人教A版高中数学必修五一元二次不等式及其解法教案(1)
高中数学必修五《一元二次不等式及其解法》教学设计
一元二次不等式及其解法(第一课时)一、教材分析1、教学内容本节课是人教版普通高中课程标准实验教科书数学必修5第三章第二节《一元二次不等式及其解法》第1课时。
2、教材地位和作用从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出本现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
3、教学目标知识与技能:正确理解一元二次不等式、一元二次方程、二次函数的关系。
熟练掌握一元二次不等式的解法。
过程与方法:通过看图象找解集,培养学生从“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力;通过对问题的思考、探究、交流,培养学生良好的数学交流能力,增强其数形结合的思维意识。
情感态度与价值观:通过具体情境,使学生体验数学与实践的紧密联系,激发学生学习研究一元二次不等式的积极性和对数学的情感,使学生充分体验获取知识的成功感受;在探究、讨论、交流过程中培养学生的合作意识和团队精神,使其养成严谨的治学态度和良好的思维习惯。
4、教学重、难点重点:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、学习者特征分析:学习者是普通高中高二理科学生(基础差)。
已经学习了一元一次不等式,一元一次方程、一元一次函数,二元一次方程与函数。
三、教学方法和教学策略分析:1、选择教法的原则和依据根据学生的原有知识和现有的认知规律,以发展学生的能力和应试水平为原则。
2、教法选择选择观察、探究、发现、类比、总结的教学模式。
重点以引导学生为主,让他们能积极、主动的进行探索,获取知识。
四、学法分析结合本节内容和学生实际,适当引入研究性学习,采用讲练结合方法,通过阅读发现问题,分析探索,合作交流最终形成技能。
使学生在观察、思考、交流中体验数学学习的乐趣。
人教版高中必修53.2一元二次不等式及其解法教学设计
人教版高中必修5-3.2:一元二次不等式及其解法教学设计一、教学目标本节课主要通过讲解一元二次不等式的定义、性质以及求解方法,让学生掌握解决实际问题的方法,使其具有初步解决实际问题的能力。
具体目标如下:1.理解一元二次不等式的定义及其解法。
2.掌握一元二次不等式求解的方法及其应用。
3.培养学生解决实际问题的能力。
二、教学重点难点1. 教学重点:1.掌握一元二次不等式的概念。
2.掌握一元二次不等式的性质。
3.掌握一元二次不等式求解的基本方法。
2. 教学难点:1.拟合实际问题,生成一元二次不等式。
2.计算不等式的解集。
三、教学过程设计1. 导入通过一个掷骰子的游戏引出实际问题,让学生了解到数学中的不等式与实际问题的联系。
2. 讲解1.概念:引出一元二次不等式的定义,让学生了解其概念及表达式形式。
2.性质:通过实例让学生掌握一元二次不等式的基本性质。
3.求解:介绍一元二次不等式的求解方法,并配以实例讲解具体步骤。
4.应用:通过实际问题的应用示范让学生掌握不等式的作用及意义。
3. 练习教师设置不等式的基本练习,通过练习让学生掌握一元二次不等式的求解方法及应用。
4. 总结让学生总结本节课的重点内容及学习方法,同时帮助学生发现学习中存在的不足之处并提出改进方法。
四、教学评价通过课堂练习及思考题考核,了解学生对于一元二次不等式概念、性质及求解方法的理解程度及学习进度。
同时,通过与学生进行个别交流,收集他们在学习中遇到的问题及建议,为今后的教学提供参考。
五、课后拓展1.自主拟合一元二次不等式解决实际问题。
2.阅读相关数学文章,拓宽知识面。
3.参与有关数学的社区活动,与他人交流学习心得。
高中数学必修5《一元二次不等式及其解法》教案
高中数学必修5《一元二次不等式及其解法》教案高中数学必修5《一元二次不等式及其解法》教案【一】教学准备教学目标知识与技能理解三个“二次”的关系,掌握图像法解一元二次不等式;培养学生数形结合的能力。
过程与方法经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;情感态度与价值观激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重难点【教学重点】一元二次不等式的解法。
【教学难点】理解三个二次之间的关系。
教学过程(一)课题导入上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(ISP)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用。
某同学要把自己的计算机接入因特网,比如说在我们周围现有两家ISP公司电信和网通可供选择。
假如电信公司每小时收费1.5元(不足1小时按1小时计算);网通公司的收费原则如下图所示,即在用户上网的第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)。
一般来说,一次上网时间不会超过17小时,所以,不妨设一次上网时间总小于17小时。
那么,一次上网在多长时间以内能够保证选择电信公司的上网费用小于或等于选择网通公司所需费用?分析问题:假设一次上网x小时,则电信公司收取的费用为1.5x(元),网通公司收取的费用为出的问题,所以我们可知当一次上网在5个小时之内(含5个小时)的时候,选择电信比选择网通费用要少。
当超过5个小时的时候,选择网通费用较少。
因此,我们可以结合平时的上网时间合理的来进行选择。
设计意图:从一个特殊的不等式出发,通过图像分析给出,一元二次不等式可以通过结合其所对的二次函数图像来进行求解。
(3)探究一般的一元二次不等式的解法从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:小结:解一元二次不等式的步骤:(1)化标准:将不等式化成标准形式(右边为0、最高次的系数为正);(2)判Δ,求根:计算判别式的值,若值为正,则求出相应方程的两根;(3)下结论:注意结果要写成集合或者区间的形式设计意图:通过三种不同形式的题目,让学生从各个面对一元二次不等式进行进一步了解,强调一些注意事项,让学生规范操作。
高中数学 3.2 一元二次不等式及其解法教案(一)新人教A版必修5
3.2 一元二次不等式及其解法第1课时教学过程推进新课师因此这个问题实际就是解不等式:x2-5x<0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点.什么叫做一元二次不等式?含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是a x2+b x+c>0或a x2+b x+c<0(a≠0).例如2x2-3x-2>0,3x2-6x<-2,-2x2+3<0等都是一元二次不等式.那么如何求解呢?师在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么关系呢?思考:对一次函数y=2x-7,当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0?它的对应值表与图象如下:x 2 2.5 3 3.5 4 4.5 5 y -3 -2 -1 0 1 2 3由对应值表与图象(如上图)可知:当x=3.5时,y=0,即2x-7=0;当x <3.5时,y <0,即2x-7<0;当x >3.5时,y >0,即2x-7>0.师 一般地,设直线y=a x+b 与x 轴的交点是(x 0,0),则有如下结果:(1)一元一次方程a x+b =0的解是x 0;(2)①当a >0时,一元一次不等式a x+b >0的解集是{x|x >x 0};一元一次不等式a x+b <0的解集是{x|x <x 0}.②当a <0时,一元一次不等式a x+b >0的解集是{x|x <x 0};一元一次不等式a x+b <0的解集是{x|x >x 0}.师 在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗?生 函数图象与x 轴的交点横坐标为方程的根,不等式的解集为函数图象落在x 轴上方(下方)部分对应的横坐标.a >0a <0一次函数 y=a x+b (a ≠0)的图象一元一次方程a x+b =0的解集 {x|x=a b -} {x|x=a b -} 一元一次不等式a x+b >0的解集 {x|x >a b-}{x|x <a b-}一元一次不等式a x+b <0的解集{x|x <ab-}{x|x >ab-}师 在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x2-5x,当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0?当时我们又是怎样解决的呢?生当时我们是通过作出函数的图象,找出图象与x轴的交点,通过观察来解决的.二次函数y=x2-5x的对应值表与图象如下:x -1 0 1 2 3 4 5 6 y 6 0 -4 -6 -6 -4 0 6由对应值表与图象(如上图)可知:当x=0或x=5时,y=0,即x2-5x=0;当0<x<5时,y<0,即x2-5x<0;当x<0或x>5时,y>0,即x2-5x>0.这就是说,若抛物线y=x 2-5x与x轴的交点是(0,0)与(5,0),则一元二次方程x2-5x=0的解就是x1=0,x2=5.一元二次不等式x2-5x<0的解集是{x|0<x<5};一元二次不等式x2-5x>0的解集是{x|x<0或x>5}.[教师精讲]由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为a x2+b x+c>0或a x2+b x+c<0(a>0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.如何讨论一元二次不等式的解集呢?我们知道,对于一元二次方程a x 2+b x+c =0(a >0),设其判别式为Δ=b 2-4ac ,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=a x 2+b x+c (a >0)与x 轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式a x 2+b x+c >0或a x 2+b x+c <0(a >0)的解集我们也分这三种情况进行讨论.(1)若Δ>0,此时抛物线y=a x 2+b x+c (a >0)与x 轴有两个交点〔图(1)〕,即方程a x 2+b x+c =0(a >0)有两个不相等的实根x 1,x 2(x 1<x 2),则不等式a x 2+b x+c >0(a >0)的解集是{x|x <x 1,或x >x 2};不等式a x 2+b x+c <0(a >0)的解集是{x|x 1<x <x 2}.(2)若Δ=0,此时抛物线y=a x 2+b x+c (a >0)与x 轴只有一个交点〔图(2)〕,即方程a x 2+b x+c =0(a >0)有两个相等的实根x 1=x 2=ab2-,则不等式a x 2+b x+c >0(a >0)的解集是{x|x≠ab 2-};不等式a x 2+b x+c <0(a >0)的解集是.(3)若Δ<0,此时抛物线y=a x 2+b x+c (a >0)与x 轴没有交点〔图(3)〕,即方程a x 2+b x+c =0(a >0)无实根,则不等式a x 2+b x+c >0(a >0)的解集是R ;不等式a x 2+b x+c <0(a >0)的解集是.Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y=a x 2+b x+c (a >0)的图象a x 2+b x+c =0的根ab x 22.1∆≡±-=x 1=x 2=ab 2-∅a x 2+b x+c >0的解集 {x|x <x 1或x >x 2} {x|x≠ab 2-} Ra x 2+b x+c <0的解集 {x|x 1<x <x 2}∅ ∅对于二次项系数是负数(即a <0)的不等式,可以先把二次项系数化成正数,再求解.[知识拓展]【例1】 解不等式2x 2-5x-3>0.生 解:因为Δ>0,2x 2-5x-3=0的解是x 1=-21,x 2=3.所以不等式的解集是{x|x <21-,或x >3}.【例2】 解不等式-3x 2+15x >12.生 解:整理化简得3x 2-15x+12<0.因为Δ>0,方程3x 2-15x+12=0的解是x 1=1,x 2=4,所以不等式的解集是{x|1<x <4}.【例3】 解不等式4x 2+4x+1>0.生 解:因为Δ=0,方程4x 2+4x+1=0的解是x 1=x 2=21-.所以不等式的解集是{x|x≠21-}.【例4】 解不等式-x 2+2x-3>0.生 解:整理化简,得x 2-2x+3<0.因为Δ<0,方程x 2-2x+3=0无实数解,所以不等式的解集是∅.师 由上述讨论及例题,可归纳出解一元二次不等式的程序吗?生 归纳如下:(1)将二次项系数化为“+”:y=a x 2+b x+c >0(或<0)(a >0).(2)计算判别式Δ,分析不等式的解的情况:①Δ>0时,求根x 1<x 2,⎩⎨⎧≠.,0;,02121x x x y x x x x y <<则<若>或则>若②Δ=0时,求根x 1=x 2=x 0,⎪⎩⎪⎨⎧==∅∈≠.,0;,0;,000x x y x y x x y 则若则<若的一切实数则>若③Δ<0时,方程无解,⎩⎨⎧∅∈≤∈.,0;,0x y R x y 则若则>若(3)写出解集.师 说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整.[学生活动过程][方法引导]上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神.课堂小结1.一元二次不等式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是a x 2+b x+c >0或a x 2+b x+c <0(a ≠0).2.求解一元二次不等式的步骤和解一元二次不等式的程序.布置作业1.完成第90页的练习.2.完成第90页习题3.2第1题.板书设计一元二次不等式的概念和一元二次不等式解法多媒体演示区一元二次不等式概念一元二次不等式解题步骤例题3.2 一元二次不等式的解法第2课时教学过程推进新课师因此这个问题实际就是解不等式x2+9x-7 110>0的问题.因为Δ>0,方程x2+9x-7 110=0有两个实数根,即x1≈-88.94,x2≈79.94.然后,画出二次函数y=x 2+9x-7 110,由图象得不等式的解集为{x|x<-88.94或x>79.94}.在这个实际问题中x>0,所以这辆汽车刹车前的车速至少为79.94 km/h.师【例2】一个车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:y=-2x 2+220x.若这家工厂希望在一个星期内利用这条流水线创收6 000元以上,那么他在一星期内大约应该生产多少辆摩托车?生设在一星期内大约应该生产x辆摩托车.根据题意,能得到-2x2+220x>6 000.移项、整理得x2-110x+3 000<0.[教师精讲]因为Δ=100>0,所以方程x2-110x+3 000=0有两个实数根x1=50,x2=60,然后,画出二次函数y=x 2-110x+3 000,由图象得不等式的解集为{x|50<x<60}.因为只能取整数值,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51到59辆之间时,这家工厂能够获得6 000元以上的收益.[知识拓展]【例3】 解不等式(x-1)(x+4)<0.思路一:利用前节的方法求解.思路二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组⎩⎨⎧+-04,01<>x x 与⎩⎨⎧+-0401><x x 的解集的并集,即⎭⎬⎫⎩⎨⎧⎩⎨⎧+-0401<>x x x {∅=⎭⎬⎫⎩⎨⎧+-0401><x x x U ∪{x|-4<x <1}={x|-4<x <1}.书写时可按下列格式:解:∵(x -1)(x+4)<0⇔⎩⎨⎧+-0401<>x x 或⎩⎨⎧+-0401><x x ⇔x∈∅或-4<x <1⇔-4<x <1,∴原不等式的解集是{x|-4<x <1}.思路三:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4),(-4,1),(1,+∞).②分析这三部分中原不等式左边各因式的符号:(-∞,-4)(-4,1)(1,+∞)x+4 - + + x-1 - - + (x-1)(x+4)+-+③由上表可知,原不等式的解集是{x|-4<x<1}.点评:此法叫区间法,解题步骤是:①将不等式化为(x-x1)(x-x 2)…(x-x n)>0(<0)的形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,两个分界点把数轴分成三部分……②按各根把实数分成的几部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集(你会发现符号的规律吗).练习1:解不等式:(1)x 2-5x-6>0;(2)(x-1)(x+2)(x-3)>0;(3)x(x-3)(2-x)(x+1)>0.答案:(1){x|x<2或x>3};(2){x|-2<x<1或x>3};(3){x|-1<x<0或2<x<3}.教师书写示范:如第(2)题:解不等式(x-1)(x+2)(x-3)>0.解:①检查各因式中x的符号均正;②求得相应方程的根为-2,1,3;③列表如下:(-∞,-2)(-2,1)(1,3)(3,+∞)x+2 - + + +x-1 - - + +x-3 - - - + 各因式积- + - +④由上表可知,原不等式的解集为{x|-2<x<1或x>3}.思路四:上面的区间法实际上是把看相应函数图象上使y<0或y >0的x的部分数值化列成表了,我们试想若能画出图象(此时我们只注意y值的正负不注意其他方面),那么它相对于x轴的位置应是什么呢?可把表上各部分函数值的正负情况用下图表示,由图即可写出不等式的解集.由此看出,如果不像上面那样列表,就用这种方法也可以求这个不等式的解.你能总结一下用这种方法解不等式的规律吗?①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)的形式,并将各因式x的系数化“+”;②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.这种方法叫数轴标根法.练习2:用数轴标根法解上述练习1中不等式(1)~(3).教师书写示范:如第(2)题:解不等式x(x-3)(2-x)(x+1)>0.解:①将原不等式化为x(x-3)(x-2)(x+1)<0;②求得相应方程的根为-1,0,2,3;③在数轴上表示各根并穿线(自右上方开始),如右图:④原不等式的解集为{x|-1<x<0或2<x<3}.[合作探究]师【例4】 解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x 的符号均正;②求得相应方程的根为-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④原不等式的解集为{x|-1<x <2或2<x <3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根.∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.【练习3】 解不等式:(x-3)(x+1)(x 2+4x+4)≤0.解:①将原不等式化为(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为-2(二重),-1,3;③在数轴上表示各根并穿线,如右图:④原不等式的解集是{x|-1≤x≤3或x=-2}.点评:注意不等式若带“=”,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.[教师精讲]师 由分式方程的定义不难联想到:分母中含有未知数的不等式叫做分式不等式.例如073<+-x x ,0322322≤--+-x x x x 等都是分式不等式.师 分式不等式的解法.由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项、通分,右边化为0,左边化为f(x)[]g(x)的形式.【例5】 解不等式:073<+-x x .解法一:化为两个不等式组来解.∵073<+-x x ⇔⎩⎨⎧+-0703<>x x 0或⇔⎩⎨⎧+-0703><x x x∈∅或-7<x <3-7<x <3,∴原不等式的解集是{x|-7<x <3}. 解法二:化为二次不等式来解.∵073<+-x x ⇔⎩⎨⎧≠++-070)7)(3(x x x <⇔-7<x <3,∴原不等式的解集是{x|-7<x <3}.点评:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x≠-7的条件,解集应是{x|-7<x≤3}.【例6】 解不等式:0322322≤--+-x x x x .解法一:化为不等式组来解(较繁).解法二:∵0322322≤--+-x x x x ⇔⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ∴原不等式的解集为{x|-1<x≤1或2≤x<3}.练习:解不等式253>+-x x .答案:{x|-13<x <-5}.[方法引导]讲练结合法通过讲解强化训练题目,加深对分式不等式及简单高次不等式解法的理解,提高分析问题和解决问题的能力.针对不同类型的不等式,使学生能灵活有效地进行等价变形.上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣,勇于探索的精神.课堂小结1.关于一元二次不等式的实际应用题,要注意其实际意义.2.求解一般的高次不等式的解法.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律做;②注意边界点(数轴上表示时是“。
一元二次不等式及其解法-说课
《一元二次不等式及其解法》说课方案设计一、教材与内容解析(一)内容与内容解析《一元二次不等式及其解法》是人教版高中数学A版必修五第三章“不等式”第二节的内容。
本节内容分2课时学习。
本课时通过二次函数的图象探索一元二次不等式的解集。
通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
(二)地位与作用解析本节课内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合、函数等知识的巩固和运用具有重要作用,也与后面的线形规划、直线与圆锥曲线以及导数等内容密切相关,许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用.二、学情解析1.学生已有的知识与经验基础学生在初中已经学习了一元二次方程和一元二次函数,对不等式的性质有了初步了解。
从心理特征来说,高中阶段的学生逻辑思维较初中学生来说更加严密,抽象思维能力也有进一步提升,所以要更加注重其抽象思维的训练,因此对于这个阶段的学生来说,一元二次不等式的学习有一定的基础。
2.学生可能遇到的问题与困难由于初中没有专门研究过数形结合类的问题,高一学生比较陌生,要真正掌握有一定的难度,对于理解一元二次函数、一元二次方程与一元二次不等式解集的关系也存在困难。
三、教学重难点解析重点:一元二次不等式的解法。
从实际问题中抽象出一元二次不等式模型;围绕一元二次不等式的解法展开,突出体现数形结合的思想。
理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。
高中数学 一元二次不等式及其解法教学设计 新人教A版必修5
一元二次不等式及其解法(第一课时)一、教材分析1、教学内容本节课是人教版普通高中课程标准实验教科书数学必修5第三章第二节《一元二次不等式及其解法》第1课时。
2、教材地位和作用从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出本现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
3、教学目标知识与技能:正确理解一元二次不等式、一元二次方程、二次函数的关系。
熟练掌握一元二次不等式的解法。
过程与方法:通过看图象找解集,培养学生从“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力;通过对问题的思考、探究、交流,培养学生良好的数学交流能力,增强其数形结合的思维意识。
在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。
情感态度与价值观:通过具体情境,使学生体验数学与实践的紧密联系,激发学生学习研究一元二次不等式的积极性和对数学的情感,使学生充分体验获取知识的成功感受;在探究、讨论、交流过程中培养学生的合作意识和团队精神,使其养成严谨的治学态度和良好的思维习惯。
4、教学重、难点重点:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、学习者特征分析:学习者是高二文科自费班学生(基础差)。
已经学习了一元一次不等式,一元一次方程、一元一次函数,二元一次方程与函数。
三、文本教材与信息整合点分析:(1)课件中出现的结论性文字均采用亮黄色,以突出重点;(2)本节难点“三个二次”关系表制成幻灯片,答案逐个播放,把节省大量的板书时间转化成学生的思考时间;在引导学生结合图像写解集时用白板笔做标记帮助学生分析,突破难点。
(3)例题讲解、方法总结环节中,白板演示例题、黑板板书步骤,黑板、白板交替使用既节省了板书例题时间又起到了规范解题步骤的作用,也符合学生接受新事物时的心理。
人教A版高中数学必修五一元二次不等式及其解法教案新(1)(1)(1)
3.2一元二次不等式及其解法【教学目标】1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。
【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。
【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250x x -< (1)2.讲授新课1)一元二次不等式的定义象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250x x -<的解集怎样求不等式(1)的解集呢? 探究:(1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x ==二次函数有两个零点:120,5x x ==于是,我们得到:二次方程的根就是二次函数的零点。
(2)观察图象,获得解集画出二次函数25y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即250x x ->; 当0<x<5时,函数图象位于x 轴下方,此时,y<0,即250x x -<;所以,不等式250x x -<的解集是{}|05x x <<,从而解决了本节开始时提出的问题。
2017人教a版数学必修五一元二次不等式及其解法教案
湖北省武汉市蔡甸区第二中学高中数学必修5《32一元二次不等式及其解法》教案三维目标:1.深刻理解二次函数、一元二次方程与一元二次不等式的关系;2.掌握一元二次不等式的解法,能应用一元二次不等式、对应方程、函数之间的关系解决综合问题;3.通过对一元二次不等式的解法的学习,使学生了解“函数与方程”、“数形结合”及“等价转换”的数学思想。
重点难点:教学重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出表现数学结合的思想,熟练地掌握一元二次不等式的解法。
教学难点:深刻理解“三个二次”之间的联系。
教学进程:(一)自主探讨:1.一元二次不等式的概念: 一般表达形式为:2. 一元二次不等式与相应函数、方程的联系:一元二次不等式通过变形,能够化成以下两种标准形式:①ax 2 + b x + c>0(a>0) ② ax 2 + b x + c<0 (a>0)上述两种形式的一元二次不等式的解集,可通过方程ax 2 + b x + c=0的根来肯定,设△=ac b 42-,则:(1)当△>0时,方程ax 2 + b x + c=0 有两个 的解21,x x ,设21x x <,则不等式①的解集为 不等式②的解集为(2)当△=0时,方程ax 2+ b x + c=0有两个 的解,即21x x =,现在不等式①的解集为 不等式②的解集为(3)当△<0时,方程ax2 + b x + c=0无实数解,则不等式①的解集为不等式②的解集为方程20(0) a x b x c a++=>的判别式及根的情况240b a c∆=->方程有二根x、x(12x x<)240b a c∆=-=方程有一根x(12x x=)240b a c∆=-<方程无实根2(0)y a x b x c a=++>的图像不等式20(0)a xb xc a++>>的解集不等式20(0)a xb xc a++≥>的解集不等式20(0)a xb xc a++<>的解集不等式20(0)a xb xc a++≤>的解集3.一元二次不等式的解法步骤:①②③(二)典例剖析:例1.解下列不等式:①0542>++x x②01682<+-x x ③0442>+-x x ④0322≥-+-x x例2.解下列不等式:① 02532≤-+x x ②091242≤+-x x ③1)3()2(+-<+x x x x(三)课堂练习:二、62--x x 成心义,则x 的取值范围是3 、若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.4、不等式x 2-ax -b <0的解集为{x |2<x <3},则bx 2-ax -1>0的解集为( )A .{x |2<x <3}五、若-1<a <0,则不等式(x -a )(ax -1)<0的解集为________.六、概念运算⎪⎪⎪⎪a c b d =ad -bc ,实数x 知足⎪⎪⎪⎪x x 1 x ≥2,则x 的取值范围 是( )A .x ≤-1或x ≥2B .-1≤x ≤2C .x ≤-2或x ≥1D .-2≤x ≤1 (四)课堂小结:一、三个二次的关系;二、解一元二次不等式的步骤。
人教A版高中数学必修五一元二次不等式及其解法教案新(1)
课题: §3.2一元二次不等式及其解法第2课时【教学目标】1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+ 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +>移项整理得:2971100x x +->显然 0>,方程2971100x x +-=有两个实数根,即 1288.94,79.94x x ≈-≈。
所以不等式的解集为{}|88.94,79.94x x x <->或在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:22220y x x =-+若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x 辆摩托车,根据题意,我们得到222206000x x -+>移项整理,得211030000x x -+<因为1000=>,所以方程211030000x x -+=有两个实数根1250,60x x ==由二次函数的图象,得不等式的解为:50<x<60因为x 只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51—59辆之间时,这家工厂能够获得6000元以上的收益。
高中数学一元二次不等式(1)教案新人教版必修5
一元二次不等式(1)
学习目标:
1. 熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.
2. 培养运用数形结合与等价转化、分类讨论等数学思想方法解决问题的能力,提高运算和作图能力
学习过程:
一.问题情境:
上节课的问题(3)中,我们得到不等式08.4x 10x 52<+-,像这样只含有一个未知数,并且未知数最高次数时2的不等式叫做一元二次不等式,这个不等式的解集是什么呢? 二.探索:
三.数学建构:
解一元二次不等式的一般步骤:
四.数学运用
()()()()()2.(1)3210.
2121
3x 210
x x x x x -+<-+>-+<例题解下列不等式
(){}
21x x 210x R
-+≥=()22y x 21x x -+()函数=的图像与轴有一个交点。
22.y x 2x k x k -+变式函数=的图像始终在轴上方,
求的取值范围。
变式1.判断下列说法是否正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学要求:正确理解一元二次不等式的概念,掌握一元二次不等式的解法;理解一元二次不等式、一元二次函数及一元二次方程的关系,能借助二次函数的图象及一元二次方程. 教学重点:熟练掌握一元二次不等式的解法.
教学难点:理解一元二次不等式、一元二次函数及一元二次方程的关系.
教学过程:
一、复习准备:
1、提问:你能回顾一下以前所学的一元二次不等式、一元二次函数及一元二次方程吗?
2、比较,,a b c 的大小:22,5a b c ===-
二、讲授新课:
1、教学不等式2
0(0)ax bx a ++>≠的解集
① 若判别式240b ac ∆=->,设方程20ax bx ++=的二根为1212,()x x x x <,则:0a >时,其解集为{}
12|,x x x x <>或;0a <时,其解集为{}12|x x x x <<. ② 若0∆=,则有:0a >时,其解集为|,2b x x x R a ⎧⎫≠-
∈⎨⎬⎩⎭
;0a <时,其解集为∅. ③ 若0∆<,则有:0a >时,其解集为R ;0a <时,其解集为∅.. ④ 一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关,从而可数形结合法分析其解集.我们由此总结出解一元二次不等式的三部曲“方程的解→函数草图→观察得解”
⑤ 简单的无理不等式的解法的关键是将无理不等式化为有理不等式。
2、教学例题:
① 出示例1:求不等式244150x x --≤的解集.
(解方程 → 给出图象 →学生板演)
② 变式训练:求不等式244150x x -->的解集.
③ 变式训练:求不等式244150x x -+->的解集.
④ 出示例2:求不等式223x x -+<
(方程的解→函数草图→观察得解)
⑤ 出示例3:已知220ax x c ++>的解集为1132
x -<<,试求,a c 的值,并解不等式220cx x a -+->
(将一元二次不等式的解集与方程根的关系联系起来)
⑥ 变式训练:已知不等式2
0ax bx c ++>的解集为(,)αβ,且0αβ<<,求不等式20cx bx a ++<的解集.
3、小结:不等式20(0)ax bx a ++>≠的解集情况,解一元二次不等式的三步曲.
三、巩固练习:
1、求不等式2610x x --≤的解集.
2、不等式22ax bx ++>的解集是}11|23x x ⎧-
<<⎨⎩,则a b +的值是_________
3、作业:教材P90 1、4题.
教学要求:掌握一元不等式的解法;经历从实际情境中抽象出一元二次不等式模型的过程;能应用一元二次不等式解决一些实际问题.
教学重点:从实际情境中抽象出一元二次不等式模型.
教学难点:一元二次不等式的应用.
教学过程:
一、复习准备:
1、解不等式:23520x x +->
二、讲授新课:
1、教学不等式的应用以及在实际问题中的应用
① 应用范围:求定义域;集合运算;不等式恒成立;根的分布;实际应用问题.
② 在求定义域的过程中结合了分数不等式、无理不等式、高次不等式等的解法,
③ 解含参数的不等式问题,注意对不等式所对应的方程根的情况进行观察,同时要注意对参数的分类讨论.
④ 解二次方程根的分布问题,首先要分清对应的二次函数的开口方向,及根所在的区间范围,列出有关的不等式及不等式组进而求解.
⑤ 解一元二次不等式应用问题,需遵循以下四个步骤:(1)审题;(2)建模;(3)求解;(4)作答
2、教学例题:
① 出示例1:求函数21()56
f x x x =-+的定义域. (教师讲思路→学生板演→小结方法)
② .
③ 出示例2:m 为何值时,方程2
(3)0x m x m +-+=有实数解.
(∆0≥还是0∆<→一元二次不等式问题→小结方法)
④ 变式训练:m 为何值时,关于x 的方程2(1)2(21)(13)0m x m x m ++++-=
(1)有两个相异实根;(2)有两个根,且它们之和为非负数.
⑤ 出示例3:国家原计划以2400元/吨的价格收购某种农产品m 吨。
按规定,农民向国家纳税为:每收入100元纳税8元(称做税率为8个百分点,即8%)。
为了减轻农民负担,制定积极的收购政策,根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点。
试确定x 的范围,使税率调底后,国家此项税收总收入不底于原计划的78%。
(审题→建模→求解→作答)
3、小结:不等式的应用范围;解一元二次不等式应用问题,需遵循的四个步骤.
三、巩固练习: 1、若01a <<,则不等式1
()()0a x x a
-->的解是___________ 2、解关于x 的不等式:2(1)10ax a x -++< 作业:教材P90 1、4题
3、某地区上年度电价为0.8/千瓦时,年用电量为a 千瓦时。
本年度计划将电价降低到0.55元/千瓦时至0.75元/千瓦时之间,而用户期望电价为0.4元/千瓦时。
经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k )。
该地区电力的成本价为0.3元/千瓦时。
求:设k =0.2a ,当电价最底定为多少时还可保证电力部门的收益比上年度至少增长20%(注:实际用电量⨯(实际电价-成本价))
第三课时 3.2 一元二次不等式及其解法(练习课)
教学要求:掌握一元二次不等式的解法;能借助二次函数的图象及一元二次方程解决相应的不等式问题.
教学重点:应用性问题.
教学难点:综合应用.
教学过程:
一、复习准备:
1、提问:实数比较大小的方法?
2、讨论:不等式的性质有哪些?
二、基础练习:
1.一元二次不等式的解法.
① 解不等式22370x x -++≥
② 不等式(1)(2)0x x --≥的解集_______________
2.实数比较大小的方法.
① 比较233x x +与的大小,其中x R ∈.
② 设x R ∈,比较111x x -+与
的大小. 3.不等式性质的应用. ① 如果a R ∈,且20a a +<,那么22,,,a a a a --的大小关系是___________________
② 已知1260,1536a b <<<<,则a a b b
-及
的取值范围分别是__________________ ③ 已知,a b c d ><,求证a c b d ->-
三、巩固练习 1. 较大小:比较6421x x x ++与的大小,其中x R ∈
2.若01a <<.则不等式1()()0a x x a -->的解是______________
3.不等式||(13)0x x ->的解集是__________________
4.若0a b >>,则()()0a bx ax b --≤的解集是___________________
5. 已知221110,1,1,,211a A a B a C D a a -
<<=+=-==+-,试将,,,A B C D 按大小顺序排列
6. 已知22π
παβ-≤<≤,求2
αβ-的范围 *7.解关于x 的不等式22(1)40ax a x -++>
*8 如果方程22(1)20x m x m +-+-=的两个不等实根均大于1,求实数m 的取值范围
9. 若二次函数()y f x =的图象经过原点,且1(1)2,3(1)4f f ≤-≤≤≤,求(2)f -的取值范围.
课后作业 教材P91 B 1、2、3、4。