全国各地高考数学试题及解答分类汇编大全数列
历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)
历年(2020‐2023)全国高考数学真题分类(数列)汇编【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S = ( ) A. 120B. 85C. 85-D. 120-3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求.d4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}nb 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+剟中元素个数.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω-=8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.(1)(2)10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-参考答案1. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d , 则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n 为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C . 2. (2023·新课标II 卷 第8题)解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=- 故选.C3. (2023·新课标I 卷 第20题)解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=, 即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍); 当12a d =时,(1)n a n d =+,n n b d=,故(3)2n n n d S +=,(1)2n n n T d +=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+- 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d ++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得 250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得 251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取; 综上所述,51.50d =4. (2023·新课标II 卷 第18题) 解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+-> ∴当5n >时,n S .n T >5.(2022·新高考I 卷 第17题)解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②; 由②-①得:111322;33n n n n n a n n n a a a a n ++++++=-⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a aa a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2((1)1n a n n n n ==-++, 1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ , 即原不等式成立.6.(2022·新高考II 卷 第17题) 解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m 剟,故1221000k -剟,解得210k 剟, 故集合1{|,1500}k m k b a a m =+剟中元素的个数为9个. 7.(2021·新高考II 卷 第12题)(多选)解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形. 对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111(224822n n n n n n T T T ++-==++++-113113322222n n n n n ++++=--=-, 得332n nn T +=-,123240(3)2n n n S S S +∴++=⨯-, 故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷 第17题)解:⑴12b a =,且21+1=2a a =,则1=2b , 24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+-⨯=-.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和10.(2021·新高考II 卷 第17题)解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=, 设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-, 则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->, 解得1n <或6n >,又n 为正整数,故n 的最小值为7.(2)11.(2020·新高考I 卷 第14题、II 卷 第15题)解:数列 的首项是1,公差为2的等差数列; 数列 的首项是1,公差为3的等差数列; 公共项构成首项为1 ,公差为6的等差数列; 故 的前n 项和S n 为: .故答案为232.n n -12.(2020·新高考I 卷 第18题)解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =, 以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===, 3263...5b b ===,64100...6b b ===, 10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=13.(2020·新高考II 卷 第18题)解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, {21}n -{32}n -{}n a1q > ,122a q =⎧∴⎨=⎩, 1222.n n n a -∴=⋅=1223(2)a a a a -+…11(1)n n n a a -++- 35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----。
专题08 数列-2022年高考真题和模拟题数学分类汇编(解析版)
专题08 数列1.【2022年全国乙卷】已知等比数列{a n }的前3项和为168,a 2−a 5=42,则a 6=( ) A .14 B .12 C .6 D .3【答案】D 【解析】 【分析】设等比数列{a n }的公比为q,q ≠0,易得q ≠1,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列{a n }的公比为q,q ≠0, 若q =1,则a 2−a 5=0,与题意矛盾, 所以q ≠1,则{a 1+a 2+a 3=a 1(1−q 3)1−q =168a 2−a 5=a 1q −a 1q 4=42,解得{a 1=96q =12 , 所以a 6=a 1q 5=3. 故选:D .2.【2022年全国乙卷】嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N ∗(k =1,2,⋯).则( ) A .b 1<b 5 B .b 3<b 8C .b 6<b 2D .b 4<b 7【答案】D 【解析】 【分析】根据αk ∈N ∗(k =1,2,…),再利用数列{b n }与αk 的关系判断{b n }中各项的大小,即可求解. 【详解】解:因为αk ∈N ∗(k =1,2,⋯),所以α1<α1+1α2,1α1>1α1+1α2,得到b 1>b 2,同理α1+1α2>α1+1α2+1α3,可得b 2<b 3,b 1>b 3又因为1α2>1α2+1α3+1α4, α1+1α2+1α3<α1+1α2+1α3+1α4,故b 2<b 4,b 3>b 4;以此类推,可得b 1>b 3>b 5>b 7>⋯,b 7>b 8,故A 错误; b 1>b 7>b 8,故B 错误;1α2>1α2+1α3+⋯1α6,得b 2<b 6,故C 错误;α1+1α2+1α3+1α4>α1+1α2+⋯1α6+1α7,得b 4<b 7,故D 正确.故选:D.3.【2022年新高考2卷】中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,DD 1,CC 1,BB 1,AA 1是举, OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设OD 1=DC 1=CB 1=BA 1=1,则可得关于k 3的方程,求出其解后可得正确的选项. 【详解】设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k3−0.2=k1,k3−0.1=k2,且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,所以0.5+3k3−0.34=0.725,故k3=0.9,故选:D4.【2022年北京】设{a n}是公差不为0的无穷等差数列,则“{a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】设等差数列{a n}的公差为d,则d≠0,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列{a n}的公差为d,则d≠0,记[x]为不超过x的最大整数.若{a n}为单调递增数列,则d>0,若a1≥0,则当n≥2时,a n>a1≥0;若a1<0,则a n=a1+(n−1)d,由a n=a1+(n−1)d>0可得n>1−a1d ,取N0=[1−a1d]+1,则当n>N0时,a n>0,所以,“{a n}是递增数列”⇒“存在正整数N0,当n>N0时,a n>0”;若存在正整数N0,当n>N0时,a n>0,取k∈N∗且k>N0,a k>0,假设d<0,令a n=a k+(n−k)d<0可得n>k−a kd ,且k−a kd>k,当n>[k−a kd]+1时,a n<0,与题设矛盾,假设不成立,则d>0,即数列{a n}是递增数列.所以,“{a n}是递增数列”⇐“存在正整数N0,当n>N0时,a n>0”.所以,“{a n}是递增数列”是“存在正整数N0,当n>N0时,a n>0”的充分必要条件.故选:C.5.【2022年浙江】已知数列{a n}满足a1=1,a n+1=a n−13a n2(n∈N∗),则()A.2<100a100<52B.52<100a100<3C.3<100a100<72D.72<100a100<4【答案】B【解析】【分析】先通过递推关系式确定{a n}除去a1,其他项都在(0,1)范围内,再利用递推公式变形得到1 a n+1−1a n=13−a n>13,累加可求出1a n>13(n+2),得出100a100<3,再利用1a n+1−1a n=13−a n<1 3−3n+2=13(1+1n+1),累加可求出1a n−1<13(n−1)+13(12+13+⋯+1n),再次放缩可得出100a100>52.【详解】∵a1=1,易得a2=23∈(0,1),依次类推可得a n∈(0,1)由题意,a n+1=a n(1−13a n),即1a n+1=3a n(3−a n)=1a n+13−a n,∴1a n+1−1a n=13−a n>13,即1a2−1a1>13,1a3−1a2>13,1a4−1a3>13,…,1a n−1a n−1>13,(n≥2),累加可得1a n −1>13(n−1),即1a n>13(n+2),(n≥2),∴a n<3n+2,(n≥2),即a100<134,100a100<10034<3,又1a n+1−1a n=13−a n<13−3n+2=13(1+1n+1),(n≥2),∴1a2−1a1=13(1+12),1a3−1a2<13(1+13),1a4−1a3<13(1+14),…,1a n−1a n−1<13(1+1n),(n≥3),累加可得1a n −1<13(n−1)+13(12+13+⋯+1n),(n≥3),∴1a100−1<33+13(12+13+⋯+199)<33+13(12×4+16×94)<39,即1a100<40,∴a100>140,即100a100>52;综上:52<100a100<3.故选:B.【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.6.【2022年全国乙卷】记S n为等差数列{a n}的前n项和.若2S3=3S2+6,则公差d=_______.【答案】2【解析】【分析】转化条件为2(a1+2d)=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.故答案为:2.7.【2022年北京】己知数列{a n}各项均为正数,其前n项和S n满足a n⋅S n=9(n=1,2,⋯).给出下列四个结论:①{a n}的第2项小于3;②{a n}为等比数列;③{a n}为递减数列;④{a n}中存在小于1100的项.其中所有正确结论的序号是__________.【答案】①③④【解析】【分析】推导出a n=9an −9a n−1,求出a1、a2的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【详解】由题意可知,∀n∈N∗,a n>0,当n=1时,a12=9,可得a1=3;当n≥2时,由S n=9an 可得S n−1=9an−1,两式作差可得a n=9an−9a n−1,所以,9a n−1=9a n−a n,则9a2−a2=3,整理可得a22+3a2−9=0,因为a2>0,解得a2=3√5−32<3,①对;假设数列{a n}为等比数列,设其公比为q,则a22=a1a3,即(9S2)2=81S1S3,所以,S22=S1S3,可得a12(1+q)2=a12(1+q+q2),解得q=0,不合乎题意,故数列{a n}不是等比数列,②错;当n ≥2时,a n =9a n−9an−1=9(a n−1−a n )a n a n−1>0,可得a n <a n−1,所以,数列{a n }为递减数列,③对;假设对任意的n ∈N ∗,a n ≥1100,则S 100000≥100000×1100=1000, 所以,a 100000=9S100000≤91000<1100,与假设矛盾,假设不成立,④对.故答案为:①③④. 【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.8.【2022年全国甲卷】记S n 为数列{a n }的前n 项和.已知2S n n+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值. 【答案】(1)证明见解析; (2)−78. 【解析】 【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n ={S 1,n =1S n −S n−1,n ≥2 ,作差即可得到a n −a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a 1,即可得到{a n }的通项公式与前n 项和,再根据二次函数的性质计算可得. (1) 解:因为2S n n+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n−1+(n −1)2=2(n −1)a n−1+(n −1)②,①−②得,2S n +n 2−2S n−1−(n −1)2=2na n +n −2(n −1)a n−1−(n −1), 即2a n +2n −1=2na n −2(n −1)a n−1+1,即2(n −1)a n −2(n −1)a n−1=2(n −1),所以a n −a n−1=1,n ≥2且n ∈N*, 所以{a n }是以1为公差的等差数列. (2)解:由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即(a 1+6)2=(a 1+3)⋅(a 1+8),解得a 1=−12, 所以a n =n −13,所以S n =−12n +n(n−1)2=12n 2−252n =12(n −252)2−6258,所以,当n =12或n =13时(S n )min =−78.9.【2022年新高考1卷】记S n 为数列{a n }的前n 项和,已知a 1=1,{S na n}是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×nn−2×n+1n−1=n(n+1)2,显然对于n=1也成立,∴{a n}的通项公式a n=n(n+1)2;(2)1 a n =2n(n+1)=2(1n−1n+1),∴1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n−1n+1)]=2(1−1n+1)<210.【2022年新高考2卷】已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2−b2= a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{a n}的公差为d,根据题意列出方程组即可证出;(2)根据题意化简可得m=2k−2,即可解出.(1)设数列{a n}的公差为d,所以,{a1+d−2b1=a1+2d−4b1a1+d−2b1=8b1−(a1+3d),即可解得,b1=a1=d2,所以原命题得证.(2)由(1)知,b1=a1=d2,所以b k=a m+a1⇔b1×2k−1=a1+(m−1)d+a1,即2k−1=2m,亦即m=2k−2∈[1,500],解得2≤k≤10,所以满足等式的解k=2,3,4,⋯,10,故集合{k |b k=a m+a1,1≤m≤500}中的元素个数为10−2+1=9.11.【2022年北京】已知Q:a1,a2,⋯,a k为有穷整数数列.给定正整数m,若对任意的n∈{1, 2,⋯,m},在Q中存在a i,a i+1,a i+2,⋯,a i+j(j≥0),使得a i+a i+1+a i+2+⋯+a i+j=n,则称Q为m−连续可表数列.(1)判断Q:2,1,4是否为5−连续可表数列?是否为6−连续可表数列?说明理由;(2)若Q:a1,a2,⋯,a k为8−连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,a k为20−连续可表数列,且a1+a2+⋯+a k<20,求证:k≥7.【答案】(1)是5−连续可表数列;不是6−连续可表数列.(2)证明见解析.(3)证明见解析.【解析】【分析】(1)直接利用定义验证即可;(2)先考虑k≤3不符合,再列举一个k=4合题即可;(3)k≤5时,根据和的个数易得显然不行,再讨论k=6时,由a1+a2+⋯+a6<20可知里面必然有负数,再确定负数只能是−1,然后分类讨论验证不行即可.(1)a2=1,a1=2,a1+a2=3,a3=4,a2+a3=5,所以Q是5−连续可表数列;易知,不存在i,j使得a i+a i+1+⋯+a i+j=6,所以Q不是6−连续可表数列.(2)若k≤3,设为Q:a,b,c,则至多a+b,b+c,a+b+c,a,b,c,6个数字,没有8个,矛盾;当k=4时,数列Q:1,4,1,2,满足a1=1,a4=2,a3+a4=3,a2=4,a1+a2=5,a1+a2+ a3=6,a2+a3+a4=7,a1+a2+a3+a4=8,∴k min=4.(3)Q:a1,a2,⋯,a k,若i=j最多有k种,若i≠j,最多有C k2种,所以最多有k+C k2=k(k+1)种,2=15个数,矛盾,若k≤5,则a1,a2,…,a k至多可表5(5+1)2=21个数,从而若k<7,则k=6,a,b,c,d,e,f至多可表6(6+1)2而a+b+c+d+e+f<20,所以其中有负的,从而a,b,c,d,e,f可表1~20及那个负数(恰21个),这表明a~f中仅一个负的,没有0,且这个负的在a~f中绝对值最小,同时a~f中没有两数相同,设那个负数为−m(m≥1),则所有数之和≥m+1+m+2+⋯+m+5−m=4m+15,4m+15≤19⇒m=1,∴{a,b,c,d,e,f}={−1,2,3,4,5,6},再考虑排序,排序中不能有和相同,否则不足20个,∵1=−1+2(仅一种方式),∴−1与2相邻,若−1不在两端,则"x , −1 , 2 , __,__,__"形式,若x=6,则5=6+(−1)(有2种结果相同,方式矛盾),∴x≠6,同理x≠5,4,3,故−1在一端,不妨为"−1 ,2, A, B, C, D"形式,若A=3,则5=2+3(有2种结果相同,矛盾),A=4同理不行,A=5,则6=−1+2+5(有2种结果相同,矛盾),从而A=6,由于7=−1+2+6,由表法唯一知3,4不相邻,、故只能−1,2,6,3,5,4,①或−1,2,6,4,5,3,②这2种情形,对①:9=6+3=5+4,矛盾,对②:8=2+6=5+3,也矛盾,综上k≠6∴k≥7.【点睛】关键点睛,先理解题意,是否为m−可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m中间的任意一个值.本题第二问k≤3时,通过和值可能个数否定k≤3;第三问先通过和值的可能个数否定k≤5,再验证k=6时,数列中的几项如果符合必然是{−1,2,3,4,5,6}的一个排序,可验证这组数不合题.12.【2022年浙江】已知等差数列{a n}的首项a1=−1,公差d>1.记{a n}的前n项和为S n(n ∈N∗).(1)若S4−2a2a3+6=0,求S n;(2)若对于每个n∈N∗,存在实数c n,使a n+c n,a n+1+4c n,a n+2+15c n成等比数列,求d的取值范围.(n∈N∗)【答案】(1)S n=3n2−5n2(2)1<d≤2【解析】【分析】(1)利用等差数列通项公式及前n项和公式化简条件,求出d,再求S n;(2)由等比数列定义列方程,结合一元二次方程有解的条件求d的范围.(1)因为S4−2a2a3+6=0,a1=−1,所以−4+6d−2(−1+d)(−1+2d)+6=0,所以d 2−3d =0,又d >1, 所以d =3, 所以a n =3n −4, 所以S n =(a 1+a n )n2=3n 2−5n2,(2)因为a n +c n ,a n+1+4c n ,a n+2+15c n 成等比数列, 所以(a n+1+4c n )2=(a n +c n )(a n+2+15c n ),(nd −1+4c n )2=(−1+nd −d +c n )(−1+nd +d +15c n ),c n 2+(14d −8nd +8)c n +d 2=0,由已知方程c n 2+(14d −8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d −8nd +8)2−4d 2≥0,所以(16d −8nd +8)(12d −8nd +8)≥0对于任意的n ∈N ∗恒成立, 所以[(n −2)d −1][(2n −3)d −2]≥0对于任意的n ∈N ∗恒成立, 当n =1时,[(n −2)d −1][(2n −3)d −2]=(d +1)(d +2)≥0, 当n =2时,由(2d −2d −1)(4d −3d −2)≥0,可得d ≤2 当n ≥3时,[(n −2)d −1][(2n −3)d −2]>(n −3)(2n −5)≥0, 又d >1 所以1<d ≤21.(2022·河南·通许县第一高级中学模拟预测(文))在等差数列{}n a 中,35a =,1511109a a +=,则15a a ⋅=( )A .92B .9C .10D .12【答案】B 【解析】 【分析】将已知等式变形,由等差数列下标和计算即可得到结果. 【详解】 由1511109a a +=得:153********a a a a a a a +==,315995aa a ∴⋅==.故选:B.2.(2022·福建省德化第一中学模拟预测)设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为( )A .8B .10C .12D .14【答案】C 【解析】 【分析】根据等差数列的求和公式,求得44a =,结合等差数列的性质,化简得到27433a a a a =++,即可求解. 【详解】因为728S =,由等差数列的性质和求和公式得17747()7282a a S a +===,即44a =, 则112374393(3)312a d a a a a a d =+=+==++. 故选:C.3.(2022·北京·北大附中三模)已知数列{}n a 满足2123n a a a a n =,其中1,2,3,n =,则数列{}n a ( ) A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项【答案】A 【解析】 【分析】求得数列{}n a 的通项公式,再分析数列的单调性即可 【详解】依题意,因为2123n a a a a n =,其中1,2,3,n =,当1n =时,2111a ==,当2n ≥时,21231(1)n a a a a n -=-,2123n a a a a n =,两式相除有22211,2(1)1n n a n n n ⎛⎫=+≥ ⎪--⎝⎭=,易得n a 随着n 的增大而减小,故24n a a ≤=,且11n a a >=,故最小项为11a =,最大项为24a = 故选:A4.(2022·辽宁实验中学模拟预测)已知数列{}()*N n a n ∈是首项为1的正项等差数列,公差不为0,若1a 、数列{}2n a 的第2项、数列{}2n a 的第5项恰好构成等比数列,则数列{}n a 的通项公式为( ) A .21n a n =- B .21n a n =+ C .1n a n =- D .1n a n =+【答案】A 【解析】 【分析】根据题意设()11n a n d =+-,所以()2121n d a n =+-,()2211n d a n =+-,所以1,13d +,124d +构成等比数列,即()()2131124d d +=⨯+,求出d 即可求解. 【详解】设等差数列{}n a 的公差为()0d d >,所以()11n a n d =+-,所以()2121n d a n =+-, ()2211n d a n =+-,又1a 、数列{}2n a 的第2项、数列{}2n a 的第5项恰好构成等比数列,即1,13d +,124d +构成等比数列,所以()()2131124d d +=⨯+, 解得2d =,0d =(舍去),所以21n a n =-. 故选:A.5.(2022·四川·绵阳中学实验学校模拟预测(文))已知数列{}n a 的前n 项和为n S ,且11a =,0n a ≠,11n n n a a S λ+=-,若存在实数λ使{}n a 是等差数列,则{}n a 的公差为( )A .1B .2C .2λD .λ【答案】B 【解析】 【分析】利用1(2)n n n S S a n --=≥得{}n a 的递推关系,从而求得λ与公差d 的关系,再由21a a d -=求得d .【详解】 设公差为d ,因为11n n n a a S λ+=-,所以2n ≥时,111n n n a a S λ--=-, 两式相减得:111()()n n n n n n a a a S S a λλ+---=-=, 因为0n a ≠,所以112n n a a d λ+--==,由1211a a S λ=-121da =-得221a d =-.从而21211a a d d -=--=,2d =, 故选:B .6.(2022·湖南·邵阳市第二中学模拟预测)已知正项等比数列{}n a 满足3212a a a =+,若存在m a 、n a ,使得2116m n a a a ⋅=,则14m n+的最小值为( ) A .83B .16C .114 D .32【答案】D 【解析】 【分析】设等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,由已知条件可得出6m n +=,将代数式14m n +与()16m n +相乘,利用基本不等式可求得14m n+的最小值. 【详解】设等比数列{}n a 的公比为q ,则0q >,由3212a a a =+可得220q q --=,解得2q,因为2116m n a a a ⋅=,则2112112216m n a a --⋅⋅=,24m n ∴+-=,可得6m n +=,由已知m 、N n *∈,所以,()1411414566m n m n m n m n n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭13562⎛≥+= ⎝, 当且仅当24n m ==时,等号成立, 因此,14m n +的最小值为32. 故选:D.7.(2022·浙江·三模)设数列{}n a 满足()21192,24n n n a a a n N a *+=-+∈=,记数列221n a ⎧⎫⎨⎬-⎩⎭的前n 项的和为n S ,则( ) A .10127a < B .存在k *∈N ,使1k k a a += C .1012S < D .数列{}n a 不具有单调性【答案】C 【解析】 【分析】 根据题意求得54n a ≥,进而得到132n a +-与32n a -同号,结合作差法比较法,可判定B 、D 错误;由()()11214n n n n a a a a +-=--+,得到114n n a a +-≥,利用叠加法,可判定A 错误;化简得到1111133222n n n a a a +=----,利用裂项法求和,可判定C 正确. 【详解】由于()211551,244n n a a a +=-+≥=,则54n a ≥,又由21333122422n n n n n a a a a a +⎛⎫⎛⎫-=-+=-- ⎪⎪⎝⎭⎝⎭,则132n a +-与32n a -同号. 又由12a =,则32n a >,可得221933042n n nn n a a a a a +⎛⎫-=-+=-> ⎪⎝⎭, 所以数列{}n a 单调递增,故B 、D 错误; 又因为()()11214n n n n a a a a +-=--+, 由数列{}n a 单调递增,且12a =,所以20,10n n a a ->->,所以114n n a a +-≥, 累加得1011100254a a -≥=,所以10127a ≥,故A 错误; 由21924n nn a a a +=-+可得1111133222n n n a a a +=----, 因为12n a a >=,所以101110211112333222S a a a =-<=---,故C 正确.故选:C .8.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021. 故选:C.9.(2022·辽宁·渤海大学附属高级中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( ) A .20222022S =,且52018a a > B .20222022S =-,且52018a a < C .20224044S =-,且52018a a > D .20224044S =,且52018a a <【答案】C 【解析】 【分析】根据题意构造函数()2sin 3f x x x =-,确定函数的奇偶性及单调性,进而根据()()520182,2f a f a ++的关系即可确定答案.【详解】设函数()2sin 3f x x x =-,则()f x 为奇函数,且()2cos 30f x x '=-<,所以()f x 在R 上递减,由已知可得()()552sin 2321a a +-+=-,()()201820182sin 2321a a +-+=,有()521f a +=-,()201821f a +=,所以()()5201822f a f a +<+,且()()5201822f a f a +=-+,所以520185201822a a a a +>+⇒>,且()5201822a a +=-+,所以520184a a +=-,120222022520182022()1011()40442a a S a a +==+=-.故选:C.10.(2022·全国·模拟预测)已知数列{}n a 满足对任意的*n ∈N ,总存在*m ∈N ,使得n m S a =,则n a 可能等于( ) A .2022n B .2022n C .22022n D .2022n【答案】B 【解析】 【分析】A 选项,利用等比数列求和公式列出方程,令n =2时,得到120222023m -=,m 不存在,A 错误;B 选项,利用等差数列求和公式进行求解得到方程()101112022n n m +=,取()12n n m +=即可,C 选项,利用平方和公式得到()()21216n n n m ++=,当n =2时,25m =,m 不存在;D 选项,当n =2时,1112m+=,m 不存在. 【详解】对于选项A :当2022nn a =时,则{}n a 是等比数列,因为n m S a =所以()20222022120222021n m -=,当n =2时,120222023m -=,m 不存在,A 错误;对于选项B :当2022n a n =时,{}n a 是等差数列,因为n m S a =,则()()120221*********n n n S n n m +=⨯=+=,取()12n n m +=即可,B 正确; 对于选项C :当22022n a n =时,n m S a =,则()()()2222121202212202220226n n n n S n m ++=⨯++⋅⋅⋅+=⨯=,当n =2时,25m =,m 不存在,C 错误; 对于选项D :当2022n a n =时,n m S a =,则11120222022123n m ⎛⎫+++⋅⋅⋅+= ⎪⎝⎭,当n =2时,1112m+=,m 不存在,D 错误. 故选:B .11.(2022·江苏·南京外国语学校模拟预测)已知数列{}n a 各项都不为0,121,3a a ==且满足141n n n a a S +=-,(1)求{}n a 的通项公式; (2)若114n n n a b a -=-,{}n b 的前n 项和为n T ,求n T 取得最小值时的n 的值. 【答案】(1)21n a n =-; (2)7n =. 【解析】 【分析】(1)由141n n n a a S +=-得2n ≥时,1141n n n a a S --=-, ①-②得114n n a a +--=,分奇偶项即可求出n a (2)由114n n n a b a -=-得22215n n b n -=-,当7n ≤时,0n b ≤,当7n >时,0n b > 当7n =时,n T 取得最小值 (1)141n n n a a S +=-①当2n ≥时,1141n n n a a S --=-② ①-②114n n n n n a a a a a +-⇒-=0n a ≠114n n a a +-∴-={}n a ∴的奇数项和偶数项各自成等差数列且121,3a a ==()()21141432211,21(n n a n n n a n n -∴=+-=-=--∴=-为奇数),()234141221,21n n a n n n a n =+-=-=⋅-∴=-(n 为偶数),21n a n ∴=-(2)22131215215n n b n n -==+--,当7n ≤时,0n b ≤, 当7n >时,0n b >∴当7n =时,n T 取得最小值12.(2022·福建·厦门双十中学模拟预测)等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)112n a n =- (2)()992n nT n =-【解析】 【分析】(1)根据题意得公差d 为整数,且50a ≥,60a ≤,分析求出d 即可;(2)111292112n b n n ⎛⎫=- ⎪--⎝⎭,再利用裂项相消法求和即可.(1)由19a =,2a 为整数知,等差数列{}n a 的公差d 为整数. 又5n S S ≤,故50a ≥,60a ≤. 于是940d +≥,950d +≤,解得9945d -≤≤-, 因此2d =-,故数列{}n a 的通项公式为112n a n =-. (2)()()111111292292112n b n n n n ⎛⎫==- ⎪----⎝⎭,于是1211111112795792112n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦()1112929992n n n ⎛⎫=-= ⎪--⎝⎭. 13.(2022·宁夏·银川一中模拟预测(理))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的*n ∈恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,12n n b -=;(2)(),2-∞. 【解析】 【分析】(1)利用等差数列()11n a a n d +-=,等比数列11n n b b q -=代入计算;(2)利用错位相减法可得1242n n n S -+=-,令2142nn c -=-,由{}n c 为递增数列,结合恒成立思想可得答案. (1)解:因为数列{}n b 是等比数列,则可得2123124b b q b b q ==⎧⎨==⎩,解得112b q =⎧⎨=⎩, 所以12n n b -=.因为数列{}n a 是等差数列,且111a b ==,8117116a a d +=++=,则公差2d =, 所以()12121n a n n =+-=-.故21n a n =-,12n n b -=;(2)解:由(1)得:1112n n n n a nc b -++==, 数列{}n c 的前n 项和为121231222n n nS -=+++⋅⋅⋅+①所以22111231222222n n n n n S --=+++⋅⋅⋅++②由①-②得:121111112121222222222n n n n n n n n n S -+⎛⎫=+++⋅⋅⋅+-=--=- ⎪⎝⎭,所以1242n n n S -+=-.不等式12n n n S λ-<+恒成立,化为不等式2142n λ-<-恒成立,令2142n n c -=-且{}n c 为递增数列,即转化为()min n c λ<当1n =时,()12min 1422n c -=-=,所以2λ<. 综上可得:实数λ的取值范围是(),2-∞.14.(2022·湖北·襄阳四中模拟预测)已知等差数列{}n a 满足11a =,且前四项和为28,数列{}n b 的前n 项和n S 满足()233n n S b R λλ=-∈.(1)求数列{}n a 的通项公式,并判断{}n b 是否为等比数列;(2)对于集合A ,B ,定义集合{}A B x x A x B -=∈∉且.若1λ=,设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B -的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前30项和30T .【答案】(1)43n a n =-,判断答案见解析 (2)1926 【解析】 【分析】(1)根据等数列的前n 项和公式和通项公式可求出{}n a 的通项公式,根据等比数列的定义可判断{}n b 是否为等比数列;(2)结合等差数列的前n 项和,等差数列与等比数列的通项公式可求出结果. (1)∵{}n a 是等差数列,11a =,且前四项和为28, ∵43441282S d ⨯=⨯+⨯=,解得4d =∵()14143n a n n =+-=-.∵233n nn S b λ=-,∵当2n ≥时,11233n n S b λ--=-,两式相减得()12332n n n b b b n -=-≥, 即()132n n b b n -=≥,又11233b b λ=-∵13b λ=∵当0λ=时,数列{}n b 的通项公式为0n b =.不是等比数列当0λ≠时,数列{}n b 是首项为,公比为3的等比数列,∵3nn b λ=.(2)由(1)知3nn b =,则4581,243b b ==因为304303127a =⨯-=, 所以4305b a b <<,所以,30T 中要去掉{}n b 的项最多4项,即3,9,27,81, 其中9,81是{}n a 和{}n b 的公共项,所以数列{}n c 的前30项和30T 由{}n a 的前32项和,去掉9,81, ()()()330122321+1259+81=-90=19262a a a T ⨯=++⋅⋅⋅+-所以数列{}n c 的前30项和30T 为1926.15.(2022·浙江省江山中学模拟预测)在数列{}n a 中,121,2a a ==,且对任意的n *∈N ,都有2132n n n a a a ++=-. (1)求数列{}n a 的通项公式;(2)若{}1234A x x x x x x x =<<<<或,定义集合A 的长度为4321x x x x -+-.已知数列{}n b 的通项公式为()()()()12111n n na xb n a x a x a x *=∈+++N ,若关于x 不等式1220221b bb +++>的解集A ,求集合A 的长度. 【答案】(1)12n na(2)101121(1)34-【解析】 【分析】(1)构造等比数列结合累加法即可求通项;(2)根据不等式特点,巧用作差转换成高次不等式求解. (1)21211()322n n n n n n n a a a a a a a +++++==-⇒--,211a a -=,所以112n n n a a -+-=,12112132112()()()11221212n n n n n n a a a a a a a a -----=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+=+=-,即12n na ;(2) 因为()()()()12111n n na xb n a x a x a x *=∈+++N ,1220221b bb +++>即就是2021202124211(1)(21)(1)(21)(41)(1)(21)(2+1)x x x x x x x x x x x x x +++⋅⋅⋅+>++++++++⋅⋅⋅, 2021202124211(1)(21)(1)(21)(41)(1)(21)(2+1)11x x x x x x x x x x x x x x ++⋅⋅⋅+>-=+++++++⋅⋅⋅++,2021202142121(1)(21)(41)(1)(21)(2+1)1(1)(21)(1)(21)x x x x x x x x x x x x x x +⋅⋅⋅+>-=+++++⋅⋅⋅+++++,⋅⋅⋅,202110(1)(21)(41)(2+1)x x x x >+++⋅⋅⋅,即2021(1)(21)(41)(2+1)0x x x x +++⋅⋅⋅<,根据数轴标根法可知不等式的解集为1|12A x x ⎧=-<<-⎨⎩或1148x -<<-或⋅⋅⋅或202020211122x ⎫-<<-⎬⎭,集合A 的长度为10112021101111[1()]1112124(1)12823414-++⋅⋅⋅+==--. 【点睛】数列求通项分方法有构造等比或等差数列法,累加法,累乘法等.。
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
历年高考理科数列真题汇编含答案解析
高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a(2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 (2016天津)(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(2016浙江)6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .93.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列2.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .35.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14高考数列填空题部分(2016全国I )(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .(2016上海)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.(2016北京)12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..(2016江苏)8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .(2016浙江)13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。
高考数学各地名校试题解析分类汇编(一)4 数列2 文
各地解析分类汇编:数列(2)1【天津市新华中学2012届高三上学期第二次月考文】等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 66 【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。
由369=27a a a ++,德663=27=9a a ,。
所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C.2.【天津市新华中学2012届高三上学期第二次月考文】已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,使得14a a a n m =,则nm41+的最小值为A.23 B.35 C.625 D. 不存在【答案】A【解析】因为765=2a a a +,所以2555=2a q a q a +,即220q q --=,解得2q =。
若存在两项,n m a a ,有14a =,即2116m n a a a =,2221116m n a qa +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。
所以1414414()()5)(662m nn m nmnmnn m n++=+=++≥,当且仅当4=m n n m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A.3.【山东省兖州市2013届高三9月入学诊断检测 文】等差数列{}n a 的前n 项和为n S ,若371112a a a ++=,则13S 等于( )()A 52 ()B 54 ()C 56 ()D 58【答案】在等差数列中37117312a a a a ++==,74a =, 所以113713713()132********2a a a S a +⨯====⨯=。
数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020年新高考I卷(山东卷)·第18题
7.(2020新高考II卷(海南卷)·第18题)已知公比大于 的等比数列 满足 .
(1)求 通项公式;
(2)求 .
【答案】(1) ;(2)
解析:(1)设等比数列 的公比为q(q>1),则 ,
整理可得: ,
解析:(1)由已知 得 ,且 , ,
取 ,由 得 ,
由于 为数列 的前n项积,
所以 ,
中
所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.
,
数列的通项公式为: .
(2)由于: ,故:
.
【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020新高考II卷(海南卷)·第18题
8.(2021年高考全国乙卷理科·第19题)记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
(2)求 的通项公式.
【答案】(1)证明见解析;(2) .
当 时, ,当 时, 满足等差数列的定义,此时 为等差数列;
当 时, , 不合题意,舍去.
综上可知 为等差数列.
【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.
高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列
2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
最新高考数学试题分类汇编 数列
最新高考数学试题分类汇编数列一. 选择题:1.(全国一5)已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( C )A .138B .135C .95D .232.(上海卷14) 若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为a ,则a 的值是(B )A .1B .2C .12D .543.(北京卷6)已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( C )A .165-B .33-C .30-D .21-4.(四川卷7)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞5.(天津卷4)若等差数列{}n a 的前5项和525S =,且23a =,则7a =B (A )12 (B )13 (C )14 (D )156.(江西卷5)在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a = AA .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 7.(陕西卷4)已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B )A .64B .100C .110D .1208.(福建卷3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为CA.63B.64C.127D.1289.(广东卷2)记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( D ) A .16B .24C .36D .4810.(浙江卷6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =C (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n --21) 11.(海南卷4)设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( C ) A. 2B. 4C.152D.172二. 填空题:1.(四川卷16)设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为______4_____。
2020年全国各地高中数学真题分类汇编—数列(含答案)
2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.参考答案与试题解析⼀.选择题(共8⼩题)1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8【解答】解:在等差数列{a n}中,a n=a1+(n﹣1)d,∴a2=a1+d,a4=a1+3d,a8=a1+7d,b n+1=S2n+2﹣S2n,∴b2=S4﹣S2=a3+a4,b4=S8﹣S6=a7+a8,b6=S12﹣S10=a11+a12,b8=S16﹣S14=a15+a16,A.2a4=a2+a6,根据等差数列的性质可得A正确,B.若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=(a3+a12)+(a4+a11),成⽴,B正确,C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合≤1,C正确;D.若b42=b2b8,则(a7+a8)2=(a3+a4)(a15+a16),即4a12+52a1d+169d2=4a12+68a1d+145d2,得16a1d=24d2,∵d≠0,∴2a1=3d,不符合≤1,D错误;故选:D.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣1)=2n﹣11.由a n=2n﹣11=0,得n=,⽽n∈N*,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=﹣9<0,T2=63>0,T3=﹣315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【解答】解:{a n}是等⽐数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,故选:D.4.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.15【解答】解:若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦,即有i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j =9,k=12,共5个;若k﹣j=4且j﹣i=3,则a i,a j,a k为原位⼩三和弦,可得i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j =8,k=12,共5个,总计10个.故选:C.5.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…【解答】解:对于A选项:序列1101011010C(1)=a i a i+1=(1+0+0+0+0)=,C(2)=a i a i+2=(0+1+0+1+0)=,不满⾜C(k)≤(k=1,2,3,4),故排除A;对于B选项:序列1101111011C(1)=a i a i+1=(1+0+0+1+1)=,不满⾜条件,排除;对于C选项:序列100011000110001C(1)=a i a i+1=(0+0+0+0+1)=,C(2)=a i a i+2=(0+0+0+0++0)=0,C(3)=a i a i+3=(0+0+0+0+0)=0,C(4)=a i a i+4=(1+0+0+0+0)=,符合条件,对于D选项:序列1100111001C(1)=a i a i+1=(1+0+0+0+1)=不满⾜条件.故选:C.6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣1【解答】解:设等⽐数列的公⽐为q,∵a5﹣a3=12,∴a6﹣a4=q(a5﹣a3),∴q=2,∴a1q4﹣a1q2=12,∴12a1=12,∴a1=1,∴S n==2n﹣1,a n=2n﹣1,∴==2﹣21﹣n,故选:B.7.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为⾸项,以2为公⽐的等⽐数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块【解答】解:⽅法⼀:设每⼀层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S2n成等差数列,且(S3n﹣S2n)﹣(S2n﹣S n)=n2d,则n2d=729,则n=9,则三层共有扇⾯形⽯板S3n=S27=27×9+×9=3402块,⽅法⼆:设第n环天⽯⼼块数为a n,第⼀层共有n环,则{a n}是以9为⾸项,9为公差的等差数列,a n=9+(n﹣1)×9=9n,设S n为{a n}的前n项和,则第⼀层、第⼆层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层⽐中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n2=729,解得n=9,∴S3n=S27==3402,故选:C.⼆.填空题(共6⼩题)9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【解答】解:根据题意,等差数列{a n}满⾜a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a4=2,所以a4=1,3d=a4﹣a1=3,即d=1,则S10=10a1=10×(﹣2)+45×1=25.故答案为:2511.(2020•浙江)已知数列{a n}满⾜a n=,则S3=10.【解答】解:数列{a n}满⾜a n=,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【解答】解:将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}是以1为⾸项、以6为公差的等差数列,故它的前n项和为n×1+=3n2﹣2n,故答案为:3n2﹣2n.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是4.【解答】解:因为{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),因为{a n}是公差为d的等差数列,设⾸项为a1;{b n}是公⽐为q的等⽐数列,设⾸项为b1,所以{a n}的通项公式a n=a1+(n﹣1)d,所以其前n项和S==n2+(a1﹣)n,当{b n}中,当公⽐q=1时,其前n项和S=nb1,所以{a n+b n}的前n项和S n=S+S=n2+(a1﹣)n+nb1=n2﹣n+2n﹣1(n∈N*),显然没有出现2n,所以q≠1,则{b n}的前n项和为S==+,所以S n=S+S=n2+(a1﹣)n+﹣=n2﹣n+2n﹣1(n∈N*),由两边对应项相等可得:解得:d=2,a1=0,q=2,b1=1,所以d+q=4,故答案为:4.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=7.【解答】解:由a n+2+(﹣1)n a n=3n﹣1,当n为奇数时,有a n+2﹣a n=3n﹣1,可得a n﹣a n﹣2=3(n﹣2)﹣1,…a3﹣a1=3•1﹣1,累加可得a n﹣a1=3[1+3+…+(n﹣2)]﹣=3•=;当n为偶数时,a n+2+a n=3n﹣1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+…+a16=92.∴a1+a3+…+a15=448.∴=448,∴8a1=56,即a1=7.故答案为:7.三.解答题(共8⼩题)15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等⽐数列{b n}的公⽐为q,由a1=1,a5=5(a4﹣a3),则1+4d=5d,可得d=1,∴a n=1+n﹣1=n,∵b1=1,b5=4(b4﹣b3),∴q4=4(q3﹣q2),解得q=2,∴b n=2n﹣1;(Ⅱ)证明:法⼀:由(Ⅰ)可得S n=,∴S n S n+2=n(n+1)(n+2)(n+3),(S n+1)2=(n+1)2(n+2)2,∴S n S n+2﹣S n+12=﹣(n+1)(n+2)<0,∴S n S n+2<S n+12(n∈N*);法⼆:∵数列{a n}为等差数列,且a n=n,∴S n=,S n+2=,S n+1=,∴==<1,∴S n S n+2<S n+12(n∈N*);(Ⅲ),当n为奇数时,c n===﹣,当n为偶数时,c n==,对任意的正整数n,有c2k﹣1=(﹣)=﹣1,和c2k==+++…+,①,由①×可得c2k=++…++,②,①﹣②得c2k=+++…+﹣﹣,∴c2k=﹣,因此c2k=c2k﹣1+c2k=﹣﹣.数列{c n}的前2n项和﹣﹣.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.【解答】解:(1)设等⽐数列{a n}的公⽐为q(q>1),则,∵q>1,∴,∴.(2)a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1=23﹣25+27﹣29+…+(﹣1)n﹣1•22n+1,==.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)k=1时,a n+1=S n+1﹣S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)﹣=,则an+1=S n+1﹣S n=(﹣)•(+)=•(+),因此+=•,即=,Sn+1=a n+1=(S n+1﹣S n),从⽽S n+1=4S n,⼜S1=a1=1,可得S n=4n﹣1,a n=S n﹣S n﹣1=3•4n﹣2,n≥2,综上可得a n=,n∈N*;(3)若存在三个不同的数列{a n}为“λ﹣3”数列,则S n+1﹣S n=λa n+1,则S n+1﹣3S n+1S n+3S n+1S n﹣S n=λ3a n+1=λ3(S n+1﹣S n),由a1=1,a n≥0,且S n>0,令p n=()>0,则(1﹣λ3)p n3﹣3p n2+3p n﹣(1﹣λ3)=0,λ=1时,p n=p n2,由p n>0,可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯⼀,不存在三个不同的数列{a n},λ≠1时,令t=,则p n3﹣tp n2+tp n﹣1=0,则(p n﹣1)[p n2+(1﹣t)p n+1]=0,①t≤1时,p n2+(1﹣t)p n+1>0,则p n=1,同上分析不存在三个不同的数列{a n};②1<t<3时,△=(1﹣t)2﹣4<0,p n2+(1﹣t)p n+1=0⽆解,则p n=1,同上分析不存在三个不同的数列{a n};③t=3时,(p n﹣1)3=0,则p n=1,同上分析不存在三个不同的数列{a n}.④t>3时,即0<λ<1时,△=(1﹣t)2﹣4>0,p n2+(1﹣t)p n+1=0有两解α,β,设α<β,α+β=t﹣1>2,αβ=1>0,则0<α<1<β,则对任意n∈N*,=1或=α3(舍去)或=β3,由于数列{S n}从任何⼀项求其后⼀项均有两种不同的结果,所以这样的数列{S n}有⽆数多个,则对应的数列{a n}有⽆数多个.则存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0,综上可得0<λ<1.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.【解答】解:(1)设{a n}是公⽐q不为1的等⽐数列,a1为a2,a3的等差中项,可得2a1=a2+a3,即2a1=a1q+a1q2,即为q2+q﹣2=0,解得q=﹣2(1舍去),所以{a n}的公⽐为﹣2;(2)若a1=1,则a n=(﹣2)n﹣1,na n=n•(﹣2)n﹣1,则数列{na n}的前n项和为S n=1•1+2•(﹣2)+3•(﹣2)2+…+n•(﹣2)n﹣1,﹣2S n=1•(﹣2)+2•(﹣2)2+3•(﹣2)3+…+n•(﹣2)n,两式相减可得3S n=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n•(﹣2)n=﹣n•(﹣2)n,化简可得S n=,所以数列{na n}的前n项和为.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)∵a2+a4=20,a3=8,∴+8q=20,解得q=2或q=(舍去),∴a1=2,∴a n=2n,(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,∴2n≤m,∴n≤log2m,故b1=0,b2=1,b3=1,b4=2,b5=2,b6=2,b7=2,b8=3,b9=3,b10=3,b11=3,b12=3,b13=3,b14=3,b15=3,b16=4,…,可知0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,…,由<100,>100可知b63=5,b64=b65=…=b100=6.∴数列{b m}的前100项和S100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.【解答】解:(1)设公⽐为q,则由,可得a1=1,q=3,所以a n=3n﹣1.(2)由(1)有log3a n=n﹣1,是⼀个以0为⾸项,1为公差的等差数列,所以S n=,所以+=,m2﹣5m﹣6=0,解得m=6,或m=﹣1(舍去),所以m=6.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.【解答】(Ⅰ)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2﹣q﹣1=0,解得q=﹣(舍去),或q=,∴c n+1=•c n=•c n=•c n=•c n=4•c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1•4n﹣1=4n﹣1,n∈N*.∴a n+1﹣a n=c n=4n﹣1,则a1=1,a2﹣a1=1,a3﹣a2=41,•••a n﹣a n﹣1=4n﹣2,各项相加,可得a n=1+1+41+42+…+4n﹣2=+1=.(Ⅱ)证明:依题意,由c n+1=•c n(n∈N*),可得b n+2•c n+1=b n•c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n==•=(1+)•=(1+)(﹣),⼜∵b1=1,d>0,∴b n>0,∴c1+c2+…+c n=(1+)(﹣)+(1+)(﹣)+…+(1+)(﹣)=(1+)(﹣+﹣+…+﹣)=(1+)(﹣)=(1+)(1﹣)<1+,∴c1+c2+…+c n<1+,故得证.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.【解答】解:(1)数列{a n}为公差为d的等差数列,S10=70,a1=1,可得10+×10×9d=70,解得d=,则a n=1+(n﹣1)=n﹣;(2)数列{a n}为公⽐为q的等⽐数列,a4=,a1=1,可得q3=,即q=,则a n=()n﹣1,S n==2﹣()n﹣1,S n>100a n,即为2﹣()n﹣1>100•()n﹣1,即2n>101,可得n≥7,即n的最⼩值为7.考点卡⽚1.数列的函数特性【知识点的认识】1、等差数列的通项公式:a n=a1+(n﹣1)d;前n项和公式S n=na1+n(n﹣1)d或者S n=2、等⽐数列的通项公式:a n=a1q n﹣1;前n项和公式S n==(q≠1)3、⽤函数的观点理解等差数列、等⽐数列(1)对于等差数列,a n=a1+(n﹣1)d=dn+(a1﹣d),当d≠0时,a n是n的⼀次函数,对应的点(n,a n)是位于直线上的若⼲个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为S n,则S n=pn2+qn(p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可⽤⼆次函数的⽅法解决等差数列问题.(2)对于等⽐数列:a n=a1q n﹣1.可⽤指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等⽐数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等⽐数列{a n}是递减数列.当q=1时,是⼀个常数列.当q<0时,⽆法判断数列的单调性,它是⼀个摆动数列.【典型例题分析】典例1:数列{a n}满⾜a n=n2+kn+2,若不等式a n≥a4恒成⽴,则实数k的取值范围是()A.[﹣9,﹣8]B.[﹣9,﹣7]C.(﹣9,﹣8)D.(﹣9,﹣7)解:a n=n2+kn+2=,∵不等式a n≥a4恒成⽴,∴,解得﹣9≤k≤﹣7,故选:B.典例2:设等差数列{a n}满⾜a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最⼤值是()A.310B.212C.180D.121解:∵等差数列{a n}满⾜a1=1,a n>0(n∈N*),设公差为d,则a n=1+(n﹣1)d,其前n项和为S n=,∴=,=1,=,=,∵数列{}也为等差数列,∴=+,∴=1+,解得d=2.∴S n+10=(n+10)2,=(2n﹣1)2,∴==,由于为单调递减数列,∴≤=112=121,故选:D.2.等差数列的通项公式【知识点的认识】等差数列是常⻅数列的⼀种,数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,已知等差数列的⾸项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代⼊2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第⼀项这个数列是等差数列,但如果把⾸项放进去的话就不是等差数列,题中a n的求法是数列当中常⽤到的⽅式,⼤家可以熟记⼀下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为⾸项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的⼀个重要性质,即等差中项的特点,通过这个性质然后解⽅程⼀样求出⾸项和公差即可.【考点点评】求等差数列的通项公式是⼀种很常⻅的题型,这⾥⾯往往⽤的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】等差数列是常⻅数列的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字⺟d表示.其求和公式为S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出⾸项a1的值,然后套⽤公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运⽤.其实⽅法都是⼀样的,要么求出⾸项和公差,要么求出⾸项和第n项的值.【考点点评】等差数列⽐较常⻅,单独考察等差数列的题也⽐较简单,⼀般单独考察是以⼩题出现,⼤题⼀般要考察的话会结合等⽐数列的相关知识考察,特别是错位相减法的运⽤.4.等⽐数列的性质【等⽐数列】(⼜名⼏何数列),是⼀种特殊数列.如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列,因为第⼆项与第⼀项的⽐和第三项与第⼆项的⽐相等,这个常数叫做等⽐数列的公⽐,公⽐通常⽤字⺟q表示(q≠0).注:q=1时,a n 为常数列.等⽐数列和等差数列⼀样,也有⼀些通项公式:①第n项的通项公式,a n=a1q n﹣1,这⾥a1为⾸项,q为公⽐,我们发现这个通项公式其实就是指数函数上孤⽴的点.②求和公式,S n=,表示的是前⾯n项的和.③若m+n=q+p,且都为正整数,那么有a m•a n =a p•a q.例:2,x,y,z,18成等⽐数列,则y=.解:由2,x,y,z,18成等⽐数列,设其公⽐为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运⽤了等⽐数列第n项的通项公式,这也是⼀个常⽤的⽅法,即知道某两项的值然后求出公⽐,继⽽可以以已知项为⾸项,求出其余的项.关键是对公式的掌握,⽅法就是待定系数法.【等⽐数列的性质】(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.5.等⽐数列的通项公式【知识点的认识】1.等⽐数列的定义如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐值等于同⼀个常数,那么这个数列叫做等⽐数列,这个常数叫做等⽐数列的公⽐,通常⽤字⺟q表示(q≠0).从等⽐数列的定义看,等⽐数列的任意项都是⾮零的,公⽐q也是⾮零常数.2.等⽐数列的通项公式设等⽐数列{a n}的⾸项为a1,公⽐为q,则它的通项a n=a1•q n﹣13.等⽐中项:如果在a与b中间插⼊⼀个数G,使a,G,b成等⽐数列,那么G叫做a与b的等⽐中项.G2=a•b(ab≠0)4.等⽐数列的常⽤性质(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.6.等⽐数列的前n项和【知识点的知识】1.等⽐数列的前n项和公式等⽐数列{a n}的公⽐为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等⽐数列前n项和的性质公⽐不为﹣1的等⽐数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等⽐数列,其公⽐为q n.7.数列的应⽤【知识点的知识】1、数列与函数的综合2、等差数列与等⽐数列的综合3、数列的实际应⽤数列与银⾏利率、产品利润、⼈⼝增⻓等实际问题的结合.8.数列的求和【知识点的知识】就是求出这个数列所有项的和,⼀般来说要求的数列为等差数列、等⽐数列、等差等⽐数列等等,常⽤的⽅法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等⽐数列前n项和公式:③⼏个常⽤数列的求和公式:(2)错位相减法:适⽤于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等⽐数列.(3)裂项相消法:适⽤于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所⽤的⽅法,就是将⼀个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常⻅的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满⾜:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使⽤裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第⼆问⽤的关键⽅法就是裂项求和法,这也是数列求和当中常⽤的⽅法,就像友情提示那样,两个等差数列相乘并作为分⺟的⼀般就可以⽤裂项求和.【解题⽅法点拨】数列求和基本上是必考点,⼤家要学会上⾯所列的⼏种最基本的⽅法,即便是放缩也要往这⾥⾯考.9.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前⼏项),且任⼀项a n与它的前⼀项a n﹣1(或前⼏项)间的关系可以⽤⼀个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容⼀个重点,要认真掌握.注意:(1)⽤a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成⽴的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统⼀为⼀个式⼦.(2)⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等⽐数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,⽤作差法:a n=.⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,⽤作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,⽤累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,⽤累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以⽤构造法(构造等差、等⽐数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以⽤待定系数法转化为公⽐为k的等⽐数列后,再求a n.②形如a n=的递推数列都可以⽤倒数法求通项.(7)求通项公式,也可以由数列的前⼏项进⾏归纳猜想,再利⽤数学归纳法进⾏证明.10.等差数列与等⽐数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与⾸末两端“等距离”的两项和相等,并且等于⾸末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第⼆项开始起,每⼀项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(⾸项不⼀定选a1).2、等⽐数列的性质.(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.31。
年全国各地高考数学试题及解答分类汇编大全(06数列)
全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题:1.(2006北京文)如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9 (D)b =-3,ac =-91.解:由等比数列的性质可得ac =(-1)×(-9)=9,b ×b =9且b 与奇数项的符号相同,故b =-3,选B2.(2006北京理)设4710310()22222()n f n n N +=+++++∈,则()f n 等于( )(A )2(81)7n - (B )12(81)7n +- (C )32(81)7n +- (D )42(81)7n +-2.解:依题意,()f n 为首项为2,公比为8的前n +4项求和,根据等比数列的求和公式可得D3.(2006福建文、理)在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A.40B.42C.43D.453.在等差数列{}n a 中,已知1232,13,a a a =+=∴ d=3,a 5=14,456a a a ++=3a 5=42,选B.4.(2006广东)已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( )A.5B.4C. 3D.24、解:3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C.5. (2006湖南理)数列{n a }满足:113a =,且对于任意的正整数m,n 都有m n m n a a a +=⋅,则12lim()n n a a a →∞+++=( )A.12 B.23 C.32D.2 5.解:数列}{n a 满足: 311=a , 且对任意正整数n m ,都有n m n m a a a ⋅=+2111119a a a a +==⋅=,1113n n n a a a a +=⋅=,∴数列}{n a 是首项为31,公比为31的等比数列。
数列(解答题)(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
专题13数列(解答题)1.【2022年全国甲卷】记为数列的前n项和.已知2+=2+1.(1)证明:是等差数列;(2)若4,7,9成等比数列,求的最小值.【答案】(1)证明见解析;(2)−78.【解析】【分析】(1)依题意可得2+2=2B+,根据=1,=1−K1,≥2,作差即可得到−K1=1,从而得证;(2)由(1)及等比中项的性质求出1,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.(1)解:因为2+=2+1,即2+2=2B+①,当≥2时,2K1+−12=2−1K1+−1②,①−②得,2+2−2K1−−12=2B+−2−1K1−−1,即2+2−1=2B−2−1K1+1,即2−1−2−1K1=2−1,所以−K1=1,≥2且∈N*,所以是以1为公差的等差数列.(2)解:由(1)可得4=1+3,7=1+6,9=1+8,又4,7,9成等比数列,所以72=4⋅9,即1+62=1+3⋅1+8=−12,所以=−13,所以=−12+=122−252=−−6258,所以,当=12或=13时min=−78.2.【2022年新高考1卷】记为数列的前n项和,已知1=是公差为13的等差数列.(1)求的通项公式;(2)证明:11+121<2.【答案】(1)=(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得=1r23,得到=的关系得到当≥2时,=−K1=−进而得:r1K1,利用累乘法求得==1也成立,得到的通项公式=(2)由(1)的结论,利用裂项求和法得到11+12+⋯+1=21−.(1)∵,∴1=1=1,∴11=1,是公差为13的等差数列,∴=1+−1=r23,∴=∴当≥2时,∴=−K1=3−整理得:−1=+1K1,即K1=r1K1,∴=1×21×32×…×K1K2=1×32×43×…×K2×r1K1=显然对于=1也成立,∴的通项公式=(2)1==2,∴11+12+⋯+1=21++⋯=21−<23.【2022年新高考2卷】已知为等差数列,是公比为2的等比数列,且2−2=3−3=4−4.(1)证明:1=1;(2)求集合=+1,1≤≤500中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列的公差为,根据题意列出方程组即可证出;(2)根据题意化简可得=2K2,即可解出.(1)设数列的公差为,所以,1+−21=1+2−411+−21=81−1+3,即可解得,1=1=2,所以原命题得证.(2)由(1)知,1=1=2,所以=+1⇔1×2K1=1+−1+1,即2K1=2,亦即=2K2∈1,500,解得2≤≤10,所以满足等式的解=2,3,4,⋯,10,故集合U =+1,1≤≤500中的元素个数为10−2+1=9.4.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列.【答案】证明见解析.【解析】【分析】的公差d ,进一步写出的通项,从而求出{}na 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d(n +-=()n *∈N∴12n S a n =,()n *∈N ∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=-当1n =时,11121=a a a ⨯-,满足112n a a n a =-,∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】证明过程见解析【解析】【分析】,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二]:待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =+-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+ ⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨-=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+=,)1n +所以是等差数列.选②③作条件证明①:[方法一]:定义法(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.[方法二]【最优解】:求解通项公式因为213a a ===也为等差数列,所以公差1d ==()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n的一次函数,直接设出(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数1d ==的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.【答案】(1)11(3n n a -=,3n nn b =;(2)证明见解析.【解析】【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n n n n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【解析】【分析】(1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb bb b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300.【解析】【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++ 12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】(1)26n a n =-;(2)7.【解析】【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9n n n S -+-=.【解析】【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n n n n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n nn a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n n n a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=.(1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m .【答案】(1)13-=n n a ;(2)6m =.【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2n n a =;(2)100480S =.【解析】【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--【解析】【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可.【详解】(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512n n n +⎡⎤--⎢⎥⎣⎦==----.【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础.15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于1a 和d 的方程组,求得1a 和d 的值,利用等差数列的通项公式求得结果;(2)根据题意有50a =,根据10a >,可知0d <,根据n n S a >,得到关于n 的不等式,从而求得结果.【详解】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+;(2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-,由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-,因为0d <,所以有29210n n n -≤-,即211100n n -+≤,解得110n ≤≤,所以n 的取值范围是:110()n n *≤≤∈N【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列;(2)求{an }和{bn }的通项公式.【答案】(1)见解析;(2)1122nn a n =+-,1122nnb n =-+.【解析】【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【详解】(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b +=,111a b -=,所以1144323442n n n n n n n n a b a b b a a b ++=+=--+++-,即()1112n n nn a b ab ++++=,所以数列{}n n a b +是首项为1、公比为12的等比数列,()112n n n a b -+=,因为()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-,所以112n n n n a b a b ++=-+-,数列{}n n a b -是首项1、公差为2的等差数列,21n n a b n -=-.(2)由(1)可知,()112n n n a b -+=,21n n a b n -=-,所以()111222nn nn n n a ab a b n =++-=+-,()111222n n n n n n b a b a b n 轾=+--=-+臌.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】【分析】(1)本题首先可以根据数列{}n a 是等比数列将3a 转化为21a q ,2a 转化为1a q ,再然后将其带入32216a a =+中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果.【详解】(1)因为数列{}n a 是各项均为正数的等比数列,32216a a =+,12a =,所以令数列{}n a 的公比为q ,2231=2a a q q =,212a a q q ==,所以22416q q =+,解得2q =-(舍去)或4,所以数列{}n a 是首项为2、公比为4的等比数列,121242n n n a --=⨯=.(2)因为2log n n b a =,所以21n b n =-,+121n b n =+,12n n b b +-=,所以数列{}n b 是首项为1、公差为2的等差数列,21212n n S n n +-=´=.【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.【答案】(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =;(2)利用条件可以得到121n na a n n+=+,从而可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列;(3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅.【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =.将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.由条件可得121n na a n n+=+,即12n n b b +=,又11b =,所以{}n b 是首项为1,公比为2的等比数列;(3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅.【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)an =2n –9,(2)Sn =n 2–8n ,最小值为–16.【解析】【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an }的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{an }的通项公式为an =2n –9.(2)由(1)得Sn =n 2–8n =(n –4)2–16.所以当n =4时,Sn 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)()12n n a -=-或12n n a -=.(2)6m =.【解析】【详解】分析:(1)列出方程,解出q 可得;(2)求出前n 项和,解方程可得m .详解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nn S --=.由63m S =得()2188m -=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.点睛:本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.。
2018--2020年高考数学试题分类汇编数列附答案详解
∴ ,解得a1=3,d=6,
∴an=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.
∴{an}的通项公式为an=6n﹣3.
故答案为:an=6n﹣3.
3、(2018年高考浙江卷10)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( )
当q=2时,an=2n﹣1,
当q=﹣2时,an=(﹣2)n﹣1,
∴{an}的通项公式为,an=2n﹣1,或an=(﹣2)n﹣1.
(2)记Sn为{an}的前n项和.
当a1=1,q=﹣2时,Sn= = = ,
由Sm=63,得Sm= =63,m∈N,无解;
当a1=1,q=2时,Sn= =
A. B. C. D.
答案:C
解:由 知,序列 的周期为m,由已知, ,
,对于选项A,
,不满足;
对于选项B,
,不满足;
对于选项D,
,不满足;
故选:C
二、填空题.
1、(2018年高考全国卷1理科14)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=﹣63.
答案:
解析:Sn为数列{an}的前n项和,Sn=2an+1,①
把a1=2,代入得d=﹣3
∴a5=2+4×(﹣3)=﹣10.
故选:B.
2、(2019年高考全国I卷理科9)记 为等差数列 的前n项和.已知 ,则
A. B. C. D.
答案:A
解析:有等差数列的性质可知 ,解得
所以 ,故选A。
3、(2019年高考全国III卷理科5文科6)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=
2022届全国高考数学真题分类(数列)汇编(附答案)
2022届全国高考数学真题分类(数列)汇编一、选择题1.(2022∙全国乙(文)T10)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( )A. 14B. 12C. 6D. 32.(2022∙全国乙(理)T8) 已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( )A. 14B. 12C. 6D. 33.(2022∙全国乙(理)T4) 嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( )A 15b b <B. 38b b <C. 62b b <D. 47b b <4.(2022∙新高考Ⅱ卷T3) 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,1111,,,DD CC BB AA 是举, 1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====,若123,,k k k 是公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )的.A. 0.75B. 0.8C. 0.85D. 0.95.(2022∙浙江卷T10) 已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( ) A. 100521002a <<B.100510032a << C. 100731002a <<D.100710042a << 二、填空题1.(2022∙全国乙(文)T13)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.2.(2022∙北京卷T15) 己知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是__________. 三、解答题1.(2022∙全国甲(文T18)(理T17)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.2.(2022∙新高考Ⅰ卷T17) 记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++< . 3.(2022∙新高考Ⅱ卷T17)已知{}n a 为等差数列,{}nb 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数. 4.(2022∙北京卷T21) 已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n+++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥. 5.(2022∙浙江卷T20) 已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N.(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.参考答案一、选择题 1.【答案】D 【答案解析】【分析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解.【过程详解】解:设等比数列{}n a 的公比为,0q q ≠, 若1q =,则250a a -=,与题意矛盾, 所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩, 所以5613a a q ==. 故选:D .2.【答案】D 【答案解析】【分析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解.【过程详解】解:设等比数列{}n a 的公比为,0q q ≠, 若1q =,则250a a -=,与题意矛盾, 所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩, 所以5613a a q ==. 故选:D . 3. 【答案】D 【答案解析】 【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【过程详解】解:因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b<,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.故选:D.4. 【答案】D 【答案解析】【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【过程详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===,依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++, 所以30.530.30.7254k +-=,故30.9k =,故选:D 5. 【答案】B 【答案解析】【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323n n a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【过程详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--, ∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ , ∴10011111111133334943932399326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭,即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.二、填空题 1. 【答案】2 【答案解析】【分析】转化条件为()112+226a d a d =++,即可得解.【过程详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++,即()112+226a d a d =++,解得2d =. 故答案为:2. 2. 【答案】①③④ 【答案解析】 【分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【过程详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a -=<,①对; 假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭, 所以,2213S S S =,可得()()22221111a q a q q+=++,解得0q =,不合乎题意,故数列{}n a 不等比数列,②错;是当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对;假设对任意N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.三、解答题 1. 【答案】(1)证明见答案解析; (2)78-. 【答案解析】【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得. 【小问1过程详解】 解:因为221nn S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. 【小问2过程详解】解:由(1)可得413a a =+,716a a =+,918a a =+, 又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,的即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时()min 78n S =-. 2. 【答案】(1)()12n n n a +=(2)见答案解析 【答案解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. 【小问1过程详解】 ∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=;【小问2过程详解】()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦3. 【答案】(1)证明见答案解析; (2)9. 【答案解析】【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得22k m -=,即可解出. 【小问1过程详解】设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证. 【小问2过程详解】 由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.4. 【答案】(1)是5-连续可表数列;不是6-连续可表数列. (2)证明见答案解析. (3)证明见答案解析. 【答案解析】【分析】(1)直接利用定义验证即可;(2)先考虑3k ≤不符合,再列举一个4k =合题即可;(3)5k ≤时,根据和的个数易得显然不行,再讨论6k =时,由12620a a a +++< 可知里面必然有负数,再确定负数只能是1-,然后分类讨论验证不行即可.【小问1过程详解】21a =,12a =,123a a +=,34a =,235a a +=,所以Q 是5-连续可表数列;易知,不存在,i j 使得16i i i j a a a +++++= ,所以Q 不是6-连续可表数列.【小问2过程详解】若3k ≤,设为:Q ,,a b c ,则至多,,,,,a b b c a b c a b c ++++,6个数字,没有8个,矛盾; 当4k =时,数列:1,4,1,2Q ,满足11a =,42a =,343a a +=,24a =,125a a +=,1236a a a ++=,2347a a a ++=,12348a a a a +++=, min 4k ∴=.【小问3过程详解】12:,,,k Q a a a ,若i j =最多有k 种,若i j ≠,最多有2C k 种,所以最多有()21C 2k k k k ++=种, 若5k ≤,则12,,,k a a a …至多可表()551152+=个数,矛盾, 从而若7k <,则6k =,,,,,,a b c d e f 至多可表6(61)212+=个数, 而20a b c d e f +++++<,所以其中有负的,从而,,,,,a b c d e f 可表1~20及那个负数(恰 21个),这表明~a f 中仅一个负的,没有0,且这个负的在~a f 中绝对值最小,同时~a f中没有两数相同,设那个负数为(1)m m -≥ ,则所有数之和125415m m m m m ≥++++++-=+ ,415191m m +≤⇒=,{,,,,,}{1,2,3,4,5,6}a b c d e f ∴=-,再考虑排序,排序中不能有和相同,否则不足20个,112=-+ (仅一种方式), 1∴-与2相邻,若1-不在两端,则",1,2,__,__,__"x -形式,若6x =,则56(1)=+-(有2种结果相同,方式矛盾), 6x ∴≠, 同理5,4,3x ≠ ,故1-在一端,不妨为"1,2,,,"A B C D -形式,若3A =,则523=+ (有2种结果相同,矛盾),4A =同理不行,5A =,则6125=-++ (有2种结果相同,矛盾),从而6A =,由于7126=-++,由表法唯一知3,4不相邻,、故只能1,2,6,3,5,4-,①或1,2,6,4,5,3-,②这2种情形,对①:96354=+=+,矛盾,对②:82653=+=+,也矛盾,综上6k ≠7k ∴≥.【点睛】关键点睛,先理解题意,是否为m -可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m 中间的任意一个值.本题第二问3k ≤时,通过和值可能个数否定3k ≤;第三问先通过和值的可能个数否定5k ≤,再验证6k =时,数列中的几项如果符合必然是{1,2,3,4,5,6}-的一个排序,可验证这组数不合题.5. 【答案】(1)235(N )2n n n S n *-=∈ (2)12d <≤【答案解析】【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S ;(2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围.【小问1过程详解】因为42312601S a a a -+==-,,所以()()46211260d d d -+--+-++=,所以230d d -=,又1d >,所以3d =,所以34n a n =-,所以()213522n n a a n n n S +-==, 【小问2过程详解】因为n n a c +,14n n a c ++,215n n a c ++成等比数列,所以()()()212415n n n n n n a c a c a c +++=++, ()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++, 22(1488)0n n c d nd c d +-++=, 由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d ∆=-+-≥,所以()()168812880d nd d nd -+-+≥对于任意的n *∈N 恒成立,所以()()212320n d n d ----≥⎡⎤⎡⎤⎣⎦⎣⎦对于任意的n *∈N 恒成立,当1n =时,()()()()21232120n d n d d d ----=++≥⎡⎤⎡⎤⎣⎦⎣⎦, 当2n =时,由()()2214320d d d d ----≥,可得2≤d 当3n ≥时,()()21232(3)(25)0n d n d n n ---->--≥⎡⎤⎡⎤⎣⎦⎣⎦, 又1d >所以12d <≤。
完整版)全国卷高考数学真题数列
完整版)全国卷高考数学真题数列高考数学——数列在高考数学中,数列是一个非常重要的知识点。
下面我们来看一些数列相关的题目。
17年全国I卷17题,给定一个数列,求它的通项公式和前n项和。
如果这个数列是等差数列,还需要判断一下。
如果是等比数列,还需要求出它的通项公式和前n项和。
17年全国II卷17题,已知一个等差数列的前n项和为S,如果它的第一项是a1,公差是d,那么当S等于某个值时,求a1和d。
同样地,如果这个等差数列的第一项是a1,前n项和为Sn,那么当Sn等于某个值时,求a1和d。
17年全国III卷17题,给定一个数列,求它的通项公式和前n项和。
如果这个数列满足某个条件,还需要在此基础上求数列的某些值。
16年全国I卷17题,已知一个公差为3的等差数列,数列满足某个条件,求它的通项公式和前n项和。
同样地,如果这个等差数列的前n项和为Sn,其中Sn表示不超过x的最大整数,那么求它的前10项和。
16年全国II卷17题,给定一个公差为1的等差数列,求它的通项公式和前n项和。
如果这个等差数列满足某个条件,还需要在此基础上求数列的某些值。
16年全国III卷17题,给定一个数列,它的各项都为正数,求它的通项公式和前n项和。
如果这个数列满足某个条件,还需要在此基础上求数列的某些值。
15年全国I卷7题,已知一个等差数列的前n项和为Sn,如果它的第一项是a1,公差是d,那么当Sn等于某个值时,求a1和d。
15年全国I卷13题,给定一个数列,求它的前n项和。
如果这个数列满足某个条件,还需要在此基础上求数列的某些值。
15年全国II卷5题,给定一个公差为d的等差数列,求它的通项公式和前n项和。
如果这个等差数列满足某个条件,还需要在此基础上求数列的某些值。
15年全国II卷9题,已知一个等比数列的前n项和为Sn,公比是q,求它的通项公式和前n项和。
如果这个等比数列满足某个条件,还需要在此基础上求数列的某些值。
14年全国I卷17题,给定一个等差数列,求它的通项公式和前n项和。
全国卷历年高考数列真题归类分析(含答案)
全国卷历年高考数列真题归类分析(含答案)1.(2016年1卷3)已知等差数列{an}前9项的和为27,a10=8,则求a100.解析:由已知,9a1+36d=27,a1+9d=8,解得a1=-1,d=1,a100=a1+99d=-1+99=98,选C。
2.(2017年1卷4)记Sn为等差数列{an}的前n项和,若a4+a5=24,S6=48,则{an}的公差为多少?解析:S6=48,即a1+a6=16,a4+a5=24,代入公差d的通项公式an=a1+(n-1)d,得到a8-a6=8=2d,故d=4,选C。
3.(2017年3卷9)等差数列{an}的首项为1,公差不为0.若a2、a3、a6成等比数列,则{an}前6项的和为多少?解析:设公差为d,则a3(a1+2d)=(a1+d)(a1+5d),代入a1=1解得d=-2,故a6=a1+5d=-9,前6项和为S6=6a1+15d=-24,选A。
4.(2017年2卷15)等差数列{an}的前项和为Sn,则1=∑k=1nSk,求an。
解析:设a1=1,d=2,Sn=n(2a1+(n-1)d)/2=n(n+1),代入an=a1+(n-1)d=2n-1,故1=∑k=1nSk=∑k=1n(k+1)-(k-1)=2n,故n=1/2,代入an=2n-1=-1,选D。
5.(2016年2卷17)Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lga1+2Sn-1]/[lga1+2],求b7.解析:由等差数列前n项和的通项公式Sn=n(2a1+(n-1)d)/2=n(2+(n-1)d)/2,代入a1=1,S7=28,得到d=4,an=1+4(n-1)=4n-3,代入bn=[lga1+2Sn-1]/[lga1+2],得到b7=[XXX(2×28-1)]/[lg3]=2,选B。
题目一:求等比数列中的数值要求:改写成完整的句子,避免使用符号表示1.求b1,b11,b101;2.求数列{bn}的前1000项和。
高考数学真题汇编数列有答案
高考数学真题汇编---数列学校:___________姓名:___________班级:___________考号:___________一.选择题〔共9小题〕1.〔2021•新课标Ⅰ〕记S n为等差数列{a n}前n项和.假设a4+a5=24,S6=48,那么{a n}公差为〔〕A.1 B.2 C.4 D.82.〔2021•新课标Ⅱ〕在明朝程大位?算法统宗?中有这样一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞这首古诗描绘这个宝塔〔古称浮屠〕,此题说它一共有7层,每层悬挂红灯数是上一层2倍,共有381盏灯,问塔顶有几盏灯?你算出结果是〔〕A.6 B.5 C.4 D.33.〔2021•新课标Ⅲ〕等差数列{a n}首项为1,公差不为0.假设a2,a3,a6成等比数列,那么{a n}前6项和为〔〕A.﹣24 B.﹣3 C.3 D.84.〔2021•新课标Ⅰ〕几位高校生响应国家创业号召,开发了一款应用软件.为激发大家学习数学爱好,他们推出了“解数学题获得软件激活码〞活动.这款软件激活码为下面数学问题答案:数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项为哪一项20,接下来两项是20,21,再接下来三项是20,21,22,依此类推.求满意如下条件最小整数N:N>100且该数列前N项和为2整数幂.那么该款软件激活码是〔〕A.440 B.330 C.220 D.1105.〔2021•上海〕无穷等比数列{a n}公比为q,前n项和为S n,且=S,以下条件中,使得2S n<S〔n∈N*〕恒成立是〔〕A.a1><q<0.7 B.a1<<q<C.a1><q<D.a1<<q<6.〔2021•新课标Ⅰ〕等差数列{a n}前9项和为27,a10=8,那么a100=〔〕A.100 B.99 C.98 D.977.〔2021•四川〕某公司为激励创新,方案逐年加大研发资金投入.假设该公司2021 年全年投入研发资金130万元,在此根底上,每年投入研发资金比上一年增长12%,那么该公司全年投入研发资金开始超过200万元年份是〔〕〔参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30〕A.2021年B.2021年C.2021年D.2021年8.〔2021•浙江〕如图,点列{A n}、{B n}分别在某锐角两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,〔P≠Q表示点P与Q不重合〕假设d n=|A n B n|,S n为△A n B n B n+1面积,那么〔〕A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列9.〔2021•新课标Ⅲ〕定义“标准01数列〞{a n}如下:{a n}共有2m项,其中m 项为0,m项为1,且对随意k≤2m,a1,a2,…,a k中0个数不少于1个数,假设m=4,那么不同“标准01数列〞共有〔〕A.18个B.16个C.14个D.12个二.填空题〔共9小题〕10.〔2021•北京〕假设等差数列{a n}和等比数列{b n}满意a1=b1=﹣1,a4=b4=8,那么=.11.〔2021•江苏〕等比数列{a n}各项均为实数,其前n项和为S n,S3=,S6=,那么a8=.12.〔2021•新课标Ⅱ〕等差数列{a n}前n项和为S n,a3=3,S4=10,那么=.13.〔2021•新课标Ⅲ〕设等比数列{a n}满意a1+a2=﹣1,a1﹣a3=﹣3,那么a4=.14.〔2021•江苏〕{a n}是等差数列,S n是其前n项和,假设a1+a22=﹣3,S5=10,那么a9值是.15.〔2021•北京〕{a n}为等差数列,S n为其前n项和.假设a1=6,a3+a5=0,那么S6=.16.〔2021•上海〕无穷数列{a n}由k个不同数组成,S n为{a n}前n项和,假设对随意n∈N*,S n∈{2,3},那么k最大值为.17.〔2021•新课标Ⅰ〕设等比数列{a n}满意a1+a3=10,a2+a4=5,那么a1a2…a n最大值为.18.〔2021•浙江〕设数列{a n}前n项和为S n,假设S2=4,a n+1=2S n+1,n∈N*,那么a1=,S5=.三.解答题〔共22小题〕19.〔2021•新课标Ⅱ〕等差数列{a n}前n项和为S n,等比数列{b n}前n项和为T n,a1=﹣1,b1=1,a2+b2=2.〔1〕假设a3+b3=5,求{b n}通项公式;〔2〕假设T3=21,求S3.20.〔2021•山东〕{x n}是各项均为正数等比数列,且x1+x2=3,x3﹣x2=2.〔Ⅰ〕求数列{x n}通项公式;〔Ⅱ〕如图,在平面直角坐标系xOy中,依次连接点P1〔x1,1〕,P2〔x2,2〕…P n+1〔x n,n+1〕得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1区域面积T n.21.〔2021•山东〕{a n}是各项均为正数等比数列,且a1+a2=6,a1a2=a3.〔1〕求数列{a n}通项公式;〔2〕{b n}为各项非零等差数列,其前n项和为S n,S2n+1=b n b n+1,求数列前n项和T n.22.〔2021•天津〕{a n}为等差数列,前n项和为S n〔n∈N*〕,{b n}是首项为2等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.〔Ⅰ〕求{a n}和{b n}通项公式;〔Ⅱ〕求数列{a2n b n}前n项和〔n∈N*〕.23.〔2021•天津〕{a n}为等差数列,前n项和为S n〔n∈N+〕,{b n}是首项为2等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.〔Ⅰ〕求{a n}和{b n}通项公式;〔Ⅱ〕求数列{a2n b2n﹣1}前n项和〔n∈N+〕.24.〔2021•新课标Ⅲ〕设数列{a n}满意a1+3a2+…+〔2n﹣1〕a n=2n.〔1〕求{a n}通项公式;〔2〕求数列{}前n项和.25.〔2021•新课标Ⅰ〕记S n为等比数列{a n}前n项和.S2=2,S3=﹣6.〔1〕求{a n}通项公式;〔2〕求S n,并推断S n+1,S n,S n+2是否成等差数列.26.〔2021•江苏〕对于给定正整数k,假设数列{a n}满意:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对随意正整数n〔n>k〕总成立,那么称数列{a n}是“P 〔k〕数列〞.〔1〕证明:等差数列{a n}是“P〔3〕数列〞;〔2〕假设数列{a n}既是“P〔2〕数列〞,又是“P〔3〕数列〞,证明:{a n}是等差数列.27.〔2021•北京〕等差数列{a n}和等比数列{b n}满意a1=b1=1,a2+a4=10,b2b4=a5.〔Ⅰ〕求{a n}通项公式;〔Ⅱ〕求和:b1+b3+b5+…+b2n﹣1.28.〔2021•北京〕设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}〔n=1,2,3,…〕,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大数.〔1〕假设a n=n,b n=2n﹣1,求c1,c2,c3值,并证明{c n}是等差数列;〔2〕证明:或者对随意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.29.〔2021•浙江〕数列{x n}满意:x1=1,x n=x n+1+ln〔1+x n+1〕〔n∈N*〕,证明:当n∈N*时,<x n;〔Ⅰ〕0<x n+1﹣x n≤;〔Ⅱ〕2x n+1〔Ⅲ〕≤x n≤.30.〔2021•北京〕{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.〔1〕求{a n}通项公式;〔2〕设c n=a n+b n,求数列{c n}前n项和.31.〔2021•北京〕设数列A:a1,a2,…,a N〔N≥2〕.假如对小于n〔2≤n≤N〕每个正整数k都有a k<a n,那么称n是数列A一个“G时刻〞,记G〔A〕是数列A全部“G时刻〞组成集合.〔Ⅰ〕对数列A:﹣2,2,﹣1,1,3,写出G〔A〕全部元素;〔Ⅱ〕证明:假设数列A中存在a n使得a n>a1,那么G〔A〕≠∅;〔Ⅲ〕证明:假设数列A满意a n﹣a n﹣1≤1〔n=2,3,…,N〕,那么G〔A〕元素个数不小于a N﹣a1.32.〔2021•新课标Ⅱ〕等差数列{a n}中,a3+a4=4,a5+a7=6.〔Ⅰ〕求{a n}通项公式;〔Ⅱ〕设b n=[a n],求数列{b n}前10项和,其中[x]表示不超过x最大整数,如[]=0,[]=2.33.〔2021•天津〕{a n}是等比数列,前n项和为S n〔n∈N*〕,且﹣=,S6=63.〔1〕求{a n}通项公式;〔2〕假设对随意n∈N*,b n是log2a n和log2a n+1等差中项,求数列{〔﹣1〕n b}前2n项和.34.〔2021•上海〕对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},假设同时满意条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,那么称{a n}与{b n}是无穷互补数列.〔1〕假设a n=2n﹣1,b n=4n﹣2,推断{a n}与{b n}是否为无穷互补数列,并说明理由;〔2〕假设a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}前16项和;〔3〕假设{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}通项公式.35.〔2021•新课标Ⅲ〕数列{a n}前n项和S n=1+λa n,其中λ≠0.〔1〕证明{a n}是等比数列,并求其通项公式;〔2〕假设S5=,求λ.36.〔2021•浙江〕设数列{a n}前n项和为S n,S2=4,a n+1=2S n+1,n∈N*.〔Ⅰ〕求通项公式a n;〔Ⅱ〕求数列{|a n﹣n﹣2|}前n项和.37.〔2021•新课标Ⅱ〕S n为等差数列{a n}前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x最大整数,如[]=0,[lg99]=1.〔Ⅰ〕求b1,b11,b101;〔Ⅱ〕求数列{b n}前1000项和.38.〔2021•四川〕数列{a n}首项为1,S n为数列{a n}前n项和,S n+1=qS n+1,其中q>0,n∈N+〔Ⅰ〕假设a2,a3,a2+a3成等差数列,求数列{a n}通项公式;〔Ⅱ〕设双曲线x2﹣=1离心率为e n,且e2=2,求e12+e22+…+e n2.39.〔2021•新课标Ⅰ〕{a n}是公差为3等差数列,数列{b n}满意b1=1,b2=,a nb n+1+b n+1=nb n.〔Ⅰ〕求{a n}通项公式;〔Ⅱ〕求{b n}前n项和.40.〔2021•江苏〕记U={1,2,…,100},对数列{a n}〔n∈N*〕和U子集T,假设T=∅,定义S T=0;假设T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}〔n∈N*〕是公比为3等比数列,且当T={2,4}时,S T=30.〔1〕求数列{a n}通项公式;〔2〕对随意正整数k〔1≤k≤100〕,假设T⊆{1,2,…,k},求证:S T<a k+1;〔3〕设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.41、〔2021•山东〕数列{a n}前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.〔Ⅰ〕求数列{b n}通项公式;〔Ⅱ〕令c n=,求数列{c n}前n项和T n.42、〔2021•新课标Ⅲ〕各项都为正数数列{a n}满意a1=1,a n2﹣〔2a n+1﹣1〕a n﹣2a n+1=0.〔1〕求a2,a3;〔2〕求{a n}通项公式高考数学真题汇编---数列参考答案与试题解析一.选择题〔共9小题〕1.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}公差.【解答】解:∵S n为等差数列{a n}前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}公差为4.应选:C.2.【分析】设塔顶a1盏灯,由题意{a n}是公比为2等比数列,利用等比数列前n 项和公式列出方程,能求出结果.【解答】解:设塔顶a1盏灯,由题意{a n}是公比为2等比数列,∴S7==381,解得a1=3.应选:D.3.【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项和.【解答】解:∵等差数列{a n}首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴〔a1+2d〕2=〔a1+d〕〔a1+5d〕,且a1=1,d≠0,解得d=﹣2,∴{a n}前6项和为==﹣24.应选:A.4.【分析】方法一:由数列性质,求得数列{b n}通项公式及前n项和,可知当N为〕,数列{a n}前N项和为数列{b n}前n项和,即为2n+1﹣n﹣2,时〔n∈N+简单得到N>100时,n≥14,分别推断,即可求得该款软件激活码;方法二:由题意求得数列每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2整数幂.只需将﹣2﹣n消去即可,分别即可求得N值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,〔n∈N+〕,那么=a i,由题意可设数列{a n}前N项和为S N,数列{b n}前n项和为T n,那么T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时〔n∈N〕,数列{a n}前N项和为数列{b n}前n项和,即为+2n+1﹣n﹣2,简单得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,明显不为2整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,明显不为2整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,明显不为2整数幂,故D项不符合题意.应选A.方法二:由题意可知:,,,…,依据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有项数为:1,2,3,…,n,总共项数为N=1+2+3+…+n=,全部项数和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=〔21+22+23+…+2n〕﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2整数幂.只需将﹣2﹣n消去即可,那么①1+2+〔﹣2﹣n〕=0,解得:n=1,总共有+2=3,不满意N>100,②1+2+4+〔﹣2﹣n〕=0,解得:n=5,总共有+3=18,不满意N>100,③1+2+4+8+〔﹣2﹣n〕=0,解得:n=13,总共有+4=95,不满意N>100,④1+2+4+8+16+〔﹣2﹣n〕=0,解得:n=29,总共有+5=440,满意N >100,∴该款软件激活码440.应选:A.5.【分析】由推导出,由此利用解除法能求出结果.【解答】解:∵,S==,﹣1<q<1,2S n<S,∴,假设a1>0,那么,故A与C不行能成立;假设a1<0,那么q n,在B中,a1<<q<﹣0.6故B成立;在D中,a1<<q<﹣0.7,此时q2>,D不成立.应选:B.6.【分析】依据可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,应选:C.7.【分析】设第n年开始超过200万元,可得130×〔1+12%〕n﹣2021 >200,两边取对数即可得出.【解答】解:设第n年开始超过200万元,那么130×〔1+12%〕n﹣2021 >200,>lg2﹣lg1.3,n﹣2021 >=3.8.取n=2021.因此开始超过200万元年份是2021年.应选:B.8.【分析】设锐角顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,推断C,D不正确,设△A n B n B n+1底边B n B n+1上高为h n,运用三角形相像学问,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,那么{d n}不肯定是等差数列,{d n2}不肯定是等差数列,设△A n B n B n+1底边B n B n+1上高为h n,由三角形相像可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2那么数列{S n}为等差数列.另解:可设△A1B1B2,△A2B2B3,…,A n B n B n+1为直角三角形,且A1B1,A2B2,…,A n B n为直角边,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2那么数列{S n}为等差数列.应选:A.9.【分析】由新定义可得,“标准01数列〞有偶数项2m项,且所含0与1个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“标准01数列〞有偶数项2m项,且所含0与1个数相等,首项为0,末项为1,假设m=4,说明数列有8项,满意条件数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.应选:C.二.填空题〔共9小题〕10.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{a n}和等比数列{b n}满意a1=b1=﹣1,a4=b4=8,设等差数列公差为d,等比数列公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.11.【分析】设等比数列{a n}公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.那么a8==32.故答案为:32.12.【分析】利用条件求出等差数列前n项和,然后化简所求表达式,求解即可.【解答】解:等差数列{a n}前n项和为S n,a3=3,S4=10,S4=2〔a2+a3〕=10,可得a2=2,数列首项为1,公差为1,S n=,=,那么=2[1﹣++…+]=2〔1﹣〕=.故答案为:.13.【分析】设等比数列{a n}公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1〔1+q〕=﹣1,a1〔1﹣q2〕=﹣3,解出即可得出.【解答】解:设等比数列{a n}公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1〔1+q〕=﹣1,a1〔1﹣q2〕=﹣3,解得a1=1,q=﹣2.那么a4=〔﹣2〕3=﹣8.故答案为:﹣8.14.【分析】利用等差数列通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.15.【分析】由条件利用等差数列性质求出公差,由此利用等差数列前n项和公式能求出S6.【解答】解:∵{a n}为等差数列,S n为其前n项和.a1=6,a3+a5=0,∴a1+2d+a1+4d=0,∴12+6d=0,解得d=﹣2,∴S6==36﹣30=6.故答案为:6.16.【分析】对随意n∈N*,S n∈{2,3},列举出n=1,2,3,4状况,归纳可得n >4后都为0或1或﹣1,那么k最大个数为4.【解答】解:对随意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;假设n=2,由S2∈{2,3},可得数列前两项为2,0;或2,1;或3,0;或3,﹣1;假设n=3,由S3∈{2,3},可得数列前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;假设n=4,由S3∈{2,3},可得数列前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,那么k最大个数为4,不同四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.17.【分析】求出数列等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满意a1+a3=10,a2+a4=5,可得q〔a1+a3〕=5,解得q=.a1+q2a1=10,解得a1=8.那么a1a2…a n=a1n•q1+2+3+…+〔n﹣1〕=8n•==,当n=3或4时,表达式获得最大值:=26=64.故答案为:64.18.【分析】运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n>1时,a n=S n+1﹣S n,结合条件,计算即可得到所求和.+1【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;=S n+1﹣S n,可得由a n+1S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121.故答案为:1,121.三.解答题〔共22小题〕19.【分析】〔1〕设等差数列{a n}公差为d,等比数列{b n}公比为q,运用等差数列和等比数列通项公式,列方程解方程可得d,q,即可得到所求通项公式;〔2〕运用等比数列求和公式,解方程可得公比,再由等差数列通项公式和求和,计算即可得到所求和.【解答】解:〔1〕设等差数列{a n}公差为d,等比数列{b n}公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0〔舍去〕,那么{b n}通项公式为b n=2n﹣1,n∈N*;〔2〕b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣〔﹣1〕=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣〔﹣5〕=7,d=7﹣〔﹣1〕=8,S3=﹣1+7+15=21.20.【分析】〔I〕列方程组求出首项和公比即可得出通项公式;〔II〕从各点向x轴作垂线,求出梯形面积通项公式,利用错位相减法求和即可.【解答】解:〔I〕设数列{x n}公比为q,那么q>0,由题意得,两式相比得:,解得q=2或q=﹣〔舍〕,∴x1=1,∴x n=2n﹣1.〔II〕过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n面积为b n,那么b n==〔2n+1〕×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+〔2n+1〕×2n﹣2,①∴2T n=3×20+5×21+7×22+…+〔2n+1〕×2n﹣1,②①﹣②得:﹣T n=+〔2+22+…+2n﹣1〕﹣〔2n+1〕×2n﹣1=+﹣〔2n+1〕×2n﹣1=﹣+〔1﹣2n〕×2n﹣1.∴T n=.21.【分析】〔1〕通过首项和公比,联立a1+a2=6、a1a2=a3,可求出a1=q=2,进而利用等比数列通项公式可得结论;=〔2n+1〕b n+1,结合S2n+1=b n b n+1可知b n=2n+1,〔2〕利用等差数列性质可知S2n+1进而可知=,利用错位相减法计算即得结论.【解答】解:〔1〕记正项等比数列{a n}公比为q,因为a1+a2=6,a1a2=a3,所以〔1+q〕a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;〔2〕因为{b n}为各项非零等差数列,=〔2n+1〕b n+1,所以S2n+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+〔2n+1〕•,T n=3•+5•+…+〔2n﹣1〕•+〔2n+1〕•,两式相减得:T n=3•+2〔++…+〕﹣〔2n+1〕•,即T n=3•+〔+++…+〕﹣〔2n+1〕•,即T n=3+1++++…+〕﹣〔2n+1〕•=3+﹣〔2n+1〕•=5﹣.22.【分析】〔Ⅰ〕设等差数列{a n}公差为d,等比数列{b n}公比为q.通过b2+b3=12,求出q,得到.然后求出公差d,推出a n=3n﹣2.〔Ⅱ〕设数列{a2n b n}前n项和为T n,利用错位相减法,转化求解数列{a2n b n}前n 项和即可.【解答】〔Ⅰ〕解:设等差数列{a n}公差为d,等比数列{b n}公比为q.由b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}通项公式为a n=3n﹣2,{b n}通项公式为.〔Ⅱ〕解:设数列{a2n b n}前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}前n项和为〔3n﹣4〕2n+2+16.23.【分析】〔Ⅰ〕设出公差与公比,利用条件求出公差与公比,然后求解{a n}和{b n}通项公式;〔Ⅱ〕化简数列通项公式,利用错位相减法求解数列和即可.【解答】解:〔I〕设等差数列{a n}公差为d,等比数列{b n}公比为q.由b2+b3=12,得b1〔q+q2〕=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}通项公式为a n=3n﹣2,数列{b n}通项公式为b n=2n.〔II〕设数列{a2n b2n﹣1}前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=〔3n﹣1〕4n,故T n=2×4+5×42+8×43+…+〔3n﹣1〕4n,4T n=2×42+5×43+8×44+…+〔3n﹣1〕4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣〔3n﹣1〕4n+1==﹣〔3n﹣2〕4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}前n项和为.24.【分析】〔1〕利用数列递推关系即可得出.〔2〕==﹣.利用裂项求和方法即可得出.【解答】解:〔1〕数列{a n}满意a1+3a2+…+〔2n﹣1〕a n=2n.n≥2时,a1+3a2+…+〔2n﹣3〕a n﹣1=2〔n﹣1〕.∴〔2n﹣1〕a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.〔2〕==﹣.∴数列{}前n项和=++…+=1﹣=.25.【分析】〔1〕由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,依据等比数列通项公式,即可求得{a n}通项公式;〔2〕由〔1〕可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,明显S n+1+S n+2=2S n,那么S n+1,S n,S n+2成等差数列.【解答】解:〔1〕设等比数列{a n}首项为a1,公比为q,那么a3=S3﹣S2=﹣6﹣2=﹣8,那么a1==,a2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,那么a1=﹣2,a n=〔﹣2〕〔﹣2〕n﹣1=〔﹣2〕n,∴{a n}通项公式a n=〔﹣2〕n;〔2〕由〔1〕可知:S n===﹣[2+〔﹣2〕n+1],=﹣[2+〔﹣2〕n+2],S n+2=﹣[2+〔﹣2〕n+3],那么S n+1+S n+2=﹣[2+〔﹣2〕n+2]﹣[2+〔﹣2〕n+3],由S n+1=﹣[4+〔﹣2〕×〔﹣2〕n+1+〔﹣2〕2×〔﹣2〕n+1],=﹣[4+2〔﹣2〕n+1]=2×[﹣〔2+〔﹣2〕n+1〕],=2S n,+S n+2=2S n,即S n+1,S n,S n+2成等差数列.∴S n+126.+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=〔a n﹣【分析】〔1〕由题意可知依据等差数列性质,a n﹣33+a n+3〕+〔a n﹣2+a n+2〕+〔a n﹣1+a n+1〕═2×3a n,依据“P〔k〕数列〞定义,可得数列{a n}是“P〔3〕数列〞;〔2〕由条件结合〔1〕中结论,可得到{a n}从第3项起为等差数列,再通过推断a2与a3关系和a1与a2关系,可知{a n}为等差数列.【解答】解:〔1〕证明:设等差数列{a n}首项为a1,公差为d,那么a n=a1+〔n ﹣1〕d,+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,那么a n﹣3=〔a n﹣3+a n+3〕+〔a n﹣2+a n+2〕+〔a n﹣1+a n+1〕,=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P〔3〕数列〞;〔2〕证明:当n≥4时,因为数列{a n}是P〔3〕数列,那么a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,①因为数列{a n}是“P〔2〕数列〞,所以a n﹣2+a n﹣1+a n+1+a n+2=4a n,②+a n+a n+2+a n+3=4a n+1,③,那么a n﹣1②+③﹣①,得2a n=4a n﹣1+4a n+1﹣6a n,即2a n=a n﹣1+a n+1,〔n≥4〕,因此n≥4从第3项起为等差数列,设公差为d,留意到a2+a3+a5+a6=4a4,所以a2=4a4﹣a3﹣a5﹣a6=4〔a3+d〕﹣a3﹣〔a3+2d〕﹣〔a3+3d〕=a3﹣d,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4〔a2+d〕﹣a2﹣〔a2+2d〕﹣〔a2+3d〕=a2﹣d,也即前3项满意等差数列通项公式,所以{a n}为等差数列.27.【分析】〔Ⅰ〕利用条件求出等差数列公差,然后求{a n}通项公式;〔Ⅱ〕利用条件求出公比,然后求解数列和即可.【解答】解:〔Ⅰ〕等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}通项公式:a n=1+〔n﹣1〕×2=2n﹣1.〔Ⅱ〕由〔Ⅰ〕可得a5=a1+4d=9,等比数列{b n}满意b1=1,b2b4=9.可得b3=3,或﹣3〔舍去〕〔等比数列奇数项符号一样〕.∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.28.【分析】〔1〕分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由〔b k﹣na k〕﹣〔b1﹣na1〕≤0,那么b1﹣na1≥b k﹣na k,那么c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1对∀n∈N*均成立;〔2〕由b i﹣a i n=[b1+〔i﹣1〕d1]﹣[a1+〔i﹣1〕d2]×n=〔b1﹣a1n〕+〔i﹣1〕〔d2﹣d1×n〕,分类探讨d1=0,d1>0,d1<0三种状况进展探讨依据等差数列性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对随意正整数M,存在正整数m,使得n≥m,>M,分类探讨,采纳放缩法即可求得因此对随意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:〔1〕a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,那么〔b k﹣na k〕﹣〔b1﹣na1〕,=[〔2k﹣1〕﹣nk]﹣1+n,=〔2k﹣2〕﹣n〔k﹣1〕,=〔k﹣1〕〔2﹣n〕,由k﹣1>0,且2﹣n≤0,那么〔b k﹣na k〕﹣〔b1﹣na1〕≤0,那么b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,﹣c n=﹣1对∀n∈N*均成立,∴c n+1∴数列{c n}是等差数列;〔2〕证明:设数列{a n}和{b n}公差分别为d1,d2,下面考虑c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中随意b i﹣a i n,〔i∈N*,且1≤i≤n〕,那么b i﹣a i n=[b1+〔i﹣1〕d1]﹣[a1+〔i﹣1〕d2]×n,=〔b1﹣a1n〕+〔i﹣1〕〔d2﹣d1×n〕,下面分d1=0,d1>0,d1<0三种状况进展探讨,①假设d1=0,那么b i﹣a i n═〔b1﹣a1n〕+〔i﹣1〕d2,当假设d2≤0,那么〔b i﹣a i n〕﹣〔b1﹣a1n〕=〔i﹣1〕d2≤0,那么对于给定正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,〔b i﹣a i n〕﹣〔b n﹣a n n〕=〔i﹣n〕d2>0,那么对于给定正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n﹣c n=d2﹣a1,+1∴数列{c n}是等差数列;此时取m=1,那么c1,c2,…,是等差数列,命题成立;②假设d1>0,那么此时﹣d1n+d2为一个关于n一次项系数为负数一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,那么当n≥m时,〔b i﹣a i n〕﹣〔b1﹣a1n〕=〔i﹣1〕〔﹣d1n+d2〕≤0,〔i∈N*,1≤i≤n〕,因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③假设d1<0,此时﹣d1n+d2为一个关于n一次项系数为正数一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,那么当n≥s时,〔b i﹣a i n〕﹣〔b n﹣a n n〕=〔i﹣1〕〔﹣d1n+d2〕≤0,〔i∈N*,1≤i≤n〕,因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+〔d1﹣a1+d2〕+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对随意正整数M,存在正整数m,使得n≥m,>M,假设C≥0,取m=[+1],[x]表示不大于x最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;假设C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对随意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种状况,命题得证.29.【分析】〔Ⅰ〕用数学归纳法即可证明,〔Ⅱ〕构造函数,利用导数推断函数单调性,把数列问题转化为函数问题,即可证明,〔Ⅲ〕由≥2x n+1﹣x n得﹣≥2〔﹣〕>0,接着放缩即可证明【解答】解:〔Ⅰ〕用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,那么x k>0,那么n=k+1时,假设x k+1<0,那么0<x k=x k+1+ln〔1+x k+1〕<0,冲突,故x n+1>0,因此x n>0,〔n∈N*〕∴x n=x n+1+ln〔1+x n+1〕>x n+1,因此0<x n+1<x n〔n∈N*〕,〔Ⅱ〕由x n=x n+1+ln〔1+x n+1〕得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+〔x n+1+2〕ln〔1+x n+1〕,记函数f〔x〕=x2﹣2x+〔x+2〕ln〔1+x〕,x≥0∴f′〔x〕=+ln〔1+x〕>0,∴f〔x〕在〔0,+∞〕上单调递增,∴f〔x〕≥f〔0〕=0,因此x n+12﹣2x n+1+〔x n+1+2〕ln〔1+x n+1〕≥0,故2x n+1﹣x n≤;〔Ⅲ〕∵x n=x n+1+ln〔1+x n+1〕≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2〔﹣〕>0,∴﹣≥2〔﹣〕≥…≥2n﹣1〔﹣〕=2n﹣2,∴x n≤,综上所述≤x n≤.30.【分析】〔1〕设{a n}是公差为d等差数列,{b n}是公比为q等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;〔2〕求得c n=a n+b n=2n﹣1+3n﹣1,再由数列求和方法:分组求和,运用等差数列和等比数列求和公式,计算即可得到所求和.【解答】解:〔1〕设{a n}是公差为d等差数列,{b n}是公比为q等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,那么d==2,那么a n=a1+〔n﹣1〕d=1+2〔n﹣1〕=2n﹣1;〔2〕c n=a n+b n=2n﹣1+3n﹣1,那么数列{c n}前n项和为〔1+3+…+〔2n﹣1〕〕+〔1+3+9+…+3n﹣1〕=n•2n+=n2+.31.【分析】〔Ⅰ〕结合“G时刻〞定义进展分析;〔Ⅱ〕可以采纳假设法和递推法进展分析;〔Ⅲ〕可以采纳假设法和列举法进展分析.【解答】解:〔Ⅰ〕依据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满意条件,2满意条件,a2>a3不满意条件,3不满意条件,a2>a4不满意条件,4不满意条件,a1,a2,a3,a4,均小于a5,因此5满意条件,因此G〔A〕={2,5}.〔Ⅱ〕因为存在a n>a1,设数列A中第一个大于a1项为a k,那么a k>a1≥a i,其中2≤i≤k﹣1,所以k∈G〔A〕,G〔A〕≠∅;〔Ⅲ〕设A数列全部“G时刻〞为i1<i2<…<i k,对于第一个“G时刻〞i1,有>a1≥a i〔i=2,3,…,i1﹣1〕,那么﹣a1≤﹣≤1.对于第二个“G时刻〞i1,有>≥a i〔i=2,3,…,i1﹣1〕,那么﹣≤﹣≤1.类似﹣≤1,…,﹣≤1.于是,k≥〔﹣〕+〔﹣〕+…+〔﹣〕+〔﹣a1〕=﹣a1.对于a N,假设N∈G〔A〕,那么=a N.假设N∉G〔A〕,那么a N≤,否那么由〔2〕知,,…,a N,中存在“G 时刻〞与只有k个“G时刻〞冲突.从而k≥﹣a1≥a N﹣a1.32.【分析】〔Ⅰ〕设等差数列{a n}公差为d,依据构造关于首项和公差方程组,解得答案;〔Ⅱ〕依据b n=[a n],列出数列{b n}前10项,相加可得答案.【解答】解:〔Ⅰ〕设等差数列{a n}公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;〔Ⅱ〕∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}前10项和S10=3×1+2×2+3×3+2×4=24.33.【分析】〔1〕依据等比数列通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;〔2〕利用对数运算性质求出b n,运用分项求和法和平方差公式计算.【解答】解:〔1〕设{a n}公比为q,那么﹣=,即1﹣=,解得q=2或q=﹣1.假设q=﹣1,那么S6=0,与S6=63冲突,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.〔2〕∵b n是log2a n和log2a n+1等差中项,∴b n=〔log2a n+log2a n+1〕=〔log22n﹣1+log22n〕=n﹣.﹣b n=1.∴b n+1∴{b n}是以为首项,以1为公差等差数列.设{〔﹣1〕n b n2}前2n项和为T n,那么T n=〔﹣b12+b22〕+〔﹣b32+b42〕+…+〔﹣b2n﹣12+b2n2〕=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.34.【分析】〔1〕{a n}与{b n}不是无穷互补数列.由4∉A,4∉B,4∉A∪B=N*,即可推断;〔2〕由a n=2n,可得a4=16,a5=32,再由新定义可得b16=16+4=20,运用等差数列求和公式,计算即可得到所求和;〔3〕运用等差数列通项公式,结合首项大于等于1,可得d=1或2,探讨d=1,2求得通项公式,结合新定义,即可得到所求数列通项公式.【解答】解:〔1〕{a n}与{b n}不是无穷互补数列.理由:由a n=2n﹣1,b n=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{a n}与{b n}不是无穷互补数列;〔2〕由a n=2n,可得a4=16,a5=32,由{a n}与{b n}是无穷互补数列,可得b16=16+4=20,即有数列{b n}前16项和为〔1+2+3+…+20〕﹣〔2+4+8+16〕=×20﹣30=180;〔3〕设{a n}为公差为d〔d为正整数〕等差数列且a16=36,那么a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,假设d=1,那么a1=21,a n=n+20,b n=n〔1≤n≤20〕,与{a n}与{b n}是无穷互补数列冲突,舍去;假设d=2,那么a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.35.【分析】〔1〕依据数列通项公式与前n项和公式之间关系进展递推,结合等比数列定义进展证明求解即可.〔2〕依据条件建立方程关系进展求解就可.【解答】解:〔1〕∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即〔λ﹣1〕a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,〔n≥2〕,∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•〔〕n﹣1.〔2〕假设S5=,那么假设S5=1+λ[•〔〕4]=,即〔〕5=﹣1=﹣,那么=﹣,得λ=﹣1.36.【分析】〔Ⅰ〕依据条件建立方程组关系,求出首项,利用数列递推关系证明数列{a n}是公比q=3等比数列,即可求通项公式a n;〔Ⅱ〕探讨n取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n ﹣n﹣2|}前n项和.【解答】解:〔Ⅰ〕∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2〔S n﹣S n﹣1〕=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1满意a n=3a n,+1∴=3,那么数列{a n}是公比q=3等比数列,那么通项公式a n=3n﹣1.〔Ⅱ〕a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,那么b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,那么b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}前n项和T n=3+﹣=,那么T n==.37.【分析】〔Ⅰ〕利用条件求出等差数列公差,求出通项公式,然后求解b1,b11,b101;〔Ⅱ〕找出数列规律,然后求数列{b n}前1000项和.【解答】解:〔Ⅰ〕S n为等差数列{a n}前n项和,且a1=1,S7=28,7a4=28.可得a4=4,那么公差d=1.a n=n,b n=[lgn],那么b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.〔Ⅱ〕由〔Ⅰ〕可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}前1000项和为:9×0+90×1+900×2+3=1893.38.【分析】〔Ⅰ〕依据题意,由数列递推公式可得a2与a3值,又由a2,a3,a2+a3成等差数列,可得2a3=a2+〔a2+a3〕,代入a2与a3值可得q2=2q,解可得q值,进而可得S n=2S n+1,进而可得S n=2S n﹣1+1,将两式相减可得a n=2a n﹣1,即可得数+1列{a n}是以1为首项,公比为2等比数列,由等比数列通项公式计算可得答案;〔Ⅱ〕依据题意S n=qS n+1,同理有S n=qS n﹣1+1,将两式相减可得a n=qa n﹣1,分析+1可得a n=q n﹣1;又由双曲线x2﹣=1离心率为e n,且e2=2,分析可得e2==2,解可得a2值,由a n=q n﹣1可得q值,进而可得数列{a n}通项公式,再次由双曲线几何性质可得e n2=1+a n2=1+3n﹣1,运用分组求和法计算可得答案.【解答】解:〔Ⅰ〕依据题意,数列{a n}首项为1,即a1=1,=qS n+1,那么S2=qa1+1,那么a2=q,又由S n+1又有S3=qS2+1,那么有a3=q2,假设a2,a3,a2+a3成等差数列,即2a3=a2+〔a2+a3〕,那么可得q2=2q,〔q>0〕,解可得q=2,=2S n+1,①那么有S n+1进而有S n=2S n﹣1+1,②①﹣②可得a n=2a n﹣1,那么数列{a n}是以1为首项,公比为2等比数列,那么a n=1×2n﹣1=2n﹣1;=qS n+1,③〔Ⅱ〕依据题意,有S n+1同理可得S n=qS n﹣1+1,④③﹣④可得:a n=qa n﹣1,又由q>0,那么数列{a n}是以1为首项,公比为q等比数列,那么a n=1×q n﹣1=q n﹣1;假设e2=2,那么e2==2,解可得a2=,那么a2=q=,即q=,a n=1×q n﹣1=q n﹣1=〔〕n﹣1,那么e n2=1+a n2=1+3n﹣1,故e12+e22+…+e n2=n+〔1+3+32+…+3n﹣1〕=n+.39.【分析】〔Ⅰ〕令n=1,可得a1=2,结合{a n}是公差为3等差数列,可得{a n}通项公式;〔Ⅱ〕由〔1〕可得:数列{b n}是以1为首项,以为公比等比数列,进而可得:{b n}前n项和.【解答】解:〔Ⅰ〕∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3等差数列,∴a n=3n﹣1,+b n+1=nb n.〔Ⅱ〕由〔I〕知:〔3n﹣1〕b n+1=b n.即3b n+1即数列{b n}是以1为首项,以为公比等比数列,∴{b n}前n项和S n==〔1﹣3﹣n〕=﹣.40.【分析】〔1〕依据题意,由S T定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1值,由等比数列通项公式即可得答案;〔2〕依据题意,由S T定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列前n项和公式计算可得证明;〔3〕设A=∁C〔C∩D〕,B=∁D〔C∩D〕,那么A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种状况进展探讨:①、假设B=∅,②、假设B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:〔1〕等比数列{a n}中,a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,〔2〕S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,〔3〕设A=∁C〔C∩D〕,B=∁D〔C∩D〕,那么A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,那么S C+S C∩D﹣2S D=S A﹣2S B,因此原命题等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、假设B=∅,那么S B=0,故S A≥2S B,②、假设B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,假设m≥l+1,那么其与S A<a i+1≤a m≤S B相冲突,因为A∩B=∅,所以l≠m,那么l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.41、【分析】〔Ⅰ〕求出数列{a n}通项公式,再求数列{b n}通项公式;〔Ⅱ〕求出数列{c n}通项,利用错位相减法求数列{c n}前n项和T n.【解答】解:〔Ⅰ〕S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n=b n﹣1+b n,﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3〔n﹣1〕=3n+1;〔Ⅱ〕c n========6〔n+1〕•2n,∴T n=6[2•2+3•22+…+〔n+1〕•2n]①,∴2T n=6[2•22+3•23+…+n•2n+〔n+1〕•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣〔n+1〕•2n+1]=12+6×﹣6〔n+1〕•2n+1=〔﹣6n〕•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.42、【分析】〔1〕依据题意,由数列递推公式,令n=1可得a12﹣〔2a2﹣1〕a1﹣2a2=0,将a1=1代入可得a2值,进而令n=2可得a22﹣〔2a3﹣1〕a2﹣2a3=0,将a2=代入计算可得a3值,即可得答案;﹣1〕a n﹣2a n+1=0变形可得〔a n﹣2a n+1〕〔a n+a n+1〕〔2〕依据题意,将a n2﹣〔2a n+1=0,进而分析可得a n=2a n+1或a n=﹣a n+1,结合数列各项为正可得a n=2a n+1,结合等比数列性质可得{a n}是首项为a1=1,公比为等比数列,由等比数列通项公式计算可得答案.【解答】解:〔1〕依据题意,a n2﹣〔2a n﹣1〕a n﹣2a n+1=0,+1当n=1时,有a12﹣〔2a2﹣1〕a1﹣2a2=0,而a1=1,那么有1﹣〔2a2﹣1〕﹣2a2=0,解可得a2=,当n=2时,有a22﹣〔2a3﹣1〕a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;﹣1〕a n﹣2a n+1=0,〔2〕依据题意,a n2﹣〔2a n+1变形可得〔a n﹣2a n+1〕〔a n+1〕=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,那么有a n=2a n+1,故数列{a n}是首项为a1=1,公比为等比数列,那么a n=1×〔〕n﹣1=〔〕n﹣1,故a n=〔〕n﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地高考数学试题及解答分类汇编大全一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )AB C . D .【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f ===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( )A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( )A .12-B .10-C .10D .12答案:B解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 【答案】63n a n =-【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解, 此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3.(2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
4.(2018上海)设等比数列{a a }的通项公式为a n =q ?+1(n ∈N*),前n 项和为S n 。
若1Sn 1lim2n n a →∞+=,则q=____________5.(2018全国新课标Ⅰ理)记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =_____________. 答案:63-解答:依题意,1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--.三、解答题1.(2018北京文)设{}n a 是等差数列,且1ln 2a =,235ln 2a a +=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++.【答案】(1)ln2n ;(2)122n +-.【解析】(1)设等差数列{}n a 的公差为d ,235ln 2a a +=,1235ln 2a d ∴+=, 又1ln2a =,ln 2d ∴=,()11ln 2n a a n d n ∴=+-=. (2)由(1)知ln 2n a n =,ln 2ln 2e e e 2nna n n ===,{}e n a ∴是以2为首项,2为公比的等比数列,212ln 2ln 2ln 221e e e e e e =222=22nn a a a n n +∴+++=++++++-,121e e e =22n a a a n +∴+++-.2. (2018上海) 给定无穷数列{a n },若无穷数列{b n }满足:对任意*n N ∈,都有1||n n b a -≤,则称{}{}n n b a 与 “接近”。
(1)设{a n }是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{a n }的前四项为:a?=1,a ?=2,a ?=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b?-b?,b?-b?,…b 201-b 200中至少有100个为正3.(2018江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析.【解析】(1)由条件知:()1n a n d =-,12n n b -=. 因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立, 即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤. 因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=. 若存在d ,使得1n n a b b -≤(2n =,3,,1m +)成立,即()11111n b n d b q b -+--≤(2n =,3,,1m +),即当2n =,3,,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n m q q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,,1m +均成立.因此,取0d =时,1n n a b b -≤对2n =,3,,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n m q q ≤≤,从而()120n n n n q q q ---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21x f x x =-,当0x >时,()()ln 21ln 220x f x x =--<', 所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n q q n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-, 因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦.4.(2018浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1?b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.答案:(1)2q =;(2)243152n n n b -+=-. 解答:(1)由题可得34528a a a ++=,4352(2)a a a +=+,联立两式可得48a =.所以34518(1)28a a a q q ++=++=,可得2q =(另一根112<,舍去).(2)由题可得2n ≥时,221()2[2(1)(1)]41n n n b b a n n n n n +-=+--+-=-, 当1n =时,211()213b b a -=+=也满足上式,所以1()41n n n b b a n +-=-,n N +∈,而由(1)可得41822n n n a --=⋅=,所以1141412n n n n n n b b a +----==, 所以121321()()()n n n b b b b b b b b --=-+-++-01223711452222n n --=++++, 错位相减得1243142n n n b b -+-=-, 所以243152n n n b -+=-. 5.(2018天津文)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)()12n n n S +=,21n n T =-;(2)4.【解析】(1)设等比数列{}n b 的公比为q ,由11b =,322b b =+,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--.设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+, 可得131316a d +=,从而11a =,1d =,故n a n =,所以,()12n n n S +=.(2)由(1),有()()131122122222212nn n n T T T n n n +⨯-+++=+++--=---=,由()124n n n n S T T T a b ++++=+可得()1112222n n n n n n ++++--=+,整理得2340n n --=,解得1n =-(舍),或4n =.所以n 的值为4.6.(2018天津理)设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+. (I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()n T n *∈N , (i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N .【答案】(1)12n n a -=,n b n =;(2)①122n n T n +=--;②证明见解析. 【解析】(1)设等比数列{}n a 的公比为q .由11a =,322a a =+, 可得220q q --=因为0q >,可得2q =,故12n n a -=, 设等差数列{}n b 的公差为d ,由435a b b =+,可得134b d +=, 由5462a b b =+,可得131316b d +=,从而11b =,1d =,故n b n =, 所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为n b n =.(2)①由(1),有122112n n n S -==--,故()()1112122122212nnnkkn n k k T n n n +==⨯-=-=-=-=---∑∑,②因为()()()()()()()()1121222222212121221k k k k k k k k k k T b b k k k k k k k k k +++++--+++⋅===-++++++++, 所以()()()32432122122222222123243212nn n n k k k k T b b k k n n n ++++=⎛⎫⎛⎫⎛⎫+=-+-++-=- ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭∑. 7.(2018全国新课标Ⅰ文)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.答案:(1)1231,2,4b b b ===(2)见解答(3)12n n a n -=⋅解答:依题意,21224a a =⨯⨯=,321(23)122a a =⨯⨯=,∴1111ab ==,2222a b ==,3343a b ==. (1)∵12(1)n n na n a +=+,∴121n n a a n n +=+,即12n n b b +=,所以{}n b 为等比数列. (2)∵1112n n n n a b b q n--===,∴12n n a n -=⋅. 8.(2018全国新课标Ⅱ文、理) 记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)29n a n =-;(2)2–8n S n n =,最小值为–16.【解析】(1)设{}n a 的公差为d ,由题意得13315a d +=-, 由17a =-得2d =.所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,∴当4n =时,n S 取得最小值,最小值为16-.9.(2018全国新课标Ⅲ文、理)等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 答案:(1)12n n a -=或1(2)n n a -=-;(2)6.解答:(1)设数列{}n a 的公比为q ,∴2534a q a ==,∴2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112n n n S -==--或1(2)1[1(2)]123n n n S +-==--+, ∴2163m m S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.。