMDAN分解的交通流IMF进行聚类,并结合BiLSTM进行预测,有效降低了交通流量序列中的波动性与非平稳性㊂虽然上述方法模态混合问题在一定程度上得到了解决,但残余噪声和伪模态仍然存在㊂此外,训练数据规模较小或内存使用较高,依然存在难以捕捉交通流的深层变化特征的问题,尚需要进一步研究㊂从交通流量序列的非线性㊁非平稳性及时序相关性特征考虑,现有研究未将三者全面考虑,且残余噪声和伪模态仍然存在㊂对此,本文将CEEMDAN 能够细化交通流量时间序列非平稳性优势[20]㊁麻雀搜索算法(Sparrow Search Algorithm,SSA)收敛速度快和寻优能力强的特点[21]㊁双向门控循环单元(Bi-directional Gate Recurrent Unit,BiGRU)深度挖掘交通流序列中的时序相关性的优点[22]三者结合,提出一种改进完全自适应噪声集合经验模态分解(Im-proved Complete Ensemble Empirical Mode Decompo-sition with Adaptive Noise,ICEEMDAN)和改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化BiGRU的组合模型㊂1㊀基于CEEMDAN理论EMD分解是一种经典的自适应方法,用于解决非线性和非光滑信号问题㊂在交通流数据中,由于受到外部因素的影响,采集到的数据会包含更多的噪声,因此需要进行信号处理和去噪㊂EMD分解能够将信号分解成多个IMF,每个模态分量表示一个具有不同幅度和频率的波形,将数据分解成多个模态分量可以更好地观察到不同时间尺度上地变化趋势和周期性㊂但是EMD分解得到的模态分量存在模态混合,模态混合问题地出现导致时频分布不准确,使得一些模态分量失去了物理意义㊂EEMD在原始信号的基础上加入高斯白噪声,解决了模式混合问题㊂但分解后的高斯白噪声无法消除,分解的完整性较差,导致算法重构误差较大㊂为了克服这些问题,Torres等人[23]提出了CEEMDAN旨在每个分解过程中加入自适应高斯白噪声来改进EEMD,提高了EEMD分解的完整性的同时减少了重构误差及降低了计算成本㊂基于CEEMDAN分解的交通流时间序列数据的实现步骤如下:步骤1㊀对原始交通流量时间序列数据x第j次添加高斯白噪声,则交通流时间序列可表示为:x(j)=x+βj v(j)㊂(1)步骤2㊀采用EMD方法对交通流数据进行分解,得到第一个模态分量IMF(j)1,均值为IMF1以及第一个残差分量Res1:IMF1=x-IMF(j)1,(2)Res1=x-IMF1㊂(3)步骤3㊀根据步骤2可以计算得出第二个模态分量IMF(j)2,均值为IMF2和第二个残差分量Res2: IMF2=1NðN j=1E1(Res1+β1E1(v(j))),(4)Res2=Res1-IMF2㊂(5)步骤4㊀以此类推,计算第k个残差分量Res k 和第k+1个模态分量IMF k+1:Res k=Res k-1-IMF k,(6) IMF k+1=1NðN j=1E1(Res k+βk E k(v(j)))㊂(7)步骤5㊀重复上述步骤,直到残差分量无法继续分解,即为单调函数或不超过两个极值点,最终残差分量可表示为:Res=x-ðNk=1IMF k㊂(8)式中:x为原始交通流的时间序列数据,IMF k为分解后得到的第k个IMF,v(j)为分解过程中在j(j=1, 2, ,N)时刻添加的满足标准正态分布的高斯白噪声信号,βj为原始交通流时间序列数据x分解各阶段的信噪比,E k(㊃)表示EMD算法分解的第k个IMF㊂上述函数共同构成了原始信号在不同时间尺度上的特征,清晰地显示了原始交通流时间序列的变化趋势,有效地降低了预测误差㊂2㊀SSA-BiGRU短时交通流预测理论2.1㊀SSA原理SSA是基于麻雀觅食和反捕食行为的群体智能优化算法[24],其中,麻雀种群中的个体被分为3种不同类型:生产者㊁觅食者和侦查者㊂生产者具有高能量储备㊁强大的探索能力和广阔的探索空间,并负责为整个种群寻找食物丰富的觅食区域㊂当麻雀发现捕食者时,生产者需要引领其他个体到达安全区域,以避免捕食者的攻击㊂假设麻雀搜索算法的种群规模为N,且在d维空间寻找最优解,则生产者的位置更新方程如下:X Iter+1id=X Iter idˑexp-iαˑmax Iter(),R2<STX Iter id+QˑL,R2ȡST{,(9)式中:Iter 表示当前迭代次数,X Iter +1id 表示第i 只麻雀在第d (d =1,2, ,dim )维的位置,αɪ(0,1]为随机数,max Iter 表示最大迭代次数,R 2ɪ[0,1]和ST ɪ[0.5,1]分别表示警戒值和安全阈值,Q 是服从正态分布的随机数,L 是一个1ˑdim 的行向量,初始化所有元素为1㊂觅食者始终跟随生产者获取高质量的食物并增加能量储备㊂一些觅食者监视生产者并与其竞争食物㊂当觅食者的能量储备低时,它们将离开群体自己寻找食物以生存㊂觅食者的位置更新方程式为:X Iter +1id=Q ˑexp Xw Iterd-X Iter +1idi 2(),i >n 2Xb Iter+1d +X Iter +1id -Xb Iter +1dA +ˑL ,otherwise ìîíïïïï,(10)式中:Xw Iter d表示当前全局最差位置,n 表示种群中个体数量,Xb Iter +1d表示由生产者发现的全局最佳位置,A 是一个1ˑdim 维度的行向量,其元素被随机分配为1或-1,A +是A 的逆矩阵,即A +=A T (AA T )-1㊂在麻雀种群中,一些个体扮演侦察者的角色㊂这些个体能够探测到捕食者的威胁并向其他个体发出警报以避免危险㊂在模拟实验中,假设这样的个体占总种群的10%~20%,它们的初始位置被随机分配㊂侦察者的位置更新方程为:X Iter +1id =Xb Iterd+βˑ(X Iter +1id-Xb Iter d),f i ʂf g X Iterid+K ˑX Iter id -Xw Iter d f i -f w +ε(),f i =f g ìîíïïïï,(11)式中:Xb Iter d 表示当前全局最优位置;β是步长控制因子,是一个随机数,其遵循平均值为0㊁方差为1的正态分布;K 是一个在[-1,1]的随机数,f i 表示当前个体的适应度值(目标函数值),f g 和f w 分别表示当前全局最优和最差适应度值,ε是一个非常小的数,以避免分母为0的情况㊂2.2㊀BiGRU 原理递归神经网络以序列数据为输入,按序列演化为方向进行递归,所有循环单元都由链连接[25]㊂Cho 等人[26]提出了门控循环单元(Gate RecurrentUnit,GRU),该方法具有较少的收敛参数,其本质使用GRN 模块单元代替了RNN 的隐藏单元,有效地解决了传统RNN 由于短期记忆而导致的梯度消失问题㊂GRU 结构如图1所示㊂图1㊀GRU 网络结构Fig.1㊀GRU networks structureGRU 模块单元通过当前节点的输入x t 和上一节点的输出h t -1计算复位门控状态r t 和更新门控状态z t :r t =σ(w r ㊃[h t -1,x t ]),(12)z t =σ(w z ㊃[h t -1,x t ]),(13)式中:x t 为t 时刻输入数据,h t -1为前一时刻的隐藏状态信息,[]表示w r 和w z 两个向量的连接,即权重矩阵,表σ(㊃)示sigmoid 函数㊂得到信号后,首先通过h t -1和r t 相乘得到复位内存数据,然后与x t 进行拼接,最后使用tanh 激活函数将数据缩放到[-1,1],得到当前隐藏状态信息h ~t :h ~t =tanh(w h ~㊃[r t ㊃h t -1,x t ]),(14)式中:tanh(㊃)表示双曲正切激活函数㊂由于遗忘和记忆是同时进行的,将之前得到的更新门z t 作为遗忘门,1-z t 作为输入门,最终得到GRU 的输出为:h t =z t ㊃h ~t +(1-z t )㊃h t -1,(15)式中:h t 为GRU 网络在t 时刻的输出,门控信号z t ɪ[0,1],其值越接近0,数据越被遗忘;相反,它越接近1,保留的数据就越多㊂考虑到GRU 状态是单向传递的,这种情况下神经网络的映射输出仅基于时间数据的正向信息㊂本文采用BiGRU 模型将正反向传播机制[27]与GRU 相结合,使其较单向GRU 模型挖掘更多交通流量序列信息㊂如图2所示,BiGRU 模型通过正㊁反向GRU 隐藏状态信息h ңt 和h ѳt 线性计算得到最终的交通流量预测值y t :y t =w t h t ң+v t h t ѳ+b t ,(16)式中:w t 为正向GRU网络输出层权值系数,v t 为反向GRU 网络输出层权值系数,b t 为t 时刻双向门控循环单元中双隐态对应的偏置项㊂图2㊀BiGRU网络结构Fig.2㊀BiGRU networks structure3㊀ICEEMD-ISSA-BiGRU短时交通流预测模型构建及算法3.1㊀ICEEMDAN原理考虑到CEEMDAN方法仍然存在残留噪声和伪模态,使得误差在迭代过程中逐步积累,影响预测模型的训练和性能㊂本文提出了ICEEMDAN,该算法有两个改进点:①估计信号叠加噪声的局部均值,并将其与当前残差分量的平均值差异定义为主模态,减少了分解模式分量中存在的残留噪声;②提取第k个模态分量,使用E k(v(j))替换白噪声,减少模态重叠㊂具体步骤如下[24]:步骤1㊀设x(j)=x+β0E1(v(j)),计算第一个残差分量:Res1=M(x(j)),(17)式中:M(㊃)为模态分量的局部均值㊂步骤2㊀计算第一个模态分量IMF1:IMF1=X-Res1㊂(18)步骤3㊀第二个残差分量为Res1+β1E2(v(j))的均值,第二个模态分量IMF2定义为:IMF2=Res1-Res2=Res1-M(Res1+β1E2(v(j)))㊂(19)步骤4㊀同理,第k(k=3, ,K)个残差分量Res k表示为:Res k=M(Res k-1+βk-1E k(v(j))㊂(20)步骤5㊀最终得到ICEEMDAN算法的第k个IMF k:IMF k=Res k-1-Res k㊂(21)步骤6㊀执行步骤4,计算第k+1个残差分量㊂3.2㊀改进SSA优化BiGRU网络算法BiGRU网络采用传统的梯度下降法迭代网络参数,在梯度下降过程中易出现预测精度不足的问题[28],因此本节通过两方面的改进以提升组合模型预测精度及收敛速度k:①引入寻优能力及迭代速度在新型群体智能算法中较优的麻雀搜索算法对双向门控循环网络进行参数择优;②基于动态自适应t分布变异方法对SSA进行改进以缓解麻雀搜索算法易陷入局部最优解的问题㊂在群体智能优化算法中,变异可以提高种群的多样性,帮助脱离局部极值㊂其中,高斯变异算子和柯西变异算子是比较常见的变异算子㊂研究表明,高斯分布和柯西分布具有不同的概率分布特性,高斯变异算子具有更好的局部开发能力,而柯西变异算子具有更好的全局探索能力[29]㊂文中提出的动态自适应t分布是一种典型的标准统计分布,结合了高斯变异算子和柯西变异算子的优点,其形状随自由参数n的值而变化㊂当n=1时,t分布是柯西分布;当nңɕ时,t分布类似于高斯分布㊂由于t分布算子的变异性能与变异比例因子和自由度参数相关[30],所以本文在变异比例因子和t 分布自由度参数中都引入了迭代次数㊂麻雀的变异比例因子和改进后生产者的位置公式如下:σ=2(e-e Iter/max Iter)e-1,(22)xᶄi=x i+x iσi t(Iter),(23)式中:e是自然对数的底数,Iter是当前迭代次数, max Iter是最大迭代次数,x i和xᶄi分别表示变异前和变异后第i只麻雀的位置,t(Iter)是以Iter为自由度参数的t分布㊂如图3所示,在迭代的开始阶段,雀群需要在广阔的搜索空间中寻找目标㊂此时,突变尺度因子σ很大,t分布接近于柯西分布,使其具有更好的全局探索能力㊂随着迭代次数的增加,t分布的变异逐渐演变为高斯分布的同时突变尺度因子σ适当地减小,使得雀群缓慢地接近最优的全局解㊂可以看出,通过将迭代次数引入到自由度参数和变异比例因子σ中,动态自适应t分布变异实现了对变异幅度的非线性自适应控制㊂最终,动态自适应t分布变异方法提高了算法的全局和局部探索能力㊂由此得出ISSA优化BiGRU网络步骤如下:步骤1㊀初始化BiGRU和ISSA的超参数,定义第q个BiGRU交通流量子网络待优化参数集合W q,当前迭代次数Iter=1,当前权值参数编号h=1,最大迭代次数max Iter;步骤2㊀随机初始化N只麻雀的属性,即为N只麻雀随机赋予0~1的随机数;步骤3㊀采用式(12)~式(16)对交通流量模态分量进行预测,由式(24)计算结果与真实值间的MAE,即ISSA迭代过程中的适应度函数f i,以修正得到第q个BiGRU预测子网络的第h个权值参数:f i=1nðn i=1(himf h i-ximf h i)2,(24)式中:himf i为IMF中第i个真实模态分量值,himf h i 为训练第h个权值时输出的第i个交通分量预测值;步骤4㊀根据式(23)更新生产者的位置,并由式(10)和式(11)更新觅食者和侦察者的位置;步骤5㊀更新全局最优适应度值f g=f i和历史最优位置Xb Iter d=xᶄi㊂此时若Iter<max Iter,则令Iter= Iter+1返回步骤4执行;否则,将全局最优位置所对应的麻雀所赋予的随机数作为第q个BiGRU网络中第h个权值参数的最优权值参数;步骤6㊀若h未达到权值参数总数,令h=h+1后返回步骤2继续执行;否则,输出BiGRU预测子网络中的最优参数集合W∗q㊂(a)柯西分布㊁t分布和高斯分布概率密度曲线(b)突变尺度因子曲线图3㊀概率密度分布与突变尺度因子关系对比图Fig.3㊀Comparison diagram of the relationship between㊀probability density distribution and abrupt scalefactor4 短时交通流预测组合建模交通流量数据具有较强的非线性㊁非平稳及时序相关性,使用单一的预测方法难以达到理想的效果㊂因而采用ICEEMDAN算法对交通流量时间序列数据进行分解,以BiGRU的权值参数为优化对象,结合ISSA确定BiGRU权值参数的最优值,构建ICEEMDAN-ISSA-BiGRU组合模型,对城市短期交通流进行准确预测㊂模型结构框图如图4所示㊂图4㊀ICEEMDAN-ISSA-BiGRU短时交通流预测模型结构Fig.4㊀ICEEMDAN-ISSA-BiGRU structure of short-term traffic flow prediction model具体步骤如下:步骤1㊀采用3.1节步骤将待预测交通流量序列X =(x 1,x 2, ,x n )T分解,得到m 组体现路网趋势性㊁周期性的交通流量模态分量IMF;步骤2㊀采用3.2节步骤分别对各BiGRU 网络权值反复训练,最终得到最优参数集合W ∗,及各性能最优的BiGRU 预测子模型;步骤3㊀采用步骤2训练完成的BiGRU 预测子模型分别对交通流测试集模态分量进行预测,得到交通流量测试集模态分量的预测序列H q =(h 1,h 2, ,h n )T ,其中n 表示交通流量数据总数;步骤4㊀由式(8)可知,交通流量真实值由各交通模态分量及残差分量于等系数下相加而成,因此,总交通流量预测序列Y 由各交通模态分量的预测序列H q 相加得到,即Y =ðmq =1H q =(y 1,y 2, ,y n )T㊂5㊀实验与分析5.1㊀数据选取和实验参数设置本文采用美国加州Irvine 市405-N 高速公路车流量探测器(编号:VDS-1209092)获得的PeMS 数据集[30],选择PeMS 数据集中2019年5月1 7日样本数据,该样本数据中包括每5min 的交通流量㊁速度和占有率等㊂数据集被分为两部分:①选择2019年5月1 6日的数据当作训练集,训练本文模型;②选择2019年5月7日的交通流量数据调整模型参数㊂随后,使用训练好的模型预测2019年5月8日的交通流量,并将预测值与2019年5月8日的真实值进行比较,评价模型性能㊂考虑到作为预测模型输入的各种参数的维数不同且变化较大,使得模型的学习率可能会受到数据范围的限制而减缓收敛速度,进一步降低模型的稳定性和准确性㊂本文在模型数据输入之前,将数据集中各类数据的最大值和最小值作为参考值对数据集进行归一化处理:x norm =x -x minx max -x min ,(25)式中:x norm 为归一化数据,x 为原始数据,x min 和x max 为各数据维度所对应的最大值和最小值㊂通过归一化处理,每个数据都被映射到一个[0,1]的值㊂本文在64位Windows 10操作系统上使用Mat-lab R2021b 进行所有实验,主要硬件包括3.6GHz的CPU 和32GB 的内存㊂根据前期研究及实验修正,制定仿真参数如表1所示㊂表1㊀仿真参数设置Tab.1㊀Simulation parameter setting5.2㊀模型评价指标采用MAE㊁MAPE 和RMSE 作为模型的评价标准,其表达式为:MAE =1n ðn t =1|x t -x ^t |,(26)MAPE =1n ðn t =1x t -x ^tx t,(27)RMSE =1n ðnt =1(x t -x ^t)2,(28)式中:N 为测试数据,x t 和x ^t 为t 时刻的真实值和预测值㊂以上3个评价准则取值越低,取得的预测效果越优㊂5.3㊀改进麻雀搜索算法对比分析表2给出了应用于SSA和ISSA 的6个基准测试函数以验证ISSA 的优越性,实验函数包括3种单峰函数F 1~F 3(用于局部优化能力测试)和3种多峰函数F 4~F 6(用于全局优化能力测试)㊂本节对每个测试函数进行20次实验,计算出SSA 和ISSA 测试结果的最优值㊁平均值㊁最差值和标准差㊂其中,平均值反映了算法的收敛精度,标准差反映了算法的稳定性㊂表2㊀测试函数Tab.2㊀Test function函数类型公式维度上界和下界最优解单峰函数F 1(x )=ðni =1x 2i30[-100,100]0F 2(x )=ðni =1(ði j =1x j )230[-100,100]0F 3(x )=max x i ,1ɤi ɤn {}30[-100,100]0多峰函数F 4(x )=ðni =1-x i sin(x i )30[-500,500]-12569F 5(x )=14000ðn i =1x 2i -ᵑni =1cosx i i()+130[-600,600]0F 6(x )=ðni =1[x 2i -10cos(2πx i )+10]30[-5.12,5.12]㊀㊀从表3可以看出,ISSA 算法在所有测试函数中均成功获得最优解㊂具体的,在最优值㊁平均值㊁最差值和标准差方面都有较好的表现,表现出ISSA 优化的准确性和稳定性㊂由此得出ISSA 通过加入动态自适应t 分布变异,有效地增强了局部和全局寻优能力,同时提高了算法的收敛精度㊁稳定性和收敛速度㊂表3㊀SSA 和ISSA 的测试结果Tab.3㊀SSA and ISSA test results测试函数算法最优值平均值最值标准偏差F 1SSA4.8801ˑ10-358.2877ˑ10-208.6216ˑ10-192.1765ˑ10-19ISSA 0 2.2508ˑ10-1966.2383ˑ10-1950F 2SSA 1.3876ˑ10-343.5179ˑ10-193.2669ˑ10-187.9483ˑ10-19ISSA 0 2.7370ˑ10-2188.2109ˑ10-217F 3SSA 4.6777ˑ10-212.1774ˑ10-124.1323ˑ10-117.9168ˑ10-12ISSA 02.9173ˑ10-1054.2388ˑ10-1049.8060ˑ10-105F 4SSA -11897.79-7980.75-3539.172687.95ISSA -12653.87-12163.34-10673.76787.21F 5SSA 0 3.7007ˑ10-181.1102ˑ10-161.9929ˑ10-17ISSA 0000F 6SSA 0 1.8948ˑ10-155.6843ˑ10-141.0204ˑ10-14ISSA 05.4㊀交通流预测评估与分析为了验证所提出的组合预测模型ICEEMDAN-ISSA-BiGRU 性能的优越性,在同一数据集下构建10个基础预测模型,并与ICEEMDAN-ISSA-BiGRU进行比较分析㊂表4给出了用于交通流预测对比的典型模型清单,其中模型1~5与本文模型进行消融对比实验,模型6~10与本文模型进行不同模型性能对比实验㊂表4㊀典型交通流预测模型Tab.4㊀Typical traffic flow prediction model模型模型介绍缩写模型1循环神经网络GRU 模型2双向门控循环单元BiGRU 模型3基于SSA 优化BiGRU 模型进行预测SSA-BiGRU 模型4基于本文改进SSA 算法优化BiGRU 模型进行预测ISSA-BiGRU 模型5CEEMDAN 和本文改进的SSA 算法优化BiGRU 模型进行预测CEEMDAN-ISSA-BiGRU续表4模型模型介绍缩写模型6自回归移动平均模型ARIMA模型7反向传播网络BPNN模型8长期记忆递归神经网络LSTM模型9CEEMDAN对交通流量数据分解,GWO算法优化LSTM模型进行预测CEEMDAN-GWO-LSTM 模型10CEEMDAN对交通流量数据分解,K-means优化BiLSTM模型进行预测CEEMDAN-K-means-BiLSTM本文方法本文改进的CEEMDAN对交通流量数据分解,本文改进的SSA算法优化BiGRU模型进行预测ICEEMDAN-ISSA-BiGRU㊀㊀表5为不同模型的交通流预测性能对比,为了更直观地展示不同模型之间的误差情况,将各典型预测模型性能指标以曲线的方式进行对比展示,如图5所示㊂可以看出,本文模型的MAE㊁RMSE㊁RMSE的计算效果最好,预测精度最高㊂①由图5(a)及表5可以看出,BiGRU通过增加双向性能和门控机制可以更好地捕捉序列中的上下文信息及长期依赖关系,获得更充足的时序特征,其预测曲线较GRU更加贴合原始交通流量曲线,预测精度显著提高,表明本文选择双向门控循环单元的优势㊂②由图5(b)及表5可以看出,通过改进的自适应麻雀搜索优化算法代替梯度下降法训练所得的最佳网络参数BiGRU网络相较于SSA-BiGRU预测模型更为准确,其MAE降低了3.89,MAPE降低了4.38%,RMSE降低了14.41,验证了改进的自适应麻雀搜索优化算法对提高预测模型精度的有效性㊂③由图5(c)及表5可以看出,与CEEMDAN-ISSA-BiGRU相比,本文模型的MAE降低了3.31, MAPE降低了5.33%,RMSE降低了3.55㊂验证了CEEMDAN改进后能够有效地减少信号中的噪声,提高信号的可靠性,同时减少了分解模态分量之间的干扰和重叠,提高了分解效果和准确度㊂④由图5(d)及表5可以看出,在单个模型中,不同模型的预测精度值相似㊂同时,考虑到交通流时空特征的BPNN模型与只考虑交通流时空特征的ARIMA㊁LSTM和GRU模型相比,没有明显优势㊂与使用原始交通流数据的单一模型相比,基于分解原理的组合模型在MAE㊁MAPE和RMSE上均表现出较好的改进,SSA-BiGRU模型的MAPE和RMSE 分别比BiGRU提高了4.47%和12.21㊂⑤由图5(e)及表5可以看出,本文组合模型弥补了CEEMDAN-GWO-LSTM和CEEMDAN-K-means-BiLSTM对非平稳性考虑的缺失以及对CEEMDAN中残留噪声和伪模态的忽视,因此预测性能更加突出,其MAE㊁MAPE和RMSE指标性能相对较优的CEEMDAN-K-means-BiLSTM分别下降了4.36㊁5.77%及4.13㊂结果表明,本文提出的组合预测模型在交通流预测方面具备较好的性能㊂表5㊀不同模型的交通流预测性能对比Tab.5㊀Comparison of traffic flow prediction performance of different models模型MAE MAPE/%RMSE模型134.0237.3140.32模型229.0428.2236.76模型322.5623.7524.55模型418.6719.3720.14模型514.1115.4515.97模型633.7436.2550.66模型734.1237.1949.86模型834.9638.3250.98模型916.2317.3719.34模型1015.3415.8916.56本文方法10.9810.1212.42(a)GRU与BiGRU预测曲线对比(b)SSA改进前后组合模型性能曲线对比。
temporal representation learning -回复
temporal representation learning -回复标题:Temporal Representation Learning:理解和应用一、引言Temporal Representation Learning,即时间序列表示学习,是一种专门用于处理和理解时间序列数据的机器学习方法。
在许多实际应用场景中,如天气预测、股票分析、健康监测、语音识别和视频理解等,数据往往是随着时间的推移而产生的序列。
因此,理解和掌握Temporal Representation Learning对于有效提取和利用这些数据中的时间模式和动态信息具有重要意义。
二、时间序列数据的特点时间序列数据的主要特点包括:1. 顺序性:数据点按照时间顺序排列,前后数据点之间存在依赖关系。
2. 非独立性:由于时间序列数据的顺序性,当前的数据点可能受到过去多个数据点的影响。
3. 周期性和趋势性:许多时间序列数据表现出明显的周期性和趋势性,如季节性变化、长期增长或下降等。
这些特点使得传统的静态数据处理方法(如线性回归、逻辑回归等)在处理时间序列数据时可能会失效或者效果不佳,因此需要专门的时间序列表示学习方法。
三、Temporal Representation Learning的基本原理Temporal Representation Learning的目标是学习到能够捕获时间序列数据动态特性的表示。
以下是一些基本的Temporal Representation Learning方法:1. 序列模型:如循环神经网络(RNN)、长短时记忆网络(LSTM)和门控循环单元(GRU)等,通过内部状态的更新来捕捉时间序列的长期依赖关系。
2. 变换器(Transformer)模型:虽然最初设计用于处理序列到序列的翻译任务,但变换器模型的自注意力机制使其也能有效地处理时间序列数据。
3. 卷积神经网络(CNN):尽管主要应用于图像处理,但一维卷积神经网络也可以用于捕获时间序列数据中的局部特征和周期性。
综合语VS分析语
1、综合语VS分析语(Synthetic VS Analytic)(语段分析):In English, the tense inflection(时态变化) can show the time sequence, so the word order does not need to follow the rule of temporal sequence(时间顺序)like Chinese.An English word can take several grammal meanings through inflections on gender(性),case(格),number(数),tense (时),aspect(体),voice(态),mood(语气),person(人称),comparatic(比较级)etc,the word is flexible.原文:During my youth in America's Appalachian mountains, I learned that farmers preferred sons over daughters, largely because boys were better at heavy farm labour. With only 3% of Americans in agriculture today, brain has supplanted brawn, yet cultural preferences,like bad habits, are easier to make than break. But history warns repeatedly of the tragic cost of dismissing too casually the gifts of the so-called weaker sex.●The word with the color of blue are connected with tense(时),aspect(体)一个单词通过变化时态,加上ed或之前加上have可以表示不同时间发生的事,不用像汉语那样一直变换时间。
time is …英语作文
time is …英语作文Time is a concept that has intrigued and perplexed humanity for centuries. It is a fundamental aspect of our existence, yet its nature and essence remain elusive. Time is a complex and multifaceted phenomenon that has been explored by philosophers, scientists, and thinkers throughout history.At its core, time is a measure of the duration and sequence of events. It is the framework within which we experience the passage of our lives, the changing of seasons, and the unfolding of the universe. Time is the medium through which we perceive the world around us, and it is the foundation upon which we build our understanding of the past, present, and future.However, the nature of time is not as straightforward as it may seem. The concept of time has been the subject of much debate and speculation, with various theories and perspectives emerging over the course of history. Some philosophers have argued that time is an illusion, a mere construct of the human mind, while others have posited that time is a fundamental aspect of reality, a dimension that is as real and tangible as the physical world.One of the most influential perspectives on the nature of time is that proposed by the physicist Albert Einstein. In his theory of relativity, Einstein demonstrated that time is not an absolute, but rather a relative phenomenon that is influenced by the observer's frame of reference. According to Einstein, time is not a constant, but rather a variable that is affected by factors such as the speed of the observer and the strength of gravitational fields.This revolutionary idea challenged the classical understanding of time as a universal and unchanging entity, and it paved the way for a more nuanced and complex understanding of the temporal dimension. Einstein's theory of relativity has had far-reaching implications, not only in the realm of physics but also in our broader understanding of the nature of reality.Another perspective on the nature of time is that proposed by the philosopher Henri Bergson. Bergson argued that time is not merely a linear sequence of events, but rather a dynamic and continuous flow of experience. He proposed the concept of "duration," which he saw as the fundamental essence of time, and he argued that this duration is not something that can be measured or quantified, but rather something that is experienced subjectively.Bergson's ideas have had a significant influence on various fields, including art, literature, and psychology, and they have contributedto a more nuanced understanding of the human experience of time.In addition to these philosophical and scientific perspectives, time has also been explored and understood through various cultural and religious lenses. Different societies and belief systems have developed their own unique conceptions of time, often reflecting their values, beliefs, and worldviews.For example, in many Eastern traditions, time is seen as a cyclical rather than a linear phenomenon, with the emphasis on the interconnectedness of all things and the continuous cycle of birth, death, and rebirth. In contrast, Western conceptions of time have tended to be more linear, focused on the progression of events and the idea of progress.Regardless of the specific perspective, time remains a fundamental aspect of human experience, and our understanding of it continues to evolve and deepen as we grapple with its complexities. Whether we view time as an absolute, a relative, or a subjective phenomenon, it is clear that it plays a crucial role in shaping our understanding of the world and our place within it.In conclusion, time is a complex and multifaceted concept that has been the subject of much exploration and debate throughout history. From the philosophical and scientific perspectives of Einstein andBergson to the diverse cultural and religious understandings of time, the nature of this fundamental aspect of our existence continues to captivate and challenge us. As we continue to explore and grapple with the mysteries of time, we may come to a deeper appreciation of the richness and complexity of our own experience of the world.。
神经网络参考文献列表
神经网络参考文献[1] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron,madaline, and backpropagation,” Proc. IEEE, vol. 78, pp. 1415-1442, Sept.1990.[2] Jian Hua Li, Anthony N. Michel, and Wolfgang Porod. “Analysis and synthesisof a class neural networks: Linear systems operating on closed hypercube,”IEEE Trans. Circuits Syst., 36(11):1405-1422, November 1989.[3] R. P. Lippmann, “An introduction to computing with neural nets,” IEEEAcoustics, Speech and Signal Processing Magazine, 2(4):4-22, April 1987.[4] S. Grossberg, E. Mingolla, and D. Todovoric,“A neural network architecture forpreattentive vision,” IEEE Trans. Biomed. Eng., 36:65-83, 1989.[5] Wang, D.and Arbib, M. A., “Complex temporal sequence learning based onshort-term memory,” Proc. IEEE, vol. 78, pp. 1536-1543, Sept. 1990.[6] Amari, S.-i., “Mathematical foundations of neurocomputing,” Proc. IEEE, vol.78, pp. 1443-1463, Sept. 1990.[7] Poggio, T. and Girosi, F., “Networks for approximation and learning,” Proc.IEEE, vol. 78, pp. 1481-1497, Sept. 1990.[8] Barnard, E., “Optimization for training neural nets,” IEEE Trans. NeuralNetwork, vol. 3, pp. 232-240, Mar. 1992.[9] Kohonen, T., “The self-organizing map,” Proc. IEEE, vol. 78, pp. 1464-1480,Sept. 1990.[10] Hagan, M.T. and Menhaj, M.B., “Training feedforward networks with theMarquardt algorithm,” IEEE Trans. Neural Network, vol. 5, pp. 989-993, Nov.1994.[11] Pei-Yih Ting and Iltis, R.A., “Diffusion network architectures forimplementation of Gibbs samplers with applications to assignment problems,”IEEE Trans. Neural Network, vol. 5, pp. 622-638, July 1994.[12] Iltis, R. A. and Ting, P.-Y., “Computing association probabilities using parallelBoltzmann machines,” IEEE Trans. Neural Network, vol. 4, pp. 221-233, Mar.1993.[13] R. Battiti, “First and second order methods for learning: Between steepestdescent and Newton's method,” Neural Computation, vol. 4, no. 2, pp. 141-166, 1992.[14] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for aself-organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54-115, 1987.[15] C. Charalambous, “Conjugate gradient algorithm for efficient training ofartificial neural networks,” IEEE Proceeding, vol. 139, no. 3, pp. 301-310, 1992.[16] M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formationand parallel memory storage by competitive neural networks,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 815-826, 1983.[17] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179-211,1990.[18] K. Fukushima, S. Miyake and T. Ito, “Neocognitron: A neural network modelfor a mechanism of visual pattern recognition,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 826-834, 1983.[19] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visualpattern recognition,” Neural Networks, vol. 1, pp. 119-130, 1988.[20] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.[21] S. Grossberg, “How does the brain build a cognitive code?,” PsychologicalReview, vol. 87, pp. 1-51, 1980.[22] M. Heywood and P. Noakes, “A framework for improved training of sigma-pinetworks,” IEEE Transactions of Neural Networks, vol. 6, no. 4, pp. 893-903, 1995.[23] J. J. Hopfield, “Neural networks and physical systems with emergent collectivecomputational properties,” Proceedings of the National Academy of Sciences, vol. 79, pp. 2554-2558, 1982.[24] J. J. Hopfield, “Neurons with graded response have collective computationalproperties like those of two-state neurons,” Proceedings of the National Academy of Sciences, vol. 81, pp. 3088-3092, 1984.[25] J. J. Hopfield and D. W. Tank, “'Neural computation of decisions inoptimization problems,” Biological Cybernetics, vol. 52, pp. 141-152, 1985.[26] K. M. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward networksare universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.[27] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,”Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.[28] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixturesof local experts,” Neural Computation, vol. 3, pp. 79-87, 1991.[29] T. Kohonen, “Correlation matrix memories,” IEEE Transactions on Computers,vol. 21, pp. 353-359, 1972.[30] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems,Man, and Cybernetics, vol. 18, no. 1, pp. 49-60, 1988.[31] D. J. C. MacKay, “A practical bayesian framework for backproagationnetworks,” Neural Computation, vol. 4, pp. 448-472, 1992.[32] A. N. Michel and J. A. Farrell, “Associative memories via artificial neuralnetworks,” IEEE Control Systems Magazine, April, pp. 6-17, 1990.[33] A. K. Rigler, J. M. Irvine and T. P. Vogl, “Rescaling of variables inbackpropagation learning,” Neural Networks, vol. 4, no. 2, pp. 225-229, 1991. [34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations byback-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.[35] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, no. 1, pp.109-118, 1990.[36] D. F. Specht, “A General regression neural network,” IEEE Transactions onNeural Networks, vol. 2, no. 6, pp. 568-576, 1991.[37] D. W. Tank and J. J. Hopfield, “Simple 'neural' optimization networks: An A/Dconverter, signal decision circuit and a linear programming circuit,” IEEE Transactions on Circuits and Systems, vol. 33, no. 5, pp. 533-541, 1986.[38] T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink, and D. L. Alkon,“Accelerating the convergence of the backpropagation method,” Biological Cybernetics, vol. 59, pp. 256-264, Sept. 1988.[39] P. J. Werbos, “Backpropagation through time: What it is and how to do it,”Proceedings of the IEEE, vol. 78, pp. 1550-1560, Oct. 1990.[40] B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptivepattern recognition,” IEEE Computer Magazine, pp. 25-39, March 1988.[41] R. J. Williams and D. Zipser, “A learning algorithm for continually running fullyrecurrent neural networks,” Neural Computation, vol. 1, pp. 270-280, 1989. [42] A. Waibel, Tl Hanazawa, G. Hinton, K. Shikano and K. J. Lang, “Phonemerecognition using time-delay neural networks,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, pp. 328-339, 1989.[43] Linske, R., “Self-organization in a perceptual network,” IEEE ComputerMagazine, vol. 21, pp. 105-117, March 1988.[44] Carpenter, G.A. and Grossberg, S., “The ART of adaptive pattern recognition bya self-organizing neural network,” IEEE Computer Magazine, vol. 21, pp. 77-88,March 1988.[45] Fukushima, K., “A neural network for visual pattern recognition,” IEEEComputer Magazine, vol. 21, pp. 65-75, March 1988.[46] Kohonen, T., “The 'neural' phonetic typewriter,” IEEE Computer Magazine, vol.21, pp. 11-22, March 1988.。
pre-sequence语言学名词解释
pre-sequence语言学名词解释pre-sequence(前序)是语言学中的术语,它指的是在某个特定的上下文中,一个词或短语前面的一组词或短语。
这些前序可以提供背景信息、修饰语义或语法结构,从而帮助理解后面的词或短语的意义。
下面是20个双语例句,以帮助理解pre-sequence的含义:1.在这个简单的句子中,"I went"是pre-sequence,它为"to the store"提供了上下文信息。
In this simple sentence, "I went" is the pre-sequencethat provides the context for "to the store".2. "After finishing my homework"是pre-sequence,它帮助解释了"I went out"的原因。
"After finishing my homework" is the pre-sequence that explains the reason for "I went out".3.在这个问题中,"Can you tell me"是pre-sequence,它引导了后面的宾语"where the library is"。
In this question, "Can you tell me" is the pre-sequence that introduces the object "where the library is".4. "Despite the rain"是pre-sequence,它修饰了"we went fora walk"并表达了行为的条件。
English and Chinese belong to two different language families
English and Chinese belong to two different language families: English, the Indo-European family and Chinese, the Sino-Tibetan family. The two languages also have different cultural backgrounds. Translation is an interlingual and intercultural transfer and multi-dimensional contrastive studies of the two language and cultures are therefore essential. Therefore, before translation, we should pay attention to the cultural elements.According to the difference between English and Chinese translation, There are ten pairs of features which we should take into consideration when we translate English to Chinese.1 Synthetic and Analytic (综合语和分析语)A synthetic language is characterized by frequent and systematic use of inflected forms to express grammatical relationships.An analytic language is marked by a relatively frequent use of function words, auxiliary verbs, and changes in word order to express syntactic relations, rather than of inflected forms.Modern English has become a analytic language, but Chinese is a typical analytic language.Inflection(变化词形), word order(安排词序)and the use of function words(运用虚词) are employed as the three grammatical devices in building English sentences.1.1 Inflectional vs. Non---inflectionalIn English, nouns, pronouns and verbs are inflected. Such grammatical meaning as parts of speech, gender, case, person, tense, aspect, voice, mood and non--finite verb, can bta,expressed by the use of inflected forms with or without the help of function words and word order, whereas in Chinese this is generally not true: the above grammatical meanings are mostly implied in contexts or between the lines, though often with the help of word order and function words,e.g They told me that by the end of the year they would have been working together for thirty years. 他们告诉我,到(那年)年底,他们在一起工作就有三十年了。
临床医学硕士毕业论文参考文献范例[Word文档]
临床医学硕士毕业论文参考文献范例本文档格式为WORD,感谢你的阅读。
最新最全的学术论文期刊文献年终总结年终报告工作总结个人总结述职报告实习报告单位总结演讲稿临床医学硕士毕业论文参考文献范例一篇论文的是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾,以下是临床医学硕士毕业论文参考文献范例,欢迎阅读参考。
参考文献一:[1]VargasHA,Akin05ZhengJ,etal.ThevalueofMRimagingwhenthesiteofuterinecancerorig inisuncertain[J].Radiology,2011,258(3):785-792[2]HoriM,KimT,OnishiH,etalUterineTumors:Comparisonof3Dversus2DT2?weightedTur boSpin-EchoMRImagingat3.0T—InitialExperience1[J].Radiology,2011,258(1):154-163.[3]SubakLL,HricakH,PowellCB?etal.Cervicalcarcinoma:computedtomographyandm agneticresonanceimagingforpreoperativestaging[J].Obste tGynecol,1995,86(1):43-50.[4]MayrNA,YuhWT,ZhengJ,etal.Tumorsizeevaluatedbypelvicexaminatio ncomparedwith3-DMRquantitativeanalysisinthepredictionofoutcomeforcerv icalcancer[J].IntJRadiatOncolBiolPhys,1997,39(2):395-404[5]JensenRL,MumertML,GillespieDL,etal.Preoperativedynamiccontrast-enhancedMRIcorrelateswithmolecularmarkersofhypoxiaandv ascularityinspecificareasofintratumoralmicroenvironmen tandispredictiveofpatientoutcome[J].NeuroOncol,2014,16(2):280-291.[6]JansenJF,SchSderH,LeeNY,etal.Noninvasiveassessmentoftumormicroenvironmen tusingdynamiccontrast-enhancedmagneticresonanceimagingand18F-fluoromisonidazoIepositronemissiontomographyimaginginn ecknodalmetastases[J],IntJRadiatOncolBiolPhys,2010,77(5):1403-1410.[7]KimS,LoevnerLA,QuonH,etal.Predictionofresponsetochemoradiat iontherapyinsquamouscellcarcinomasoftheheadandneckusin gdynamiccontrast-enhancedMRimaging[J].AJNRAmJNeuroradiol,2010,31(2):262 -268.[8]JiaZ,GengD,XieT,etal.Quantitativeanalysisofneovascularpermeabilityingl iomabydynamiccontrast-enhancedMRimaging[J].JClinlNeurosci,2012,19(6):820-823.[9]YaoWW,ZhangH,DingB,etal.Rectalcancer:3Ddynamiccontrast-enhancedMRI;correlationwithmicrovasculardensityandclin icopathologicalfeatures[J].RadiolMed,2011,116(3):366-374.[10]OzdumanK,YildizE,DinnerA,ingintraoperativedynamiccontrast-enhancedT1-weightedMRItoidentifyresidualtumoringlioblastomasurger y[J].JNeurosurg,2014,120(1):60-66.[11]OfConnorJP,ToftsPS,MilesKA,etal.Dynamiccontrast-enhancedimagingtechniques:CTandMRI[J].BrJRadiol,2011,84(2):112-120.[12]JacksonA,JaysonGC,LiKL,etal.Reproducibilityofquant itativedynamiccontrast-enhancedMRIinnewlypresentingglioma[J].BrJRadiol,2003,76(903):153-162.[13]SevcencoS,PonholdL,JavorD,etal.Three-Tesladynamiccontrast-enhancedMRI:acriticalassessmentofitsusefordifferentiat ionofrenallesionsubtypes[J].WorldJUrol,2014,32(1):215-220.[14]RenJ5HuanY,WangH,etalDynamiccontrast-enhancedMRIofbenignprostatichyperplasiaandprostaticcar cinoma:correlationwithangiogenesis[J],ClinRadio,2008,6 3(2):153-159.[15]Shukla-DaveA,HricakH.RoleofMRIinprostatecancerdetection[J].NM RBiomed,2014,27(1):16-24.[16]deRooijM,HamoenEH,FuttererJJ,etal.AccuracyofMultiparametricMRIforProstateCancerDete ction:AMeta-Analysis[J].AJRAmJRoentgenol,2014,202(2):343-351.[17]WangXH,PengWJ5XinC,etal.[Valueofdynamiccontrast-enhancedMRIinassessmentofearlyresponsetoneoadjuvantche motherapyinbreastcancer][J].ZhonghuaZhongLiuZaZhi[Chin esejournalofoncology],2010,32(7):539-543.[18]TanSL,RahniatK,RozalliFI,etal.Differentiationbetweenbenignandmalignantbreastles ionsusingquantitativediffusion-weightedsequenceon3TMRI[J],ClinRadio,2014,69(1):63-71.[19]YoppAC,SchwartzLH,KemenyN,etal.Antiangiogenictherapyforprimarylivercance r:correlationofchangesindynamiccontrast-enhancedmagneticresonanceimagingwithtissuehypoxiamarke rsandclinicalresponse[J].AnnSurgOncol,2011,18(8):2192-2199.[20]ArmbrusterM,SourbronS,HaugA,etal.EvaluationofNeuroendocrineLiverMetastases:ACompar isonofDynamicContrast-EnhancedMagneticResonanceImaging紐dPositronEmissionTomography/ComputedTomography[J],Inve stRadiol,2014,49(1):7-14.[21]TappouniR,ElKadyRM,parisonoftheaccuracyofdiffusion-weightedimagingversusdynamiccontrastenhancementmagneti cresonanceimagingincharacterizingfocalliverlesions[J]. JComputAssistTomogr,2013,37(6):995-1001.[22]FolkmanJ.Tumorangiogenesis:therapeuticimplications [J].NEnglJMed,1971,285(21):1182-1186.[23]HawighorstH,KnapsteinPG,KnoppMV,etal.Cervicalcarcinoma:standardandpharmacokineticanaly sisoftime-intensitycurvesforassessmentoftumorangiogenesisandpati entsurvival[J].MAGMA,1999,8(1):55-62.[24]FranielT,HammB,HricakH.Dynamiccontrast-enhancedmagneticresonanceimagingandpharmacokineticmode lsinprostatecancer[J].EurRadiol,2011,21(3):616-626.[25]ToftsPS,BrixG,BuckleyDL,etal.Estimatingkineticparametersfromdynamiccontrast-enhancedT1-weightedMRIofadiffusibletracer:standardizedquantitiesa ndsymbols[J].JMagnResonImaging,1999,10(3):223-232.[26]AlonziR,PadhaniAR,AllenC.DynamiccontrastenhancedMRIinprostatec ancer[J].EurJRadiol,2007,63(3):335-350.[27]EllingsenC,EgelandTA,GulliksrudK,etal.Assessmentofhypoxiainhumancervicalcar cinomaxenograftsbydynamiccontrast-enhancedmagneticresonanceimaging[J].IntJRadiatOncolBio lPhys?2009,73(3):838-845.[28]SeeberL,HorreeN,VooijsMA,etal.Theroleofhypoxiainduciblefactor-1alphaingynecologicalcancer[J],CritRevOncolHematol,2011,78(3):173-184.[29]PurdieTQHendersonE,LeeTY.FunctionalCTimagingofangiogenesisinrabbitVX2soft -tissuetumour[J].PhysMedBiol,2001,46(12):3161-3175.[30]FidlerIJ.Angiogenicheterogeneity:regulationofneopl asticangiogenesisbytheorganmicroenvironment[J].JNatlCa ncerInst,2001,93(14):1040-1041.[31]田丽,刘立志,范卫君.鼻咽癌MRI动态增强参数与微血管密度和血管内皮生长因子表达的相关性研究[J].中山大学学报(医学科学版),2009,30(3):336-340.[32]于德新,马祥兴,魏华刚,等.肝细胞癌微血管及成熟血管对MR增强表现特征的影响[J].实用放射学杂志,2009,25(3):351-355.[33]DonaldsonSB,WestCM,DavidsonSE,etal.AcomparisonoftracerkineticmodelsforT1-weighteddynamiccontrast-enhancedMRI:Applicationincarcinomaofthecervix[J].MagnR esonMed,2010,63(3):691-700.[34]VeeravaguA,HouLC,HsuAR,etal.Thetemporalcorrelationofdynamiccontrast-enhanced,magneticresonanceimagingwithtumorangiogenesis inamurineglioblastomamodel[J].NeurolRes,2008,30(9):952-959.[35]HarrerJU,ParkerGJ,HaroonHA,parativestudyofmethodsfordeterminingv ascularpermeabilityandbloodvolumeinhumangliomas[J].JMa gnResonImaging,2004,20(5):748-757.[36]ZaharchukG.TheoreticalbasisofhemodynamicMRimagingt echniquestomeasurecerebralbloodvolume,cerebralbloodflo w,andpermeability[J].AJNRAmJNeuroradiol,2007,28(10):1850-1858,[37]McDonaldDM,BalukP.Significanceofbloodvesselleakine ssincancer[J].CancerRes,2002,62(18):5381-5385.[38]McDonaldDM,ChoykePL.Imagingofangiogenesis:frommicr oscopetoclinic[J].NatMed,2003,9(6):713-725.[39]MichelCC,CurryFE.Microvascularpermeability[J].PhysiolRev,1999,79(3):703-761.[40]YangC,StadlerWM,KarczrnarGS,parisonofquantitativeparametersincervixcancerm easuredbydynamiccontrast-enhancedMRIandCT[J].MagnResonMed,2010,63(6):1601-1609.参考文献二:[1]吴海树.齿科激光煌接理论与实践[M].大连:大连海事大学出版社,2002:49-50.[2]J.A.Atoui,D.N.B.Felipucci,V.O.Pagnano,etal.Tensilea ndflexuralstrengthofcommerciallypuretitaniumsubmittedt olaserandtungsteninertgaswelds[J].Braziliandentaljourn al,2013,24(6):630-634.[3]R.Nomoto,Y.Takayama,F.Tsuchida,etal.Non-destructivethree-dimensionalevaluationofporesatdifferentweldedjointsand theireffectsonjointstrength[J],Dentalmaterials,2010,26(12):246-252.[4]F.Caiazzo,V.Alfieri,G,Corrado,etal.InvestigationandOptimizationofLaserWeld ingofTi-6Al-4VTitaniumAlloyPlates[J].JournalofManufacturingScienceandEngineering-transactionsoftheASME,2013,135(6):452-463.[5]S.Michio,Y.Satoshi,T.Misao,etal.Influenceofirradiationcondition sonthedeformationofpuretitaniumframesinlaserwelding[J] ,DentalMaterialsJournal,2009,28(2):243-247.[6]H.Kikuchi,T.Kurotani,M.Kaketani,etal.Effectoflaseri rradiationconditionsonthelaserweldingstrengthofcobalt-chromiumandgoldalloys.[J]JournalofOralScience,2011,53(3):301-305.[7]X.J.Cao,A.S.H.Kabir,P.Wanjara,etal.GlobalandLocalMechanicalPropertiesofAut ogenouslyLaserWeldedTi-6A1-4V[J].MetallurgicalandMaterialsTransactionA-PhysicalMetallurgyandMaterialsScience,2014,45A(3):1258-1272.[8]S.Viritpon,Y.Takayuki,K.Equo,parativestudyontorsionalstrength,ductilityandfracturecharacteristicsoflaser-weldeda+PTi-6Al-7Nballoy,CPTitaniumandCo-Cralloydentalcastings[J].DentalMaterials,2008,24(6):839-845.[9]J.Liu,V.Ventzke,P.Staron,etal.EffectofPost-weldHeatTreatmentonMicrostructureandMechanicalProperti esofLaserBeamWeldedTiAl-basedAlloy[J].MetallurgicalandMaterialsTransactionA-PhysicalMetallurgyandMaterialsScience,2014,45A(l):16-28.[10]K.Hisaji,K.Tomoko,K.Masahiro,etal.Effectoflaserirradiationconditionsonthelaserweldi ngstrengthofcobalt-chromiumandgoldalloys[J].JournalofOralScience,2011,53( 3):301-305.[11]崔广,宋应亮.不同杆圈接触形态对辉接面机械性能影响的研究[J].中国美容医学,2012,21(12):2227-2229.[12]R.R.Wang,C.T.Chang.Thermalmodelingoflaserweldingfo rtitaniumdentalrestorations[J]JProsthetDent,1998,79(3):335-342.[13]J.M.C.NunezPantoja,A.P.Farina,L.G.Vaz,etal.Fatiguestrength:effectofweldingtypeandjointdesign executedinTi-6A1_4Vstructures[J].Gerodontology,2012,29(2):el005-el010.[14]解光明,王前文,夏荣.激光辉接钛及钛合金腐蚀疲劳强度的研究[J].实用口腔医学杂志,2009,25(4):463-464.[15]J.M.C.NunezPantoja,L.G.Vaz,M.A.A.Nobilo,etal.Effectsoflaserweldjointopeningsizeonfatiguestreng thofTi-6A1-4Vstructureswithseveraldiameters[J],JournalofOralRehab ilitation,2011,38(3):196-201.[16]LA.Orsi,L.B.Raimundo,O.L.Bezzon,etal.Evaluationofa nodicbehaviorofcommerciallypuretitaniumintungsteninert gasandlaserwelds[J].JournalofProsthodontics,2011,20(8):628-631.[17]卢军霞,曹风华,郭天文等.激光燥和脉冲氩辉对铁耐腐烛性的影响[J].实用口腔医学杂志,2000,17(2):105-108.[18]方洪渊.揮接结构学[M].北京:机械工业出版社,2008:109-127.[19]G.Bussu,P.E.Irving.Theroleofresidualstressandheata ffectedzonepropertiesonfatiguecrackpropagationinfricti onstirwelded2024-T351aluminiumjoints[J].InternationalJournalofFatigue,2 003,25(1):77-88.[20]宋天民.燥接残余应力的产生与消除[M].北京:中国石化出版社,2005:13-17.[21]I.Watanabe,C.Jennifer,Y.Chiu.Dimensionalchangeofla ser-weldedgoldalloyinducedbyheattreatment[J].BasicScienceR esearch,2007,16(5):365-369.[22]I.Watanabe,A.P.Beuson,k.Nguyen.Effectofheattreatme ntonjointpropertiesoflaser-weldedAg-Au-Cu-PdandCo-Cralloys[J].JProsthedont,2005,14(3):170-174,[23]I.Watanabe,J.Liu,M.Atsuta,etal.Effectsofheattreatm entsonmechanicalstrengthoflaser-weldedequi-atomicAuCu-6at%alloy[J].JDentRes,2001,80(9):1813-1817.[24]X.S.Liu,H.Y.Fang,S.D.Ji,etal.ControlofTitaniumAlloyThinPlateWeldingDistortionb yTrailingPeening[J].Mater.Sci.Technol,2003,19(1):184-186.[25]JJ.Xu,L.J.Chen,J.H.Wang.Predictionofweldingdistortioninmultipassgirth -buttweldedpipesofdifferentwallthickness[J].TheInternat ionalJournalofAdvancedManufacturingTechnology,2008,35(9-10):987-993.[26]A.S.Munsi,A.J.Waddell,C.A.Walker.Vibratorystressre lief-aninvestigationofthetorsionalstresseffectinweldedshaft s[J].JournalofstrainAnalysis,2001,36(5):453-463.[27]李占明,朱有利,王侃.超声波冲击处理对2A12招合金揮接接头组织的影响[J].金属热处理,2008,33(7):53-56.[28]R.T.Huang,W.L.Huang,R,H.Huang,etal.Effectsofmicros tructuresonthenotchtensilefracturefeatureofheat-treatedTi-6Al-6V-2Snalloy[J].MaterialsScienceandEngineering:A,2014,595:297-305.[29]T.Novoselova,S.Malinov,W.Sha.Experimentalstudyofth eeffectsofheattreatmentonmicrostructureandgrainsizeofa gammaTiAlalloy[J].Intermetallics,2003,11(5):491-499.[30]S.K.Nirmal,S.Rakesh,S.S.Vishal.CryogenicTreatmento fToolMaterials:AReview[J].MaterialsandManufacturingPro cesses,2010,25(10):1077-1100.[31]V.Firouzdor,E.Nejati,F.Khomamizadeh.Effectofdeepcryogenictreatment onwearresistanceandtoollifeofM2HSSdrill[J].JournalofMa terialsProcessingTechnology,2008,206(1-3):467-472.[32]J.W.Kim,J.A.Griggs,J.D.Regan,etal.Effectofcryogenictreatmenton nickel-titaniumendodonticinstruments[J].InternationalEndodont icJournal,2005,38(6):364-371.[33]S.Yan,Y.Zhang,S.G.Shi,etal.Effectoftwokindsofannealingmethodsonthemechanicalpropertiesofdentaltitaniumcastings[J].Journalofpractic alstomatology,2010,26(4):465-468.[34]闫澍,张玉梅,赵永庆等.热处理温度对牙科铸造纯铁拉伸性能的影响[J].实用口腔医学杂志,2008,24(1):74-77.[35]A.Ebihara,Y.Yahata,K.Miyara,etal.Heattreatmentofnickel-titaniumrotaryendodonticinstruments:effectsonbendingpr opertiesandshapingabilities[J].InternationalEndodontic Joximal,2011,44(9):843-849.[36]OA.Cuoghi,G.RKasbergen,P.H.Santos,etal.Effectofheattreatmentonst ainlesssteelorthodonticwires[J].BrazOralRes.2011,25(2):128-134.[37]S.S.D.Rocha,G.L.Adabo,L.G.Vaz,etal.Effectofthermaltreatmentontensilestrengthofcommer ciallycastpuretitaniumandTi-6AI-4Valloys[J],JMaterSciMaterMed,2005,16(8):59-66.[38]梁锐英,赵艳萍,温黎明等.激光燥接新型钴络合金的力学性能[J].中国组织工程研究与临床修复,2011,15(38):7135-7138.[39]刘亚俊,李勇,曾志新等.深冷处理提高硬质合金刀片耐磨性能的机理研究[J].工具技术,2001,35⑶:19-20.[40]D.N.Collins.Deepcryogenictreatmentoftoolsteels[J]. HeatTreatmentofMetals,1996,23(2):40-42.阅读相关文档:金融学硕士毕业论文参考文献范例管理学硕士毕业论文参考文献行政管理学毕业论文参考文献经济学硕士毕业论文参考文献范例经济学毕业论文参考文献格式管理学硕士毕业论文参考文献范例法律毕业论文参考文献格式范本经济学硕士毕业论文参考文献经济管理毕业论文参考文献经济硕士论文参考文献就业论文参考文献产业经济论文参考文献动画设计论文的参考文献范例关于动画设计专业论文的参考文献动漫设计论文参考文献三维动画论文参考文献动漫设计专业论文参考文献动画设计毕业论文参考文献动画设计专业论文参考文献推荐动画设计专业论文参考文献英语论文参考文献格式模最新最全【办公文献】【心理学】【毕业论文】【学术论文】【总结报告】【演讲致辞】【领导讲话】【心得体会】【党建材料】【常用范文】【分析报告】【应用文档】免费阅读下载*本文若侵犯了您的权益,请留言。
(完整版)研究生英语综合教程-下课后习题答案(最新整理)
Task 11. provinces b.2. woke a.3.haunt b.4.trouble a.5.weathers d.6.wakeb.7.coined c.8. trouble b.9.weather c. 10. province c. 11. coin a. 12. value a.13. haunts a. 14. has promised a. 15. trouble c. 16. coin b. 17. promise d, 18. values c. 19. refrain b. 20. valued e.Task 21. tranquil2. ultimately3. aftermath4. cancel out5.ordeal6.drastic7. legacy8. deprivations9. suicidal 10. anticipated 11. preoccupied 12. adversities 13. aspires 14. nostalgia 15, retrospectTask 31. a mind-blowing experience2.built-in storage space3.s elf-protection measures4.short-term employment5.d istorted and negative self-perception6.life-changing events7.all-encompassing details8.a good self-imageUnit TwoTask1I. A. entertainment B. entertaining2.A.attached B.attachment3.A.historically B. historic4.A. innovative B. Innovations5.A. flawed B. flawless6.A.controversy B. controversial7.A. revise B. revisionsmentary B. commentator9.A. restrictive B. restrictions10.10. A.heroic B. heroicsTask 21. ethnic2.corporate3.tragic4. athletic5. underlie6. stack7. intrinsic8. revenue9. engrossed 10. awardTask 31) revenues 2)receipts 3) economic 4)rewards 5)athletes6) sponsor 7)spectators 8) maintain 9) availability 10) stadiums 11) anticipated 12) publicityUnit Three1. B 2, D 1 A 4, C 5, A 6.B 7,C 8. A 9.B 10. CTask2LA. discrete B. discreet C. discretion2.A.auditors B. auditorium C. audit D. auditory E. audited1 A. conception B.contrivance C. contrive D. conceive4.A. giggling B. gasped C. gargling D. gossip5.A. affectionate B. passion C. affection D. passionate6.A.reluctant B. relentless C. relevant7.A. reverence B. reverent C. revere8.A. peeping/peep B.peered C. perceive D.poringTask31) gain 2) similarities 3) diverse 4)enrich 5) perspective6)discover 7)challenging 8) specific 9)adventure 10)enlightens11) opportunities 12) memories 13) joyful 14) outweighs 15) span)Unit FourTask 11) uncomfortable 2)reading 3)immerse 4)deep 5) access 6)concentration 7)stopped 8)altered 9)change 10) different 11) decoders12) disengaged 13) variations 14) words 15) tighterTask 21. D2.A3. B4.B5.D6. A7. C8. CTask 1Step 1l)i 2)f 3)a 4)b 5)h 6)j 7)c 8)e 9)d 10)gStep 21)fidgety2)crushing3)pithy4) foraging5) definitive ,6)propelled7) applauded8) ubiquity9) duly10) curtailTask 21. above2.on3. to4.on5.on/about6. to 7 .with 8. at 9. on/about10. in Task 31. may have a subtle effect on2.provide free access toe-books3.isinthe midst ofa sea change4.has been onthe faculty ofHarvard University5.a voracious book reader6.you'll stay focused onit7.the conduit for information8.your check came asanabsolute godsend9.lost the thread ofthe story10.stroll through elegant proseTask 11.A2.C3.D4.B5.C6.B7.C8.D9.A10.C11.B12D.13.D14.A15.BTask21.sheer2.slip3desert4. revenge5.sheered6. level7.deserted8.skirted9.protested10. duplicates11. level12. revenge13.skirt14. protests15. slip16.duplicate Unit SixTask 1I.C 2.A 3.C 4.A 5.D 6.C 7.B 8.D 9.A 10.C lI.B 12.ATask21. Water isnot an effective shield2.engulfed inflames3.t he rights ofsovereign nations4.outpaced its rivals inthe market5.There's no need tobelabor the point6.She invoked several eminent scholars7.from two embattled villages8.According tothe witness's testimony9.Inspite ofour best endeavors10.After many trials and tribulationsTask21) remain2) childish3)reaffirm4)precious5)equal6)measure7)greatness8) journey9)leisure10) fame11) obscure12) prosperityUnit SevenTask1I.C 2.B 3.B 4.D 5.B 6.C 7.C 8.A 9.B 10.BTask21. patrons b.2.designated b.3. reference d.4. inclination c5. host d.6. diffusing b.7. host c8.inclination a.9. references c.10. patrons a.11. reference a.12. host a.13. diffuses a..14. designate a.15. designate c.Task31) alive2)awakened3) trip4)stone5)remains6)beyond7)records8)social 9)across10) surrounding11) mental12) miracle13) having14) failure15) participateUnit EightTask 11.B2.D3. A4.B5.A6. D7. D8.A9. A 10. CTask21. A. outburst B.bursting C. outbreak2.A. adverse B.adversity C. advised3.A. distinguishes B.distinct C. distinguished4.A. sight/vision B. view C. outlook D. visions5. A. implicit B.implicit/implied C. underlying6.A.washed B. awash C. washing7.A. jumped/sprang B. springs C.leap D.jumped8. A. trail B. trail/track C. traceD. trackE.trace9.A. sensed B.sensible C. senseD. sensitiveE.sensational10. A. prosperous B.prosperity C. prospects D. prophecyTask31)echoes2) pays heed to3)hidden4) objectively5) decipher6)presence7)conviction 8)shot9)however10) slaughter11) bare12) trim13) are connected to14) strive15) yield Unit NineTask 11.A2.B3.D4.A5.B6.B7.C8.A9.C 10.DTask2I. explain, plain, complained, plain2.tolerate, tolerant, tolerance3.consequence,sequence,consequentmerce, commercial, commercial, commercialism, commercially5.arouse, arising, arise, arousal6.irritant, irritation, irritable, irritate7.democratic, dynamic, automated, dramatic8.dominate, dominant, predominant, predominate9.celebrate, celebrity, celebrated, celebration10.temporal, contemporary, temporaryTask3I) encompassing2)standard3)constraints4)presented5)resolution6) constitute7) entertainment8) interchangeably9) distinction10) fuzzy11) technically12) devoted to13) ranging14) competing15) biasesUnit TenTask 11) beware of2)unpalatable3)delineate4) Ingrained5) amplify6) supplanted7) pin down8)discretionary9) stranded10)swept throughTask21. that happy-to-be-alive attitude2.anl-told-you-so air3. the-end-justifies-the-means philosophy4.Aheart-in-the-mouth moment5.a now-or-never chance6. a touch-and-go situation7.a wait-and-see attitude8.too-eager-not-to-lose9.a cards-on-the-table approach10. a nine-to-five lifestyle11.a look-who's-talking tone12. around-the-clock service13. a carrot-and-stick approach14. a rags-to-riches man15. a rain-or-shine picnicTask3I) exquisite2)soothe3)equivalent4)literally5)effective6)havoc7)posted8)notify9) clumsy10) autonomously“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
SequencetoSequenceLearningwithNeuralNetworks(。。。
SequencetoSequenceLearningwithNeuralNetworks(。
1. Introduction本⽂提出了⼀种端到端的序列学习⽅法,并将其⽤于英语到法语的机器翻译任务中。
使⽤多层LSTM将输⼊序列映射为固定维数的表⽰向量,然后使⽤另⼀个多层LSTM从该向量解码得到⽬标序列。
作者还提出,颠倒输⼊序列的单词序列可以提⾼LSTM的性能,因为这在源和⽬标序列之间引⼊了许多短期依赖性。
之前的DNN只能将源序列和⽬标序列编码为固定维数的向量,⽽许多问题需⽤长度不是先验已知的序列表⽰,例如语⾳识别、机器翻译。
本⽂的想法是,使⽤⼀个LSTM读取源序列逐步得到固定维数的表⽰向量,然后⽤另⼀个LSTM从该表⽰向量中得到⽬标序列,第⼆个LSTM本质上是⼀个RNN语⾔模型,只是它以输⼊序列为条件。
由于输⼊与输出之间有很⼤的时间延迟,所以使⽤具有学习长时间依赖关系的数据能⼒的LSTM(如下图)。
测试结果表明,该模型在机器翻译任务中可以得到不错的BLEU score,显著地优于统计机器翻译基线(SMT baseline)。
令⼈惊讶的是,LSTM在长句⼦的训练上也没有什么问题,原因是颠倒了输⼊序列单词的顺序。
另外,编码的LSTM将变长序列映射为维数固定的向量,传统的SMT⽅法倾向于逐字翻译,⽽LSTM能够学习句⼦的含义,具有相似含义的句⼦在表⽰向量中距离近,不同含义的句⼦则距离远。
⼀项评估表明,该模型可以学习到单词的顺序,并且对主动和被动语态具有不变性。
2. The modelRNN是前馈神经⽹络的⼀种⾃然泛化。
给定⼀个输⼊序列{ \left( x\mathop{{}}\nolimits_{{1}},...,x\mathop{{}}\nolimits_{{T}} \right) },RNN通过以下公式迭代计算出输出:{\begin{array}{*{20}{l}} {h\mathop{{}}\nolimits_{{t}}= \sigma \left(W\mathop{{}}\nolimits^{{hx}}x\mathop{{}}\nolimits_{{t}}+W\mathop{{}}\nolimits^{{hh}}h\mathop{{}}\nolimits_{{t-1}} \right) }\\{y\mathop{{}}\nolimits_{{t}}=W\mathop{{}}\nolimits^{{yh}}h\mathop{{}}\nolimits_{{t}}} \end{array}}只要事先知道输⼊与输出之间的对齐⽅式,RNN就可以将序列映射到序列。
深度学习常用模型简介
▪ 由于Gradient Vanish影响,较高 层比较低层有更大的变动
▪ 从整体上,Fine-Tuning没有太大 改变Pre-Training的基础,也就 是说P(Y|X)的搜索空间是可以在 P(X)上继承的
Why Greedy Layer Wise Training Works
▪ Hidden Layer会有连向下一时间 Hidden Layer的边
▪ RNN功能强大
▪ Distributed hidden state that allows them to store a lot of information about the past efficiently.
多个隐含层 ▪ 能量模型与RBM不一样
两层DBM
DBM
▪Pre-training:
▪ Can (must) initialize from stacked RBMs
▪ 逐层学习参数,有效的从输入中提取信 息,生成模型P(X)
▪Discriminative fine-tuning:
▪ backpropagation
▪ Regularization Hypothesis
▪ Pre-training is “constraining” parameters in a region relevant to unsupervised dataset
▪ Better generalization
▪ Representations that better describe unlabeled data are more discriminative for labeled data
temporal fusion transformers原理
temporal fusion transformers原理一、背景随着深度学习技术的不断发展,Transformers模型在自然语言处理领域取得了显著的成果。
传统的Transformers模型主要关注于空间信息,而忽视了时间信息在NLP任务中的重要性。
为了进一步提高Transformer模型的效果,本文提出了temporal fusion transformers,将空间和时间信息融合在一起,从而提高模型的性能。
1. 模型结构:temporal fusion transformers继承了Transformers模型的核心理念,同时引入了时间维度。
模型将文本序列按照时间顺序分成多个块,每个块都进行编码和解码。
在编码阶段,使用自注意力机制(Self-Attention)和位置编码(Positional Encoding)来捕捉文本中的空间和时间信息。
在解码阶段,同样使用自注意力机制来捕捉文本中的上下文信息。
2. 时间信息融合:temporal fusion transformers通过将不同时间步长的特征进行融合,从而充分利用时间序列数据的特点。
具体来说,模型将当前时间步长的特征与前一、二个时间步长的特征进行融合,形成更丰富的特征表示。
这种融合方式可以捕捉到文本中的动态变化和序列结构,从而提高模型的性能。
3. 空间信息保持:在temporal fusion transformers中,我们仍然保持了空间信息的捕捉。
通过自注意力机制和位置编码,模型能够捕捉到文本中的局部依赖关系和全局结构。
这种空间和时间信息的结合,可以进一步提高模型的表达能力和泛化能力。
4. 多任务学习:为了进一步优化temporal fusion transformers的效果,我们采用了多任务学习(Multi-Task Learning)的方法。
在训练过程中,我们将文本分类、序列生成等任务结合起来,通过共享参数的方式,使得模型能够更好地学习到文本数据的内在规律和结构。
序列多智能体强化学习算法
第34卷第3期2021年3月模式识别与人工智能Pattern Recognition and Artificial IntelligenceVol.34No.3Mar.2021序列多智能体强化学习算法史腾飞1王莉1黄子蓉1摘要针对当前多智能体强化学习算法难以适应智能体规模动态变化的问题,文中提出序列多智能体强化学习算法(SMARL).将智能体的控制网络划分为动作网络和目标网络,以深度确定性策略梯度和序列到序列分别作为分割后的基础网络结构,分离算法结构与规模的相关性.同时,对算法输入输出进行特殊处理,分离算法策略与规模的相关性.SMARL中的智能体可较快适应新的环境,担任不同任务角色,实现快速学习.实验表明SMARL在适应性、性能和训练效率上均较优.关键词多智能体强化学习,深度确定性策略梯度(DDPG),序列到序列(Seq2Seq),分块结构引用格式史腾飞,王莉,黄子蓉.序列多智能体强化学习算法.模式识别与人工智能,2021,34(3):206-213. DOI10.16451/ki.issn1003-6059.202103002中图法分类号TP18Sequence to Sequence Multi-agent Reinforcement Learning AlgorithmSHI Tengfei',WANG Li1,HUANG Zirong1ABSTRACT The multi-agent reinforcement learning algorithm is difficult to adapt to dynamically changing environments of agent scale.Aiming at this problem,a sequence to sequence multi-agent reinforcement learning algorithm(SMARL)based on sequential learning and block structure is proposed. The control network of an agent is divided into action network and target network based on deep deterministic policy gradient structure and sequence-to-sequence structure,respectively,and the correlation between algorithm structure and agent scale is removed.Inputs and outputs of the algorithm are also processed to break the correlation between algorithm policy and agent scale.Agents in SMARL can quickly adapt to the new environment,take different roles in task and achieve fast learning. Experiments show that the adaptability,performance and training efficiency of the proposed algorithm are superior to baseline algorithms.Key Words Multi-agent Reinforcement Learning,Deep Deterministic Policy Gradient(DDPG), Sequence to Sequence(Seq2Seq),Block StructureCitation SHI T F,WANG L,HUANG Z R.Sequence to Sequence Multi-agent Reinforcement Learning Algorithm.Pattern Recognition and Artificial Intelligence,2021,34(3):206-213.在多智能体强化学习(Multi-agent Reinforce-收稿日期:2020-10-10;录用日期:2020-11-20Manuscript received October10,2020;accepted November20,2020国家自然科学基金项目(No.61872260)资助Supported by National Natural Science Foundation of China(No. 61872260)本文责任编委陈恩红Recommended by Associate Editor CHEN Enhong1.太原理工大学大数据学院晋中0306001.College of Data Science,Taiyuan University of Technology,Jinzhong030600ment Learning,MARL)技术中,智能体与环境及其它智能体交互并获得奖励(Reward),通过奖励得到信息并改善自身策略.多智能体强化学习对环境的变化十分敏感,一旦环境发生变化,训练好的策略就可能失效.智能体规模变化是一种典型的环境变化,可造成已有模型结构和策略失效.针对上述问题,需要研究自适应智能体规模动态变化的MARL.现今MARL在多个领域已有广泛应用[1],如构建游戏人工智能(Artificial Intelligence,AI)[2]、机器人控制[3]和交通指挥⑷等.MARL研究涉及范围广泛,与本文相关的研究可分为如下3方面.1)多智能体性能方面的研究.多智能体间如何第3期史腾飞等:序列多智能体强化学习算法207较好地合作,保证整体具有良好性能是所有MARL 必须考虑的问题.Lowe等[5]提出同时适用于合作与对抗场景的多智能体深度确定性策略梯度(Multi-agent Deep Deterministic Policy Gradient,MADDPG),使用集中训练分散执行的方式让智能体之间学会较好的合作,提升整体性能.Foerster等⑷提出反事实多智能体策略梯度(Counterfactual Multi-agent Policy Gradients,COMA),同样使用集中训练分散执行的方式,使用单个Critic多个Actor的网络结构,Actor 网络使用门控循环单兀(Gate Recurrent Unit,GRU)网络,提高整体团队的合作效果.Wei等[7]提出多智能体软Q学习算法(Multi-agent Soft Q-Learning, MASQL),将软Q学习(Soft Q-Learning)算法迁至多智能体环境中,多智能体采用联合动作,使用全局回报评判动作好坏,一定程度上提升团队的合作效果.上述算法在一定程度上提升多智能体团队合作和对抗的性能,但是均存在难以适应智能体规模动态变化的问题.2)多智能体迁移性方面的研究.智能体的迁移包括同种环境中不同智能体之间的迁移和不同环境中智能体的迁移.研究如何较好地实现智能体的迁移可提升训练效率及提升智能体对环境的适应性. Brys等⑷通过重构奖励实现智能体策略的迁移.虽然可解决智能体策略的迁移问题,但在奖励重构的过程中需要耗费大量资源.Taylor等[9]提出在源任务和目标任务之间通过任务数据的双向传输,实现源任务和目标任务并行学习,加快智能体学习的进度和智能体知识的迁移,但在智能体规模巨大时,训练速度仍然有限.Mnih等[10]通过多线程模拟多个环境空间的副本,智能体网络同时在多个环境空间副本中进行学习,再将学习到的知识进行迁移整合,融入一个网络中.该方法在某种程度上也可视作一种知识的迁移,但并不能直接解决规模变化的问题.3)多智能体可扩展性和适应性方面的研究.在实际应用中,智能体的规模通常不固定并且十分庞大.当前一般解决思路是先人为调整设定模型的网络结构,然后通过大量再训练甚至是从零训练,使模型适应新的智能体规模.这种做法十分耗时耗力,根本无法应对智能体规模动态变化的环境.Khan 等[11]提出训练一个可适用于所有智能体的单一策略,使用该策略(参数共享)控制所有的智能体,实现算法可适应任意规模的智能体环境.但是该方法未注意到智能体规模对模型网络结构的影响.Zhang 等[12]提出使用降维方法对智能体观测进行表征,将不同规模的智能体的观测表征在同个维度下,再将表征作为强化学习算法的输入.该方法本质上是扩充模型网络可接受的输入维度大小,但当智能体规模持续扩大时,仍会超出模型网络的最大范围,从而导致模型无法运行.Long等[|3]改进MADDPG,使用注意力机制进行预处理观测,再将处理后的观测输入MADDPG,使用编码器(Encoder)实现注意力网络.该方法在一定程度上可适应智能体规模的变化,但在面对每次智能体规模变动时,均需要重新调整网络结构和进行再训练.针对智能体规模动态变化引发的MARL失效的问题,本文提出序列多智能体强化学习算法(Sequence to Sequence Multi-agent Reinforcement Learning Algorithm,SMARL).SMARL中的智能体可较快适应新的环境,担任不同任务角色,实现快速学习.1序列多智能体强化学习算法SMARL的核心思想是分离模型网络结构和模型策略与智能体规模的相关性,具体框图见图1.图1SMARL框图Fig.1Framework of SMARL首先在结构上,将智能体的控制网络划分为2个平行的模块一智能体动作网络(图1左侧)和智能体目标网络(图1右侧).每个智能体的执行动作由这两个网络的输出组成.为了适应算法结构,划分智能体的观测数据和动作数据.智能体的观测分为每个智能体的局部观测和所有智能体的全局观测,本文称为个性观测和共性观测.个性观测不会随智能体规模变化而变化.同理,算法中对智能体动作也分成智能体的共性动作和个性动作,所有智能体动作集的交集为共性动作,某智能体的动作集与共208模式识别与人工智能(PR&AI)第34卷性动作的差集为该智能体的个性动作.共性动作为智能体的执行动作,个性动作为智能体执行动作的目标.共性动作不会随智能体规模变化而变化.每个智能体执行的动作由共性动作和个性动作共同组成.举例说明,在二维格子世界中存在3个可移动且能相互之间抛小球的机械手臂.它们的共性观测是统一坐标系下整个地图的观测,个性观测是以自身为坐标原点的坐标系下的观测.它们的共性动作为上、下、左、右抛.个性动作由智能体ID决定:0号智能体的个性动作为1号、2号;1号智能体的个性动作为0号、2号;2号智能体的个性动作为0号、1号.经过上述分割,算法将与智能体规模相关和无关的内容分割为两部分.考虑到深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)网络[⑷在单智能强化学习上性能较优,本文在对智能体观测和动作进行分割之后,将所有智能体的动作策略视作同个策略,选取DDPG网络作为智能体动作网络的内部结构.Khan等[||]证明使用单智能体网络和单一策略控制多个智能体的有效性.考虑到序列到序列(Sequence-to-Sequence,Seq2Seq)网络[15-16]对输入输出长度的不敏感性,本文选取Seq2Seq作为智能体目标网络的内部结构,将智能体规模视作序列长度.智能体动作网络输入为智能体的个性观测,输出为智能体的共性动作,详细框图见图2.图2智能体动作网络框图Fig.2Framework of agent action network 智能体动作网络由多个DDPG网络组成,每个智能体均有各自的DDPG网络,其中,Actor网络参数为兹,,Critic网络参数为Q,Actor-target网络参数为兹;,Critic-target网络参数为Q;,i=0,1,…,N-1.单个的DDPG网络仅接收其对应的智能体以自身作为“坐标原点”的局部观测.此时,使用单一策略(参数共享)控制所有智能体的动作是有意义的.另外,为了实现参数共享,本文参考异步优势演员评论家(Asynchronous Advantage Actor-Critic, A3C)的做法[10],在智能体动作网络中额外设置一个不进行梯度更新的中心参数网络,Actor网络参数为兹”,Critic网络参数为Q n网络接收其它DDPG网络的参数进行软更新(软更新超参数子=0.01),再使用软更新更新其它DDPG网络,最终使所有DDPG网络的参数达到同个单一策略.智能体动作网络更新方式如下.令m n l,=o D pg移(九-Q(o ib,山Q J)2达到最小以更新Critic网络,其中,Q i为Critic网络的参数,Q(•-)为网络评估,B_DDPG为算法批次(Batch Size)数量,o ib、两、r ib、0亦1为抽取样本,Ju,=r,b+酌Q'(s u,+1,滋'(s u,+1丨兹忆)Q;),酌为折扣因子.Actor网络更新如下:V兹丿抑B_DDPG移(VQ(o,a Q i)s o)V汕(o丨兹J L), ib lb lb lb其中,兹i为Actor网络的参数,m(••)为网络策略.中心参数网络和其它网络相互更新如下:兹N饮子兹i+(1-子)兹N,Q N饮子匕+(1-子)Q,兹i饮子兹N+(1-子)兹i,Q i饮t Q N+(1-子)Q i-其中:中心参数网络的Actor网络参数为如,Critic 网络参数为Q N;其它DDPG网络的Actor网络参数为兹,,Critic网络参数为Q i,i=0,1,-,N-1;t为软更新超参数.智能体目标网络输入为智能体的共性观测,输出为智能体的个性动作,框图如图3所示.网络由一个Seq2Seq网络和一个存储器组成,Seq2Seq网络参数为啄.Seq2Seq网络由编码器和解码器组成,这两部分内部结构均为循环神经网络(Recurrent Neural Network,RNN).编码器负责将输入序列表征到更高的维度,由解码器将高维表征进行解码,输出新的序列.Seq2Seq网络负责学习和预测智能体间的合作关系.智能体目标网络使用强化学习的思想,存储器起到强化学习中Q的作用,负责记录某观测(序第3期史腾飞等:序列多智能体强化学习算法209列)到动作(序列)的映射及相应获得的奖励. Seq2Seq部分相当于强化学习中的Actor,负责学习最优观测序列到动作序列的映射及预测新观测序列的动作序列.所有智能体的全局观测(共性观测)所有智能体在整体坐标下的全局观测序列存储器取数据训练“翻译”Seq2Seq编码器I RNN^rRN^k l rn N|注意力机制层解码器|RNN川RNN f RNN|智能体动作目标(个性动作)▼图3智能体目标网络框图Fig.3Framework of agent target network智能体目标网络输入的序列长度为智能体规模,序列中的元素维度为每个智能体的观测.输出序列的长度同样为智能体规模,序列中的元素是智能体编号.输入序列和输出序列的顺序均按照智能体的编号排序,每当智能体规模发生变化时,智能体重新从0开始编号.具体如下:先定义Seq2Seq的奖励函数,通过强化学习的思想筛选奖励最大的观测序列到动作序列的映射,将该映射视作一种翻译,再由Seq2Seq网络进行学习.网络输出表示智能体间的合作关系.另外,本文在Seq2Seq网络中引入Attention机制,提升Seq2Seq网络性能[17].Seq2Seq的核心公式如下:m^x Z*q=1E1s s s s s sN移ln(a0,,…,a N-1o0,o1,…,0N-1,啄),n=0其中,啄为Seq2Seq的参数,。
用介词写一篇英语作文
用介词写一篇英语作文英文回答:In the realm of language, prepositions serve as the unsung heroes, connecting words and phrases to create meaning and coherence. While their presence may seem subtle, their absence would leave our sentences disjointed and devoid of logical flow.Prepositions, as their name suggests, primarilyfunction to indicate the position or relationship of one entity relative to another. They paint a vivid picture of where something is or how it interacts with its surroundings. In the simple sentence "The book is on the table," the preposition "on" situates the book in aspecific location with respect to the table.Beyond spatial relationships, prepositions also conveya wide range of temporal, instrumental, and causal connections. For instance, "after" expresses a temporalsequence, "with" implies a means or instrumentality, and "because of" indicates a causal relationship.The use of appropriate prepositions is crucial for conveying precise meanings in writing and speech. A misplaced or omitted preposition can drastically alter the interpretation of a sentence. Consider the following examples:"The cat is under the table" (the cat is hiddenbeneath the table) versus "The cat is under table" (the cat is located below an unspecified surface)。
英语作文时间地点顺序
英语作文时间地点顺序English Answer:In the annals of human history, the temporal andspatial dimensions have served as intertwining threads, weaving together the tapestry of our experiences. Time, as an inexorable force, propels us forward, marking the passage of moments and seasons. Space, on the other hand, provides the stage upon which our actions unfold, shaping the context and ambiance of our existence.When examining the interplay between time and location, it becomes evident that the sequence in which these elements are presented can profoundly influence our perception and understanding of events. In a narrative, for instance, the chronological ordering of events can create a sense of suspense, anticipation, or resolution. By manipulating the temporal sequence, writers can craft compelling stories that engage the reader's emotions and imagination.Similarly, in scientific discourse, the spatial arrangement of data can reveal hidden patterns and insights. By presenting information in a logical and coherent manner, scientists can facilitate the understanding andinterpretation of complex concepts. The spatialorganization of data can also highlight the relationships between different variables, providing a deeper understanding of the underlying phenomena.The interplay between time and space is not limited to the realm of narratives and scientific texts. In everyday life, our perception of the world is shaped by the temporal and spatial contexts in which we operate. For example, the time of day can influence our mood, energy levels, and behavior. The location of our surroundings, whether it be a bustling city or a serene countryside, can also have a significant impact on our thoughts and feelings.Moreover, the intersection of time and space can have profound implications for our personal and collective identities. The places we inhabit and the experiences weshare in those spaces leave an indelible mark on who we are. The passage of time, in turn, transforms both ourselves and the environments in which we live, creating a dynamic and ever-evolving mosaic of experiences and memories.中文回答:时间和地点顺序对于我们理解和感知事件至关重要。
综合语VS分析语
1、综合语VS分析语(Synthetic VS Analytic)(语段分析):In English, the tense inflection(时态变化) can show the time sequence, so the word order does not need to follow the rule of temporal sequence(时间顺序)like Chinese.An English word can take several grammal meanings through inflections on gender(性),case(格),number(数),tense (时),aspect(体),voice(态),mood(语气),person(人称),comparatic(比较级)etc,the word is flexible.原文:During my youth in America's Appalachian mountains, I learned that farmers preferred sons over daughters, largely because boys were better at heavy farm labour. With only 3% of Americans in agriculture today, brain has supplanted brawn, yet cultural preferences,like bad habits, are easier to make than break. But history warns repeatedly of the tragic cost of dismissing too casually the gifts of the so-called weaker sex.●The word with the color of blue are connected with tense(时),aspect(体)一个单词通过变化时态,加上ed或之前加上have可以表示不同时间发生的事,不用像汉语那样一直变换时间。
Least-squares temporal difference learning
process starts in state x and follows policy until termination. This function is well-de ned as long as is proper, i.e., guaranteed to terminate.1 For small Markov chains whose transition probabilities are all explicitly known, computing V is a trivial matter of solving a system of linear equations. However, in many practical applications, the transition probabilities of the chain are available only implicitly|either in the form of a simulation model or in the form of an agent's actual experience executing in its environment. In either case, we must compute V or an ~ approximation thereof (denoted V ) solely from a collection of trajectories sampled from the chain. This is where the TD( ) family of algorithms applies. TD( ) was introduced in (Sutton, 1988); excellent summaries may now be found in several books (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). For each state on each observed trajectory, TD( ) in~ crementally adjusts the coe cients of V toward new target values. The target values depend on the parameter 2 0; 1]. At = 1, the target at each visited state xt is the \Monte-Carlo return," i.e., the actual observed sum of future rewards Rt + Rt+1 + + Rend . This is an unbiased sample of V (xt ), but may have signi cant variance since it depends on a long stochastic sequence of rewards. At the other extreme, = 0, the target value is set by a sampled one~ step lookahead: Rt + V (xt+1 ). This value has lower variance|the only random component is a single state transition|but is biased by the potential inaccuracy of the lookahead estimate of V . The parameter trades o between bias and variance. Empirically, intermediate values of seem to perform best (Sutton, 1988;
新概念英语第三册第58课范文
新概念英语第三册第58课范文The English language has long been regarded as a global lingua franca, a means of communication that transcends geographical and cultural boundaries. As the world becomes increasingly interconnected, the importance of mastering this versatile language has only grown. One of the most renowned and widely used English language learning resources is the New Concept English series, which has been a staple in the education of countless individuals seeking to improve their proficiency in this dynamic language.The third book in the New Concept English series, Lesson 58, offers a captivating exploration of the concept of "Time". This lesson delves into the various ways in which we perceive and experience time, shedding light on the intricacies and nuances of this fundamental aspect of our existence.At the heart of this lesson lies the recognition that time is a multi-faceted phenomenon, one that can be measured, quantified, and understood from various perspectives. The lesson begins by examining the traditional, linear conception of time, where eventsare neatly arranged in a chronological sequence, and the past, present, and future are clearly delineated. This understanding of time has been the foundation of much of our modern society, shaping the way we organize our lives, schedule our activities, and plan for the future.However, the lesson also introduces the notion that time can be perceived in a more fluid and flexible manner. It explores the idea that time is not a fixed and immutable construct, but rather a subjective experience that can be influenced by various factors, such as our emotional state, our level of engagement, and our cultural background. The lesson delves into the concept of "psychological time," where the perception of time can be distorted, with moments feeling either fleeting or drawn out depending on the individual's internal experience.One of the key insights presented in this lesson is the recognition that time is not merely a neutral backdrop against which our lives unfold, but rather a dynamic and interactive element that shapes our very existence. The lesson examines how our relationship with time can profoundly impact our behavior, our decision-making, and our overall sense of well-being. For instance, the lesson explores the concept of "time pressure," where the perceived scarcity of time can lead to increased stress, anxiety, and a sense of urgency, ultimately affecting our productivity and our ability to enjoy the presentmoment.The lesson also touches upon the cultural and societal implications of our understanding of time. It highlights how different cultures around the world have developed unique perspectives on time, with some emphasizing the importance of the present moment, while others place a greater emphasis on long-term planning and the preservation of traditions. The lesson encourages learners to consider how their own cultural background and personal experiences have shaped their relationship with time, and how this understanding can help them navigate the complexities of the modern world.Furthermore, the lesson explores the intersection of time and technology, examining how the rapid pace of technological advancement has profoundly impacted our perception and experience of time. The lesson delves into the ways in which digital devices and online platforms have both enhanced and challenged our ability to manage time effectively, with the constant influx of information and the blurring of work-life boundaries presenting new challenges for individuals seeking to maintain a healthy balance.Throughout the lesson, learners are encouraged to engage in reflective exercises and thought-provoking discussions, allowing them to deepen their understanding of the multifaceted nature oftime and its impact on their lives. The lesson also provides practical strategies and techniques for managing time more effectively, such as the importance of setting clear priorities, practicing mindfulness, and embracing the concept of "time-blocking" to maximize productivity and minimize distractions.By the end of Lesson 58, learners will have gained a more nuanced and comprehensive understanding of the concept of time, and how this understanding can be applied to various aspects of their personal and professional lives. They will be equipped with the knowledge and tools necessary to navigate the complex temporal landscape of the 21st century, and to develop a more intentional and fulfilling relationship with time.In conclusion, the New Concept English series, and specifically Lesson 58 on the topic of time, offers a compelling and insightful exploration of a fundamental aspect of the human experience. Through its engaging content, thought-provoking exercises, and practical guidance, this lesson empowers learners to develop a deeper appreciation for the complexities of time and to harness its potential to live more purposeful and fulfilling lives. As the world continues to evolve, the lessons imparted in this series will undoubtedly remain relevant and invaluable for individuals seeking to master the English language and navigate the dynamic challenges of the modern era.。
一种基于MSISDN虚拟化的移动通信用户数据拟态防御机制
图1
3基于MSISDN虚拟化的移动通信用户数据拟态防御机制的建立
由于移动通信用户标识的MSISDN号码是面向所
图2移动通信用户在MSISDN虚拟号码情景下信息
的传播模式
5结束语
综上所述,不法分子在窃取移动通信用户收集号
码的同时,就会轻易地知晓其访问及浏览内容,从而
捕获与用户手机号码相关的其他有效信息。
利用MSISDN虚拟化的移动通信用户数据拟态防御机制,就可以使不法分子先前取得的号码丧失可利用价值。
这
种状态下,不法分子为了获取有力信息,就会对数据
信息进行二次窃取。
可想而知,如果移动通信用户将
手机号码虚拟成小于不法分子所需内容,那么他们将。
federated learning based on dynamic regularization
federated learning based on dynamic regularization 随着人工智能技术的发展,越来越多的企业和机构开始将其应用于各种商业和科学领域。
然而,在实际应用中,由于数据保密性和隐私性的问题,数据共享和联合学习成为了制约人工智能技术发展的一个瓶颈。
为了解决这个问题,研究人员提出了一种新的联合学习方法:基于动态正则化的联邦学习。
联邦学习的基本思想是将训练数据分散在多个设备或节点中,每个节点只训练本地数据,然后将本地模型的参数上传到中央服务器进行模型融合,从而实现全局模型的更新。
这种方法可以有效地保护数据隐私,但是由于节点之间的数据分布和样本量的不同,会导致模型的过拟合和欠拟合问题。
为了解决这个问题,研究人员提出了一种新的动态正则化方法,即基于动态正则化的联邦学习。
动态正则化的联邦学习方法是在传统联邦学习的基础上引入了正则化项,通过对模型参数进行约束,减少模型的过拟合和欠拟合问题。
与传统的正则化方法不同的是,动态正则化方法可以根据节点的数据分布和样本量动态地调整正则化系数,从而实现更好的模型泛化能力。
具体来说,动态正则化的联邦学习方法包括以下步骤:1. 将训练数据分散在多个节点中,每个节点只训练本地数据,得到本地模型参数。
2. 将本地模型参数上传到中央服务器,进行模型融合。
3. 在模型融合的过程中,引入动态正则化项,对模型参数进行约束。
4. 根据节点的数据分布和样本量,动态调整正则化系数,从而实现更好的模型泛化能力。
动态正则化的联邦学习方法在实验中取得了很好的效果。
与传统的联邦学习方法相比,动态正则化方法可以有效地减少模型的过拟合和欠拟合问题,提高模型的泛化能力。
同时,该方法还可以根据节点的数据分布和样本量动态地调整正则化系数,从而实现更好的模型适应性和鲁棒性。
总之,动态正则化的联邦学习方法是一种新的联合学习方法,可以有效地解决数据隐私和共享问题。
该方法可以根据节点的数据分布和样本量动态地调整正则化系数,从而实现更好的模型泛化能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UW CSE Technical Report02-07-03 Temporal Sequence Learning WithDynamic SynapsesAaron P.ShonDept.of CSE114Sieg Hall,Box352350 University of Washington Seattle,W A98195 aaron@Rajesh P.N.RaoDept.of CSE114Sieg Hall,Box352350 University of Washington Seattle,W A98195 rao@July17,2002AbstractRecent results indicate that neocortical synapses exhibit both short-term plas-ticity and long-term spike-timing dependent plasticity.It has been suggested thatchanges in short-term plasticity are mediated by a redistribution of synaptic effi-cacy.This paper investigates how learning rules based on redistribution of synap-tic efficacy can allow individual neurons and small networks of neurons to extracttemporal information from incoming spike trains.Our results suggest that spike-timing dependent rules for redistribution of synaptic efficacy can provide a power-ful andflexible mechanism for temporal sequence prediction and delay learning.1IntroductionUnderstanding how the activity of neocortical neurons encodes temporal information is a crucial open question for computational neuroscience.Recent in vitro experiments[1, 9,8]suggest some plausible mechanisms.First,neocortical synapses have been shown to be dynamic:postsynaptic responses are not simply a function of the presynaptic firing rate multiplied by a synaptic“weight”but rather,reflect the short-term history of input spike trains.Second,pairedfiring of pre-and postsynaptic neurons tends to redistribute total synaptic efficacy,so that a synapse responds much more strongly to thefirst presynaptic event than to subsequent events in a spike train[9].Third,long-term synaptic plasticity appears to change via a temporally asymmetric spike-timing dependent learning rule:a synaptic connection is strengthened if a presynaptic spike occurs slightly before a postsynaptic spike,and is weakened in the opposite case[8,3].Thesefindings raise three critical questions that motivate our study:(1)What is the role of dynamic synapses in cortical information processing?(2)What is the re-lationship between spike-timing dependent plasticity(STDP)and the redistribution of1synaptic efficacy observed in dynamic synapses?and(3)How does STDP in con-junction with dynamic synapses allow cortical neurons to learn spatiotemporal input patterns?Dynamic synapses have previously been identified as a possible mechanism for gain control of cortical activity[1].They have been used as memory buffers for”re-membering”a history of presynaptic stimulation[7],and have been shown to be useful in modeling irregular bursts of activity in the cortex[14].STDP has been suggested as a mechanism for learning temporal sequences[2,12,10],although without taking dynamic synapses into account.In this paper,we explore two learning rules for STDP-like modification of dynamic synapses.Thefirst rule adapts dynamic synapses in a Hebbian manner,reproducing the basic experimental results on redistribution of synaptic efficacy[9].We show that such a rule allows neurons to predict spatiotemporal input patterns.A complementary rule, which adapts dynamic synapses in an anti-Hebbian manner,is shown to be useful for learning delays and making neurons selective for specific temporal patterns.This pro-vides a neural basis for some previously proposed algorithms for delay learning[5]and temporal clustering[11](see also[6]).While short-term plasticity and STDP have both been studied in isolation,our simulation results demonstrate that their combination can provide a powerful mechanism for temporal sequence learning.2Methods2.1Synapse ModelOur simulations used the following dynamics for modeling short-term synaptic plas-ticity:if a presynaptic spike occurred at time(1)where is the vector representing the temporally-asymmetric learning window(Fig.1 (a),based on[8,3]),is the vector of presynaptic spikes to synapse cen-tered at the time of the postsynaptic spike,and and are gain factors.Note that updates to and have complementary signs,so that an increase in synaptic de-pression is compensated for by an increase in peak conductance and vice versa.It is precisely this compensation that causes redistribution of synaptic efficacy in the model (see Fig.1(b)).We investigated two complementary forms of the above learning rule:Hebbian rule:The gain parameters and were set to positive quantities(we used and in the simulations).We call this rule Hebbian be-cause presynaptic spikes that occur before postsynaptic spikes cause a decrease in(i.e.faster peak)and an increase in(higher synaptic efficacy)and vice versa for the reverse order.Anti-Hebbian rule:and were set to nonpositive quantities(we usedand in the simulations shown in Fig.3,and and in the simulations shown in Fig.4).In this case,presynaptic spikes that occur before postsynaptic spikes cause an increase in(i.e.slower peak)and a decrease in(lower synaptic efficacy)and vice versa for the reverse order.Note that since here,our results using the anti-Hebbian rule do not involve changing the peak synaptic conductance.2.3Neuron ModelWe used standard leaky integrate-and-fire neurons in the simulations with resting po-tential=-60mV and threshold=-40mV.The membrane resistance and capacitance were:R=M and C=nF.The refractory period was 3.5msec.Potentials for excitatory and inhibitory synapses were:mV andmV.Peak synaptic conductances for the network whose output is shown in Fig.4werefixed at nS for excitatory synapses and nS for inhibitory synapses.3Results3.1Hebbian Redistribution of Synaptic EfficacyOurfirst set of simulation results demonstrate how the combination of Hebbian STDP with short-term plasticity can reproduce the experimental results on redistribution of synaptic efficacy[9].Recall that in the Hebbian case,pairing a presynaptic spike with a postsynaptic spike that occurs a few milliseconds later causes a decrease in in our model(Equation3).Fig.1(b)shows the effect of decreasing on the postsynaptic responses to afixed input spike train.Decreasing causes the synapse to respond much more strongly to earlier presynaptic events than to subsequent events in a spike train,moving the peak response to closer to the onset of the input spike train.This is accompanied by a gradual decrease in the overall magnitude of the responses,which3is compensated for during learning by increases in(not shown,see Equation4). This compensation stabilizes the learning process and captures the synaptic behavior seen in experiments on redistribution of synaptic efficacy(cf.Fig.1in[9]).In the next set of simulations,we investigated whether Hebbian redistribution of synaptic efficacy is conducive to temporal sequence learning.We considered the simple case of a single integrate-and-fire neuron with two synapses.At the onset of each trial,one of the synapses received a train of input spikes at afixed rate.After a delay(Fig.1(c)),the other synapse received a train of input spikes at a rate .Each spike train lasted for a specific duration(35msec in the simulations,with Hz,=15msec,peak synaptic conductance before training=0.07nS,and maximal peak conductance=0.2nS).We trained the neuron for 100trials(each lasting210msec),sufficient to allow synaptic parameters to converge.Fig.1(c)shows that the neuron has learned to redistribute its synaptic efficacies to recognize andfire in response to the temporal order of the input spike trains.Further-more,the neuron’s output is predictive,in the sense that it learns tofire soon after the onset of the second spike train before receiving the spike train in its entirety.Traditional learning rules that modify alone are unable to capture this behav-ior.Fig.2contrasts the adjustment of both and with adjustment of alone. Again,a neuron capable of redistributing its synaptic efficacies learns to recognize the given input sequence(Fig.2(a))and does not respond to a different ordering of the inputs(Fig.2(b)).On the other hand,a neuron that modifies but not its values (which remainfixed at=1)repeatedly spikes on both the training sequence and on a different ordering of the sequence after learning(Fig.2(c),(d)).3.2Anti-Hebbian Redistribution of Synaptic EfficacyThe previous section illustrated how a Hebbian rule for redistribution of synaptic ef-ficacy can enable a neuron to learn to predict an input sequence of spike trains.The same rule however is not well-suited to learning the timing delays between various inputs.Consider once again the simple case of two input spike trains separated by a temporal delay(Fig.1(c)).Fig.3(a)(top panel)illustrates the corresponding EPSPs generated in a neuron with randomly chosen values for.Ideally,for the neuron to be selective for this sequence,we would like to maximize the overlap between these two sets of EPSPs,thereby increasing the probability that the neuron willfire in response to this temporal sequence.Consider the effect of the Hebbian rule when an output spike occurs somewhere in the middle of these two input events(say at50ms).The Hebbian rule will decrease for thefirst input synapse and increase for the second synapse, thereby minimizing the overlap between the EPSPs as shown in Fig.3(a)(bottom panel) (note the new values for).On the other hand,the anti-Hebbian rule is well-suited to learning input delays.As shown in Fig.3(b),the rule adapts the depression parameter in the correct direction so as to maximize the overlap between the EPSPs due to the temporally separated inputs (was held constant).This allows the neuron to become selective for this input sequence,generating an output spike after the onset of the second input train.The anti-Hebbian rule can also control the timing of output spikes by converging to stable values of different from the extremum values or.This is shown in Figs.3(c)and4(d)for a neuron with a single input synapse whose peak conductance is high enough to generate an output spike.In this case,the learning rule converges to a value for that balances the contributions of presynaptic spikes before and after the output spike(s). Such stability is a prerequisite for maintaining selectivity for a given input sequence once training is completed.3.3Feedforward network with recurrent inhibitionIn thefinal set of experiments,we investigated whether the anti-Hebbian learning rule for(with held constant)could allow a network of neurons with mutually in-hibitory recurrent connections to become selective for specific input sequences(Fig.4 (a)).These simulations were intended to extend the result in Fig.3(b)to the case of multiple input sequences.The depression parameters were randomly initialized to allow symmetry breaking and the mutual inhibition implemented a form of competi-tion among neurons so that different neurons could code for different input sequences. The set of input sequences comprised6random permutations of input spike trains la-beled A,B,and C;each sequence was35msec in length.Each of the6sequences was presented to the network50times,in round-robin fashion,for a total of300training iterations.Fig.4(b)shows the broad initial selectivities of the10neurons in the network to each of the6different temporal sequences.As shown in Fig.4(c),the anti-Hebbian rule tailors the synaptic values in such a way that some neurons code for no patterns while others become highly selective for a small subset of the possible input sequences. The space of input sequences is thus partitioned among the coding neurons as a result of pared to thefiring rates before learning,firing rates after learning are much less noisy(in the sense that the large number of weakly-responding neurons before learning are suppressed fromfiring after learning).Additionally,the responses of those neurons that learn to code for each sequence are higher after learning than before learning.None of the neurons in the network shown here responds strongly to sequences that are pairwise opposites;e.g.the neuron that responds strongly(more than20Hz)to the sequence”ABC”will not respond strongly to the sequence”CBA”. The ability to respond to one ordering of patterns in a sequence but not the opposite ordering may be useful for recognizing temporal subsequences in sensory data,e.g. motion in visual information or onset of different frequencies in hearing information. 4ConclusionShort-term synaptic plasticity and STDP have emerged as two important properties of neocortical synapses.The interaction between them has remained ing simulations,we showed that Hebbian STDP can reproduce the changes in short-term plasticity known as redistribution of synaptic efficacy observed in neurophysiological experiments.Our results suggest that such a rule allows prediction of temporal se-quences.A complementary rule based on anti-Hebbian STDP is well-suited for learn-ing the delays between various inputs.Redistribution of synaptic efficacy allowed a neuron to become selective for specific input patterns by introducing an asymmetry in5synaptic excitation over time.This asymmetry lead to temporal selectivity:the neuron fired only if the input spike trains generate a set of appropriately aligned EPSPs that pushed the membrane potential above spiking threshold.Our results suggest a strong computational role for redistribution of synaptic effi-cacy in temporal sequence learning.As a specific example,for moving stimuli,our model predicts the development of direction selectivity(Fig.2(a),(b),Fig.4),an im-portant property of neurons in the visual cortex(see also[4]).The temporal range of pattern selectivity in the present model is clearly limited by the width of the STDP learning window.This range could potentially be increased by using recurrent exci-tation to provide contextual information[2,12,13].Our current efforts are therefore focused on exploring the effects of redistribution of synaptic efficacies in recurrent spiking networks.AcknowledgmentsThis research is being supported by a National Defense Science and Engineering Grad-uate Fellowship to APS,a Sloan Research Fellowship to RPNR,and NSF grant no. 130705.References[1]L.Abbott,J.Varela,K.Sen,and S.Nelson.Synaptic depression and cortical gaincontrol.Science,275:220–224,1997.[2]L.F.Abbott and K.I.Blum.Functional significance of long-term potentiation forsequence learning and prediction.Cereb.Cortex,6:406–416,1996.[3]G.Bi and M.Poo.Synaptic modifications in cultured hippocampal neurons:Dependence on spike timing,synaptic strength,and postsynaptic cell type.J.Neurosci.,18(24):10464–10472,1998.[4]F.Chance,S.Nelson,and L.Abbott.Synaptic depression and the temporal re-sponse characteristics of v1cells.J.Neurosci.,18:4785–4799,1998.[5]C.Eurich,K.Pawelzik,U.Ernst,A.Thiel,J.Cowan,and ton.Delay adap-tation in the nervous system.Neurocomputing,32:741–748,2000.[6]J.Hopfield.Pattern recognition computation using action potential timing forstimulus representation.Nature,376:33–36,1995.[7]W.Maass and H.Markram.Synapses as dynamic memory buffers.Neural Net-works,2001.In press.[8]H.Markram,J.L¨u bke,M.Frotscher,and B.Sakmann.Regulation of synapticefficacy by coindence of postsynaptic aps and epsps.Science,275:213–215,1997.[9]H.Markram and M.Tsodyks.Redistribution of synaptic efficacy between neo-cortical pyramidal neurons.Nature,382:807–810,1996.6[10]M.R.Mehta and M.Wilson.From hippocampus to V1:Effect of LTP on spa-tiotemporal dynamics of receptivefields.In J.Bower,editor,Computational Neu-roscience,Trends in Research1999.Amsterdam:Elsevier Press,2000.[11]T.Natschl¨a ger and B.Ruf.Spatial and temporal pattern analysis via spikingwork:Comp.Neural Sys.,9(3):319–332,1998.[12]R.P.N.Rao and T.J.Sejnowski.Predictive sequence learning in recurrent neo-cortical circuits.In Advances in Neural Information Processing Systems12,pages 164–170.Cambridge,MA:MIT Press,2000.[13]D.Tank and J.Hopfield.Neural computation by concentrating information intime.In A,volume84,pages1896–1900,1987. [14]M.Tsodyks,K.Pawelzik,and H.Markram.Neural networks with dynamicsynapses.Neural Computation,10(4):821–835,1998.7Learning to Predict using Redistribution of Synaptic Efficacy.(a)Temporally asymmetric learning window depicting the magnitude of change made to synaptic parameters(and optionally) as a function of the relative timing of pre-and postsynaptic spikes(see Equations3and4).(b)The four plots depict postsynaptic responses in the model to afixed input spike train as a function of the depression parameter(=in the text).Decreasing causes the synapse to respond with a faster peak for earlier presynaptic events.Note also the gradual decrease in the overall magnitude of the responses,which can be compensated for during learning by the complementary Hebbian rule for.(c)Depiction of the learning paradigm:synapses are adapted in response to input spike trains separated from each other byfixed delays.(d)Hebbian rule for modifying leads to predictivefiring:(Top panel)Response of the neuron before training.(Bottom panel)Response after training.The output spike now occurs at the onset of the second input.8102030405060708090100110Time (msec)V m e m b r a n eFigure 2:The Importance of Adapting Short-Term Synaptic Dynamics .(a)A model neuron that uses STDP to adjust both the depression parameter and peak conductance spikes when presented with a temporal sequence used in training.(b)The same neuron does not fire when presented with a sequence that reverses the order of inputs in the training sequence.Note that the firing rate remains the same and only thetemporal order is changed.(c,d)A model neuron that only adjusts peak conductance(as in traditional models)responds vigorously and indiscriminately to both the training sequence as well as the reverse-order sequence.9V m e m b r a n e V m e m b r a n e Time (msec)(a)(b)Figure 3:Anti-Hebbian Redistribution of Synaptic Efficacies .(a)A single neuron receives 2input spike trains as in Fig.1(c).The top panel shows the response of the neuron to the two spike trains.An output spike was elicited during training by injecting current at time (double arrows).As shown in the bottom panel,the Hebbian rule for modifying moves the peaks for the two trains in the opposite direction,preventing the neuron from learning the input delay.(b)The anti-Hebbian rule moves the peaks in the correct direction,allowing the neuron to learned to spike on its own at the appropriate time (without injecting an external current)after 150training iterations.(c)Interactions between the timing of the presynaptic spike train,the value of ,and the initial value of lead to different equilibrium values following 150training iterations.Each iteration involves stimulating a single neuron by a train of 6spikes applied to a single synapse.10(a)(b)Activity(Hz)Figure4:Temporal Sequence Learning using(a)shows the initial selectivities(measured as spike counts)of10neurons in a mutually inhibitory network for6input sequences(permutations of spike trains A,B,and C).(b)shows the selectivities developed by the neurons after learning using the anti-Hebbian rule for.Note that the neurons that are active have become selective for a small subset of the original training set of sequences as a result of learning.11。