第3章 转速、电流反馈控制的直流调速系统
运动控制_第3章____转速、电流双闭环直流调速系统
U
*
im
,转速外环呈开环状态,
转速的变化对系统不再产生影响。在这种情况下,电流负反
馈环起恒流调节作用,转速线性上升,从而获得极好的下垂
特性,如图 3-5中的AB段虚线所示。
第二十一页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
此时,电流
I
d
U* im ?
?
I dm
,Idm 为最大电流,是由设
差调节。
第二十页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
1) 转速调节器饱和
在电动机刚开始起动时,突加阶跃给定信号 U*n,由于
机械惯性,转速 n很小,转速负反馈信号 Un很小,则转速偏
差电压 ΔUn=U*n-Un>0很大,转速调节器 ASR 很快达到饱和
状态, ASR的输出维持在限幅值
图 3-5 双闭环直流调速系统的静特性
第二十三页,编辑于星期三:九点 二十二分。
第3章 转速、电流双闭环直流调速系统
2) 转速调节器不饱和
当转速n达到给定值且略有超调时 (即n>n0),ΔUn=
U*n-Un<0,则转速调节器 ASR的输入信号极性发生改变,
ASR 退出饱和状态,转速负反馈环节开始起转速调节作用,
用以调节起动电流并使之保持最大值,使得转速线性变化, 迅速上升到给定值; 在电动机稳定运行时,转速调节器退 出饱和状态,开始起主要调节作用,使转速随着转速给定信 号的变化而变化,电流环跟随转速环调节电动机的电枢电流 以平衡负载电流。
第六页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
器ACR和转速调节器 ASR的输入电压偏差一定为零,因此,
转速、电流反馈控制直流调速系统的仿真-(终极版)
本科课程设计题目:转速、电流反馈控制直流调速系统的仿真姓名王金良学院专业电气工程及其自动化年级学号指导教师2013 年1月11日转速、电流反馈控制直流调速系统仿真摘要转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广泛的直流调速系统,对于需要快速正、反转运行的调速系统,缩短起动、制动过程的时间成为提高生产效率的关键。
为了使转速和电流两种负反馈分别起作用,可在系统里设置两个调节器,组成串级控制。
本文介绍了双闭环调速系统的基本原理,而且用Simulink 对系统进行仿真。
关键词:双闭环调速、转速、电流、Simulink一、 设计的题目及任务〔一〕概述本次仿真设计需要用到的是Simulink 仿真方法,Simulink 是Matlab 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
〔二〕仿真题目某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =; 额定转速n 1460rpm =,0.132min/e V r C =⋅, 允许过载倍数 1.5λ=; 晶闸管装置放大系数40s K =; 电枢回路总电阻0.5R =Ω; 时间常数0.03,0.18l m s s T T ==; 电流反馈系数0.05/V A β=; 转速反馈系数α=0.00666Vmin/r 。
〔三〕要完成的任务1〕用MATLAB建立电流环仿真模型;2〕分析电流环不同参数下的仿真曲线;3〕用MATLAB建立转速环仿真模型;4〕分析转速环空载起动、满载起动、抗扰波形图仿真曲线。
电力拖动自动控制系统的重点复习,考试必过(优选.)
压Un
也相应下降,而转速给定电压
U
* n
不变,
∆U
n
=
U
* n
−U n
增加。转速调节器 ASR 输出 U c
增加,
使控制角α 减小,晶闸管整流装置输出电压 U d 增加,于是电动机转速便相应自动回升,其调节过程可
简述为:
TL ↑→ Id ↑→ Id (RΣ + Rd ) ↑→ n ↓→ U fn ↑→ ∆U ↑→ Uc ↑→
保产品质量。
3)加、减速-频繁起、制动的设备要求尽量快的加、减速以提高生产率;不宜经受剧烈速度变化的机械则
要求起、制动尽量平稳。
6.解 释 反 馈 控 制 规 律 ?
答(1)被调量有静差(2)抵抗扰动与服从给定(3)系统精度依赖于给定和反馈检测精度
7.闭环空载转速 n0cl 比开环空载转速 n0op 小多少?
之比,称作静差率 s ,即 s
=
∆n N n0
或用百分比表示
s=
∆nN n0
× 100%
在直流电动机变压调速系统中,一般以电动机的额定转速作为最高转速 N n
则
s
=
∆nN n0
=
∆nN nmin + ∆nN
∴ nmin
=
∆nN s
− ∆nN
=
(1 −
s)∆nN s
D
=
nmax nmin
=
nN s ∆nN (1 −
(2)改变给定电压会改变电动机的转速,因为反馈控制系统完全服从给定作用。 (3)如果给定电压不变,调节测速反馈电压的分压比或测速发电机的励磁发生了变化,它不能得到反 馈控制系统的抑制,反而会增大被调量的误差。反馈控制系统所能抑制的只是 被反馈环包围的前向通道上的扰动。 ( 2-13) 为 什 么 用 积 分 控 制 的 调 速 系 统 是 无 静 差 的 ? 在 转 速 单 闭 环 调 速 系 统 中 , 当 积 分 调 节 器 的 输入偏差电压 ∆U = 0 时,调节器的输出电压是多少?它取决于那些因素?
第三章 转速、电流反馈控制的直流调速系统(电力拖动自动控制系统)
2. V-M可逆直流调速系统中的环流问题
图4-11 α=β配合控制电路 GTF—正组触发装置 GTR—反组触发装置 AR—反号器
2. V-M可逆直流调速系统中的环流问题
图4-12 α=β配合控制特性
1. α=β配合控制的有环流可逆V-M系统
图4-13 α=β配合控制的三相零式反并联 可逆线路的瞬时脉动环流(==60° ) a)三相零式可逆线路和瞬时脉动环流回路 b)=60°时 整流电压波形 c)=60°(α =120°)时逆变电压 波形 d)瞬时电压差Δ和瞬时脉动环流波形
(3)低频段大惯性环节的近似处理
图3-17 低频段大惯性环节近似处理对频率特性的影响
(3)低频段大惯性环节的近似处理
图3-18 双闭环调速系统的动态结构图 —电流反馈滤波时间常数 —转速反馈滤波时间常数
1.电流调节器的设计
图3-19 电流环的动态结构图及其化简 a)忽略反电动势的动态影响 b)等效成单位负 反馈系统 c)小惯性环节近似处理
(2)恢复时间tv
1)概念清楚、易懂;
2)计算公式简明、好记; 3)不仅给出参数计算的公式,而且指明参数调整的方向; 4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; 5)适用于各种可以简化成典型系统的反馈控制系统。
1.典型Ⅰ型系统
(1)动态跟随性能指标
(2)动态抗扰性能指标
1.典型Ⅰ型系统
图4-8 两组晶闸管可控整流装置反并联可逆线路
1. V-M可逆直流调速系统的主回路结构
图4-9 两组晶闸管反并联可逆V-M系统的正组整流和反组逆变状态 a)正组整流电动运行 b)反组逆变回馈制动 c)机械特性允许运行范围
2. V-M可逆直流调速系统中的环流问题
第三章直流电动机速度控制系统
机械特性与静差率
n n01
额定转速降
ΔnN
R nN I N Ce
U d1
n02
是一个恒值。 调速系统在不 同电压下的机 械特性是互相 平行的,两者 的硬度相同。
1-25
ΔnN
Ud2
0
TeN
Te
图3-4 不同转速下的机械特性
机械特性与静差率
• 调速系统在不同电压下的理想空载转速 不一样。 • 理想空载转速越低时,静差率越大。 • 同样硬度的机械特性,随着其理想空载 转速的降低,其静差率会随之增大, • 调速系统的静差率指标应以最低速时能 达到的数值为准。
1-12
n n0
Ra Ra+R1 Ra+R2 Ra+R3
0
Id
图3-1 直流电动机调阻调速时的机械特性
1-13
减弱磁通调速法
U R n T n n 0 2 e K K K (3-3) e e m
• 理想空载转速 n 0 将随 增大。 的减少而
1-14
减弱磁通调速法
1-4
第一节
直流电动机控制基础
• 直流伺服电机的分类 直流电机按其励磁方式分为永磁式、励磁式(他 励、并励、串励、复励)、混合式(励磁和永磁 合成)三种;按电枢结构分为有槽、无槽、印刷 绕组、空心杯形等;按输出量分为位置、速度、 转矩(或力)三种控制系统;按运动模式分为增 量式和连续式;按性能特点及用途不同又有不 同品种。
(3-5)
1-23
2. 静差率
• 当系统在某一转速下运行时,负载由理 想空载增加到额定值时电动机转速的变 化率,称为静差率s。
• 用百分数表示 s
nN s n0
电力拖动复习题(1)(1)(1)
1、不属于电力拖动自动控制系统构成单元的是()。
CA、电动机B、功率放大与变换装置C、柴油机D、传感器2、电动机转速与转角控制的根本是()控制,但同时也需要做好()控制。
BA、磁链、转矩B、转矩、磁链C、手动、自动D、自动、手动3、直流电力拖动控制系统和交流电力拖动控制系统比较,()流电力拖动控制系统的数学模型简单;()流电力拖动控制系统调节器的设计简单。
CA、直、交B、交、直C、直、直D、交、交4、船舶电力推进是通过()拖动螺旋桨的系统。
DA、柴油机B、汽轮机C、燃气轮机D、电动机5、()电动机的转速与电源频率保持严格对应关系,机械特性硬。
CA、直流B、异步C、同步D、永磁6、典型机械负载中,起重机提升重物属于()负载。
BA、反抗性恒转矩B、位能性恒转矩负载C、通风机类D、恒功率负载7、典型机械负载中,船舶螺旋桨属于()负载。
CA、反抗性恒转矩B、位能性恒转矩负载C、通风机类D、恒功率负载8、根据转速-转矩四象限,电动机在第四象限为()状态。
DA、正向电动B、反向电动C、正向制动D、反向制动9、转速-转矩四象限中的第三象限,电动机电磁转矩与转速方向相(),为()性质。
AA、同、驱动B、反、驱动C、同、制动D、反、制动10、根据运动方程式,转速变化是因为()。
DA、电磁转矩为驱动转矩B、电磁转矩为制动转矩C、电磁转矩等于阻转矩D、电磁转矩不等于阻转矩11、吊车电动机提升下放重物时,电动机所承担的机械负载属于典型机械负载中的()负载。
BA、反抗性恒转矩B、位能性恒转矩C、通风机类D、恒功率负载第二章转速反馈控制的直流调速系统转速反馈控制的直流调速系统测验1、直流调速系统要求一定范围内无级平滑调速,以()调速方式为最好。
BA、电枢回路串电阻B、降低电枢电压C、降低励磁电压D、励磁回路串电阻2、V-M直流调速系统中采用了平波电抗器来抑制电流脉动,改善()问题。
AA、轻载时电流断续B、低速时的高次谐波C、堵转时电流过大D、功率因数3、在V-M系统主电路的等效电路图中,不属于整流装置电阻的是()。
自动控制技术第三章 直流调速系统
第三章 直流调速系统
与旋转变流机组及离子拖动变流装置相比, 晶闸管整流装置不仅在经济性和可靠性上都有 很大提高,而且在技术性能上也显示出较大的 优越性。由图可见,晶闸管可控整流器的功率 放大倍数在104以上,其门极电流可以直接用晶 体三极管来控制,不再像直流电动机那样需要 较大功率放大装置。在控制作用的快速性方面, 变流机组是秒级,而晶闸管整流器是毫秒级, 这将会大大提高系统的动态性能。
直流斩波器的控制方式 b)脉冲频率调制
第三章 直流调速系统
用全控式器件实行开关控制时,多用脉冲宽度调制的控制方式,形成近年来 应用日益广泛的PWM装置—电动机系统,简称PWM调速系统或脉宽调速系统。
直流斩波器的控制方式 c)两点式控制
第三章 直流调速系统
与V-M系统相比,PWM调速系统有下列优点: (1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就足以 获得脉动很小的直流电流,电枢电流容量连续,系统的低速运行平稳,调速范围 较宽,可达1∶10 000左右。又由于电流波形比V-M系统好,在相同的平均电流即 相同的输出转矩下,电动机的损耗和发热都较小。 (2)同样由于开关频率高,若与快速响应的电动机相配合,系统可以获得很 宽的频带,因此快速响应性能好。动态抗干扰能力强。 (3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。 因受到器件容量的限制,直流PWM调速系统目前只用于中、小功率的系统。
在静止可控整流方面,离子拖动系统是最早应用的静止变流装置供电的直流 调速系统。它虽然克服了旋转变流机组的许多缺点,而且还缩短了响应时间,但 汞弧整流器造价较高,维护麻烦,特别是水银如果泄漏,将会污染环境,危害人 体健康。
第3章第4讲转速、电流反馈控制的直流调速系统
1 1 −1 = 3× = 40.82 s < ω ci TmTl 0.18 × 0.03
1 ω ci ≤ 3T 3Ts
1 TmTl
(2)校验忽略反电动势变化对电流环动态影响的条件 )
3
ω ci ≥ 3
(3)校验电流环小时间常数近似处理条件 )
h +1 KN = 2 2 2h T∑ n
(3-64)
(h + 1) βC eTm Kn = 2hαRT∑ n
(3-66)
(3-65)
无特殊要求时,一般以选择 为好。 无特殊要求时,一般以选择h=5 为好。
(4)转速调节器的实现 )
模拟式转速调节器电路 模拟式转速调节器电路 转速
Kn = Rn R0
1 T∑3-22 转速环的动态结构图及其简化 + Ton 图n = (3-60) KI (b)等效成单位负反馈系统和小惯性的近似处理 等效成单位负反馈系统和小惯性的近似处理
(2)转速调节器结构的选择 )
转速环的控制对象是由一个积分环节和一个惯性 环节组成,IdL(s)是负载扰动。 环节组成, 是负载扰动。 是负载扰动 系统实现无静差的必要条件是: 系统实现无静差的必要条件是:在负载扰动点之 必须含有一个积分环节。 前必须含有一个积分环节。 转速开环传递函数应有两个积分环节,按典型Ⅱ 转速开环传递函数应有两个积分环节,按典型Ⅱ 型系统设计。 型系统设计。 K n (τ n s + 1) (3-61) ) ASR采用 调节器 W ASR ( s ) = 采用PI调节器 采用
2.转速调节器的设计 . 解
1)确定时间常数 ) (1)电流环等效时间常数。 由例题 ,已取 ITΣi=0.5, )电流环等效时间常数。 由例题3-1,已取K , 则 1 = 2T∑ i = 2 × 0.0037 = 0.0074 s KI (2)转速滤波时间常数。根据所用测速发电机纹波情况, )转速滤波时间常数。根据所用测速发电机纹波情况, 取Ton=0.01s。 。 (3)转速环小时间常数。按小时间常数近似处理,取 )转速环小时间常数。按小时间常数近似处理, 1 TΣn = + Ton = 0.0074 + 0.01 = 0.0174 s KI
运动控制 第3章 转速、电流反馈控制的直流调速系统
态的。
因此,对于静特性来说,
C
只有转速调节器饱和与 不饱和两种情况。
O
IdN
Idm
Id
额定电流 电流最大值
双闭环直流调速系统的静特性 21
第1篇 直流调速系统 3.1.2 稳态结构图与参数计算
➢ 当转速调节器不饱和
Id
U*n +
R
ASR U*i +
Ui -
ACR Uc UPE Ud0 +
-E
n
Ks
Un
ASR
U
i
内环
i GT
Ui
U ct
ACR
n
外环
TA
V Ud
转速、电流反馈控制直流调速系统原理图
Id
M
n
TG
38
第1篇 直流调速系统 3.2.2 动态过程分析
➢ 第I阶段:电流上升阶段( 0 ~ t1 )
➢突加给定电压 U*n 后,Id 上 升,当 Id 小于负载电流 IdL 时,
Id
I dm
U
* im
24
第1篇 直流调速系统 3.1.2 稳态结构图与参数计算
➢ 当转速调节器饱和
转速外环呈开环状态,转速的
变化对系统不再产生影响。双
闭环系统变成一个电流无静差
的单闭环电流调节系统。
稳态时:
Id
U
* im
Idm
n
A n0
B
C
O
IdN
Idm Id
双闭环直流调速系统的静特性
25
第1篇 直流调速系统 3.1.2 稳态结构图与参数计算
WASR
(s)
Kn
ns 1
转速、电流反馈控制的直流调速系统
• 性能指标和系统参数之间的关系
超调量 上升时间 峰值时间
% e
tr
tp
(π / 1 2 )
2T
π
100%
1 2
(π arccos )
n 1 2
表3-1 典型I型系统跟随性能指标和频域指标与参数的关系
参数关系KT 阻尼比
0.25 1.0 0% 76.3° 0.243/T 0.39 0.8 1.5% 6.6T 8.3T 69.9° 0.367/T 0.5 0.707 4.3 % 4.7T 6.2T 65.5° 0.455/T 0.69 0.6 9.5 % 3.3T 4.7T 59.2 ° 0.596/T 1.0 0.5 16.3 % 2.4T 3.2T 51.8 ° 0.786/T
C(s)
1、典型I型系统
• 当 1 时 c
T
20 lg K 20(lg c lg 1 ) 20 lg c K C 180o 90o arctan CT 90o arctan CT CT 1 arctan CT 45o 45o
表3-2 典型I型系统动态抗扰性能指标与参数的关系
T1 T m T2 T2
Cmax 100% Cb
tm / T
1 5
27.8%
1 10
16.6%
1 .4
3.8
4.0
tv / T
14.7
21.7
28.7
30.4
2、典型II型系统
h
T
2 1
图3-13 典型Ⅱ型系统 a)闭环系统结构图 b)开环对数频率特性
n
K T
—— 自然振荡角频率 —— 阻尼比
前言(运动控制系统 陈伯时)
主要章节
第1章 绪论 第一篇 直流调速系统
第2章 转速反馈控制的直流调速系统 第3章 转速、电流反馈控制的直流调速系统 第4章 可逆控制和弱磁控制的直流调速系统 第二篇 交流调速系统 第5章 基于稳态模型的异步电动机调速系统 第6章 基于动态模型的异步电动机调速系统 第7章 绕线转子异步电动机双馈调速系统 第8章 同步电动机变压变频调速系统 第三篇 伺服系统 第9章 伺服系统
特点:前序课程多,涵盖内容广,实用性强。 要求:掌握闭环调速系统结构、原理及设计。
2.课程主要内容及章节安排
可控电源-电动机系统的特殊问题及机械特性; 调速系统的性能指标; 交、直流调速系统和伺服系统的原理和结构; 反馈控制的基本特点,反馈控制系统的静态和动
态性能指标及分析方法; 调节器结构及参数的设计方法; 反馈控制系统的实现; 计算机仿真在控制系统中的应用;
3.课时安排
课程总学时48学时,课堂学时40学时, 实验课时8学时;
课程着重讲解第1篇直流调速系统, 以第2、3、4章为重点,第2篇内容在 后续课程《交流调速》中讲解。第3 篇内容介绍几个系统
阮毅 陈伯时 主编
机械工业出版社
前言
课程性质、特点及要求; 课程内容及章节安排; 课时安排;
1.课程性质、特点及要求
性质:高等院校电气工程及其自动化、自动 化专业本科必修课程。可作为电力电子与电 力传动、工业自动化等相关学科硕士研究生 用书,还可供从事电力拖动控制系统的工程 技术人员参考。
第一篇直流调速系统第2章转速反馈控制的直流调速系统第3章转速电流反馈控制的直流调速系统第4章可逆控制和弱磁控制的直流调速系统第二篇交流调速系统第5章基于稳态模型的异步电动机调速系统第6章基于动态模型的异步电动机调速系统第7章绕线转子异步电动机双馈调速系统第8章同步电动机变压变频调速系统第三篇伺服系统第9章伺服系统课程总学时48学时课堂学时40学时实验课时8学时
转速﹑电流双闭环直流调速系统
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。
闭环-转速电流双闭环直流调速系统
§2.2 转速、电流双闭环直流调速系统
一、双闭环调速系统的控制规律
转速单闭环系统被调节的是n,检测的误差是n, 要消除的也是扰动对n的影响。故不能控制电流(转 矩)的动态过程。
电流截止负反馈环节只能限制电流的冲击,不 能控制电流保持为某一所需值。
经常正、反转运行的调速系统,希望尽量缩短 启动、制动和反转过渡过程的时间,即要求系统动 态性能好,单闭环就不能满足要求了。
整个系统的本质由外环速度调节器来决定。即: 当ASR不饱和时,电流负反馈使静特性可能产生的 速降完全被ASR的积分作用所抵消了;一旦ASR饱 和,当负载电流过大,系统实现保护作用使n下降 过大时,转速环即失去作用,只剩下电流环起作用, 这时系统表现为恒流调节系统,静特性便会呈现出 很陡的下垂特性。
各变量的稳态工作点和稳态参数计算:
C
IdN
Idm
Id
BC段:描述ASR饱和后(ACR不饱和)的电流单闭环
系统的静特性,转速外环呈开环状态,表现为电流
无静差。
Id
U
* im
Idm
(n < n0 )
ASR的限幅值Uim由设计者选定——限定了最大电 流值Idm。
2、稳态参数:
转速调节器输出:
U
* i
Ui
Id
I dL
电流调节器输出:Uc
加快动态过程。 (4)电机过载/堵转时,限制Idlmax,起快速自动保护作用。
调节器的输出限幅作用
转速调节器ASR的输出限幅电压U*im决定
电流给定电压的最大值Idm;
电流调节器ACR的输出限幅电压Ucm限制 了电力电子变换器的最大输出电压Udm。
当ASR饱和时,相当于电流单闭环系统,实现 “只有电流负反馈,没有转速负反馈”
《电力拖动自动控制系统》复习要点
阮毅、陈伯时《电力拖动自动控制系统(第4版)》复习要点第一章绪论1、运动控制系统的组成2、运动控制系统的基本运动方程式me L d JT T dt ω=-mm d dtθω=3、转矩控制是运动控制的根本问题。
4、负载转矩的大小恒定,称作恒转矩负载。
a )位能性恒转矩负载b)反抗性恒转矩负载。
5、负载转矩与转速成反比,而功率为常数,称作恒功率负载。
6、负载转矩与转速的平方成正比,称作风机、泵类负载。
直流调速系统第二章转速反馈控制的直流调速系统1、直流电动机的稳态转速:e U IR n K -=Φ2、调节直流电动机转速的方法:(1)调节电枢供电电压;(2)减弱励磁磁通;(3)改变电枢回路电阻。
3、V-M系统原理图4、触发装置GT 的作用就是把控制电压U c 转换成触发脉冲的触发延迟角α。
改变触发延迟角α可得到不同的U d0,相应的机械特性为一族平行的直线。
5、脉宽调制变换器的作用:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速。
6、调速范围:生产机械要求电动机提供的最高转速n max 和最低转速n min 之比。
7、静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N 与理想空载转速n 0之比。
8、调速范围、静差率和额定速降之间的关系:(1)N N n s D n s =∆-N N ND n s n D n ∆=+∆(1)N N n s n D s ∆=-9、转速负反馈闭环直流调速系统稳态结构框图10、直流电动机的动态结构11、开环系统机械特性和比例控制闭环系统静特性的关系:(1)闭环系统静特性可以比开环系统机械特性硬得多;(2)闭环系统的静差率要比开环系统小得多;(3)如果所要求的静差率一定,则闭环系统可以大大提高调速范围。
12、当负载转矩增大,闭环调速系统转速自动调节的过程:TL ↑→I d ↑→n ↓→U n ↓→∆U n ↑→U c ↑→U d0↑→n ↑13、比例调节器的输出只取决于输入偏差量的现状,而积分调节器的输出则包含了输入偏差量的全部历史。
《运动控制系统》期末复习资料
第1章绪论1.什么是运动控制? 电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2.运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3.运动控制系统的基本运动方程式:第2章转速反馈控制的直流调速系统1.晶闸管-电动机(V-M )系统的组成:纯滞后环节,一阶惯性环节。
2.V-M 系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3.稳态性能指标:调速范围D 和静差率s 。
D =??(1-??),额定速降??,D =????,s =????04.闭环控制系统的动态特性;静态特性、结构图?5.反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:t 0n cd 1tU U 比例积分控制规律:稳态精度高,动态响应快6.有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI 调节器7.数字测速方法:M 法测速、T 法测速、M/T 法测速。
8.电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9.脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
10.直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。
实验四转速、电流反馈控制直流调速系统仿真(word文档)
实验四转速、电流反响控制直流调速系统的仿真一、实验目的熟练使用 MATLAB 下的 SIMULINK软件进行系统仿真。
学会用 MATLAB 下的 SIMULINK 软件建立转速、电流反响控制的直流调速系统的仿真模型和进行仿真实验的方法。
二、实验器材PC 机一台, MATLAB 软件三、实验参数采用转速、电流反响控制的直流调速系统,依照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n 的响应数据,绘制出它们的响应曲线,并对实验数据进行解析,给出相应的结论。
转速、电流反响控制的直流调速系统中各环节的参数以下:直流电动机:额定电压 U N = 220 V,额定电流 I dN =136 A,额定转速 n N = 1460r/min,电动机电势系数C e= 0.132 V· min/r ,赞同过载倍数λ=1.5 。
晶闸管整流装置的放大系数K s = 40。
电枢回路总电阻 R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数 T m = 0.18 s,整流装置滞后时间常数Ts=0.0017s,电流滤波时间常数T oi=0.002s。
电流反响系数β=0.05V/A (≈10V/1.5I N)。
四、实验内容1、电流环的仿真。
参照教材P90 中相关内容建立采用比率积分控制的带限幅的电流环仿真模型,设置好各环节的参数。
140 2 0.5-K-0.002s+1 0.0017s+1 0.03s+1 0.18sStep Transfer Fcn Gain Saturation Transfer Fcn1 Transfer Fcn2 Transfer Fcn31-K-sGain1 Integrator0.050.002s+1Transfer Fcn4 Scope图 1 电流环的仿真模型2、依照表 1 中的数据分别改变电流环中比率积分控制器的比率系数K p和积分系数K i,观察电流环输出电枢电流I d的响应曲线,记录电枢电流I d的超调量、响应时间、稳态值等参数,可否存在静差?解析原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.各变量的稳态工作点和稳态参数计算
双闭环调速系统在稳态工作中,当两个调 节器都不饱和时,各变量之间有下列关系 * (3-3) Un U n n n0
U i* U i I d I dL
(3-4)
(3-5)
* U d 0 Ce n I d R CeU n / I dL R Uc Ks Ks Ks
(1) 转速调节器不饱和
两个调节器都不饱和,稳态时,它们的输 入偏差电压都是零。
* Un U n n n0
U i* U i I d
n
* Un
n0
(3-1)
由于ASR不饱和,U*i < U*im, 可知: Id < Idm。 从而得到上图静特性的AB段。
(2)转速调节器饱和
1.起动过程分析 电流Id从零增长 到Idm,然后在一 段时间内维持其 值等于Idm不变, 以后又下降并经 调节后到达稳态 值IdL。 转速波形先是缓 慢升速,然后以 恒加速上升,产 生超调后,到达 给定值n*。
图3-6 双闭环直流调速系统起动过程 的转速和电流波形
起动过程分 为电流上升、 恒流升速和 转速调节三 个阶段, 转速调节器 在此三个阶 段中经历了 不饱和、饱 和以及退饱 和三种情况。
U*n
+
WASR(s)
U*i
Un
Ui
+
WACR(s) Uct
+
Ks Tss+1
Ud0
+
IdL 1/R Tl s+1
Id
+
-
R Tms
E
1/Ce
n
-
图2-5 双闭环直流调速系统的动态结构图
n n*
I
II
III
O Id Idm
t
IL
O
t1
t2
t3
t4
t
当ACR采用PI调节器时,要使其输出量按线性 增长,其输入偏差电压必须维持一定的恒值, 也就是说, Id 应略低于 Idm。
当调节器饱和时,输出达到限幅值,输入量的变化不 再影响输出,除非有反向的输入信号使调节器退出饱 和;换句话说,饱和的调节器暂时隔断了输入和输出 间的联系,相当于使该调节环开环。 当调节器不饱和时,PI调节器工作在线性调节状态, 其作用是使输入偏差电压在稳态时为零。 对于静特性来说,只有转速调节器饱和与不饱和两种 情况,电流调节器不进入饱和状态 。
U*i
Ui
+
WACR(s) Uct
+
Ks Tss+1
Ud0
+
ห้องสมุดไป่ตู้
IdL
1/R Tl s+1
Id
+
-
R Tms
E
1/Ce
n
-
在这最后的转速调节阶段内,ASR和 ACR都不饱和,ASR起主导的转速调节 作用,而ACR则力图使 Id 尽快地跟随其 给定值 U*i ,或者说,电流内环是一个 电流随动子系统。
t Idm
t1
t2
t3
t4
t
转速超调后,ASR输入偏差电压变负,使它开始 退出饱和状态, U*i 和 Id 很快下降。但是,只要 Id 仍大于负载电流 IdL ,转速就继续上升。
n n*
I
II
III
O Id Im
t
IL O t1 t2 t3 t4 t
直到Id = IdL时,转矩Te= TL ,则dn/dt = 0,转速n
Uc 的大小则同时取决于 n 和 Id, 或者说,同时取决于U*n 和 IdL。
这些关系反映了PI调节器不同于P调节器 的特点。比例环节的输出量总是正比于其输 入量,而PI调节器则不然,其饱和输出为限 幅值,而非饱和输出的稳态值取决于输入量 的积分,它最终将使控制对象的输出达到其 给定值,使PI调节器的输入误差为零,否则 PI调节器仍在继续积分,并未到达稳态。
ASR输出达到限幅值时,转速外环呈开环状态, 转速的变化对转速环不再产生影响。 双闭环系统变成一个电流无静差的单电流闭环调 节系统。稳态时 * U im (3-2) Id I dm 式中,最大电流 Idm 是由设计者选定的,取决于 电机的容许过载能力和拖动系统允许的最大加速度。
AB段是两个调 节器都不饱和 时的静特性, Id<Idm, n=n0。 BC段是ASR调 节器饱和时的 静特性,Id=Idm, n < n 0。
n n*
I
II
U*n
+
III
WASR(s)
U*i
O Id Idm
Un
Ui
+
WACR(s)
-
t
Uct
+
Ks Tss+1
Ud0
+
1/R Tl s+1
Id
+
IL
t1 t2 t3 t4
t
O
双闭环直流调速系统的动态结构图
当 Id ≥ IdL 后,电机开始起动,由于惯性作用,转速 不会很快增长,因而转速调节器ASR的输入偏差电 压的数值仍较大,其输出电压保持限幅值 U*im,强 迫电流 Id 迅速上升。
恒流升速阶段是起动过程中的主要阶段。
为了保证电流环的主要调节作用,在起 动过程中 ACR是不应饱和的。
第 Ⅲ 阶段 转速调节阶段( t2 以后)
n
n* I II III
O
Id Idm
t
IL
O
t1
t2
t3
t4
t
n n*
I
II
III
当转速上升到给定值 O 时,转速调节器ASR 的输入偏差减少到零, Id 但其输出却由于积分 作用还维持在限幅值 I U*im ,所以电机仍在 L 加速,使转速超调。 O
n n*
I
II
III IdL 1/ TlR s+1 Id
+
U*n
+
WASR(s)
Un
U*i
U
i+
WACR(s)
Uct
+
Ks Tss+1 Ud0
+
-
R Tms
E
1/Ce
n
O Id
Idm
t
IL O t1 t2 图2-5 双闭环直流调速系统的动态结构 图 t3 t4 t
与此同时,电机的反电动势E 也按线性增长,对电 流调节系统来说,E 是一个线性渐增的扰动量,为 了克服它的扰动, Ud0和 Uct 也必须基本上按线性 增长,才能保持 Id 恒定。
n n*
I
II
III
O Id Idm
t
IL O
t1
t2
t3
t4
t
直到,Id = Idm , Ui = U*im ,电流调节器很快 就压制 Id 了的增长,标志着这一阶段的结束。
在这一阶段中,ASR从不饱和迅速达到饱 和,而ACR一般不饱和。
n n*
第 II 阶段 恒流升速阶段(t1 ~ t2)
3.1.2 稳态结构图与参数计算
1. 稳态结构图和静特性
两个调节器的输出都是带限幅作用的。 转速调节器ASR的输出限幅电压决定了电流给定的 最大值 电流调节器ACR的输出限幅电压限制了电力电子变 换器的最大输出电压
图3-3 双闭环直流调速系统的稳态结构图 α——转速反馈系数 β——电流反馈系数
对于经常正、反转运行的调速系统,缩短起、制 动过程的时间是提高生产率的重要因素。 在起动(或制动)过渡过程中,希望始终保持电 流(电磁转矩)为允许的最大值,使调速系统以 最大的加(减)速度运行。 当到达稳态转速时,最好使电流立即降下来,使 电磁转矩与负载转矩相平衡,从而迅速转入稳态 运行。
图3-1 时间最优的理想过渡过程
3.1.1 转速、电流反馈控制直流调速系统 的组成
应该在起动过程中只有电流负反馈,没有 转速负反馈,在达到稳态转速后,又希望 只要转速负反馈,不再让电流负反馈发挥 作用。
图3-2 转速、电流反馈控制直流调速系统原理图 ASR——转速调节器 ACR——电流调节器 TG——测速发电机
在系统中设置两个调节器,分别引入转速负反馈 和电流负反馈以调节转速和电流,
图3-5 双闭环直流调速系统的动态结构图
3.2.2转速、电流反馈控制直流调速系统 的动态过程分析
对调速系统而言,被控制的对象是转速。 跟随性能可以用阶跃给定下的动态响应描 述。 能否实现所期望的恒加速过程,最终以时 间最优的形式达到所要求的性能指标,是 设置双闭环控制的一个重要的追求目标。
才到达峰值(t = t3时)。
n n*
I
II
III
O Id Idm
t
IdL O
t1
t2
t3
t4
t
此后,电动机开始在负载的阻力下减速,与此 相应,在一小段时间内( t3 ~ t4 ), Id < IdL , 直到稳定,如果调节器参数整定得不够好,也 会有一些振荡过程。
U*n
+
WASR(s) Un
电力拖动自动控制系统 —运动控制系统
第3章 转速、电流反馈控制 的直流调速系统
内 容 提 要
转速、电流反馈控制直流调速系统的组成 及其静特性 转速、电流反馈控制直流调速系统的动态 数学模型 转速、电流反馈控制直流调速系统调节器 的工程设计方法 MATLAB仿真软件对转速、电流反馈控制 的直流调速系统的仿真