转速、电流反馈控制直流调速系统仿真

合集下载

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。

这种理想的起动过程如图1所示。

nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。

根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。

因此很自然地想到要采用电流负反馈控制过程。

这里实际提到了两个控制阶段。

起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。

如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。

如图2所示。

图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。

如图3所示。

图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。

因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。

滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。

所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。

由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。

二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。

双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。

由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。

带电流截止负反馈转速单闭环直流调速系统建模与仿真

带电流截止负反馈转速单闭环直流调速系统建模与仿真

潇湘学院《课程设计报告》题目:带电流截止负反馈转速单闭环直流调速系统建模与仿真专业:电气工程及其自动化班级:姓名:学号:指导教师:陈敏初始条件:1.技术数据输出功率为:7.5Kw 电枢额定电压220V电枢额定电流 36A 额定励磁电流2A额定励磁电压110V 功率因数0.85电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数2S电枢允许过载系数1.5额定转速 1430rpm2.技术指标稳态指标:无静差(静差率s≤2%, 调速范围 D≥10 )动态指标:系统稳定要求完成的主要任务:1.技术要求:(1) 该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D ≥10),系统在工作范围内能稳定工作(2) 根据指标要求进行动态校正,选择调节器的参数,并确定电流截止负反馈环节的相关参数,(3) 系统在5%负载以上变化的运行范围内电流连续2.设计内容:(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图(2) 根据带电流截止负反馈转速单闭环直流调速系统原理图, 分析转速调节器和电流截止负反馈的作用,(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB 来进行调节器的参数调节。

(4) 绘制带电流截止负反馈转速单闭环直流调速系统的电气原理总图(要求计算机绘图)(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书目录摘要 (3)1.闭环调速控制系统构成 (5)1.1 主电路 (5)1.2 原理框图 (5)2带电流截止负反馈的转速负反馈的分析 (6)2.1电流截止负反馈的提出 (6)2.2 电流截止负反馈环节 (7)2.3 带电流截止负反馈调速系统结构框图和静特性 (8)3 参数设计 (10)3.1整体分析 (10)3.2稳定性参数计算和判断 (10)3.3 转速调节器校正 (11)3.3.1 PI调节器结构 (11)3.3.2 调节器的选择 (12)3.4 电流截止负反馈参数设计 (16)4. 电流MATLAB仿真 (17)4.1 将设计的参数进行仿真 (17)4.2 调节器参数调整 (18)5.电气总图 (19)6.结束语 (20)参考文献 (20)摘要为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。

转速、电流反馈控制直流调速系统的仿真-(终极版)

转速、电流反馈控制直流调速系统的仿真-(终极版)

本科课程设计题目:转速、电流反馈控制直流调速系统的仿真姓名王金良学院专业电气工程及其自动化年级学号指导教师2013 年1月11日转速、电流反馈控制直流调速系统仿真摘要转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广泛的直流调速系统,对于需要快速正、反转运行的调速系统,缩短起动、制动过程的时间成为提高生产效率的关键。

为了使转速和电流两种负反馈分别起作用,可在系统里设置两个调节器,组成串级控制。

本文介绍了双闭环调速系统的基本原理,而且用Simulink 对系统进行仿真。

关键词:双闭环调速、转速、电流、Simulink一、 设计的题目及任务〔一〕概述本次仿真设计需要用到的是Simulink 仿真方法,Simulink 是Matlab 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。

Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

〔二〕仿真题目某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =; 额定转速n 1460rpm =,0.132min/e V r C =⋅, 允许过载倍数 1.5λ=; 晶闸管装置放大系数40s K =; 电枢回路总电阻0.5R =Ω; 时间常数0.03,0.18l m s s T T ==; 电流反馈系数0.05/V A β=; 转速反馈系数α=0.00666Vmin/r 。

〔三〕要完成的任务1〕用MATLAB建立电流环仿真模型;2〕分析电流环不同参数下的仿真曲线;3〕用MATLAB建立转速环仿真模型;4〕分析转速环空载起动、满载起动、抗扰波形图仿真曲线。

直流电机双闭环调速系统MATLAB仿真

直流电机双闭环调速系统MATLAB仿真

题目:直流电机双闭环调速系统姓名:学号:专业班级:电气工程及其自动化指导教师:一、直流电机双闭环调速系统模块功能图1直流电机双闭环调速系统框图图2直流电机双闭环提速系统原理图如图1为直流电机速度、电流双闭环调速系统框图,图2为直流电机速度、电流双闭环调速系统原理图。

该调速系统包括两个反馈控制闭环,内环为电流控制环,外环为速度控制环。

速度调节器与电流调节器均为PI调节器,可以实现直流电机转速的静态无差调节与快速动态响应。

以图2所示由硬件构成的双闭环调速系统为例,介绍该系统的工作原理。

直流电机给定速度信号ug与反馈速度信号ufn进行比较,形成速度输入信号Δun=ug-ufn,进入速度PI调节器ST,其输出信号为电流给定信号un,与电流反馈信号ufi进行比较,得到电流PI调节器LT的输入信号Δui=un-ufi,输出信号uk 作为触发器CF的移相电压,从而控制整流桥的移相角a,进而控制直流电机的电枢电压U d、电枢电流I d以及输出转矩T。

如图3为MATLAB中直流电机速度、电流双闭环调速系统的Simulink仿真模型。

接下来对该模型各个模块的功能进行描述。

图3双闭环调速系统Simulink仿真模型1、速度给定模块图1如图4所示为速度给定模块,为一阶跃信号,由表1的模块参数表可知速度给定信号的阶跃时间Step time为0.8s,阶跃信号初始值Initial value为120rad/s,稳定值Final value为160rad/s。

该模块的功能为产生一个阶跃的速度给定信号wef输入到速度调节器中。

表12、速度调节器图5图5为速度调节器模块,是一个PI调节器,输入信号为速度给定信号wef 与速度反馈信号wm,输出信号Iref作为电流调节器的电流给定信号。

通表2的模块参数表可知该PI调节器的比例系数kp=1.6,积分系数ki=16,最大输出限幅值Current limit为30A。

该模块的功能为通过对电机速度的闭环控制输出电流调节器的给定信号Iref。

0实验一:转速负反馈闭环调速系统仿真框图及参数

0实验一:转速负反馈闭环调速系统仿真框图及参数

0实验一:转速负反馈闭环调速系统仿真框图及参数实验一:转速负反馈闭环调速系统仿真框图及参数转速负反馈闭环调速系统系统仿真框图及参数(sI dL- * n(s) ) (s) U n+ + + + - + -,图一比例积分控制的直流调速系统的仿真框图图一中是转速负反馈闭环调速系统的仿真框图,由框图中可以看出:1、该系统是采用PI调节器进行调节的,PI调节器的传递函数如下式所示:其中,是比例系数,积分系数=。

2、该系统采用的是单闭环系统,通过把转速作为系统的被调节量,检测误差,纠正误差,有效地抑制直至消除扰动造成的影响。

各环节参数如下:直流电动机:额定电压U= 220V,额定电流,额定转速,N电动机电动势系数。

假定晶闸管整流装置输出电流可逆,装置的放大系数,滞后时间常数0.00167s。

电枢回路总电阻R = 1.0,,电枢回路电磁时间常数,电力拖动系统机电时间常数。

转速反馈系数, , ,,,,。

对应额定转速时的给定电压。

转速负反馈闭环调速系统的仿真1. 仿真模型的建立比例积分控制的无静差直流调速系统的仿真模型进入MATLAB,并打开SIMULINK模块浏览器窗口,建立一个新的模型,并复制入相应模块,修改模块的参数.当其中PI调节器的至暂定为,1/, = 11.43时,把从10.0修改为0.6后控制参数的仿真结果:图1 电枢电流随时间变化的规律图2电机转速随时间变化的规律由图1可知电流的最大值为230A左右,显然不满足实际要求,故后面需对此进行处理,采用带电流截止负反馈环节的直流调速系统。

其中,由图2 scope输出结果中可以得出该控制系统的最大超调量M、上升时间 ,调p整时间,取值分别为:M= 108r/min, = 0.12s, = 0.28s(估计值) p2. PI调节器参数的调整改变PI调节器的参数,并在启动仿真,分别从仿真曲线中得到的最大超调量及调整时间,相互间进行比较,如下表所示最大超调量比例系数积分系数调整时间(s) M(r/min) p0.25 3 0 >0.6 0.56 3 0 >0.6 0.56 11.43 108 0.28 0.8 11.43 63 0.28 0.8 15 152 0.23由表中可以看出,改变PI调节器的参数,可以得到转速响应的超调量不一样、调节时间不一样的响应曲线。

第三章 转速、电流反馈控制的直流调速系统(电力拖动自动控制系统)

第三章  转速、电流反馈控制的直流调速系统(电力拖动自动控制系统)

2. V-M可逆直流调速系统中的环流问题
图4-11 α=β配合控制电路 GTF—正组触发装置 GTR—反组触发装置 AR—反号器
2. V-M可逆直流调速系统中的环流问题
图4-12 α=β配合控制特性
1. α=β配合控制的有环流可逆V-M系统
图4-13 α=β配合控制的三相零式反并联 可逆线路的瞬时脉动环流(==60° ) a)三相零式可逆线路和瞬时脉动环流回路 b)=60°时 整流电压波形 c)=60°(α =120°)时逆变电压 波形 d)瞬时电压差Δ和瞬时脉动环流波形
(3)低频段大惯性环节的近似处理
图3-17 低频段大惯性环节近似处理对频率特性的影响
(3)低频段大惯性环节的近似处理
图3-18 双闭环调速系统的动态结构图 —电流反馈滤波时间常数 —转速反馈滤波时间常数
1.电流调节器的设计
图3-19 电流环的动态结构图及其化简 a)忽略反电动势的动态影响 b)等效成单位负 反馈系统 c)小惯性环节近似处理
(2)恢复时间tv
1)概念清楚、易懂;
2)计算公式简明、好记; 3)不仅给出参数计算的公式,而且指明参数调整的方向; 4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; 5)适用于各种可以简化成典型系统的反馈控制系统。
1.典型Ⅰ型系统
(1)动态跟随性能指标
(2)动态抗扰性能指标
1.典型Ⅰ型系统
图4-8 两组晶闸管可控整流装置反并联可逆线路
1. V-M可逆直流调速系统的主回路结构
图4-9 两组晶闸管反并联可逆V-M系统的正组整流和反组逆变状态 a)正组整流电动运行 b)反组逆变回馈制动 c)机械特性允许运行范围
2. V-M可逆直流调速系统中的环流问题

转速电流双闭环直流调压调速系统综述

转速电流双闭环直流调压调速系统综述
1 1 196 .1 3Ts 3 0.0017(2)校Βιβλιοθήκη 忽略反电动势变化对电流环动态影响的条件
3 1 3
1
40.82
TmTl
0.18 0.03
(3)校验电流环小时间常数近似处理条件
1 1 1
1
180.8
3 TsToi 3 0.0017 0.002
ci
2.2.5 调节器电阻和电容的计算
2 系统参数------------------------------------------------------------------ 6 2.1 参数要求------------------------------------------------------------ 6 2.2 电流调节器的参数计算------------------------------------------------ 6 2.2.1 确定时间常数-------------------------------------------------- 6 2.2.2 电流调节器的结构选择 -----------------------------------------6 2.2.3 电流调节器的参数计算------------------------------------------ 7 2.2.4 校验近似条件 -------------------------------------------------7 2.2.5 调节器电阻和电容的计算---------------------------------------- 7 2.3 转速调节器的参数计算------------------------------------------------ 8 2.3.1 确定时间常数-------------------------------------------------- 8 2.3.2 转速调节器的结构---------------------------------------------- 8 2.3.3 转速调节器的参数计算------------------------------------------ 8 2.3.4 检验近似条件-------------------------------------------------- 9 2.3.5 调节器电阻和电容的计算---------------------------------------- 9 2.3.6 校核转速超调量------------------------------------------------ 9

转速电流双闭环直流调速系统仿真与设计

转速电流双闭环直流调速系统仿真与设计

运动控制系统课程设计题目:转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1. 设计题目转速电流双闭环直流调速系统仿真与设计2. 设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:1)直流电动机:160V、120A、1000r/min、C e=r,允许过载倍数λ=2)晶闸管装置放大系数:K s=303)电枢回路总电阻:R=Ω4)时间常数:T l=,T m=,转速滤波环节时间常数T on取5)电压调节器和电流调节器的给定电压均为10V试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果;系统要求:1)稳态指标:无静差2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10%3. 设计要求根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下:1)设计电流调节器的结构和参数,将电流环校正成典型I型系统;2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统;3)进行Simulink仿真,验证设计的有效性;4.设计内容1 设计思路:带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降;当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速;对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负反馈作限流保护,但这并不能控制电流的动态波形;按反馈的控制规律,采用某个物理量的负反馈就可以保持该基本量基本不变,采用电流负反馈就应该能够得到近似的恒流过程;另外,在单闭环调速系统中,用一个调节器综合多种信号,各参数间相互影响,难于进行调节器的参数调速;例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质;按照电机理想运行特性,应该在启动过程中只有电流负反馈,达到稳态转速后,又希望只有转速反馈,双闭环调速系统的静特性就在于当负载电流小于最大电流时,转速负反馈起主要作用,当电流达到最大值时,电流负反馈起主要作用,得到电流的自动保护;2双闭环调速系统的组成:a.系统电路原理图图2-1为转速、电流双闭环调速系统的原理图;图中两个调节器ASR和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置;电流环在内,称之为内环;转速环在外,称之为外环;两个调节器输出都带有限幅,ASR的输出限幅什U im决定了电流调节器ACR 的给定电压最大值U im,对就电机的最大电流;电流调节器ACR输出限幅电压U cm 限制了整流器输出最大电压值,限最小触发角α;图2-1 双闭环调速系统电路原理图b.系统动态结构图图2-2为双闭环调速系统的动态结构框图,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定;滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞;为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节;其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便;由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用T on表示;根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节;T oi—电流反馈滤波时间常数T on—转速反馈滤波时间常数图2-2双闭环调速系统的动态结构图3)按工程设计方法设计双闭环系统的ACR:设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展;在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器;a.确定时间常数整流滤波时间常数T s,三相桥式电路的平均失控时间T s=;电流滤波时间常数T oi,三相桥式电路每个波头的时间是,为了基本虑平波头,应有1~2Toi=,因此取Toi=2ms=;电流环小时间常数T∑i,按小时间常数近似处理,取T∑i=T s+T oi=;b.选择电流调节器结构由设计要求:σi%≤5%,并保证系统稳态电流无误差,因此可按典型I型系统设计,电流调节器选用PI 型,其传递函数为: W ACR s =isis Ki ττ1+ c.校验近似条件电流环截止频率11.135-==s KI ci ω; 晶闸管装置传递函数近似条件为:13ci sw T ≤=,满足近似条件; 忽略反电动势对电流环影响的条件为:ci w ≥满足近似条件; 小时间常数近似条件处理条件为:ci w ≤=, 满足近似条件;d.计算调节器电阻和电容电流调节器原理如图3-1所示,按所用运算放大器取R 0=40kΩ,各电阻和电容值计算如下:,取30k; ,取;-图3-1含给定滤波与反馈滤波的PI 型电流调节器按照上述参数,电流环可以达到的动态指标为:σi %=%<5%,满足设计4按工程设计方法设计双闭环系统的ASR :a.确定时间常数电流环等效时间常数为20.0074i T s ∑=;转速滤波时间常数Ton ,根据所用测速发电机波纹情况,取Ton=; 转速环小时间常数n T ∑ 按小时间常数近似处理,取n T ∑=20.0174i T Ton s ∑+=;b .选择转速调节器结构由于设计要求无静差,转速调节器必须含有积分环节;又根据动态要求,应按典型Ⅱ型系统设计速度环,故ASR 选用PI 调节器,其传递函数为:1()n ASR nn s W s K sττ+= c.计算速度调节器参数按跟随和抗干扰性能较好的原则,取h=5,则ASR 的超前时间常数为:50.01740.087n n hT s τ∑==⨯=,转速环开环增益: 2224.39621-∑=+=s T h h K nN 于是,ASR 的比例系数: =d.校验近似条件由转速截止频率:15.341-===s n KN KNcn τωω; 电流环传递函数简化条件: ,满足简化条件; 转速环小时间常数近似条件为: ,满足近似条件;e.计算调节器电阻和电容转速调节原理图如图3-2所示,取040R k =Ω,则,取550k; ,取;图3-2含给定滤波与反馈滤波的PI 型转速调节器-按照上述参数,电流环可以达到的动态指标为:当h=5时,查表得%,虽然不满足设计要求,而实际上,突加阶跃给定时,ASR 饱和,应按退饱和的情况重新计算超调量,实际%,满足设计要求;5内、外开环对数幅频特性的比较图4-1把电流环和转速环的开环对数幅频特性画在一张图上,其中各转折频率和截止频率依次为:13.2700037.011-==∑s i T ,151.570174.011-==∑s n T , 151.34-=s cn ω,15.11087.011-=s n τ; 以上频率一个比一个小,从计算过程可以看出,这是必然的规律;因此,这样设计的双闭环系统,外环一定比内环慢;一般来说,1150~100-=s ci ω,150~20-=s cn ω;从外环的响应速度受到限制,这是按上述方法设计多环控制系统时的缺点;然而,这样一来,每个环本身都是稳定的,对系统的组成和调试工作非常有利;总之,多环系统的设计思想是:以稳为主,稳中求快;L/dBO1/-s ωiT ∑1ciωnT ∑1cn ωnτ1InI-电流内环 n-转速外环图4-1又闭环系统内环和外环的开环对数幅频特性-20-40-20-406 晶闸管的电压、电流定额计算a.晶闸管额定电压U N晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um ,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取U N =2~3Um ,式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定;b.晶闸管额定电流I N为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值;即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值;可按下式计算:I N =~2K fb I MAX ;式中计算系数K fb =Kf/由整流电路型式而定,Kf 为波形系数,Kb 为共阴极或共阳极电路的支路数;当α=0时,三相全控桥电路K fb =,故计算的晶闸管额定电流为I N =~2K fb I MAX =~2 ××220×=~,取200A;7平波电抗器计算由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量;a.电枢电感量L M 按下式计算)(2103mH I Pn U K L NN N D M ⨯=P —电动机磁极对数,K D —计算系数,对一般无补偿电机:K D =8~12; b.整流变压器漏电感折算到次级绕组每相的漏电感L B 按下式计算)(100%2mH I U U K L dK BB •= U 2—变压器次级相电压有效值,I d —晶闸管装置直流侧的额定负载电流,K B —与整流主电路形式有关的系数;c.变流器在最小输出电流I dmin 时仍能维持电流连续时电抗器电感量L 按下式计算min2d I U K L •=, K 是与整流主电路形式有关的系数,三相全控桥K 取则L =mH.6)进行Simulink 仿真,验证设计的有效性a. 电流闭环的仿真如下图:为了研究系统的参数对动态性能的影响,分别取K I T ∑i =、、、,此时K I 的值也会随之变化,运行仿真,即可得不同K I 值的阶跃响应曲线:图6-1 KT=的阶跃响应曲线图6-2KT=的阶跃响应曲线图6-3 KT=的阶跃响应曲线图6-4 KT=的阶跃响应曲线由曲线可以看出如果要求动态响应快,可取KT=;如果要求系统超调小,则应把KT 的值取小些,可取KT<;无特殊要求,取折中值KT=,,称为最佳二阶系统;图6-1~图6-4反映了PI 调节器的参数对系统品质的影响趋势,在工程设计中,可以根据工艺的要求,直接修改PI 调节器的参数,找到一个在超调量和动态响应快慢上都较满意的电流环调节器;b. 转速环的仿真设计在增加转速环调节后,转速环开环传递函数如下: )1()1()(n 2n N n ++=∑s T s s K s W τ 校正后的调速系统动态结构框图如下所示:其中me n n N T C R K K βτα=;在matlab中搭建好系统的模型,如下图:转速环的仿真设计为满足系统在不同需求下的跟随性与抗扰行能要求,取h的之分别为:3、5、7、9. 用matlab仿真结果如下:图7-1h=3时的阶跃响应曲线图7-2h=5时的阶跃响应曲线图7-3h=7时的阶跃响应曲线图7-4h=9时的阶跃响应曲线由图可以看出:h值越小,动态降落也越小,恢复时间、调节时间也短,抗扰性能也越好,但是,从h<5以后,由于震荡剧烈h越小,恢复时间反而延长,综合起来看,h=5是最佳选择,也即最佳三阶系统;对电流环与转速环都是根据实际需要调节参数的,对比Ⅰ型、Ⅱ型系统可以发现:Ⅰ型系统可以在跟随性上做到超调小,但抗扰性能差;而Ⅱ型系统超调却相对较大,抗扰性能较好;5.设计心得a.通过该次设计,更加熟悉掌握了电流转速双闭环直流调速系统的结构组成以及它的工作原理,加深了对开环、闭环有静差、无静差调速的理解---闭环结构保证系统的稳定性与抗干扰能力;无静差调速则保证系统有较低的稳态误差;b.由此也初步掌握双闭环调节器的整个设计过程,其基本思想是先内环再外环;在结构框图的处理过程中有多处近似处理,简化了传递函数,从而使问题得到简化,因此称为被称为“工程设计方法”,这意味着在实际的应用中,在可以大大简化分析过程却很小影响分析结果的方法是很有价值的;从开环到闭环、从闭环无静差到有静差、从单环到双环着一些列的变化显示人们人知的渐进性;仿真是自己临时捡起matlab课本重新回顾才完成的,仿真的直观的证明了最佳二阶、三阶系统的参数,并再一次体现了matlab在控制中的重要作用,的确是一个很强大的仿真工具;整个仿真过程也加深了自己对电力拖动控制相关知识理解程度,相当于也许经过证明的才是最可靠的;d.由于水平有限,设计中肯定有许多错误和不足的地方,敬请老师指正;6.参考文献【1】陈伯时,电力拖动自动控制系统;机械工业出版社;【2】李荣生,电气传动控制设计指导;;。

转速电流双闭环直流调速系统的课程设计(MATLABSimulink)

转速电流双闭环直流调速系统的课程设计(MATLABSimulink)

电力拖动自动控制系统课程设计电气工程及其自动化专业任务书1.设计题目转速、电流双闭环直流调速系统的设计2.设计任务某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:U n=440V,I n=365A,n N=950r/min,R a=0.04,电枢电路总电阻R=0.0825,电枢电路总电感L=3.0mH,电流允许过载倍数=1.5,折算到电动机飞轮惯量GD2=20Nm2。

晶闸管整流装置放大倍数K s=40,滞后时间常数T s=0.0017s电流反馈系数=0.274V/A (10V/1.5IN)转速反馈系数=0.0158V min/r (10V/nN)滤波时间常数取T oi=0.002s,T on=0.01s===15V;调节器输入电阻R a=40k3.设计要求(1)稳态指标:无静差(2)动态指标:电流超调量5%;采用转速微分负反馈使转速超调量等于0。

目录任务书 (I)目录 (II)前言 (4)第一章双闭环直流调速系统的工作原理 (4)1.1 双闭环直流调速系统的介绍 (4)1.2 双闭环直流调速系统的组成 (5)1.3 双闭环直流调速系统的稳态结构图和静特性 (6)1.4 双闭环直流调速系统的数学模型 (7)1.4.1 双闭环直流调速系统的动态数学模型 (7)1.4.2 起动过程分析 (8)第二章调节器的工程设计 (10)2.1 调节器的设计原则 (10)2.2 Ⅰ型系统与Ⅱ型系统的性能比较 (10)2.3 电流调节器的设计 (11)2.3.1 结构框图的化简和结构的选择 (11)2.3.2 时间常数的计算 (13)2.3.3 选择电流调节器的结构 (13)2.3.4 计算电流调节器的参数 (13)2.3.5 校验近似条件 (14)2.3.6 计算调节器的电阻和电容 (15)2.4 转速调节器的设计 (15)2.4.1 转速环结构框图的化简 (15)2.4.2 确定时间常数 (16)2.4.3 选择转速调节器结构 (17)2.4.4 计算转速调节器参数 (17)2.4.5 检验近似条件 (17)2.4.6 计算调节器电阻和电容 (18)第三章Simulink仿真 (19)3.1 电流环的仿真设计 (19)3.2 转速环的仿真设计 (19)3.3 双闭环直流调速系统的仿真设计 (21)第四章设计心得 (23)参考文献 (23)前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。

电力拖动自动控制系统实验报告

电力拖动自动控制系统实验报告

电力拖动自动控制系统仿真实验报告课程名称:电力拖动自动控制系统课程编号:年级/专业/班:姓名:学号:任课老师:实验总成绩:电力拖动自动控制系统仿真实验报告实验项目名称:转速反馈控制直流调速系统实验指导老师:一、实验目的:1、进一步学习利用MA TLAB下的SIMULINK来对控制系统进行仿真。

2、掌握转速、电流反馈控制直流调速系统的原理。

3、学会利用工程的方法设计ACR、ASR调节器的方法。

二、仿真实验电路模型:比例积分控制的无静差直流调速系统的仿真模型三、实验设备及使用仪器:安装windows系统和MATLAB软件的计算机一台四、仿真实验步骤(按照实际建模操作过程填写):1、打开模型相关编辑窗口:通过单击SIMULINK工具栏中新模型的图标或选择File —New—Model菜单项实现。

复制相关原器件:双击所需要子模块图标,以鼠标左键选中所需的子模块,拖入模型编辑窗口。

2、模块连接:以鼠标左键单击起点模块输出端,拖动鼠标至终点模块输入端处,则在两模块间产生—>线。

修改相关参数:双击模型图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。

3、仿真过程的启动:单击启动仿真工具的按钮或选择Simulation—Strat菜单栏,则可启动仿真过程,再双击Scope模块就可以显示仿真结果。

4、仿真参数的设置:为了清晰地观测仿真结果,需要对示波器显示格式作一个修改,对示波器的默认值注意改动,这里把Strat time和Stop time栏分别填写仿真的起始时间和结束时间,把默认时间从10.0s修改为0.6s。

重新启动仿真。

5、调节其参数的调整:根据工程的要求,选择一个合适的PI参数。

Kp=0.25,1/t=3,系统转速的相应无超调,但调节时间很长;当Kp=0.8,1/t=15,系统转速的相应的超调较大,但快速性较好。

五、实验数据、图表或计算等:修改控制参数后的仿真结果Kp=0.25,1/t=3,系统转速的相应无超调,但调节Kp=0.8,1/t=15,系统转速的相应的超调较大,但快速性较好。

转速电流双闭环可逆直流调速系统的仿真与设计

转速电流双闭环可逆直流调速系统的仿真与设计

《运动控制系统》课程设计转速电流双闭环可逆直流调速系统的仿真与设计专业:****年级:****学号:***姓名:***指导老师:***转速电流双闭环可逆直流调速系统的仿真与设计一、设计目的1、应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。

2、应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。

3、在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。

二、系统设计参数直流电动机控制系统设计参数:(直流电动机(3) )输出功率为:5.5Kw电枢额定电压220V 电枢额定电流30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数1S电枢允许过载系数 =1.5 额定转速970rpm直流电动机控制系统设计参数环境条件:电网额定电压:380/220V; 电网电压波动:10%; 环境温度:-40~+40摄氏度; 环境湿度:10~90%.控制系统性能指标: 电流超调量小于等于5%; 空载起动到额定转速时的转速超调量小于等于30%;调速范围D =20; 静差率小于等于0.03.1、设计内容和数据资料某直流电动机拖动的机械装置系统。

主电动机技术数据为:V U N 220=,A I N 30=,m in 970r n N =,电枢回路总电阻Ω=2.0R ,机电时间常数s T m 1=,电动势转速比r V C e m in 221.0•=,Ks=40,ms T l 5.0=,Ts=0.0017ms ,电流反馈系数A V 85.0=β,转速反馈系数r V m in 5.1•=α,试对该系统进行初步设计。

2、 技术指标要求电动机能够实现可逆运行。

电流环速度环实验报告有图

电流环速度环实验报告有图

转速、电流反馈控制直流调速系统的仿真1.电流环的仿真(1)典型I型系统图1 典型Ⅰ型电流环的仿真模型图2 图3图4以上图2、图3、图4分别为KT=0.25、0.5、1.0的仿真结果图,其按典型Ⅰ型系统的设计方法得到了PI调节器的传递函数分别为、、。

当KT=0.25时,系统无超调,但上升时间长;当KT增大时,出现超调,KT越大,超调量越大,但上升时间随着变短了。

观察图2、图3、图4的仿真曲线,在直流电动机的恒流升速阶段,电流值低于λ=200A,其原因是电流调节系统受到电动机反电动势的扰动,如图1,所示,它是一个线性渐增的扰动量,所以系统做不到无静差,而是略低于。

(2)典型Ⅱ型系统图5 典型Ⅱ型电流环的仿真模型图6 图7图8以上图6、图7、图8分别为KT=0.25、0.5、1.0的仿真结果图,其按典型Ⅱ型系统的设计方法得到了PI调节器的传递函数分别为、、。

观察仿真结果图,可知,随着KT的增大,超调量越来越大,且上升时间也随着变短了。

2.转速环的系统仿真图9 转速环的仿真模型图10 图11图12以上图10为阶跃输入模块的阶跃值为10时,得到启动时的转速与电流响应曲线,转速波形先是缓慢升速,然后恒加速上升,产生超调后,最终稳定于给定转速值。

而电流则是先上升,产生超调后稳定一个值,后下降至另一稳定值。

即转速调节器在这三个阶段中经历了快速进入饱和、饱和及退饱和三种情况。

图11为把负载电流设计为136,满载启动时的转速与电流响应曲线,其启动时间延长,且退饱和超调量减少了。

图12为空载稳定运行时突加额定负载的转速与电流响应曲线,其转速先降低后又上升至原来的稳定值,其抗扰性能强,而电流则是先上升后下降到另一个新的稳态值。

转速 电流双闭环直流调速系统的课程设计(MATLAB Simulink)

转速 电流双闭环直流调速系统的课程设计(MATLAB Simulink)

电力拖动自动控制系统课程设计电气工程及其自动化专业任务书1.设计题目转速、电流双闭环直流调速系统的设计2.设计任务某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:U n=440V,I n=365A,n N=950r/min,R a=0.04,电枢电路总电阻R=0.0825,电枢电路总电感L=3.0mH,电流允许过载倍数=1.5,折算到电动机飞轮惯量GD2=20Nm2。

晶闸管整流装置放大倍数K s=40,滞后时间常数T s=0.0017s电流反馈系数=0.274V/A (10V/1.5IN)转速反馈系数=0.0158V min/r (10V/nN)滤波时间常数取T oi=0.002s,T on=0.01s===15V;调节器输入电阻R a=40k3.设计要求(1)稳态指标:无静差(2)动态指标:电流超调量5%;采用转速微分负反馈使转速超调量等于0。

目录任务书 (I)目录 (II)前言 (1)第一章双闭环直流调速系统的工作原理 (2)1.1 双闭环直流调速系统的介绍 (2)1.2 双闭环直流调速系统的组成 (3)1.3 双闭环直流调速系统的稳态结构图和静特性 (4)1.4 双闭环直流调速系统的数学模型 (5)1.4.1 双闭环直流调速系统的动态数学模型 (5)1.4.2 起动过程分析 (6)第二章调节器的工程设计 (9)2.1 调节器的设计原则 (9)2.2 Ⅰ型系统与Ⅱ型系统的性能比较 (10)2.3 电流调节器的设计 (11)2.3.1 结构框图的化简和结构的选择 (11)2.3.2 时间常数的计算 (12)2.3.3 选择电流调节器的结构 (13)2.3.4 计算电流调节器的参数 (13)2.3.5 校验近似条件 (14)2.3.6 计算调节器的电阻和电容 (15)2.4 转速调节器的设计 (15)2.4.1 转速环结构框图的化简 (15)2.4.2 确定时间常数 (17)2.4.3 选择转速调节器结构 (17)2.4.4 计算转速调节器参数 (17)2.4.5 检验近似条件 (18)2.4.6 计算调节器电阻和电容 (19)第三章Simulink仿真 (20)3.1 电流环的仿真设计 (20)3.2 转速环的仿真设计 (21)3.3 双闭环直流调速系统的仿真设计 (22)第四章设计心得 (24)参考文献 (25)前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。

直流调速控制系统的分析及仿真

直流调速控制系统的分析及仿真

当电流负反馈环节起主导作用时的自动调节过程如图7-1-8所示。
7.1.4系统的性能分析
代入图7-1-5中,由图可见,它是一个二阶系统,已知 二阶系统总是稳定的。但若考虑到晶闸管有延迟,晶 闸管整流装置的传递函数便为
相反。
5.电流截止负反馈环节
当 时,(亦即 ),则二极管VD截止,电流截止负反馈不起作用。当 时,(亦即 ),则二极管VD导通, [此处略去二极管的死区电压],电流截止负反馈环节起作用,它将使整流输出电压 下降,使整流电流下降到允许最大电流。 的数值称为截止电流,以 表示。调节电位器RP3即可整定 ,亦即整定 的数值。一般取 〔 为额定电流〕。 由于电流截止负反馈环节在正常工作状况下不起作用,所以系统框图上可以省去。
在图7-1-1中,主电路中串联了一个阻值很小的取样电阻
(零点几欧)。电阻
上的电压

成正比。比 较阈值电压
是由一个辅助电源经电位器RP3提供的。电 流反馈信号(
图7-1-7调速系统的“挖土机”机械特性
当电流负反馈环节起主导作用时的自动调节过程如图7-1-8所示。 机械特性很陡下垂还意味着,堵转时(或起动时)电流不是很大。 这是因为在堵转时,虽然转速n=0,反电动势E=0,但由于电流 截止负反馈的作用,使
大大下降,从而
不致过大。此时 电流称为堵转电流
⑥ 晶闸管整流电路的调节特性为输出的 平均电压
与触发电路的控制电压
之间的关系,即
图7-1-4为晶闸管整流装置的调节特性。
由图可见,它既有死区,又会饱和。 (当全导通以后,
再增加, 也不会再 上升了),且低压段还有弯曲段。面对 这非线性特性,常用的办法是讲它“看 作”一条直线,即处理成

直流双闭环调速系统设计与仿真

直流双闭环调速系统设计与仿真

直流双闭环调速系统设计与仿真一、直流双闭环调速系统的基本原理电流环用于控制电机的电流,通过测量电机的电流反馈信号与给定的电流信号进行比较,得到误差信号,然后经过PID控制器计算控制信号,最后通过逆变器输出给电机控制电流。

二、直流双闭环调速系统的设计1.确定系统参数:包括电机的转矩常数,转矩惯量,电感,电阻等参数。

2.设计速度环控制器:根据转速信号和转速误差信号,设计速度环控制器的传递函数。

可以选择PID控制器,也可以选择其他类型的控制器。

3.设计电流环控制器:根据电流信号和电流误差信号,设计电流环控制器的传递函数。

同样可以选择PID控制器或其他类型的控制器。

4.进行系统仿真:将设计好的速度环和电流环控制器加入电机模型,进行系统仿真。

通过调整控制器参数,观察系统的响应特性,可以优化系统性能。

5.调整控制参数:根据仿真结果,调整控制器的参数,使系统响应更加快速、稳定。

三、直流双闭环调速系统的仿真1.定义系统模型:建立直流电机的状态方程,包括速度环和电流环的动态方程。

2.设定系统初始条件和输入信号:设置电机的初始状态和给定的转速信号以及电流信号。

3.选择控制器类型和参数:根据设计要求,选择控制器类型和参数。

可以选择PID控制器,并根据调试经验选择合适的参数。

4.搭建控制系统模型:将速度环和电流环的控制器模型和电机模型连接在一起,构建闭环控制系统模型。

5.进行系统仿真:利用MATLAB或其他仿真软件进行系统仿真,根据给定的转速信号和电流信号,观察系统的响应特性。

四、直流双闭环调速系统的优化1.参数调整:根据仿真结果,调整控制器的参数,使系统的性能得到优化。

可以通过试探法或自适应调节方法进行参数调整。

2.饱和处理:考虑到电机的饱和特性,可以在控制器中添加饱和处理模块,以提高系统的稳定性和抗干扰能力。

3.鲁棒性设计:考虑到系统参数的不确定性,可以采用鲁棒控制方法,提高系统的鲁棒性能。

4.死区补偿:在电机控制中常常会出现死区现象,可以在控制器中添加死区补偿模块,以减小死区对系统性能的影响。

直流电机PWM调速系统的设计与仿真

直流电机PWM调速系统的设计与仿真

直流电机PWM调速系统的设计与仿真一、引言直流电机是电力传动中最常用的一种电动机,具有调速范围广、响应快、结构简单等优点。

而PWM(脉宽调制)技术是一种有效的电机调速方法,可以通过改变占空比控制电机的转速。

本文将介绍直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。

二、建模分析1.直流电机的模型直流电机的数学模型包括电动势方程和电机转矩方程。

电动势方程描述电机的输出电动势与供电电压之间的关系,转矩方程描述电机的输出转矩与电机转速之间的关系。

2.PWM调速系统的控制策略PWM调速系统的控制策略主要包括PID控制和模糊控制两种方法。

PID控制是一种经典的控制方法,通过比较实际输出与期望输出,计算出控制量来调整系统。

模糊控制则是一种基于模糊逻辑的控制方法,通过模糊推理,将输入量映射为输出量。

三、电路设计1.电机驱动电路设计电机驱动电路主要由电流传感器、逆变器和滤波器组成。

电流传感器用于测量电机的电流,逆变器将直流电压转换为交流电压,滤波器用于消除电压中的高频噪声。

2.控制电路设计控制电路主要由控制器、比较器和PWM信号发生器组成。

控制器接收电机转速的反馈信号,并与期望转速进行比较,计算出控制量。

比较器将控制量与三角波进行比较,生成PWM信号。

PWM信号发生器将PWM信号转换为对应的脉宽调制信号。

四、仿真实验1.系统建模与参数设置根据直流电机的模型,建立MATLAB/Simulink仿真模型,并根据实际参数设置电机的转矩常数、转矩常数、电机阻抗等参数。

2.控制策略实现使用PID控制和模糊控制两种方法实现PWM调速系统的控制策略。

通过调节控制参数,比较不同控制方法在系统响应速度和稳定性上的差异。

3.仿真实验结果分析通过仿真实验,分析系统的静态误差、动态响应和稳定性等性能指标。

比较不同控制方法的优缺点,选择合适的控制方法。

五、结论本文介绍了直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。

实验四 转速、电流反馈控制直流调速系统的仿真

实验四  转速、电流反馈控制直流调速系统的仿真

实验四转速、电流反馈控制直流调速系统的仿真一、实验目的熟练使用MATLAB下的SIMULINK软件进行系统仿真。

学会用MATLAB下的SIMULINK软件建立转速、电流反馈控制的直流调速系统的仿真模型和进行仿真实验的方法。

二、实验器材PC机一台,MATLAB软件三、实验参数采用转速、电流反馈控制的直流调速系统,按照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n的响应数据,绘制出它们的响应曲线,并对实验数据进行分析,给出相应的结论。

转速、电流反馈控制的直流调速系统中各环节的参数如下:直流电动机:额定电压U N = 220 V,额定电流I dN =136 A,额定转速n N = 1460r/min,电动机电势系数C e= 0.132 V·min/r,允许过载倍数λ=1.5。

晶闸管整流装置的放大系数K s = 40。

电枢回路总电阻R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数T m = 0.18 s,整流装置滞后时间常数T s=0.0017s,电流滤波时间常数T oi=0.002s。

电流反馈系数β=0.05V/A(≈10V/1.5I N)。

四、实验内容1、电流环的仿真。

参考教材P90中相关内容建立采用比例积分控制的带限幅的电流环仿真模型,设置好各环节的参数。

图1电流环的仿真模型2、按照表1中的数据分别改变电流环中比例积分控制器的比例系数K p 和积分系数K i ,观察电流环输出电枢电流I d 的响应曲线,记录电枢电流I d 的超调量、响应时间、稳态值等参数,是否存在静差?分析原因。

表1 比例积分系数t/sI d /A不同比例系数Kp 和积分系数Ki 时的电枢电流曲线表1不同比例系数K p 和积分系数K i 的电枢电流数据对比分析:由表1可知,不同的比例系数K p 和积分系数K i 会影响系统的电枢电流且系统存在静差,原因是电流调节系统受到电动机反电动势的扰动,电动机反电动势是一个线性渐增的扰动量,所以系统做不到无静差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运动控制系统》课程设计说明书课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位:题 目: 转速、电流反馈控制直流调速系统仿真 初始条件:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =;额定转速n 1460rpm =,0.132min/e V r C =⋅,允许过载倍数 1.5λ=;晶闸管装置放大系数40s K =;电枢回路总电阻0.5R =Ω;时间常数0.03,0.18l m s s T T ==;电流反馈系数0.05/V A β=;转速反馈系数0.007min/V r α=⋅要求完成的主要任务:(1)用MATLAB 建立电流环仿真模型;(2)分析电流环无超调、临界超调、超调较大仿真曲线;(3)用MATLAB 建立转速环仿真模型;(4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线;(5)电流超调量5%i σ≤,转速超调量10%n σ≤。

转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广泛的直流调速系统,对于需要快速正、反转运行的调速系统,缩短起动、制动过程的时间成为提高生产效率的关键。

为了使转速和电流两种负反馈分别起作用,可在系统里设置两个调节器,组成串级控制。

本文介绍了双闭环调速系统的基本原理,而且用Simulink 对系统进行仿真。

转速、电流反馈控制直流调速系统仿真 1 设计的初始条件及任务1.1概述本次仿真设计需要用到的是Simulink 仿真方法,Simulink 是Matlab 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。

Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

1.2初始条件某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =;额定转速n 1460rpm =,0.132min/e V r C =⋅,允许过载倍数 1.5λ=;晶闸管装置放大系数40s K =;电枢回路总电阻0.5R =Ω;时间常数0.03,0.18l m s s T T ==;电流反馈系数0.05/V A β=;转速反馈系数0.007min/V r α=⋅。

1.3要完成的任务1)用MATLAB 建立电流环仿真模型;2)分析电流环无超调、临界超调、超调较大仿真曲线;3)用MATLAB 建立转速环仿真模型;4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线;5)电流超调量5%i σ≤,转速超调量10%n σ≤。

2双闭环直流调速系统的工作原理2.1双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。

它具有动态响应快、抗干扰能力强的优点。

我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。

采用转速负反馈和PI 调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。

但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。

这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。

在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。

但它只是在超过临界电流dcr I 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。

带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图2-1a 所示。

当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖长。

在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。

这样的理想起动过程波形如图2-1b 所示,这时,启动电流成方波形,而转速是线性增长的。

这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。

(a)带电流截止负反馈的单闭环调速系统起动过程 (b)理想快速起动过程图2-1 调速系统起动过程的电流和转速波形OO dcr (a) (b)实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值dm I 的恒流过程,按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变[1],那么采用电流负反馈就能得到近似的恒流过程。

问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不再靠电流负反馈发挥主作用,因此我们采用双闭环调速系统。

这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。

2.2双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如图2-2所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。

从闭环结构上看,电流调节环在里面,叫做内环;转速环在外面,叫做外环。

这样就形成了转速、电流双闭环调速系统。

该双闭环调速系统的两个调节器ASR 和ACR 一般都采用PI [1]调节器。

因为PI 调节器作为校正装置既可以保证系统的稳态精度[1],使系统在稳态运行时得到无静差调速,又能提高系统的稳定性[1];作为控制器时又能兼顾快速响应和消除静差两方面的要求。

一般的调速系统要求以稳和准为主,采用PI 调节器便能保证系统获得良好的静态和动态性能。

图2-2 转速、电流双闭环直流调速系统n ASR ACR U*n + -U U i U *i +-U ct TA+-Ud I d UPE - T n i 外环 内环 M TG2.3双闭环直流调速系统两个调节器的作用1)转速调节器的作用(1)使转速n 跟随给定电压*m U 变化,当偏差电压为零时,实现稳态无静差。

(2)对负载变化起抗扰作用。

(3)其输出限幅值决定允许的最大电流。

2)电流调节器的作用(1)在转速调节过程中,使电流跟随其给定电压*i U 变化。

(2)对电网电压波动起及时抗扰作用。

(3)起动时保证获得允许的最大电流,使系统获得最大加速度起动。

(4)当电机过载甚至于堵转时,限制电枢电流的最大值,从而起大快速的安全保护作用。

当故障消失时,系统能够自动恢复正常。

3电流环的MATLAB 计算、建立及仿真3.1电流调节器的设计确定时间常数,电流环小时间常数之和∑i T 。

按小时间近似处理 s T T T S Oi i 0037.0=+=∑根据设计要求%5≤i σ,并保证稳态电流无差,可将电流环校成典型Ⅰ系统,典型Ⅰ系统的跟随性较好,超调量较小。

设传递函数的形式为:()()ss K s W i i i ACR ττ1+= 计算电流调节器的参数电流调节器的超前时间参数:s T l i 03.0==τ电流开环增益 :要求%5≤σ时,应该取5.0=∑i I T K ,因此:1.13521=∑=i I T K S T l 03.0=013.1=i K 03.0=T根据上述的设计参数,电流环可达到的动态跟随性能指标为,%5%3.4<=σ符合设计要求。

3.2电流环仿真模型设计图3-1 电流环仿真模型3.3电流环调节器分析图3-2 电流环临界超调输出波形2)KT=0.25时,按典型I 系统的设计方法得到的PI 调节器的传递函数为()ss W pi 89.165067.0+=,可以得到电流环阶跃响应的仿真输出的波形:图3-3 电流环无超调输出波形3)KT=1.0时,按典型I 系统的设计方法得到的PI 调节器的传递函数为()s s W pi 567.67027.2+=,可以得到电流环阶跃响应的仿真输出的波形:图3-4 电流环超调较大输出波形总结:从以上各电流环的图形得出KT 越大时上升时间越快,但同时超调量也比较大,当KT=0.5时,各项动态参数较合理。

4转速环的MATLAB 计算、建立及仿真4.1转速调节器的设计确定时间常数 电流环等效时间常数11K 。

取5.0=∑i I T K ,则: s T K i 0074.00037.02211=⨯==∑ s T on 01.0= s T n 174.00=∑设计PI 调节器,起传递函数为:()()ss K s W n n n ASR ττ1+= 计算转速调节器参数按跟随性和抗扰性都较好的原则,取5=h ,则ASR 的超前时间常数为:s hT n n 087.00174.05=⨯==∑τ进而可求得,转速环开环增益:2224.39621-∑=+=s T h h K n N 可求得ASR 的比例系数为:7.112)1(=+=∑n m e n RT h T C h K αβ4.2转速环仿真模型设计图4-1 转速环仿真模型4.3转速环的系统仿真1)PI 调节器按照计算出来的结果:sW ASR 48.1347.11+=。

空载起动时波形为:图4-2 转速环空载起动输出波形2)满载运行时起动的波形:图4-3 转速环满载高速起动输出波形3)抗干扰性的测试:图4-4 转速环的抗干扰输出波形031040806 焦荣涛5小结与体会这次课程设计中,我们学到了许多课堂上学不到的东西,尤其是在Matlab 仿真上面有很多自己不懂的地方,我在此用了很多时间和精力。

本次课程设计让我对《电力拖动自动控制系统-运动控制系统》的核心内容---转速、电流反馈控制直流调速系统有了更深的理解,对典型I系统设计加深了认识。

通过matlab的仿真,使我对双闭环反馈控制的直流调速系统有了直观的印象。

课程设计是对我们在这学期学到的电力拖动自动控制系统这门课的理论知识的一个综合测评,是对我们将理论结合时间的综合能力的考查,是培养我们发现问题、解决问题的能力,是激发我们内在创新意识的途径。

通过对系统的设计,让我们对双闭环控制系统各个部分都有所认知。

同时也可以通过课程设计,了解理论知识哪些方面比较薄弱,及时查漏补缺。

10《运动控制系统》课程设计说明书。

相关文档
最新文档