数学-多种函数交叉综合问题
数学常见的6种压轴题类型-初中
数学常见的6种压轴题类型-初中
对于中考数学,压轴题往往是是考生最怕的。
很多考生都以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
常常有很多家长说,“孩子对于数学考试非常头疼,选择题和填空题都还勉强能做完,可对于大题就有点束手无策,特别是最后的压轴题,压根儿没碰过!”
其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
1线段、角的计算与证明
中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2一元二次方程与函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方。
九年级数学下册常考【压轴题】类型+解题思路
九年级数学下册常考【压轴题】类型+解题思路中考数学常考压轴题类型1、线段、角的计算与证明中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
所以,在中考中面对这类问题,一定要做到避免失分。
4、列方程(组)解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。
方程,可以说是初中数学当中最重要的部分,所以也是中考中必考内容。
从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。
实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
5、动态几何与函数问题整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
高中数学教学中的学科交叉与综合应用
高中数学教学中的学科交叉与综合应用随着社会的不断发展,各行各业对高中学生的综合素质要求越来越高。
在这种背景下,高中数学的教学也面临着新的挑战。
数学作为一门学科,与其他学科之间存在着密切的关系,学科交叉与综合应用的理念逐渐被应用到数学教学中。
本文将探讨高中数学教学中学科交叉与综合应用的重要性,并介绍一些有效的教学方法和策略。
一、学科交叉的重要性1. 增强学生的综合能力学科交叉可以促使学生在数学学习中获取和运用其他学科的知识和技能,拓宽他们的思维方式和学科的应用范畴。
通过将数学与其他学科相结合,使学生能够在解决实际问题时更加全面地思考和运用所学内容,提高他们的综合能力。
2. 增加学科的吸引力单一学科的教学容易让学生感到枯燥乏味,难以激发他们对学科的兴趣。
而通过与其他学科的交叉应用,可以使数学的学习更加有趣和实用,从而增加学科的吸引力,激发学生对数学的学习热情。
二、学科交叉与综合应用的方法和策略1. 教师间的协作数学教师需要与其他学科的教师进行密切的合作,共同设计和实施跨学科的教学活动。
例如,在解决实际问题时,数学教师可以与物理教师合作,引入物理理论知识,帮助学生更好地理解数学问题。
2. 教学内容的整合在教学过程中,可以将数学与其他学科的内容进行整合。
例如,在代数学习中加入经济学的概念,使学生能够将数学知识应用于经济领域的实际问题。
3. 多样化的教学方法为了增加学科交叉与综合应用的效果,教师可以采用多样化的教学方法。
例如,可以利用案例研究法,让学生通过分析真实案例来综合运用数学知识和其他学科的知识。
4. 提供实践机会学科交叉与综合应用需要给学生提供实践机会,让他们能够亲身体验和应用所学知识。
可以组织实地考察或实验活动,让学生将数学知识与实际情境相结合,更好地理解和应用所学内容。
三、学科交叉与综合应用的案例1. 数学与科学交叉在物理学中,学生需要运用数学知识来描述和解决物理现象。
例如,通过运用数学的函数概念和微积分知识,学生可以对动力学问题进行建模和求解,进而揭示物体在空间运动中的规律。
2019年中考数学常见的九种出题形式
2019年中考数学常见的九种出题形式在初中数学知识点当中,学生们掌握情况比较欠缺的主要是列方程组解应用题,函数特别是二次函数,四边形以及相似,还有圆。
这些知识点如果分块学习学生还易接受,关键在于知识的综合。
下面教育频道小编为学生们详细介绍压轴题常见的八种出题形式!中考数学知识出题的综合形式1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
数列中的综合问题(经典导学案及练习答案详解)
§6.6 数列中的综合问题学习目标1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题. 题型一 数学文化与数列的实际应用例1 (1)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块答案 C解析 设每一层有n 环,由题意可知,从内到外每环之间构成公差为d =9,首项为a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,解得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).(2)(2021·新高考全国Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm × 6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm ,10 dm ×6 dm ,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑k =1nS k =_______ dm 2.答案 5 240⎝⎛⎭⎫3-n +32n解析 依题意得,S 1=120×2=240; S 2=60×3=180;当n =3时,共可以得到5 dm ×6 dm ,52 dm ×12 dm ,10 dm ×3 dm,20 dm ×32 dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120;当n =4时,共可以得到5 dm ×3 dm ,52 dm ×6 dm ,54 dm ×12 dm,10 dm ×32 dm,20 dm ×34 dm五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75; ……所以可归纳S k =2402k ×(k +1)=240(k +1)2k.所以∑k =1n S k =240⎝ ⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,①所以12×∑k =1nS k=240⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,②由①-②得,12×∑k =1nS k=240⎝⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1=240⎝ ⎛⎭⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1, 所以∑k =1nS k =240⎝⎛⎭⎫3-n +32n dm 2.教师备选1.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为28.5尺,最后三个节气日影长之和为1.5尺,今年3月20日为春分时节,其日影长为( ) A .4.5尺 B .3.5尺 C .2.5尺 D .1.5尺答案 A解析 冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长构成等差数列{a n },设公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+a 2+a 3=28.5,a 10+a 11+a 12=1.5,解得⎩⎪⎨⎪⎧a 1=10.5,d =-1,所以a n =a 1+(n -1)d =11.5-n , 所以a 7=11.5-7=4.5, 即春分时节的日影长为4.5尺. 2.古希腊时期,人们把宽与长之比为5-12⎝ ⎛⎭⎪⎫5-12≈0.618的矩形称为黄金矩形,把这个比值5-12称为黄金分割比例.如图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 之间的距离超过1.5 m ,C 与F 之间的距离小于11 m ,则该古建筑中A 与B 之间的距离可能是(参考数据:0.6182≈0.382,0.6183≈0.236,0.6184≈0.146,0.6185≈0.090,0.6186≈0.056,0.6187≈0.034)( )A .30.3 mB .30.1 mC .27 mD .29.2 m答案 C解析 设|AB |=x ,a ≈0.618,因为矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形, 所以有|BC |=ax ,|CF |=a 2x ,|FG |=a 3x , |GJ |=a 4x ,|JK |=a 5x ,|KM |=a 6x .由题设得⎩⎪⎨⎪⎧a 6x >1.5,a 2x <11,解得26.786<x <28.796,故选项C 符合题意.思维升华 数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值. (2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑a n 与a n +1(或者相邻三项)之间的递推关系,或者S n 与S n +1(或者相邻三项)之间的递推关系.跟踪训练1 (1)(2022·佛山模拟)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月 B .2023年2月 C .2023年4月 D .2023年6月答案 B解析 每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,则70+5n +n (n -1)2×1=500,化简整理得,n 2+9n -860=0, 解得n ≈25.17或n ≈-34.17(舍),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.(2)(多选)(2022·潍坊模拟)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{a n },则( )A .a 4=12B .a n +1=a n +n +1C .a 100=5 050D .2a n +1=a n ·a n +2 答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n ,故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2), a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.题型二 等差数列、等比数列的综合运算例2 (2022·滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解 (1)设等差数列{a n }的公差为d , 因为b 2=4,所以a 2=2log 2b 2=4, 所以d =a 2-a 1=2, 所以a n =2+(n -1)×2=2n . 又a n =2log 2b n ,即2n =2log 2b n , 所以n =log 2b n , 所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1, 即b n 是数列{a n }中的第2n-1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n , 因为b 7=62a =a 64,b 8=72a =a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的, 所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11 302.教师备选(2020·浙江)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b nb n +2c n ,n ∈N *.(1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式; (2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.(1)解 由b 1=1,b 1+b 2=6b 3,且{b n }为等比数列,得1+q =6q 2,解得q =12(负舍).∴b n =12n -1.∴c n +1=b n b n +2c n =4c n ,∴c n =4n -1.∴a n +1-a n =4n -1, ∴a n =a 1+1+4+…+4n -2=1-4n -11-4+1=4n -1+23.(2)证明 由c n +1=b nb n +2·c n (n ∈N *),可得b n +2·c n +1=b n ·c n , 两边同乘b n +1,可得b n +1·b n +2·c n +1=b n ·b n +1·c n , ∵b 1b 2c 1=b 2=1+d ,∴数列{b n b n +1c n }是一个常数列, 且此常数为1+d ,即b n b n +1c n =1+d , ∴c n =1+d b n b n +1=1+d d ·d b n b n +1=⎝⎛⎭⎫1+1d ·b n +1-b n b n b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b n -1b n +1, 又∵b 1=1,d >0,∴b n >0, ∴c 1+c 2+…+c n=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 1-1b 2+⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 2-1b 3+…+⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b n -1b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 1-1b 2+1b 2-1b 3+…+1b n -1b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1b 1-1b n +1=⎝⎛⎭⎫1+1d ⎝⎛⎭⎫1-1b n +1<1+1d , ∴c 1+c 2+…+c n <1+1d.思维升华 对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b 1=1,d >0证明不等式成立.另外本题在探求{a n }与{c n }的通项公式时,考查累加、累乘两种基本方法.跟踪训练2 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3. 所以b 2n -1=b 1q 2n -2=3n -1. 则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.题型三 数列与其他知识的交汇问题 命题点1 数列与不等式的交汇例3 已知数列{a n }满足a 1=12,1a n +1=1a n +2(n ∈N *).(1)求数列{a n }的通项公式; (2)求证:a 21+a 22+a 23+…+a 2n <12. (1)解 因为1a n +1=1a n +2(n ∈N *),所以1a n +1-1a n =2(n ∈N *),因为a 1=12,所以1a 1=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以首项为2,公差为2的等差数列,所以1a n =2+2(n -1)=2n (n ∈N *),所以数列{a n }的通项公式是a n =12n (n ∈N *).(2)证明 依题意可知a 2n =⎝⎛⎭⎫12n 2=14·1n 2<14·1n ·1n -1 =14⎝⎛⎭⎫1n -1-1n (n >1), 所以a 21+a 22+a 23+…+a 2n<14⎝⎛⎭⎫1+1-12+12-13+…+1n -1-1n =14⎝⎛⎭⎫2-1n <12. 故a 21+a 22+a 23+…+a 2n <12.命题点2 数列与函数的交汇例4 (1)(2022·淄博模拟)已知在等比数列{a n }中,首项a 1=2,公比q >1,a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,则数列{a n }的前9项和是________. 答案 1 022解析 由f (x )=13x 3-6x 2+32x ,得f ′(x )=x 2-12x +32,又因为a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,所以a 2,a 3是函数f ′(x )=x 2-12x +32的两个零点,故⎩⎪⎨⎪⎧a 2+a 3=12,a 2·a 3=32, 因为q >1,所以a 2=4,a 3=8,故q =2, 则前9项和S 9=2(1-29)1-2=210-2=1 022.教师备选1.已知函数f (x )=log 2x ,若数列{a n }的各项使得2,f (a 1),f (a 2),…,f (a n ),2n +4成等差数列,则数列{a n }的前n 项和S n =______________. 答案163(4n-1) 解析 设等差数列的公差为d ,则由题意,得2n +4=2+(n +1)d ,解得d =2, 于是log 2a 1=4,log 2a 2=6,log 2a 3=8,…, 从而a 1=24,a 2=26,a 3=28,…,易知数列{a n }是等比数列,其公比q =a 2a 1=4,所以S n =24(4n -1)4-1=163(4n-1).2.求证:12+1+222+2+323+3+…+n2n +n <2(n ∈N *).证明 因为n 2n+n <n2n , 所以不等式左边<12+222+323+…+n2n .令A =12+222+323+…+n2n ,则12A =122+223+324+…+n 2n +1, 两式相减得12A =12+122+123+…+12n -n 2n +1=1-12n -n2n +1,所以A =2-n +22n <2,即得证.思维升华 数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n 项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.跟踪训练3 (1)(2022·长春模拟)已知等比数列{a n }满足:a 1+a 2=20,a 2+a 3=80.数列{b n }满足b n =log 2a n ,其前n 项和为S n ,若b n S n +11≤λ恒成立,则λ的最小值为________.答案623解析 设等比数列{a n }的公比为q ,由题意可得⎩⎪⎨⎪⎧a 1+a 1q =20,a 1q +a 1q 2=80,解得a 1=4,q =4,故{a n }的通项公式为a n =4n ,n ∈N *. b n =log 2a n =log 24n =2n , S n =2n +12n (n -1)·2=n 2+n ,b n S n +11=2nn 2+n +11=2n +11n+1,n ∈N *,令f (x )=x +11x,则当x ∈(0,11)时,f (x )=x +11x 单调递减,当x ∈(11,+∞)时,f (x )=x +11x 单调递增,又∵f (3)=3+113=203,f (4)=4+114=274,且n ∈N *,∴n +11n ≥203,即b n S n +11≤2203+1=623,故λ≥623,故λ的最小值为623.(2)若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式; ②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 ①设{a n }的公差为d (d ≠0), 则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列, 所以a 1·(4a 1+6d )=(2a 1+d )2. 所以2a 1d =d 2.因为d ≠0,所以d =2a 1.又因为S 2=4,所以a 1=1,d =2, 所以a n =2n -1.②因为b n =3a n a n +1=3(2n -1)(2n +1)=32⎝⎛⎭⎫12n -1-12n +1, 所以T n =32⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=32⎝⎛⎭⎫1-12n +1<32. 要使T n <m20对所有n ∈N *都成立,则有m 20≥32,即m ≥30.因为m ∈N *,所以m 的最小值为30.课时精练1.(2022·青岛模拟)从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.解 (1)选①:S n =n ⎝⎛⎭⎫n +a 12=n 2+a 12n , 令n =1,得a 1=1+a 12,即a 1=2, 所以S n =n 2+n .当n ≥2时,S n -1=(n -1)2+n -1,当n ≥2时,a n =S n -S n -1=2n ,又a 1=2,满足上式,所以a n =2n .选②:由S 2=a 3,得a 1+a 2=a 3,得a 1=d ,又由a 4=a 1a 2,得a 1+3d =a 1(a 1+d ),因为d ≠0,则a 1=d =2,所以a n =2n .选③:由a 4是a 2,a 8的等比中项,得a 24=a 2a 8,则(a 1+3d )2=(a 1+d )(a 1+7d ),因为a 1=2,d ≠0,所以d =2,则a n =2n .(2)S n =n 2+n ,b n =(2n +1)2+2n +1-(2n )2-2n=3·22n +2n ,所以W n =3×22+2+3×24+22+…+3×22n +2n =12×(1-4n )1-4+2×(1-2n )1-2=4(4n -1)+2(2n -1)=4n +1+2n +1-6.2.(2022·沈阳模拟)已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2.(1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2,得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1,即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1.当n =1时,a 22=2a 1+2=4,∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n .(2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n ,2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1,两式相减得-T n =2·(1-2n )1-2-n ·2n +1 =(1-n )2n +1-2,∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0,∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022,当n =8时,T 8=7×29+2=3 586>2 022,∴使T n >2 022的最小的正整数n 的值为8.3.(2022·大连模拟)已知等差数列{a n }的前n 项和为S n ,S 5=25,且a 3-1,a 4+1,a 7+3成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n +1,T n 是数列{b n }的前n 项和,求T 2n .解 (1)由题意知,等差数列{a n }的前n 项和为S n ,由S 5=25,可得S 5=5a 3=25,所以a 3=5, 设数列{a n }的公差为d ,由a 3-1,a 4+1,a 7+3成等比数列,可得(6+d )2=4(8+4d ),整理得d 2-4d +4=0,解得d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =(-1)n a n +1=(-1)n (2n -1)+1,所以T 2n =(-1+1)+(3+1)+(-5+1)+(7+1)+…+[-(4n -3)+1]+(4n -1+1)=4n .4.(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.解 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧a 1+2d =5,a 1·(a 1+d )=2(a 1+3d ), 整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1, 因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n . 解 (1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列, ∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1.(2)由(1)可得b n =(-1)n -14n a n a n +1=(-1)n -1⎝⎛⎭⎫12n -1+12n +1, 当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+⎝⎛⎭⎫15+17-… +⎝⎛⎭⎫12n -3+12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n 2n +1; 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+⎝⎛⎭⎫15+17-…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. ∴T n =⎩⎪⎨⎪⎧ 2n 2n +1,n 为偶数,2n +22n +1,n 为奇数.。
中考数学压轴题9种题型
中考数学压轴题9种题型中考数学频道为大家提供中考数学压轴题9种题型,一起来复习一下这9种题型吧,这样在考试中碰到的话就心有成竹了!中考数学压轴题9种题型1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
初三数学知识点全总结
初三数学知识点全总结初三数学知识点全总结有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
考察内容复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
考察内容①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。
中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
考察内容①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。
题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。
通常以填空,选择题形式出现。
分值为3-4分,难易度为易。
考察内容①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
考察内容①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
考察内容①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
考察内容:①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
初中数学重点考点分布及压轴题答题技巧
初中数学重点考点分布及压轴题答题技巧初一上册有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。
中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。
题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础初一下册相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。
通常以填空,选择题形式出现。
分值为3-4分,难易度为易。
考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
中考数学重点考点梳理
2020中考数学重点考点梳理初一上册有理数、整式的加减、一元一次方程、图形的初步认识;1有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单;考察内容复数以及混合运算期中、期末必考计算数轴、相反数、绝对值和倒数选择、填空;2整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易;考察内容①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式法和公式法分解因式;3一元一次方程:是初一学习重点内容,主要学习内容有归纳、总结、延伸应用题思维、步骤、文字题,根据已知条件求未知;中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易;考察内容①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程;题型:追击、相遇、时间速度路程的关系、打折销售、利润公式;4几何:角和线段,为下册学三角形打基础初一下册相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述;1相交线和平行线:相交线和平行线是历年中考中常见的考点;通常以填空,选择题形式出现;分值为3-4分,难易度为易;考察内容①平行线的性质公理②平行线的判别方法③构造平行线,利用平行线的性质解决问题;2平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易;考察内容①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析;3二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中;考察内容①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题;4不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主;考察内容:① 一元一次不等式组的解法,不等式组解集的数轴表示,不等式组的整数解等,题型以选择,填空为主;② 列不等式组解决经济问题,调配问题等,主要以解答题为主;③留意不等式组和函数图像的结合问题;5数据库的收集整理与描述分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现;难易度为中;考察内容①常见统计图和平均数,众数,中位数的计算分析;②方差,极差的应用分析③与现实生活有关的实际问题的考察热点;题目注重考查统计学的知识分析和数据处理;初二上册三角形、全等三角形、轴对称、整式的乘除与因式分解、分式;1三角形:是初中数学的基础,中考命题中的重点;中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目;考查内容①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定;②三角形全等融入平行四边形的证明③三角形运动,折叠,旋转,拼接形成的新数学问题④等腰三角形的性质与判定,面积,周长等⑤直角三角形的性质,勾股定理是重点⑥三角形与圆的相关位置关系⑦三角形中位线的性质应用2全等三角形3轴对称:图形的轴对称是中考题的新题型,热点题型;分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题;考察内容①轴对称和轴对称图形的性质判别;②注意镜面对称与实际问题的解决;4整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易;考察内容①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公司的几何意义③利用提公因式法和公式法分解因式;5分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中;考察内容①分式的概念,性质,意义②分式的运算,化简求值;③列分式方程解决实际问题;初二下册二次根式、勾股定理、四边形、一次函数和数据的分析;1二次根式2勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难;考察内容①常见锐角的三角函数值的计算②根据图形计算距离,高度,角度的应用题③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题;3四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中;考察内容①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定;4一次函数:一次函数图像与性质是中考必考的内容之一;中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强;甚至有存在探究题目出现;考察内容①会画一次函数的图像,并掌握其性质;②会根据已知条件,利用待定系数法确定一次函数的解析式;③能用一次函数解决实际问题;④考察一次函数与二元一次方程组,一元一次不等式的关系;5数据的分析初三上册二次函数、一元二次方程、旋转、圆和概率初步;1二次函数:二次函数的图像和性质是中考数学命题的热点,难点;试题难度一般为难;常见选择,填空题分值为3-5分,综合题分值为10-12分;考察内容①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;②能用数形结合,归纳等熟悉思想,根据二次函数的表达式图像确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息;③综合运用方程,几何图形,函数等知识点解决问题;2一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易;考察内容①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程;3旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升;分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题;考察内容①中心对称和中心对称图形的性质②旋转和平移的性质;4圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容;题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中;考察内容①圆的有关性质的应用;垂径定理是重点;② 直线和圆,圆和圆的位置关系的判定及应用;③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题;5概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中;考察内容①简答事件的概率求解,图表法和数形图法②利用概率解决实际,公平性问题等③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新;初三下册反比例函数、相似、锐角三角函数和投影与视图;1反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难;考察内容①会画反比例函数的图像,掌握基本性质;②能根据条件确定反比例函数的表达式;③能用反比例函数解决实际问题;2相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容;一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难;考察内容①相似三角形的性质和判别方法,是重点;②相似多边形的认识,黄金分割的应用;③相似形与三角形,平行四边形的综合性题目是难点;3锐角三角函数4投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现;考察内容①常见几何体的三视图②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意;③利用相似结合平行投影和中心投影解决实际问题;不同地区分值不同,可供参考选择题:3分一个,共14个,总分42分;填空题:3分一个,共5个,总分15分;解答题:共7题,总分63分;一线段、角的计算与证明问题中考中的简答题一般是分为两到三部分的;第一部分基本上都是简单题和中档题,目的在于考查基础;第二部分第二部分往往就是开始拉分的中难题了;二列方程组解决应用问题在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容;从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验;三阅读理解问题阅读理解问题是中考中的一个亮点;阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题;四多种函数交叉综合问题初中接触的函数主要有一次函数、二次函数和反比例函数;这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握;五动态几何从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的;动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解;另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力;六图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系;在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题;。
第五讲多种函数交叉综合问题
中考数学重难点专题第五讲 多种函数交叉综合问题【前言】初中数学所涉及的函数无非也就一次函数,反比例函数以及二次函数。
二次函数基本上只会考和一次函数的综合问题,二次函数与反比例函数基本不会涉及。
所以如何掌握好一次函数与反比例函数的综合问题就成为了又一重点。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
所以在中考中面对这类问题,一定要做到避免失分。
【例1】2010,西城,一模将直线4=y x 沿y 轴向下平移后,得到的直线与x 轴交于点904⎛⎫⎪⎝⎭,A ,与双曲线(0)=>ky x x交于点B .⑴求直线AB 的解析式;⑵若点B 的纵标为m ,求k 的值(用含有m 的式子表示).【例2】2010,丰台,一模如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于A 、B 两点. (1)求出这两个函数的解析式;(2)结合函数的图象回答:当自变量x 的取值范围满足什么条件时,12y y <BAOyx-2-6413【例3】2010,密云,一模已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MB x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.【例4】2010,石景山,一模 已知:y ax =与3b y x+=两个函数图象交点为()P m n ,,且m n <,m n 、是关于x 的一元二次方程()22730kx k x k +-++=的两个不等实根,其中k 为非负整数.(1)求k 的值; (2)求a b 、的值;(3)如果()0y c c =≠与函数y ax =和3b y x+=交于A B 、两点(点A 在点B 的左侧),线段32AB =,求c 的值.【例5】2010,海淀,一模 已知:如图,一次函数33y x m =+与反比例函数3y x=的图象在第一象限的交点为(1)A n ,.(1)求m 与n 的值;(2)设一次函数的图像与x 轴交于点B ,连接OA ,求BAO ∠的度数.-2-1-2-132121yxB A O【总结】中考中有关一次函数与反比例函数的问题一般都是成对出现的。
中考数学几何模型大全版
1中考数学压轴题常考的9 种出题形式1、线段、角的计算与证明问题中考的解答题一般是分两到三局部的。
第一局部根本上都是一些简单题或者中档题,目的在于考察根底。
第二局部往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形 / 正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有时机拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比拟高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
所以在中考中面对这类问题,一定要做到防止失分。
6、列方程 ( 组) 解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。
高中数学组合交叉问题教案
高中数学组合交叉问题教案教学目标:1.了解组合数学的基本概念和原理。
2.掌握组合数学中的基本计算方法。
3.能够应用组合数学解决实际问题。
教学重点:1.组合数学的基本概念。
2.组合数学的计算方法。
3.实际问题中的组合数学运用。
教学难点:1.解决实际问题时如何运用组合数学知识。
2.灵活运用组合数学知识解决复杂问题。
教学准备:1.教师准备PPT,涉及组合数学的基本概念和计算方法。
2.教师准备一些实际问题,让学生进行组合数学运用的练习。
3.学生准备笔记本和笔。
教学过程:1.引入:通过举例介绍实际生活中的组合问题,引起学生对组合数学的兴趣。
2.讲解:教师讲解组合数学的基本概念和计算方法,并通过PPT展示具体例题进行讲解。
3.练习:学生进行课堂练习,巩固所学知识。
4.应用:教师出示一些实际问题,要求学生运用组合数学知识解决。
学生进行小组讨论,然后汇报答案。
5.总结:教师总结本节课学习内容,强调组合数学的重要性和运用价值。
6.作业:布置作业,要求学生进一步巩固并应用所学知识。
教学延伸:1.组织学生参加组合数学竞赛,提高学生动手解决问题的能力。
2.鼓励学生自主探索组合数学知识,拓展思维边界。
评估方式:1.课堂练习的成绩。
2.实际问题的解答情况。
3.学生的作业完成情况。
教学反思:1.结合学生实际情况,教师应根据学生的不同水平和兴趣调整教学内容和难度。
2.灵活运用不同教学方法,提高学生的学习积极性和参与度。
3.及时评估学生的学习情况,及时调整教学方向和方法。
初中数学学习中的学科交叉融合
初中数学学习中的学科交叉融合数学作为一门基础学科,在学生的学习过程中占据着举足轻重的地位。
它不仅是学习其他学科的基础,更是培养逻辑思维、抽象思维能力的重要途径。
本文将详细探讨如何通过学科交叉融合,提高初中数学学习效果。
主要学习内容初中数学的学习内容主要包括:数与代数、几何、统计与概率、综合与应用。
在学习过程中,要注重各部分内容之间的联系,形成知识体系。
学习注意事项1.注重基础知识的学习,打下扎实的数学基础。
2.培养良好的学习习惯,按时完成作业,及时复习巩固。
3.注重实践与应用,将所学知识运用到实际问题中。
主要学习方法和技巧1.归纳总结法:对于每一个学习单元,首先要通过阅读教材,理解并掌握基本概念、原理和方法。
然后通过做习题,总结出各种题型的解题思路和方法。
最后,对学习过程中遇到的问题进行归纳总结,形成自己的知识体系。
2.题型训练法:针对不同类型的题目,进行专项训练。
例如,对于几何题,可以分为三角形、四边形、圆等不同类型进行训练。
通过大量练习,提高解题速度和正确率。
3.交叉学习法:将数学与其他学科相结合,形成跨学科的知识体系。
例如,在学习几何时,可以结合物理中的力学知识,理解几何图形的稳定性;在学习统计与概率时,可以结合生物学科,分析遗传概率等。
中考备考技巧1.熟悉中考大纲,了解考试要求。
2.针对中考题型进行专项训练,提高解题能力。
3.做历年中考真题,总结出题规律,把握考试方向。
4.调整心态,合理安排学习时间,确保充足的休息。
提升学习效果的策略1.制定学习计划,明确学习目标。
2.积极参加课堂讨论,与同学分享学习心得。
3.遇到问题主动寻求帮助,解决问题。
4.注重课外拓展,提高综合素质。
通过以上学习方法和技巧,相信同学们在初中数学学习中一定能够取得优异的成绩。
同时,也要注重学科之间的交叉融合,拓宽知识面,提高综合素质。
祝大家学习进步!上述本文档的Markdown格式内容。
第二篇范文:以具体例题为示范教学方法例题简介例题:已知函数f(x)=x2−4x+3,求证该函数的图像是一个开口向上的抛物线。
高中数学交叉关系教案模板
高中数学交叉关系教案模板
课题:交叉关系
教学内容:数学与其他学科的交叉关系
教学目标:了解数学与其他学科的交叉关系,拓展学生的数学思维
教学重点:数学与其他学科的交叉点及应用实例
教学难点:培养学生跨学科的思维能力,探讨数学在其他学科中的应用
教学过程:
一、导入(5分钟)
教师简单介绍数学与其他学科的交叉关系,引入今天的学习内容。
二、知识讲解(15分钟)
1. 数学与物理学的关系:介绍数学在物理学中的应用实例,如力学中运用微积分等。
2. 数学与化学的关系:讲解数学在化学中的应用,如化学反应速率的数学表达等。
3. 数学与经济学的关系:探讨数学在经济学中的应用,如微观经济学的数学模型等。
三、案例分析(20分钟)
1. 通过具体案例,让学生分组讨论数学在其他学科中的应用场景。
2. 每组选择一个实际问题,结合数学知识进行分析与解决。
四、展示与讨论(15分钟)
1. 每组展示他们的解决方案,进行讨论和互动。
2. 学生提出自己的看法和观点,与他人交流思想。
五、总结(5分钟)
教师对今天的学习内容进行总结,强调数学与其他学科的交叉点,培养学生的跨学科思维。
六、作业布置(5分钟)
布置作业:学生思考、整理数学与其他学科的交叉关系,写一篇短文分享自己的见解。
教学反思:通过本节课的教学,激发了学生对数学与其他学科之间关系的思考,培养了他
们的跨学科思维能力,拓展了他们的学习视野。
数学一数学二数学三的学科交叉与融合
数学一数学二数学三的学科交叉与融合数学是一门广泛应用于各个领域的学科,其内部也存在着多个不同的分支,如数学一、数学二和数学三。
这三个学科看似各自独立,然而它们之间存在着密切的交叉与融合。
本文将探讨数学一数学二数学三的学科交叉与融合,旨在展示数学学科的整体性和内在联系。
一、数学一数学二数学三的概述数学一、数学二和数学三是大学本科数学专业中的三门核心课程。
数学一主要涉及微积分与数学分析的基础概念和方法,数学二则主要研究线性代数及其应用,数学三则深入探讨了复变函数与积分变换。
这三门课程在数学学科中各自占据重要地位,为数学的发展和应用提供了坚实的基础。
二、数学一数学二数学三的交叉关系尽管数学一、数学二和数学三研究的内容各不相同,但它们之间存在着紧密的交叉与关联。
首先,在数学的基础概念与方法上,这三门课程都涉及到函数的概念和性质。
微积分与数学分析中的函数概念为线性代数和复变函数提供了基本框架,而线性代数与复变函数中的函数概念则进一步丰富和发展了微积分与数学分析中的内容。
其次,在数学的应用领域上,这三门课程也有着协同合作的关系。
微积分与数学分析中的极限与导数概念是许多实际问题求解的基础,线性代数则为向量空间的建模与分析提供了工具,而复变函数的应用则涉及到信号处理、电路分析与变换算法等多个领域。
可以说,数学一、数学二和数学三在不同应用领域中相互依托,为解决具体问题提供了全方位的支持。
三、数学一数学二数学三的融合数学一、数学二和数学三之间的交叉关系不仅仅是各自领域的相互渗透,更是在实际问题中的融合与协同。
数学的跨学科性质使得这三门学科在解决实际问题时需要互相配合、交流与合作。
在应用数学中,常常需要同时利用微积分、线性代数和复变函数的知识来建立精确的模型和解决复杂的实际问题。
例如,在机器学习领域中,微积分提供了计算模型参数的方法,线性代数则用于描述向量和矩阵的运算,复变函数则应用于信号处理与图像识别等方面。
这种融合使得数学一、数学二和数学三的知识能够相互促进,形成一个更加完整和综合的数学体系。
专升本高等数学解题技巧
专升本高等数学解题技巧(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!专升本高等数学解题技巧专升本高等数学解题技巧_专升本高等数学解题技巧简述练习归纳和演绎。
高中数学交叉关系教案全套
高中数学交叉关系教案全套主题:高中数学交叉关系教学一、教学目标:1. 理解数学中不同概念之间的交叉关系;2. 掌握数学中的交叉关系应用方法;3. 提高数学思维和解决问题的能力。
二、教学内容:1. 数学中的交叉关系概念介绍;2. 不同数学概念之间的关联性分析;3. 数学中交叉关系的具体应用。
三、教学步骤:第一节:数学中的交叉关系概念介绍1. 引入:通过举例引导学生思考数学中不同概念之间的交叉关系;2. 概念解释:对数学中常见的交叉关系概念进行解释和讨论,如函数与图像、几何与代数等;3. 讨论:与学生一起分享一些有趣的数学交叉关系现象,引发学生兴趣。
第二节:不同数学概念之间的关联性分析1. 分组讨论:让学生分组探讨两种数学概念之间的关联性,并总结交叉关系规律;2. 学生展示:每组学生向其他同学展示他们的分析结果,互相交流经验与见解;3. 教师点评:教师对学生的分析结果进行点评和引导,帮助他们更深入地理解交叉关系。
第三节:数学中交叉关系的具体应用1. 案例分析:通过具体案例,引导学生应用所学的交叉关系知识解决实际问题;2. 综合练习:让学生进行一些综合性练习,巩固并加深对交叉关系的理解;3. 总结归纳:总结当天的学习内容,让学生对交叉关系的重要性和应用有更深刻的认识。
四、教学资源:1. 教材:提供相关章节的教材内容;2. PPT:准备包含丰富案例和图示的PPT;3. 教学工具:准备适当的数学教学工具,如计算器、尺规等。
五、教学评估:1. 课堂小测:进行一些课堂小测验,检测学生对交叉关系的掌握情况;2. 作业布置:布置相关作业,让学生进行巩固性练习;3. 课堂讨论:通过课堂讨论和互动,评估学生对交叉关系的理解和应用能力。
六、教学反思:根据学生的学习情况和反馈,及时调整教学内容和方法,确保教学效果最大化。
注:以上为高中数学交叉关系教案全套范本,可根据具体教学需求和学生情况进行调整和适应。
数学与其他学科的交叉学习的教学设计方案
评价主体:教师、 学生、家长等多 元主体参与
评价目的:促进 学生全面发展, 改进教学,提高
教育质量
添加标题
添加标题
添加标题
添加标题
感谢您的观看
汇报人:XX
网络资源:提供一些数 学与其他学科交叉学习 的网络资源,方便学生 查找相关资料和案例
学术期刊:推荐一些与 数学与其他学科交叉学 习相关的学术期刊,供 教师和有兴趣的学生阅 读和了解最新研究进展
网络资源与在线课程
介绍网络上丰富的数学与其他 学科交叉学习的教学资源,如 在线课程、教学视频、学习网
站等。
教学内容
第三章
数学基础知识回顾
回顾初中数学中的基本概念和公式 强调数学在日常生活中的应用 介绍高中数学中的知识点和重点 强调数学与其他学科的联系和交叉点
学科交叉案例分析
数学与物理学的交叉:探讨量 子力学中的波函数与概率论的 联系。
数学与化学的交叉:分析化学 反应速率与微积分理论的应用。
数学与生物学的交叉:研究生 物信息学中序列比对算法的数 学原理。
实验室资源:提供先进的实验设备和软件,满足数学与其他学科的交叉学习需求。 实践基地:提供实地考察和实践活动机会,帮助学生深入理解数学与其他学科的交叉应 用。 校企合作:与企业合作,共同开发教学资源,提供实践机会和就业指导。
网络资源:提供丰富的在线学习资源,包括视频教程、在线课程和教学软件等。
学科交叉合作项目
教学目标:通过数学与其他学 科的交叉学习,培养学生跨学 科思维能力,提高解决问题的 能力。
教学方法:采用案例分析、小 组讨论、实践操作等多种教学 方法,引导学生主动思考和探
索。
教学评价:通过课堂表现、作 业、测试等方式,评价学生跨
初一至初三所有重难点分析
初⼀⾄初三所有重难点分析 初中数学到底学什么?考什么?初中数学共学习6册书,中考数学难易⽐例5:3:2。
接下来⼩编为⼤家整理了初三数学学习相关内容,⼀起来看看吧! 初⼀⾄初三所有重难点分析 01 初中数学学什么? 初⼀上册 有理数、整式的加减、⼀元⼀次⽅程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
考察内容: ①整式的概念和简单的运算,主要是同类项的概念和化简求值 ②完全平⽅公式,平⽅差公式的⼏何意义 ③利⽤提公因式发和公式法分解因式。
(3)⼀元⼀次⽅程:是初⼀学习重点内容,主要学习内容有(归纳、总结、延伸)应⽤题思维、步骤、⽂字题,根据已知条件求未知。
中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
考察内容: ①⽅程及⽅程解的概念 ②根据题意列⼀元⼀次⽅程 ③解⼀元⼀次⽅程。
题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)⼏何:⾓和线段,为下册学三⾓形打基础 初⼀下册 相交线和平⾏线、实数、平⾯直⾓坐标系、⼆元⼀次⽅程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平⾏线:相交线和平⾏线是历年中考中常见的考点。
通常以填空,选择题形式出现。
分值为3-4分,难易度为易。
考察内容: ①平⾏线的性质(公理) ②平⾏线的判别⽅法 ③构造平⾏线,利⽤平⾏线的性质解决问题。
(2)平⾯直⾓坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
考察主要内容: ①考察平⾯直⾓坐标系内点的坐标特征 ②函数⾃变量的取值范围和球函数的值 ③考察结合图像对简单实际问题中的函数关系进⾏分析。
【中考复习】中考数学综合题的9种命题方式
【中考复习】中考数学综合题的9种命题方式初中数学高中入学考试综合题的9种命题方式,你要仔细听!!!初中数学知识的“综合”主要包括以下形式:1线段、角的计算与证明问题中学入学考试的答题一般分为两到三个部分。
第一部分基本上是一些简单问题或中等问题,旨在探讨基础。
第二部分通常是开始拉点的难题。
轻松掌握这些问题的意义不仅在于获得分数,还在于影响整个问题解决过程的士气和士气。
2图形位置关系在中学数学中,图形的位置关系主要包括点、线、三角形、矩形/正方形和圆之间的关系。
在中学入学考试中,它将被包含在函数、坐标系和几何问题中,但主要是通过圆与其他图形之间的关系来研究的,其中最重要的是圆和三角形的各种问题。
3动态几何从历年的期中考试来看,动态题往往作为期末题出现,而且得分率也是最低的。
动力学问题一般分为两类。
一种是代数综合。
坐标系中有移动点和移动线,通常通过交叉各种函数来解决。
另一类是几何综合题,设置梯形、矩形和三角形的移动点、直线和整体平移和反转,考察考生的综合分析能力。
因此,动态问题是中学数学考试的重中之重。
只有当你完全掌握了它们,你才有机会获得高分。
4一元二次方程与二次函数在这些问题中,动态几何问题是最困难的。
几何问题的难点在于想象和构造。
有时不考虑辅助线路,整个问题就会被卡住。
与几何综合问题相比,代数综合题不需要太多巧妙的方法,但对考生的计算能力和代数基础有更高的要求。
在中学数学考试中,代数问题往往以单变量二次方程和二次函数的形式出现,辅以多种知识点。
在一元二次方程和二次函数问题中,纯一元二次方程的解通常是用简单解的方法来研究的。
然而,在中后期和难点问题中,通常结合根判别式、整数根和抛物线等知识点来解决五类函数的交叉综合问题。
初中数学中涉及的函数有初等函数、反比函数和二次函数。
这种问题本身并不太难。
它很少作为最后一个问题出现。
它通常作为一道中考题,用来考察考生对主函数和反比例函数的掌握情况。
因此,面对这些问题,我们必须避免中考失分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 多种函数交叉综合问题【例1】将直线4=y x 沿y 轴向下平移后,得到的直线与x 轴交于点904⎛⎫⎪⎝⎭,A ,与双曲线(0)=>k y x x交于点B .⑴求直线AB 的解析式;⑵若点B 的纵标为m ,求k 的值(用含有m 的式子表示).【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。
题目一般不难,设元以后计算就可以了。
本题先设平移后的直线,然后联立即可。
比较简单,看看就行.【解析】将直线x y 4=沿y 轴向下平移后经过x 轴上点A (0,49),设直线AB 的解析式为b x y +=4. 则0494=+⨯b .解得9-=b .∴直线AB 的解析式为94-=x y.图3(2)设点B 的坐标为(),B x m ,∵直线AB 经过点B , ∴94-=B x m .∴49+=m x B.∴B 点的坐标为9,4m m +⎛⎫⎪⎝⎭,∵点B 在双曲线k y x=()0x >上,∴49+=m k m .∴492m m k+=.【例2】如图,一次函数1y kx b =+的图象与反比例函数2m y x=的图象相交于A 、B 两点.(1)求出这两个函数的解析式;(2)结合函数的图象回答:当自变量x 的取值范围满足什么条件时,12y y <【思路分析】第一问直接看图写出A ,B 点的坐标(-6,-2)(4,3),直接代入反比例函数中求m ,建立二元一次方程组求k,b 。
继而求出解析式。
第二问通过图像可以直接得出结论。
本题虽然简单,但是事实上却有很多变化。
比如不给图像,直接给出解析式求12y y <的区间,考生是否依然能反映到用图像来看区间。
数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。
【解析】解:(1)由图象知反比例函数2m y x=的图象经过点B (4,3),∴34m =. ∴m =12. -∴反比例函数解析式为212y x=.由图象知一次函数1y kx b =+的图象经过点A (-6,-2) , B (4,3),∴624 3.k b k b -+=-⎧⎨+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩,.--∴一次函数解析式为1112y x =+.(2)当0<x <4或x <-6时,12y y <.【例3】已知:如图,正比例函数y ax =的图象与反比例函数k y x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线M B x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线M B 于点D .当四边形O AD M 的面积为6时,请判断线段B M 与DM 的大小关系,并说明理由.【思路分析】第一问由于给出了一个定点,所以直接代点即可求出表达式。
第二问则是利用图像去分析两个函数的大小关系,考生需要对坐标系有直观的认识。
第三问略有难度,一方面需要分析给出四边形OADM 的面积是何用意,另一方面也要去看BM,DM 和图中图形面积有何关系.视野放开就发现四边形其实就是整个矩形减去两个三角形的剩余部分,直接求出矩形面积即可.部分同学会太在意四边形的面积如何求解而没能拉出来看,从而没有想到思路,失分可惜. 【解析】解:(1)将()3,2分别代入y ax =中k y x=,得23a =,23k =,∴23a =,6k=.∴反比例函数的表达式为:6y x=; 正比例函数的表达式为23y a=.(2)观察图象得,在第一象限内,当03x <<时, 反比例函数的值大于正比例函数的值.(3)BM D M =. 理由:∵6n m=,∴132m n ⋅⋅=,即3BMO S =△.∵AC O C⊥,∴13232AOC S =⨯⨯=△.∴33612OCDB S =++=.(很巧妙的利用了和的关系求出矩形面积) ∴1243BO ==.∴632BMBO ==.∴332DM BM BM=-==【例4】已知:y ax =与3b y x+=两个函数图象交点为()P m n ,,且m n <,m n 、是关于x 的一元二次方程()22730kx k x k +-++=的两个不等实根,其中k 为非负整数.(1)求k 的值; (2)求a b 、的值;(3)如果()0y c c =≠与函数y ax =和3b y x+=交于A B 、两点(点A 在点B 的左侧),线段32AB =,求c的值.【思路分析】本题看似有一个一元二次方程,但是本质上依然是正反比例函数交点的问题。
第一问直接用判别式求出k 的范围,加上非负整数这一条件得出k 的具体取值。
代入方程即可求出m ,n ,继而求得解析式。
注意题中已经给定m<n,否则仍然注意要分类讨论。
第三问联立方程代入以后将A,B 表示出来,然后利用32AB =构建方程即可。
【解析】(1)()()227430k k k ∆=--+>4940k<∵k 为非负整数,∴01k=,∵()22730kx k x k +-++=为一元二次方程 ∴1k=(2)把1k =代入方程得2540x x -+=, 解得1214x x ==,∵m n < ∴14m n ==,把14m n ==,代入y ax =与3b y x+=可得41a b ==,(3)把y c =代入4y x =与4y x =可得4cA c ⎛⎫⎪⎝⎭,,4B c c ⎛⎫⎪⎝⎭,,由32AB =,可得4342c c-=解得1228c c ==-,,经检验1228c c ==-,为方程的根。
∴1228c c ==-,【例5】已知:如图,一次函数3y m=+与反比例函数y x=的图象在第一象限的交点为(1)A n ,.(1)求m 与n 的值;(2)设一次函数的图像与x 轴交于点B ,连接O A ,求BAO ∠的度数.【思路分析】如果一道题单纯考正反比例函数是不会太难的,所以在中考中经常会综合一些其他方面的知识点。
比如本题求角度就牵扯到了勾股定理和特定角的三角函数方面,需要考生思维转换要迅速。
第一问比较简单,不说了。
第二问先求出A,B 具体点以后本题就变化成了一道三角形内线段角的计算问题,利用勾股定理发现OB=OA,从而∠BAO=∠ABO,然后求出∠BAO 即可。
解:(1)∵点(1,)A n在双曲线y x=上,∴n =又∵A在直线3y m=+上,∴3m=.(2)过点A 作AM ⊥x 轴于点M .∵ 直线33y x =+与x轴交于点B ,∴033x +=.解得 2x =-.∴ 点B 的坐标为-20(,).∴ 2O B=.∵点A的坐标为,∴1AMOM ==.在Rt △A O M 中,90AM O ∠=︒,∴tanAM AO M O M∠==∴60AO M ∠=︒.-由勾股定理,得 2O A =. ∴.O A O B = ∴O BA BAO ∠=∠. ∴1302BAOAOM ∠=∠=︒.-【总结】中考中有关一次函数与反比例函数的问题一般都是成对出现的。
无非也就一下这么几个考点:1、给交点求解析式;2,y 的比较,3,夹杂进其他几何问题。
除了注意计算方面的问题以外,还需要考生对数形结合,分类讨论的思想掌握熟练。
例如y 的比较这种问题,纯用代数方式通常需要去解一个一元二次不等式,但是如果用图像去做就会比较简单了。
总体来说这类问题不难,做好细节就可以取得全分。
第二部分 发散思考【思考1】如图,A 、B 两点在函数()0m y x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。
【思路分析】由于已经给出了点,第一问没有难度。
第二问在于要分析有哪些格点在双曲线的边界上,哪些格点在其中。
保险起见直接用1-6的整数挨个去试,由于数量较少,所以可以很明显看出。
【思考2】如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交()3,1(2)A B n -、,于两点,直线AB 分别交x 轴、y 轴于D C 、两点. (1)求上述反比例函数和一次函数的解析式; (2)求A D C D的值.【思路分析】生需要第一时间想到是否可以用相似三角形去分析。
但是图中并未直接给出可能的三角形,所以需x要从A 引一条垂线来构成一对相似三角形,从而求解。
【思考3】已知:关于x 的一元二次方程kx 2+(2k -3)x+k -3 = 0有两个不相等实数根(k<0). (I )用含k 的式子表示方程的两实数根;(II )设方程的两实数根分别是1x ,2x (其中21x x >),若一次函数y=(3k -1)x+b 与反比例函数y =xb 的图像都经过点(x 1,kx 2),求一次函数与反比例函数的解析式.【思路分析】本题是一道多种函数交叉的典型例题,一方面要解方程,另一方面还要求函数解析式。
第一问求根,直接求根公式去做。
第二问通过代点可以建立一个比较繁琐的二元一次方程组,认真计算就可以。
【思考4】如图,反比例函数8y x=的图象过矩形OABC 的顶点B ,OA 、0C 分别在x 轴、y 轴的正半轴上,OA :0C=2:1.(1)设矩形OABC 的对角线交于点E ,求出E 点的坐标; (2)若直线2y x m =+平分矩形OABC 面积,求m 的值【思路分析】本题看似麻烦,夹杂了一次函数与反比例函数以及图形问题。
但是实际上画出图,通过比例可以很轻易发现B 点的横纵坐标关系,巧妙设点就可以轻松求解。
第二问更不是难题,平分面积意味着一定过B 点,代入即可。
第三部分 思考题解析 【思考1解析】(1)由图象可知,函数m y x=(0x >)的图象经过点(16)A ,,可得6m =.设直线AB 的解析式为y kx b =+.∵(16)A ,,(61)B ,两点在函数y kx b =+的图象上, ∴66 1.k b k b +=⎧⎨+=⎩, 解得17.k b =⎧⎨=⎩,∴直线AB 的解析式为7y x =-+.(2)图中阴影部分(不包括边界)所含格点的个数是 3 .【思考2解析】(1)把3x =-,1y =代入m y x=,得:3m =-.∴反比例函数的解析式为3y x=-.把2x =,y n =代入3y x=-得32n =-.把3x =-,1y =;2x =,32y =-分别代入y kx b =+得31322k b k b -+=⎧⎪⎨+=-⎪⎩, (第16题答图)解得1212k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴一次函数的解析式为1122y x =--.(2)过点A 作AE x ⊥轴于点E .A 点的纵坐标为1,1AE ∴=. 由一次函数的解析式为1122y x =--得C 点的坐标为102⎛⎫- ⎪⎝⎭,, 12O C ∴=.在R t O C D △和R t E A D △中,R t C O D AED ∠=∠=∠,C D O A D E ∠=∠,∴R t R t O C D E A D △∽△.2A D A E C DC O∴==.【思考3解析】 解:(I ) kx 2+(2k -3)x+k -3 = 0是关于x 的一元二次方程.∴9)3(4)32(2=---=∆k k k 由求根公式,得k k x 23)23(±-=. ∴1-=x 或13-=kx(II ) 0<k ,∴113-<-k.而21x x >,∴11-=x ,132-=k x .由题意,有⎪⎪⎩⎪⎪⎨⎧-=-+-=-.1)13(,31)13(b k k b k kk解之,得⎩⎨⎧-=-=85b k .∴一次函数的解析式为816--=x y ,反比例函数的解析式为xy 8-=.【思考4解析】(1)由题意,设B (2,)(0)a a a ≠,则82a a=2.a ∴=±∵B 在第一象限, 2.a ∴=B(4,2)∴矩形OABC 对角线的交点E为(2,1)(2)∵直线2y x m =+平分矩形OABC 必过点(2,1)∴1=2x2+m m=-3(第22题)。