【湖南中考面对面】(新课标)2015中考数学总复习 第5课时 二次根式习题(pdf)

合集下载

【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件

【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件

4.已知 x=2- 3,y=2+ 3,求 x2-xy+y2 的值.
∵x=2- 3,y=2+ 3,∴x+y=(2- 3)+(2+ 3)=4, xy=(2- 3)×(2+ 3)=1,∴x2-xy+y2=(x+y)2-3xy= 42-3=13
二次根式综合计算与化简问题,一般先化简再代入 求值,最后的结果要化为分母不含根号的数或者是 最简二次根式;也可以利用所给条件整体考虑.
原式=a2+6a,当 a= 2-1 时,原式=4 2-3
二次根式的概念和性质
1.(2014· 武汉)若 x-3在实数范围内有意义,则 x 的取值范 围是( C ) A.x>0 有意义( A ) A.-2 B.1 C .2 D.3 【解析】第1题根据二次根式有意义的条件得出关于x的不等 式;第2题二次根式的被开方数是非负数,可以逐个代入, 也可以先判断x的取值范围. B.x>3 C.x≥3 D.x≤3
利用二次根式有意义的条件求字母的取值范围时,
首先考虑被开方数为非负数,其次还要考虑其他
限制条件,如分母不等于0等,往往转化为不等式 (组)解决.
二次根式的简单计算
1.(2014· 孝感)下列二次根式中,不能与 2合并的是( C ) A. 1 2 B. 8 C. 12 D. 18
2.(2014· 济宁)如果 ab>0,a+b<0,那么下面各式:
第4讲 二次根式及其运算
1.了解二次根式、最简二次根式的概念.
2.了解二次根式加、减、乘、除运算法则,会
用它们进行有关实数的简单四则运算.
二次根式的知识点是新课标的基本考查内容之一,常常以
填空题、选择题形式出现. 1.二次根式的基本运算要求熟练掌握,二次根式的运算以 整式的运算为基础,其法则、公式都与整式类似,特别是二 次根式的加减,没有提出同类二次根式的概念,完全参照合

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。

2015届湘教版中考数学复习课件(第5课时_数的开方与二次根式)

2015届湘教版中考数学复习课件(第5课时_数的开方与二次根式)
例 1 [2014· 南京] 8 的平方根是( D ) A. 4 C. 2 2 B. ±4 D. ±2 2
考点聚焦
归类探究
回归教材
第5课时┃ 数的开方与二次根式
例 2 [2014· 黄冈] -8 的立方根是( A ) A. -2 B. ±2 C. 2 D. - 1 2
例 3 [2013· 东营] A. ±4 B. 4
考点聚焦
归类探究
回归教材
第5课时┃ 数的开方与二次根式
探究二 二次根式的有关概念
命题角度: 1.二次根式的概念; 2.最简二次根式的概念. 例4 A. -2 [2014· 株洲] x 取下列各数中的哪个数时,二次根 B. 0 C. 2 D. 4
式 x-3有意义( D )
考点聚焦
归类探究
回归教材第ຫໍສະໝຸດ 课时┃ 数的开方与二次根式b = a b >0 ≥0 a(a________,b________)
如: 要估算 7在哪两个相邻的整数之间, 先将 7
式的估算 平方.因为 4<7<9,所以 2< 7<3
考点聚焦
归类探究
回归教材
第5课时┃ 数的开方与二次根式
归 类 探 究
探究一 求平方根、算术平方根与立方根
命题角度: 1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.
16的算术平方根是( D ) C. ±2 D. 2
解 析
16=4,4 的算术平方根为 2,故选 D.
考点聚焦
归类探究
回归教材
第5课时┃ 数的开方与二次根式
【方法点析】 (1)一个正数的平方根有两个,它们互为相反数; (2)平 方根等于本身的数是 0, 算术平方根等于本身的数是 1 和 0, 立方根等于本身的数是 1,-1 和 0;(3)一个数的立方根与 它同号.

中考数学总复习第5课 二次根式

中考数学总复习第5课 二次根式

的值为
()
A.-15
B.15
C.-125
D.125
解析:由二次根式的定义,得 2x-5≥0 且 5-2x≥0,∴x
≥5且 2
x≤52,∴x=52,∴y=-3,∴2xy=2×52×(-3)=-
15.
答案:A
【预测演练 1-3】 化简:( 3-x)2- x2-10x+25.
解析:∵3-x≥0,∴x≤3,原式=3-x-|x-5|=3-x- (5-x)=3-x-5+x=-2.
解析:(1)4 1- 8=4× 2-2 2=2 2-2 2=0.
2
2
(2)原式=( 2+1)( 2-1)× 2=(2-1)× 2= 2.
(3)原式=(3 2)2-1-[(2 2)2-4 2+1]
=18-1-8+4 2-1=8+4 2.
(4)原式=( 10-3)2013·( 10+3)2013·( 10+3)
∴a=m 2+2n 2,b=2m n . 这样,小明找到了把部分 a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决问题: (1)当 a,b,m,n 均为正整数时,若 a+b 3=(m+n 3)2,用含 m,n 的
式子分别表示 a,b 得,a=________,b=________; (2)利用所探索的结论,找一组正整数 a,b,m,n 填空: ______+______ 3=(______+______ 3)2; (3)若 a+4 3=(m+n 3)2 且 a,b,m,n 均为正整数,求 a 的值.
解析:x-3≥0, ∴x≥3.
答案:x ≥3
【预测演练 1-1】
等式 2k-1= k-3
数 k 的取值范围是
2k-1成立,则实 k-3
()

湘教版八年级上册数学第5章 二次根式含答案(巩固)

湘教版八年级上册数学第5章 二次根式含答案(巩固)

湘教版八年级上册数学第5章二次根式含答案一、单选题(共15题,共计45分)1、函数y= + 中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠12、计算的结果是( )A.3B.2C.D.63、下列运算正确的是()A. B. C. D.4、下列根式中,不是最简二次根式的是()A. B. C. D.5、等式成立的条件是()A.x≠3B.x≥0C.x≥0且x≠3D.x>36、下列二次根式中:、、、,,最简二次根式的个数为()A.0个B.1个C.2个D.3个7、下列说法中正确的是()A.实数-a 2是负数B. =|a|C.|-a|一定是正数D.实数-a的绝对值是a8、下列各式是最简二次根式的是()A. B. C. D.9、下列二次根式中,最简二次根式是( )A. B. C. D.10、下列运算中,结果正确的是()A. B.C. D.11、式子在实数范围内有意义,则x的取值范围是A.x<1B.x≤1C.x>1D.x≥112、关于x的方程mx2﹣x﹣1=0有两个实数解,则m的取值范围是()A.m≥﹣B.0<m≤5C.﹣≤m≤5且m≠0D.0<m≤5且m≠013、已知,用含的代数式表示,这个代数式是()A. B. C. D.14、与2- 相乘,结果是1的数为( )A. B.2- C.-2+ D.2+15、下列各式中,运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、化简:﹣=________ .17、函数y= 中自变量x的取值范围是________.18、式子有意义,则x________.19、当x________时,在实数范围内有意义。

20、若实数a,b满足(a﹣2)2+ =0,则(a+b)2015=________.21、若最简二次根式与2 是同类二次根式,则a=________.22、如果代数式有意义,那么字母x的取值范围是________.23、计算:=________.24、若+(y+27)2=0,则﹣=________.25、函数y= –1的自变量x的取值范围是________.三、解答题(共5题,共计25分)26、计算下列各题:9 ÷( )× ;27、如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2 ,CD=4,BC=8,求四边形ABCD的面积.28、有如下一串二次根式:①,②,③,④,…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式;(3)仿照①,②,③,④,⑤,写出第n个二次根式,并化简.29、已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形的周长.30、阅读材料,解答问题.例:若代数式的值是常数2,则a的取值范围2≤a≤4.分析:原式=|a﹣2|+|a﹣4|,而|a|表示数x在数轴上的点到原点的距离,|a﹣2|表示数a在数轴上的点到数2的点的距离,所以我们可以借助数轴进行分析.解:原式=|a﹣2|+|a﹣4|在数轴上看,讨论a在数2表示的点左边;在数2表示的点和数4表示的点之间还是在数4表示的点右边,分析可得a的范围应是2≤a≤4.(1)此例题的解答过程了用了哪些数学思想?请列举.(2)化简.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、C5、D6、B7、B9、B10、C11、D12、C13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第5讲二次根式(43张)

第5讲二次根式(43张)

中考数学复习指导
二次根式的性质
1. a(a≥0)具有双重非负性,一是a≥0,二是 a ≥0. 2. a2 中的a可以是任意实数,而 ( a )2 中的a必须是非负数, 当a<0时, a 没有意义. 3.如果被开方数中有的因式能够开得尽方,可以利用公式
a2 | a |, 把开得尽方的因式用它的算术平方根代替移到根号 外面.
中考数学复习指导
5.(2010·乐山中考)若a<0,化简|a-3|- a2 =_____. 【解析】当a<0时,a-3<0,原式=3-a+a=3. 答案:3
中考数学复习指导
6.(2010·日照中考)计算: 3 4 22 12. 【解析】原式= 4 3 4 2 3 3.
(B) 3 2 2 3
(C) 2 5 10
(D) 2 5 10
5
【解析】选C. 2与 5 不是同类二次根式,不能合并.
3 2 2 2 2, 2 1 10. 55
中考数学复习指导
4.(2010·安徽中考)计算: 3 6 2=_____. 【解析】 3 6 2 3 2 2 2 2. 答案:2 2
x2
x-1≥0,x-2≠0两个条件,解得x≥1且x≠2.
中考数学复习指导
2.(2011·上海中考)下列二次根式中,最简二次根式是( )
(A) 1
5
(C) 5
(B) 0.5 (D) 50
【解析】选C.选项A、B根号中有分母,选项D的被开方数
50=52×2.
中考数学复习指导
3.(2010·烟台中考)在函数 y x 5 中自变量x的取值范围 是______. 【解析】因为二次根式的被开方数是非负数,所以x-5≥0, 所以x≥5. 答案:x≥5

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。

备战中考数学(湘教版)巩固复习二次根式(含解析)

备战中考数学(湘教版)巩固复习二次根式(含解析)

备战中考数学(湘教版)巩固复习二次根式(含解析)个B. 2个C. 3个D. 4个4.下列根式中属最简二次根式的是().A.B.C.D.5.若是整数,则自然数n的值有()个.A. 7B. 8C. 9D.106.若式子在实数范围内有意义,则x的取值范围是()A. x≥2B. x≤2C. x>2D. x<27.下列二次根式是最简二次根式的是A.B.C.D.8.函数y= 中,自变量x的取值范围是()A. x≤6B. x≥6C. x≤-6D. x≥-69.若代数式在实数范围内有意义,则x的取值范围是()A. x≥﹣3B. x>3C. x≥3D. x≤3二、填空题10.=________.11.若式子在实数范围内有意义,则x的取值范围是________.12.若是整数,则满足条件的最小正整数n为13.计算:________.14.计算:÷(﹣)﹣1﹣()0=________ ,2÷(﹣)=________ .15.如果是二次根式,那么a、b应满足的条件是________.16.计算:÷ =________.三、计算题17.计算:(1)÷ ﹣× +(2)(1+ )(1﹣)﹣(2 ﹣1)2.18.计算:(﹣)2+(+3)(﹣3).四、解答题19.若a,b为有理数,且 = ,求的值。

20.(1)+×﹣6×(2)若a=1+, b=,求代数式a2+b2﹣2a+1的值.五、综合题21.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a 的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即|a|= ,问:(1)这种分析方法涌透了________数学思想.(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(3)猜想与|a|的大小关系.(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).22.观察下列各式及其验算过程:=2 ,验证:= = =2 ;=3 ,验证:= = =3 (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.答案解析部分一、单选题1.【答案】D【考点】二次根式有意义的条件【解析】【分析】根据被开方数大于等于0列式计算即可得解.【解答】根据题意得,2-x≥0,解得x≤2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】A【考点】二次根式的性质与化简【解析】解:原式==2.故选:A.【分析】根据=|a|,进而求出即可.3.【答案】D【考点】二次根式的定义,二次根式的性质与化简,二次根式的非负性【解析】,,无意义,.故选D,4.【答案】A【考点】最简二次根式【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则不是.【解答】A、是最简二次根式;B、=,可化简;C、=,可化简;D、=,可化简;故选:A.【点评】最简二次根式是本节的一个重要概念,也是中考的常考点.最简二次根式应该是:根式里没分母(或小数),分母里没根式.被开方数中不含开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断5.【答案】D【考点】二次根式的定义【解析】【解答】解:由题意得:95﹣n≥0,解得n≤95,∵是整数,∴95﹣n是完全平方数,满足条件的自然数n为95,94,91,86,79,70,59,46,31,14,共10个.故选:D.【分析】先根据二次根式的定义求出x的取值范围,再根据的值是整数这一条件对n的值进行讨论即可.6.【答案】A【考点】二次根式有意义的条件【解析】【分析】式子在实数范围内有意义,即:x﹣2≥0,解得x≥2.故选A.7.【答案】C【考点】最简二次根式【解析】【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.8.【答案】A【考点】二次根式有意义的条件【解析】【解答】解:二次根式有意义,则根号内的代数式为非负数,则6-x≥0,解得x≤6.故选:A.【分析】二次根式有意义的条件是根号内为非负数.9.【答案】C【考点】二次根式有意义的条件【解析】【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选C.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.二、填空题10.【答案】2【考点】二次根式的乘除法,二次根式的加减法【解析】【解答】原式=4 ÷2 =2.【分析】首先合并同类二次根式,再用二次根式的除法法则计算。

2015届中考数学专项复习之《二次根式》基础测试(含答案)

2015届中考数学专项复习之《二次根式》基础测试(含答案)

(一)判断题:(每小题1分,共5分).1.2)2(=2.……( ) 2.21x --是二次根式.……………( ) 3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac 1是同类二次根式.……( )5.b a +的有理化因式为b a -.…………( )【答案】1.√;2.×;3.×;4.√;5.×.(二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.【答案】x ≤1.7.当x ____________时,二次根式32-x 有意义.【提示】二次根式a 有意义的条件是什么?a ≥0.【答案】≥23. 8.比较大小:3-2______2-3.【提示】∵ 243=<,∴ 023<-,032>-.【答案】<.9.计算:22)21()213(-等于__________.【提示】(321)2-(21)2=?【答案】23. 10.计算:92131·3114a =______________.【答案】92aa .11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.【提示】从数轴上看出a 、b 是什么数?[a <0,b >0.]3a -4b 是正数还是负数?[3a -4b <0.]【答案】6a -4b .12.若8-x +2-y =0,则x =___________,y =_________________.【提示】8-x 和2-y 各表示什么?[x -8和y -2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2.13.3-25的有理化因式是____________.【提示】(3-25)(3+25)=-11.【答案】3+25.14.当21<x <1时,122+-x x -241x x +-=______________. 【提示】x 2-2x +1=( )2;41-x +x 2=( )2.[x -1;21-x .]当21<x <1时,x -1与21-x 各是正数还是负数?[x -1是负数,21-x 也是负数.]【答案】23-2x .15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_____________,b =______________.【提示】二次根式的根指数是多少?[3b -1=2.]a +2与4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.(三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯【答案】D .【点评】本题考查二次根式的性质.注意(B )不正确是因为2)52(=|-52|=52;(C )不正确是因为没有公式b a +=b a +.17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )b a =b1ab 【答案】B .【点评】本题考查二次根式的性质成立的条件.(A )不正确是因为a +b 不一定非负,(C )要成立必须a ≥1,(D )要成立必须a ≥0,b >0.18.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( ) (A )x ≥21 (B )x ≤21 (C )x =21(D )以上都不对 【提示】要使式子有意义,必须⎩⎨⎧≥-≥-.021012x x【答案】C .19.当a <0,b <0时,把ba化为最简二次根式,得…………………………………( ) (A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b 【提示】b a =2b ab =||b ab.【答案】B .【点评】本题考查性质2a =|a |和分母有理化.注意(A )错误的原因是运用性质时没有考虑数.20.当a <0时,化简|2a -2a |的结果是………( )(A )a (B )-a (C )3a (D )-3a【提示】先化简2a ,∵ a <0,∴ 2a =-a .再化简|2a -2a |=|3a |.【答案】D .(四)在实数范围内因式分解:(每小题4分,共8分)21.2x 2-4;【提示】先提取2,再用平方差公式.【答案】2(x +2)(x -2).22.x 4-2x 2-3.【提示】先将x 2看成整体,利用x 2+px +q =(x +a )(x +b )其中a +b =p ,ab =q 分解.再用平方差公式分解x 2-3.【答案】(x 2+1)(x +3)(x-3).(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02); 【提示】先分别把每一个二次根式化成最简二次根式,再合并同类二次根式.【答案】33.24.(548+12-76)÷3; 【解】原式=(203+23-76)×31=203×31+23×31-76×31=20+2-76×33=22-221. 25.50+122+-421+2(2-1)0;【解】原式=52+2(2-1)-4×22+2×1=52+22-2-22+2=52.26.(b a 3-b a +2a b +ab )÷ab. 【提示】本题先将除法转化为乘法,用分配律乘开后,再化简. 【解】原式=(b a 3-b a +2a b +ab )·b a=b a 3·ba -ba ·ba +2ab ·ba+ab ·ba=a -2)(ba +2+2a =a 2+a -b a+2.【点评】本题如果先将括号内各项化简,利用分配律乘开后还要化简,比较繁琐. (六)求值:(每小题6分,共18分)27.已知a =21,b =41,求b a b --ba b+的值. 【提示】先将二次根式化简,再代入求值. 【解】原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时,原式=4121412-⨯=2. 【点评】如果直接把a 、b 的值代入计算,那么运算过程较复杂,且易出现计算错误. 28.已知x =251-,求x 2-x +5的值. 【提示】本题应先将x 化简后,再代入求值. 【解】∵ x =251-=4525-+=25+.∴ x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45.【点评】若能注意到x -2=5,从而(x -2)2=5,我们也可将x 2-x +5化成关于x -2的二次三项式,得如下解法:∵ x 2-x +5=(x -2)2+3(x -2)+2+5=(5)2+35+2+5=7+45.显然运算便捷,但对式的恒等变形要求甚高. 29.已知y x 2-+823-+y x =0,求(x +y )x的值.【提示】y x 2-,823-+y x 都是算术平方根,因此,它们都是非负数,两个非负数的和等于0有什么结论? 【解】∵y x 2-≥0,823-+y x ≥0,而 y x 2-+823-+y x =0,∴ ⎩⎨⎧=-+=-.082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.【提示】本题求直角三角形的面积只需求什么?[另一条直角边.]如何求?[利用勾股定理.]【解】在直角三角形中,根据勾股定理:另一条直角边长为:22)326()362(+-+=3(cm ). ∴ 直角三角形的面积为:S =21×3×(326+)=23336+(cm 2) 答:这个直角三角形的面积为(23336+)cm 2.31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.【提示】由已知得|1-x |-|x -4|=2x -5.此式在何时成立?[1-x ≤0且x -4≤0.]【解】由已知,等式的左边=|1-x |-2)4(-x =|1-x |-|x -4 右边=2x -5.只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎩⎨⎧≤-≤-.0401x x 解得1≤x ≤4.∴ x 的取值范围是1≤x ≤4.。

2015年中考数学试题分类汇编二次根式.doc

2015年中考数学试题分类汇编二次根式.doc

2015中考分类二次根式解析一、选择题1.(2015•安徽)计算8×2的结果是( )A .10B .4C . 6D .22. (2015•湖南衡阳)函数1+=x y 中自变量x 的取值范围为( B ).A .0≥xB .1-≥xC .1->xD .1>x3. (2015•江苏扬州)下列二次根式中的最简二次根式是 ( )A 、30B 、12C 、8D 、214. (2015•江苏苏州)若()2m =-,则有 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-2【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。

【解析】化简得:m = - 2 ,因为- 4 < - 2 < - 1(A+提示:注意负数比较大小不要弄错不等号方向),所以-2 < - 2 < -1。

故选C 。

5. (2015•山东济宁) x 必须满足A.x ≤2B. x ≥2C. x <2D.x >26. (2015•浙江杭州)若1k k <+k <<k +1(k 是整数),则k =( )A . 6B . 7C . 8D . 9【答案】D . 【考点】估计无理数的大小.【分析】∵81<90<1009<⇒,∴k =9.故选D .7. (2015•重庆A ) )A. B. C. D.8. (2015•重庆B )计算的值是( )A .2B .3 C二、填空题1. (2015•南京)若式子x +1在实数范围内有意义,则x 的取值范围是 .2. (2015•南京)计算5×153的结果是 .3. (2015•2= . 考点:绝对值、无理数、二次根式分析:2值得正负,再根据绝对值的意义化简.略解:2 20< 22=4. (2015•四川自贡)若两个连续整数x y 、 满足x 1y <<,则x y +的值是 .考点:无理数、二次根式、求代数式的值.分析:1值是在哪两个连续整数之间.略解:∵23<< ∴314<< ∴,x 3y 4== ∴x y 347+=+=;故应填 7 .5. (2015•四川资阳)已知:()260a +=,则224b b a --的值为_________.三.解答题1. (2015•江苏苏州) (052+--. 【考点分析】考察实数计算,中考必考题型。

湘教版2015年中考总复习第5课时二次根式

湘教版2015年中考总复习第5课时二次根式
A、 -5 =-5
2

2 B、 ( -4) =4
C、 a a
D、a2 b2 a b
当堂练习
3.直接写出下列各题的计算结果:
( 1 2 )
2=
1 ;
( 16 ) ( 9 ) 12
(3+ 1 0
.
)2011· (3
10
)2010=
3+ 10
观察下列各式:
a 1 a2 4 (2)( 2 2 ) ( 1) a 4a 4 a 2a a 其中:a 2 3
检测
1.下列二次根式中,最简二次根式是( ) 1 A. B. 4 C. 6 D. 8 2 2.下列二次根式中,与 3是同类二次根式的是( 2 3 A. 18 B. 27 C. D. 3 2 3.下列计算正确的是( ) A. 2+ 3= 5 B. 2· 3= 6 C. 8=4 D. -32=-3
怎样化去分母中的根号呢?
a a b b b b
(a≥0,b>0)
ab b
2
2
1 2
2
9 2
3 4
2
2 1
3 2
3 2
1、二次根式 2、二次根式
x 1 有意义,则x的取值范围是 x≥-1
(3) 2
的值是(
D

A、-3
3、 a 4 4.在函数
B、3或-3
+
1 1 3 4 5 5
1 1 1 1 1 2 , 2 3 , 3 3 4 4
请你将猜想到的规律用含自然数
n(n≥1)的代数式表示出来:
1 1 n ( n 1) n 2 n 2
已知x 2 5, y 2 5, 求x xy y 的值

中考数学总复习 第05讲 二次根式及其运算课件(考点精

中考数学总复习 第05讲 二次根式及其运算课件(考点精

考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.

第05讲 实数与二次根式(知识点梳理)(记诵版)-【学霸计划】【2022年】中考数学大复习(知识点·

第05讲 实数与二次根式(知识点梳理)(记诵版)-【学霸计划】【2022年】中考数学大复习(知识点·

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。

2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。

3.平方根的性质:若a x =2,那么a x =-2)(,则也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。

二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。

2.算术平方根的表示方法:正数a 的算术平方根可记作,读作:根号a 。

3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。

一个正数a 的正的平方根就是它的算术平方根。

三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。

开平方运算是已知指数和幂求底数。

2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。

3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。

考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a 的立方根(或三次方根)。

2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。

3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。

5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。

2023年中考数学一轮复习满分突破专题05 二次根式-【题型方法解密】

2023年中考数学一轮复习满分突破专题05 二次根式-【题型方法解密】

专题05 二次根式【热考题型】【知识要点】知识点一二次根式相关概念和性质二次根式的概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1)二次根式中,被开方数a可以是具体的数或代数式。

2)二次根式中a是一个非负数。

二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,有意义。

考查题型一二次根式有意义的条件题型1.(2022·贵州贵阳·中考真题)若式子√x−3在实数范围内有意义,则x的取值范围是A.x≥3B.x≤3C.x>3D.x<3有意义时,x应满足的条件为()题型1-1.(2022·广东广州·中考真题)代数式√x+1A.x≠−1B.x>−1C.x<−1D.x≤-1题型1-2.(2022·黑龙江绥化·中考真题)若式子√x+1+x−2在实数范围内有意义,则x的取值范围是()A.x>−1B.x⩾−1C.x⩾−1且x≠0D.x⩽−1且x≠0题型1-3.(2022·四川雅安·中考真题)使√x−2有意义的x的取值范围在数轴上表示为()A .B .C .D .题型1-4.(2022·湖北黄石·中考真题)函数y =√x+31x−1的自变量x 的取值范围是( )A .x ≠−3且x ≠1B .x >−3且x ≠1C .x >−3D .x ≥−3且x ≠1题型1-5.(2022·内蒙古内蒙古·中考真题)已知x ,y 是实数,且满足y=√x −2+√2−x +18,则√x ⋅√y 的值是______. 易错点总结:二次根式的性质:1)2)⎪⎩⎪⎨⎧<-=>==),(),(),(00002a a a a a a a ,即任意一个数的平方的算术平方根等于它本身的绝对值。

【扩展】与的区别于联系区别:联系:1)两者都需要进行平方和开方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ ! "# 泸州 计算
%
) , " ; ! % $ , ) 9 , $ ) ) $ ,
" ! . ! "# 重 庆 & 卷 先化简 再求值 " ; " 9 $ % ! " " $ " ! % " ! 9 其中 " 的值为方程 %" 1 /" $ " 的解! ! " $ " " 9 " ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! % ; ! 3 ! "# 贺 州 先 化 简 再 求 值 ) ,9), % ! ) 9 %) 9 " 其中 ) 1 +9 " , 1 +$ "! ! 槡 槡 )9 " ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! % ! %), $ , )% 9 ), " ! 4 !先化简再求值 ) $ ) % % 其中 ) 1 ) $ , ! ! $ += , =$ +且 , 为整数! 槡 !
%
,
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! % " "$ % # ! "# 绵阳 化简 " $ % ; $ % !! " $ " "$ %" 9 " ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! $ # " $ % +" / ! "# 抚州 先化简 " $ ; 再任选一 ! " $ " " $ " ! ! 个你喜欢的数 " 代入求值! !
类型一 !实数的运算
+ 90 $ %0 $ %,"# $ ! / ! "# 重庆 (卷 计算 $ ! " ! 槡 8$ $" ! % ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + $% 4$ %5 6 7#/$ $0 "$ %0 ! 槡 槡 ! . !"# 宁夏 计算 $# 9 ! ! ! ! ! ! ! ! ! ! ! ! ! 类型二 !分式的化简求值 ! ! ) )9 " $ ! ! " ! "# 长沙模拟 计算) $ " )% $ " ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! " " % $ " $ 8 ! ! % ! "# 湘潭模拟 化简 " 9 + " $ + !槡 槡 Nhomakorabea槡

! ! ! " $ " !"# 曲靖计算 0 $ %0 $ "9 槡 %$ "! #"#, 9 8! ! 槡 # ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! % ! "# 桂林 槡 #9 $ " %,"# $ %5 6 7#/ $ 90 $ % 0 ! 槡 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! " $ , " ! + ! "# 昆明 计算 0 % 0 9 $ + 9 $ %> ? 5 #/ $ ! 槡 % ! ! ! ! ! ! ! ! ! ! ! ! ! # ! "# 内 江 计 算 %@ A 7., $$0 + $% 0 $槡 %3 9! 槡 ! " ! $" ! + !


" $" "$5 " & "! 解析 ' & ' 为整数!所以 & 的值为 . '" '$ ' !. !且根据题意!& " $' & "' & . !1 槡 5& & 为整数! 2 根据题意 5 && ( 或 5 && " #' & .或& -& "" " 7 !2 & "$9 "$ ! 解析 本题考查实数估算" 1" (; 5; 7. ! 2 排除 8 ' 槡 槡 槡 " " !又1" " % ," "% !且 槡 ," "% ; 5 !2" " %; 5; . !故答案为 $ " " F 槡 槡 "$7 "$! 解析 # " 4 " " "& $$ #槡 "$ & $ "& $$" 槡 $ $ #槡 " ""# "解)原式 $ (槡 .B .& 8 $" 4 "槡 , 槡 " " " (4 ," 槡 " ""$ "解)原式 $ .& $ . 槡 &槡 4 ." 8 " 9 " #槡 .4 $ $ #槡 .& $$ " .& $ 槡 . 槡 " & 4 " " " " . " - " " " " 数式运算解答题巩固集训 " 类型一 ! 实数的运算 " "$ "解)原式 "& (4 $4 . " "" " " "" "解)原式 "4 $& " 8槡 4 " " 槡 " " ." " " ". "解)原式 "4 $4 "& " 8槡 槡 " " ." " "( "解)原式 "8 .& #" & .$ & .槡 .4 . 槡 槡 " $" " "% "解)原式 74 "& $& .& " " %" " ", "解)原式 -$, 4 "槡 "& "& #槡 "& $$ 槡 7 " " "% - " 7 " " 类型二!分式的化简求值 " !4 $ "$ "解)原式 - ! & !& $ #! & $$ # ! 4 $$ " ! $ " & !& $ !& $ " " !& $ " !& $ " $" " "" "解)原式 -# & & $ $ (# & 4 .$ # & & .$ & 4 . & & . " " & #& & .$ & #& 4 .$ " " & & .& & & & . " " & & (& & ." " ". "解)原式 -# ! & $ $ (( & ! " !4 ( ( " !" & ( " ! !& ( !& ( * " & + (# & $! " " #! 4 ( $#! & ( $ ( ! & ( " ( !& ( " (# & $! #! 4 ( $#! & ( $ ( " " $ -& " !!!! !4 ( "
! ! ! % % !槡 + 1 !! ! ! ! & '$ + ( ' + ) ' . * ' 8 槡 ! 4$ " 有意义的最大整数 " 是 !! ! + !使式子 槡 ! ! & '$ % ( '$ 4 ) ' , * ' 4 ! # ! "# 孝感 下列二次根式中不能与槡 % 合并的是 ! ! !! ! ! ! " & ' ( ' 4 ) '槡 "% * '槡 "4 槡 ! % ! !! ! / ! %,"# 徐州改编 下列运算中错误的是 $$ ! ! & ! %9 +1 / ( ! 41 %槡 % 槡 槡 槡 槡 ! % ! ) ! 4 ; % 1 % * ! $ + 1 + 槡 槡 槡 ! . ! "# 广安 要使二次根式 槡 /" $ + 在实数范围内 ! ! 有意义 则 " 的取值范围是 !! ! ! ! + + + + ( ) * & !" 1 !" !" !" # % & ! / / / / ! 3 !对任意实数 ) 则下列等式一定成立的是 !! ! ! % ! & ! ) 1 ) ( ! ) 1 ) 槡 槡 ! % % ! ) !槡 ) 12 ) * !槡 ) 10 )0 ! 4 ! "# 济宁 如果 ), < , ) 9, = , 那么下面各式 ! ! ! ) 槡 ) ) , ) 1 槡 ),; 1 $! , 槡 , ) , , ! ! , 其中正确的是 !! ! & ' ( ' ) ' * ' ! ! ! " " 8 ! "# 金华 在式子 " $ % 槡 " $ + 中 ! " $ % " $ + 槡 ! " 可以取 % 和 + 的是 !! ! ! " " ! & ! ( ! ) !槡 " $ % * !槡 " $ + ! " $ % " $ + ! ", ! 新湘教八上 B "., 习题 (组第 4 题改编 化简 槡 )# ! ! ! 1 !!!!! ! "" !当 "的 取 值 范 围 满 足 ! ! ! ! 时 二 次 根 式 ! ! ! " $ % " 无意义 ! 槡 ! "% ! "# 泉 州 已 知 # 为 两 个 连 续 的 整 数 且 ! ! !!! -=槡 "" = # 则 -9 #1 !!!! ! !
相关文档
最新文档