数形结合的思想方法3--4
数形结合巧运用,零点分布妙化解--浅谈对二次函数零点分布问题解题教学的研究
解题探索数形结合巧运用,零点分布妙化解一浅谈对二次函数零点分布问题解题教学的研究张程燕(山东省济南中学,250001)一元二次函数是中学数学中最基本、最重要的 函数之一,也是高考考查的重要内容之一,是高考的 高频考点.高中数学教学中一元二次函数的零点分 布问题即初中数学教学中一元二次方程根的分布问 题,是二次函数部分的重点知识与内容,既是学生学 习的重点,也是学习的难点,因此对二次函数零点分 布问题的解题教学研究十分必要.目前,高中生对二 次函数零点分布问题的解题方法偏重于借助对二次 方程根的判别式和韦达定理的运用,能够解决的零 点分布问题有限且易出错,解题方法尚不够系统和 完善,针对这一学情,结合高中所学的零点存在定理 以及数形结合这一重要的数学思想方法,笔者将系 统地分析一元二次函数的零点分布问题,力求将解 题方法系统化、模式化、巧妙化,从而提高数学解题 教学的效率和质量,优化学生的思维品质,发展学生 的数学核心素养.1熟悉知识背景,理解方法本质学生对同一类数学题的解答与掌握,需要的不 仅仅是理解并掌握这类题目的解题方法与技巧,更 需要知晓题目所涉及的知识背景.从知识背景出发, 联系解题所需要的数学知识和方法,将知识与方法 有机融合在一起,构建起数学解题模型,既加深了学 生对数学知识的熟悉程度,也有助于学生理解数学 方法的本质,从而达到学以致用、举一反三的学习效 果,这也是数学解题教学的期望所在.本文所涉及的 数学知识与方法如下所述:1.函数零点存在定理:如果函数y =/(%)在区 间[a ,]上的图像是一^条连续不断的曲线,且有/ (a )/() <0,那么函数y =/()在区间(a ,)内至少 有一个零点,即存在c e (a ,),使得/(C) = 0,这个c 也就是方程/() =0的解[1].特别地,对于一次函数y = h +&(�)和二次 函数y = a / +心+c (a #0)而言,若/(幻在区间(a , 6)上满足零点存在定理,则在(a ,)上有且仅有一个零点.2.数形结合的思想方法——从四个方面将二次函数图像与代数不等式之间建立联系:①开口方向, ②对称轴,③判别式4,④特殊点函数值的符号.2探究典型例题,把握解题方法数学解题教学是数学教师根据教学需要选择合 适的试题,以学生的学情为起点,以自身的解题经 历、经验和研究为基础,通过师生间对话交互,促进 学生深度思考,优化学生思维品质的教学活动[2].本文选取四道典型例题,从思路分析、解答过程和 方法指导三个方面对二次函数零点分布问题进行解题 教学探究,全方位、多角度的对例题进行剖析,帮助学 生理解问题本质、建立解题模型以及掌握解题方法.例1如果方程尤2 + (^i -1)) +爪2 -2=0的两个 实根一个小于1,另一个大于1,求实数m 的取值范围.思路分析:(1)方程尤2 + (爪-1)尤+爪2-2=0根的分布问题0函数/(%) =%2 + (m - 1)% +m 2 -2的零点分布问题,完成方程的根与函数零点的转化;(2) 函数/() =% + (m -1)%+m 2 - 2 开口上,其与%轴的交点一个在1的左侧、一个在1的右 侧,易画出草图,熟悉题设,理清思路;(3)利用数形结合的思想方法,从四个方面二次函数图像与代数不等式之间建立联系:开口向 上是确定的;对称轴可以在1的左侧、右侧或者对称 轴为1;判别式4 = ( m - 1)2 - 4 ( m - 2 ) > 0;特殊 点函数值/(1) <0.解题过程1法一:数形结合由已知可列方程组:• 62•r 4 = (m -1)2 - A i m 1 - 2 ) >0, |/( 1) =1 + m — 1 + m 2 —2 <0.r 3m 2 + 2m -9 <0, m 2 + m - 2 <0.1 +2 槡 -1 +2 槡----;---< m <---------,33-2 < m < 1.%,^2满足0<% < 1<%2 <6,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4),其 与X 轴有两个交点%,2满足0<%<1<% <6,易 画出草图,熟悉题设,理清思路;(2)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:-2 < m < 1. m e ( - ,1)方法指导:因为/(X )开口向上,所以X —± ^ 时,/(X )— + (即/( -) >0,/( + ) >0),再有/(1) <0,则在区间(-^ ,1)和(1,+1)上都满足 零点存在定理,所以在两个区间都各有一个零点,从而满足题意.因此,判别式4 = (m -1)2 - 4(m 2 - 2 ) >0可省略不解,解答过程十分简单.解题过程1 :法一(简化):数形结合 由已知得:/(1) <0....1 + m - 1 + m 2 - 2 < 0. ... m 2 + m - 2 < 0..-2 < m < 1. .m e (-2,1).我们再来看一下第二种解题方法/昔助对二次 方程根的判别式和韦达定理的运用,来解决二次函 数零点分布问题.解题过程2:法二:韦达定理4 = (m -1)2 - 4(m 2 - 2 ) >0,xt - 1 )(%2 - 1) <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,%1%2 _ (xt +X 2 ) +1 <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,一2) -(1 一 m ) +1 <0.由已知,得{.{.{3m 2 + 2m -9<0,m 2 + m - <01 +2 槡 -1+2 槡...|-^^<m < ^3^,-2 < m < 1..- 2 < m < 1. .m e (-2,1).方法指导:韦达定理使用的前提是一元二次方 程的两根存在,即判别式4^0.因此在利用判别式 和韦达定理解决二次函数的零点分布问题时,判别 式4 = (m -1)2 - 4(m 2 - 2 ) >0不可以省略,必须 要求解.显然,在解决二次函数零点分布问题时,利 用韦达定理解题比利用数形结合解题计算量要大. 也就是说,数形结合方法解决零点分布问题更简易、 更巧妙、更通用.例2已知函数/(X ) =X 2 -2ax +4有两个零点由已知可列方程组:,/(0) =4>0, |/(1)=5-2a <0,...1/(6) =40 -12a >0.a >10a < —5 10 5 10.T <a <T .a E (T ’y ).方法指导:因为/(X )开口向上,且由图像可得, /(0) >0,(1) <0,(6) >0,则在区间(0,1)和(1,6)上 都满足零点存在定理,所以在区间(0,1 )和(1,)上各 有一个零点,满足题意“/(X )两个零点X i ,2且0 <X 1 < 1 <X 2 <6”,故而有关对称轴0 <a <6和判别式4 = (-2a )2 -4 x 1 x 4的不等式可省略.例3已知函数/(X ) =X 2 - 2aX +4有两个零点,且都大于1,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4 ),且 两个零点X 1,2都大于1,易画出草图,熟悉题设,理 清思路;()利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系解题过程:• 63•由已知可列方程组:/(1) =5 -2a >0, a >1,轴=—2a2x 1=a > 1a <52,,4 =4a 2 - 16 >0. La >2 或 a <-2.2 < a <52a g5)•方法指导:因为/()开口向上,所以/( - 〇〇) > 0,/( + 〇〇 ) > 0,且由图像可得/(1) > 0,但仅仅凭借 特殊点函数值/(1) >0并不能满足零点存在定理, 这就需要其它三个方面加以限制,即开口方向、对称轴-冬>1和4>0.La例4函数/(*) =a *2 -*-1在区间(0,1)内恰有一个零点,求实数a 的取值范围.思路分析:(1)函数开口方向不确定,过定点 (0,_1);()首项系数含参且在(0,1)内恰有一个零点, 满足条件的草图有很多,因此需要分类讨论,而分类 讨论的依据可以是首项系数的符号.亦或者,我们可 以利用前面的解题思路,按照端点函数值/(0)/( 1) 的符号来讨论;(3)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:分类讨论法一:按首项系数分类讨论(1) 若a =0,则/() = -*-1为一次函数,令/(*) =0,得 *= -1.此时/(*)只有*=-1这一个零点,在区间(0, 1)内无零点.(2)若 a >0,则/(*) = a *2 - * - 1 为一兀二次函数,开口向上,过定点(0, -1).由已知可列方程组:f (0) = ―1:0, .a >2.[/(1) =a - 2 >0.(3)若 a <0,则/(*) =a *2-*-1 为一兀二次 函数,开口向下,过定点(0, -1).由已知可列方程组:a <0,1 a <0,0 <^<1, ,、2a 或{ A =1 + 4a >0,4=1 +4a =0, |/(1) =a 一 2>0./(1) =a -2<0a <0,、a <2a <0,或a >a >2••.均无解.综上所述:的取值范围为(2,+ ^ )•方法指导:与例1例2、例3 —样,需要画出函 数草图,从开口方向、对称轴、判别式A 和特殊点函 数值的符号四个方面建立起函数图像与不等式之间 的关系.但由于函数首项系数含参,具有不确定性, 因此依据首项系数的符号进行分类讨论,进而求解 参数的范围.需要说明的是:在情形(2)中,二次函 数/(*) =a *2 -* - 1区间(0,1)上满足零点存在定 理,则在(0,1 )上有且仅有一个零点.法二:按特殊点函数值符号分类讨论:()当/(0)/(1) <0,由/(0) = -1,得/(1) =a-2 >0,即 a >2 时;此时满足零点存在定理,二次函数/(*) =a *2 -* -1在区间(0,)内必恰有一-零点.(2)当/(0)/(1) >0,由/(0) = -1,得/(1) =a-2 <0,即 a <2 时;由图可列方程组得:• 64•a<0,0 <2a<1,A-4a+1=0,/(0) = -1 <0,/(1) =a-2<0.a<0,a无解.、a<2.()当/(0)/() =0,由/(0) = -1,得/(1) -a -2=0,即a=2 时;v/(x) =ax2-x-1=22-x-1= (2+1) (-1),...令/(x) =(2x+1)(x- 1) =0.得 X1 =-+送(0,1),2 =1 送(0,1).■■■/(x) =ax2-X-1在区间(0,1)内没有零点..a=2不符合题意,舍去.综上所述:的取值范围为(2,+ 1X1 ).方法指导:1)当/(0)/() <0时,满足函数零 点存在定理,则对于二次函数而言在区间(0,1)有 且只有一个零点,满足题意;⑵当/(0)/(1) >0时,函数/(X)端点值同号,不满足零点存在定理,所以结合图像,还得添加其它 三个条件:开口方向、对称轴、判别式A;(3)当/(0)/(1)=0时,可直接求得a=2,此时 函数解析式确定,直接求出零点的值,再判断零点是 否在区间(0,1)内即可.通过对比按首项系数分类讨论和按特殊点函数 值符号(即是否满足零点存在定理)分类讨论两种 方法,我们发现:虽同为利用数形结合与分类讨论的 数学思想方法解题,但显然方法二比方法一简单许 多,再次验证了函数零点存在定理在零点分布问题 求解中的优势所在.3研究零点分布,归纳解题结论通过对典型例题的深度探究,我们发现:二次函 数的零点分布问题,可以从开口方向、对称轴、判别 式和特殊点函数值符号四个方面找寻二次函数图像 与代数不等式之间的关系,从而建立起数学解题模型.我们还发现,当特殊点的函数值符号异号时,即在某区间上函数满足零点存在定理时,那就只需要 列特殊点函数值符号的不等式即可,其它三个不等 式不用列也无需解;当不满足零点存在定理时,就需 要其它三个方面的不等式加以限制,此时不能省略.因此,从四个方面将二次函数图像与代数不等式之 间建立联系,利用数形结合解决二次函数的零点分 布问题时,要注意四个方面研究的顺序性,优先考虑 特殊点函数值的符号情况,若满足零点存在定理,则可简化解题步骤,巧妙解决二次函数的零点分布问 题.此外,对于需要分类讨论的二次函数零点存在问 题,以/( a)/( 6 )的符号为切入点展开分类讨论,显然思路比较清晰,便于求解.数形结合巧运用,零点分布妙化解.利用一个简单的数学知识——零点存在定理和一个常用的数学 思想方法——数形结合,把二次函数零点分布问题 的解题方法系统化、直观化和形象化,在题目的诸多变化中找到了数学解题的“不变性”,达到“以不变 应万变”的解题教学效果,从而能够促进学生的深 度思考,提升学生的解题能力,优化学生的数学思维 品质,发展学生的数学核心素养.(说明:本文中出现的函数图像,都是在假设存 在的前提下依据题意画出的草图,并不代表此函数 图像一定存在.尤其在涉及分类讨论求参数范围时,满足条件的函数图像是否真实存在取决于解题的结果是否有解.)参考文献:[1] 中学数学课程教材研究开发中心.普通中教科书数学必修第一册(2019年A版)[M].北 京:人民教育出版社,2019.[2] 安学保.讲在学生需要处,讲在思维深处——例谈高中数学解题教学中的问题驱动[J].中学数学教学参考,2019,(22) :54 -57.[3] 江春莲,胡玲.基于APOS理论和R M I原的二次函数图象平移教学实验研究[J].数学教育学报,2020,29(6) :2 -39.[4] 葛丽婷,旆梦媛,于国文.基于UbD理论单元教学设计——以平面解析几何为例[J].数学 教育学报,2020,29(5) :5 -31.• 65•。
数形结合思想方法(新课标)
数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。
分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
“数形结合思想”在小学数学教学中的应用探究
“数形结合思想”在小学数学教学中的应用探究“数形结合思想”是指通过将数学概念与几何图形相结合,利用图形的形状、大小、位置等特点,来帮助学生理解和掌握数学知识的一种教学方法。
在小学数学教学中,数形结合思想可以应用于多个知识点,有助于激发学生的兴趣和思维能力,提高学习效果。
下面以几个具体的例子来探究“数形结合思想”的应用。
1. 初识分数在小学三年级,学生初学分数,通常会通过画图解决一些简单的分数计算问题。
给学生发一块巧克力,要求学生将其分成4份,然后问学生得到了几分之几的巧克力。
通过画图的方式,学生可以直观地看到巧克力被平均分成了4份,每份都是1/4,因此得到了1/4的巧克力。
在实际操作中,学生通过将巧克力分成4份,再仔细观察其形状,可以帮助学生理解分数的基本概念和意义。
2. 计算面积小学四年级学生学习了面积的概念,通常会通过直观的图形模型来计算面积。
给学生一块长方形的纸,要求学生将其剪成两个相等的正方形,然后问学生每个正方形的边长是多少。
学生可以通过观察纸张的形状和剪切后的图形,发现纸张的面积没有改变,只是形状发生变化,因此可以利用数形结合思想,将纸张的面积等分成两个相等的部分,得出每个正方形的边长。
3. 探索正方体的表面积和体积小学五年级学生学习了正方体的表面积和体积的计算方法。
在教学中,可以通过将正方体展开成一个平面图形,来帮助学生计算表面积。
给学生一份模型图纸,要求学生将其折叠成一个正方体,并计算其表面积。
学生可以通过将模型拆解成若干个平面图形,然后计算每个图形的面积,再将各个面积加起来,得到正方体的表面积。
这种通过图形的拆解和组合,结合数学的计算方法的教学方式,可以帮助学生更好地理解和掌握正方体的表面积和体积的概念。
4. 运算符号的理解小学六年级学生学习了运算符号的理解和运用,在教学中可以通过图形的比较来帮助学生理解不同运算符号的含义。
给学生两个数的图形表示,要求学生通过观察图形的大小和形状,来判断两个数的大小关系,并用相应的运算符号表示。
小学奥数-数形结合
专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性 【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票? [略解]解:设小巧有x 张邮票,那么小胖有3x 张邮票.2083=+x x ,2084=x ,52=x .答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数. 【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车? [略解]解:设轿车开出小x 时后追上客车.x x 108903.090=+⨯,x 1827=,5.1=x答:轿车开出1.5小时后追上客车.【技巧贴士】 这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系. 【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米? [略解]解:设x 分钟后两人还相距324米.150********=++x x ,8=x答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为32415007572-=+x x .【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。
数形结合思想在小学数学教学中的应用 (4)
数形结合思想在小学数学教学中的应用小学数学教学是一项重要的任务,也是一项具有挑战性的工作。
如何让孩子们在轻松愉悦的氛围下学习数学知识,提高数学学科素养和解决问题的能力,是将数学知识应用到现实中,培养未来创造力的一个关键方面。
本论文通过数形结合思想在小学数学教学中的应用,探讨如何将数学知识贯穿于现实生活的方方面面,鼓励学生发现数学的持续性与实用性。
一、数形结合思想的概述数形结合思想是一种将数学与几何图形相结合的学习方式,包括数学知识的量化和几何图像的可视化。
数形结合思想与传统的数字运算相比,更加直观、形象化,能够让学生更轻松地理解和运用数学公式和算法。
数形结合思想与现实生活相结合,可以使得学生凭借日常生活中的各种场景和图形,更加深入地理解数学知识。
二、数形结合思想在小学数学教学中的应用1. 直观理解分数教学中经常会涉及到分数。
在为小学生讲解分数概念时,可以通过直观的几何图形来进行帮助。
假设我们将一个正方形分成了四个相等的小正方形,则每个小正方形的面积都是总面积的四分之一。
这样的一个小正方形便是四分之一了。
通过这样的几何结合,使孩子们更好地理解分数的概念。
2. 应用比例问题比例在小学数学学习中扮演着重要角色。
在讲解到比例问题时,可以运用数形结合思想。
比如一个长方形平面图,长和宽的比例是5:3,那么我们就可以画出一个较小的长方形来表示它的比例关系,这样学生就可以更加容易地理解比例的概念,通过比例的练习来提高自己的计算技能。
3. 讲解面积、体积概念在小学数学教学中,面积和体积是非常重要的概念。
通过数形结合思想,可以让学生更加直观地理解面积和体积的概念。
例如,在讲解到面积概念时,引入根据三角形面积公式S=1/2ah来进行直观理解,将三角形存在于矩形中,剩余面积就是矩形面积减去三角形面积所得到的部分。
在讲解到体积概念时,可以使用小立方体、长方体、正方体等几何图形,将它们拼接成大正方体的样子,直观地感受体积的大小。
常用的数学思想和方法
不怕难题不得分,就怕每题扣点分!常用的数学思想和方法一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想;5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做!①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题);⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法.六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化.七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做!怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类.【特别提醒】1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“=”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分!5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题.7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的.8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固.⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。
有理数 数形结合
有理数与数轴的数形结合数与形,本是相倚依,焉能分作两边飞?数缺形少直观,形少数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数统一体,永远联系,切莫分离。
- -----华罗庚知识清单1、 有理数的分类(1)按“整分性”分类: (2)按“正负性”分类:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数0 有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 2、规定了 、 、 的一条 叫做数轴。
3、任何一个有理数都可以用数轴上点来表示,反过来,数轴上的任何一个点却不一定表示有理数。
4、数轴上任意两点之间的距离等于这两点表示的较大数减去较小数。
5、初步建立数形结合和分类讨论思想方法;知道利用数轴可以解决生活中的实 际问题。
一、数形结合思想(一)、利用数轴(规定了原点、单位长度、正方向的直线)这一图形来解有关“有理数”的题目。
(1)绝对值:从图形上可明显看出:2-,就是线段OA的长度2,即22=-3就是线段OB的长度,即33=例题:1、数轴上与O 的距离等于2个单位的点表示的数是 ( )A-2A. 0和2B. -1和2C. -1和3D. -2和22、绝对值等于8的数是()A . 8 B. -8 C. 8或 -8 D. 不能确定3、如图,工作流程线上A、B、C、D处各有1名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,•则工具箱的安放位置是__________.B变式练习:1、│x+1│+│x-1│的最小值是( ).A.2B.0C.1D.-12、有理数a、b、c在数轴上的位置如图,化简│a+b│-│c-b│的结果为( )A.a+cB.-a-2b+cC.a+2b-cD.-a-cc a3、有理数a、b、c在数轴上的位置如图所示,若m=│a+b│-│b-1│-│a-c│-│1-c│,则1000m=__________.ac1(2)相反数:如上图,两个数互为相反数,在数轴上表现为与原点距离相等(其中只有0的相反数是它本身)。
专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件
|技法点拨| 此题是一道典型的求离心率的题目,一般需要通过a,b,c之间的关系, 得出关于a,c的方程,经过恒等变形就可以求出离心率.
目录
在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知△ABC 的面积为
3 15,b-c=2,cos A=-14,则 a=____8____.
目录
构造函数关系解决问题 在高考试题中,综合问题的比较大小、求最值等,一般均需利用构 造函数法才能完成.如何正确的构造出恰当的函数,是解决此类问题的 关键,因此充分挖掘原问题的条件与结论间的隐含关系,通过类比、联 想、抽象、概括等手段,构造出恰当的函数,在此基础上利用函数思想 和方法使原问题获解,这是函数思想解题的更高层次的体现.
目录
|技法点拨| 挖掘、提炼多变元问题中变元间的相互依存、相互制约的关系,反客为 主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解, 是解题人思维品质高的表现.本题主客换位后,利用新建函数 y=x1+ln x 的 单调性巧妙地求出实数 k 的取值范围.此法也叫主元法.
目录
已知函数 f(x)=33xx- +11+x+sin x,若存在 x∈[-2,1],使得 f(x2+x)+f(x-k) <0 成立,则实数 k 的取值范围是__(_-__1_,__+__∞__)__. 解析:由题意知,函数f(x)的定义域为R,且f(x)是奇函数. 又 f′(x)=(2l3nx+3·1)3x2+1+cos x>0 在 x∈[-2,1]上恒成立,函数 f(x)在 x∈[- 2,1]上单调递增.若存在 x∈[-2,1],使得 f(x2+x)+f(x-k)<0 成立,则 f(x2+x)<-f(x-k)⇒f(x2+x)<f(k-x)⇒x2+x<k-x,故问题转化为存在 x∈[-2,1],k>x2+2x,即 k>(x2+2x)min,当 x∈[-2,1]时,y=x2+2x= (x+1)2-1 的最小值为-1.故实数 k 的取值范围是(-1,+∞).
小学数学思想
小学数学思想1.数形结合思想数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。
“数形结合”能够借助简单的图形、符号和文字所作的示意图,促动学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。
我们又能够通过代数方法来研究几何图形的周长、面积、体积等,这些都表达了数形结合的思想。
2.集合思想把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定水准抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。
集合思想作为一种思想,在小学数学中就有所表达。
在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。
让他们感知圈内的物体具有某种共同的属性,能够看作一个整体,这个整体就是一个集合。
利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
3.对应思想对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。
小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,实行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
4.函数思想我们知道,运动、变化是客观事物的本质属性。
函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。
学生对函数概念的理解有一个过程。
在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
高中数学思想与逻辑:11种数学思想方法总结与例题讲解
高中数学思想与逻辑:11种数学思想方法总结与例题讲解高中数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.例2:一个四面体所有棱长都是,四个顶点在同一球面上,则此球表面积为( )A、 B、 C、 D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.解 A= :分两种情况讨论(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种情况讨论:(i) B={-1},则 =-1,a=-1(ii)B={1},则 =1, a=1.(二级分类)综合上述所求集合为 .例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.例题3、已知,试比较的大小.【分析】于是可以知道解本题必须分类讨论,其划分点为 .小结:分类讨论的一般步骤:(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
超实用高考数学专题复习:第三章函数概念及基本初等函数Ⅰ第1节函数及其表示
诊断自测 1.判断下列说法的正误.
(1)函数y=1与y=x0是同一个函数.( ) (2)与x轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数 y= x2+1-1 的值域是{y|y≥1}.( ) (4)若两个函数的定义域与值域相同,则这两个函数相等.( )
解析 (1)函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故 不是同一函数. (3)由于 x2+1≥1,故 y= x2+1-1≥0,故函数 y= x2+1-1 的值域是{y|y≥0}.
解析 (1)令 x+1=t,则 x=(t-1)2(t≥1),代入原式得 f(t)=(t-1)2+2(t-1) =t2-1,所以 f(x)=x2-1(x≥1). (2)当-1≤x≤0 时,0≤x+1≤1,由已知 f(x)=12f(x+1)=-12x(x+1).
(3)当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1).① 将x换成-x,则-x换成x,得2f(-x)-f(x)=lg(-x+1).② 由①②消去 f(-x)得,f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1). 答案 (1)x2-1(x≥1) (2)-12x(x+1) (3)23lg(x+1)+13lg(1-x),(-1<x<1)
(3)在 f(x)=2f1x· x-1 中,将 x 换成1x,则1x换成 x,得 f1x=2f(x)· 1x-1,
由f(x)=2f1x· x-1, f1x=2f(x)· 1x-1,
解得 f(x)=23 x+13.
答案
(1)-13
-1
2 (2)lgx-1(x>1)
2 (3)3
x+13
规律方法 求函数解析式的常用方法 (1)待定系数法:若已知函数的类型,可用待定系数法. (2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值 范围. (3)构造法:已知关于 f(x)与 f1x或 f(-x)的表达式,可根据已知条件再构造出另外一 个等式,通过解方程组求出 f(x). (4)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以 x替代g(x),便得f(x)的表达式.
高中数学常用的数学思想
高中数学常用的数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
Ⅰ、再现性题组:1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。
小学奥数数形结合 (1)
专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票?[略解]解:设小巧有x 张邮票,那么小胖有3x 张邮票.2083=+x x ,2084=x ,52=x .答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数.【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车?[略解]解:设轿车开出小x 时后追上客车.x x 108903.090=+⨯,x 1827=,5.1=x答:轿车开出小时后追上客车.【技巧贴士】这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系.【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米?[略解]解:设x 分钟后两人还相距324米.150********=++x x ,8=x答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为32415007572-=+x x .【巩固练习】 第一期第一部分 基础达标1. 商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵元,是平装集邮册价格的倍,这两种集邮册的售价分别是多少元?2. 一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3. 上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A 休息了小时,结果巴士车小时后与A 车在途中相遇.已知B 车平均每小时行驶92千米,A 车平均每小时行多少千米? 第二部分 强化训练4. 动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5. 一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6. 甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7. 暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8. 甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。
中考代数几何-用数形结合的思想解题
中考用数形结合的思想解题1. 用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.方法点拨数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.类型一、利用数形结合探究数字的变化规律1. 如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A. 39SB. 36SC. 37SD. 43S答案与解析举一反三【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n 面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选 C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.【变式】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.答案与解析【答案】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入 y=kx+b得:解得:则直线A1A2的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,∴B n的纵坐标是:2n-1,横坐标是:2n-1,则 B n(2n-1,2n-1).∴B4的坐标是:(24-1,24-1),即(15,8).故答案为:(15,8).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+的结果为__________.答案与解析【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
运用数形结合思想巧解高中数学题例析
运用数形结合思想巧解高中数学题例析例题1:已知直角三角形ABC中,\angle B=90^\circ, AB=3, BC=4.过点B画高BD交AC于点D,求\bigtriangleup ABD的面积。
解析:在解决这个问题时,我们可以通过数形结合的思想来进行分析。
我们可以通过勾股定理知道AC=5。
然后我们可以通过计算直角三角形ABC的面积,S_{\bigtriangleup ABC}=\frac{1}{2}\times 3\times 4=6。
接着,我们可以通过计算直角三角形ABC在AC上的高BD,可以用\frac{1}{2}AB\times BC=6可以得到BD=1.5。
接下来,我们可以计算\bigtriangleup ABD的面积,S_{\bigtriangleup ABD}=\frac{1}{2}\times 3\times 1.5=2.25。
\bigtriangleup ABD的面积为2.25。
通过这个例题我们可以看到,通过数形结合的思想,我们可以用较为简洁的步骤来解决这个问题,使得我们更清晰地理解题目,找到更加直观的解法。
例题2:已知f(x)=x^2+bx+c是一个以x为自变量的二次函数,且f(2)+f(3)=26,f(4)=19,求b,c的值。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
我们可以通过函数值的计算得到f(2)=4+2b+c,f(3)=9+3b+c,f(4)=16+4b+c。
由f(2)+f(3)=26可得13+5b+2c=26,所以5b+2c=13。
由f(4)=19可得16+4b+c=19,所以4b+c=3。
通过解这个方程组可以得到b=5,c=3。
例题3:已知椭圆的离心率为\frac{1}{2},长轴的长为8,求其短轴的长。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
椭圆的离心率定义为e=\frac{\sqrt{a^2-b^2}}{a},其中a为长轴的长,b为短轴的长。
浅谈中学中数形结合的思想
江西师范大学科学技术学院学士学位论文浅谈中学数学中数形结合的思想On the middle school mathematics in the form of the combination of the number ofthought姓名:学号:学院:科学技术学院专业:数学与应用数学指导老师:完成时间:2012年4月18日浅谈中学数学中数形结合的思想【摘要】数形结合是一种极富数字特点的信息转换方法,数学上总是用数的抽象性质说明形的事实,同时又用图形的性质来说明数的事实。
应用数形结合法,通过图形性质的的分析,使数学中的许多抽象的概念及定理直观化、形象化、简单化,并借助代数的计算和分析得以严谨化。
本文试就数形结合思想在数学中的应用做一综述,对于如何培养学生的数形结合意识,加强数形结合思想训练的方法做一些总结和建议,结合一般例子体现数形结合思想在数学中的基础性和重要性。
【关键词】数形结合直觉思维培养方法On the middle school mathematics in the form of the combination of the number of though 【Abstract】Several form is an extremely with the characteristics of the digital information transfer method, on the number of mathematics is always used the fact that form the abstract nature, and the nature of that with graphics to the number of the facts. Application form for combination, through the analysis of the nature of the graphics, the mathematical many of the abstract concept and theorem direct, visual and simplicity, and with algebra calculation and analysis to the rigorous. The paper tries to form combining ideas for the application in mathematics are reviewed in this paper, how to train the student to form the number with consciousness, strengthen the training of the number form combining ideas and Suggestions to do some summary method, combining general example several form combining ideas embodied in the basic math and importance.【Key words】several form combined with intuition thinking cultivation method目录1引言............................................. 错误!未定义书签。
二轮专题复习(03):数形结合思想
)中考第二轮专题复习三:数形结合思想数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:Ⅰ、借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;Ⅱ、借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质一、借助数轴解数与式的问题[例1](山西·2006中考)实数b a ,在数轴上的位置如图所示,化简:2)(a b b a -++=__________.二、借助平面直角坐标系解函数问题 [例2]如图(1),某抛物线y=ax2+bx+c 交x 轴交于A 、B 两点,A (1,0),B (5,0),当x____________时,y=0.当x_____________时y>0,当x____________时,y<0.(2)如图(2)直线y=kx+b 交x 轴于A 点,交y 轴于B 点,且A (-3,0)、B (0,2),则直线解析式为___________________,根据图象直接写出当x__________时;y>0,当x_____时,y<0;当x_____时,y=0.(3)如图(3)某抛物线y1=ax2+bx+c 与某直线y2=kx+b 交于A 、B 两点,且A (-4,3)、B (2,1)。
当___________时y1>y2;当______________时y1=y2;当_____________时y1<y2.(填x 的取值范围)三、利用图形理解代数恒等式【例3】[2007年辽宁十二市] 图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A 、22()()4m n m n mn +--= B 、222()()2m n m n mn +-+= C 、222()2m n mn m n -+=+ D 、22()()m n m n m n +-=-四、借助直角三角形解三角比问题[例4](南京·2007中考)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A —C —B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC=10km,∠A=30°,∠B=45°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果精确到0.1km)(参考数据:41.12≈,73.13≈)五、借助勾股定理等几何图形的知识解实际问题[例5](上海·2006中考)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.· ··0 a b· · · AB C例4图2· OD ABC3045例3【巩固练习】1、一次函数32--=x y 的图象不经过第 象限2、如果正比例函数kx y -=的图象经过第一、三象限,那么直线3+=kx y 经过第_______象限。
分式章节涉及的12个技巧 7个概念 5种方法 4种思想全梳理
专题一 分式的意义及性质的4种题型题型1:分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m 中,不是分式的式子有( )A .1个B .2个C .3个D .4个解析:4x -25,2m ,x 2π+1不是分式.选C2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 解析:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,∴共可构成6个分式.题型2:分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4解析:D4.当x =________时,分式x -1x 2-1无意义. 解析:±15.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.解析:x 2-6x +m =(x -3)2+(m -9). ∵(x -3)2≥0,∴当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.题型3:分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是解析:x 2-2x +1=(x -1)2,∵分式的值为正数,∴x +2>0且x -1≠0.解得x >-2且x ≠17.已知分式a -1a 2-b2的值为0,求a 的值及b 的取值范围.解析:∵分式a -1a 2-b2的值为0,∴a -1=0且a 2-b 2≠0,解得a =1且b ≠±1.题型4:分式的基本性质及其应用 8.下列各式正确的是( ) A.a b =a 2b 2B.a b =ab a +bC.a b =a +c b +cD.a b =abb2 解析:选D9.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2B .x =-2C .x <-2D .x ≠-2解析:选B10.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.解析:设x 4=y 6=z7=k (k ≠0),则x =4k ,y =6k ,z =7∴x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =372211.已知x +y +z =0,xyz ≠0,求x |y +z|+y |z +x|+z|x +y|的值解析:由x +y +z =0,xyz ≠0可知,x ,y ,z 必为两正一负或两负一正当x ,y ,z 为两正一负时,设x >0,y >0,z <0,原式=x |-x|+y |-y|+z|-z|=1+1-1=1当x ,y ,z 为两负一正时,设x >0,y <0,z <0,原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1专题二 分式8种运算技巧技巧1:约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.解析:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 小结:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.技巧2:整体通分法 2.计算:a -2+4a +2.解析:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2.小结:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.技巧3:顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.解析:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1) =8x 7x 8-1. 小结:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.计算:(3m -2n )+(3m -2n )33m -2n +1-(3m -2n )2+2n -3m3m -2n -1.解析:设3m -2n =x , 则原式=x +x 3x +1-x 2-xx -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1) =4n -6m(3m -2n +1)(3m -2n -1).技巧5:裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).解析:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100 =100a (a +100)小结:对于分子是1,分母是相差为1的两个整式积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项.技巧6:整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.解析:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc ≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.解析:由xx 2-3x +1=-1,知x ≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x=2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.技巧8:消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz ≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.解析:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z . 因为xyz ≠0,所以z ≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.小结:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专题三 分式方程解求字母的值或范围4大技巧技巧1:利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.解析:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.技巧2:利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.解析:去分母并整理,得x +m -4=0.解得x =4-m . ∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m ≠3.解得m ≠1.∴当m ≠1时,原分式方程有解.技巧3:利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4D .-4解析:D4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.解析:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0, 所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3,解得m =12. 综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.小结:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.技巧4: 利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.解析:1或-16.已知关于x 的方程x -4x -3-m -4=m3-x无解,求m 的值.解析:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形: (1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程根是原方程增根,4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3解综上所述,m 的值为-3或1.7.已知关于x 的分式方程x +a x -2-5x =1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值.解析:原方程去分母并整理,得(3-a )x =10. (1)因为原方程的增根为x =2, 所以(3-a )×2=10.解得a =-2. (2)因为原分式方程有增根, 所以x (x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a )x =10的解, 所以原分式方程的增根为x =2. 所以(3-a )×2=10. 解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a )x =10无解,则原分式方程也无解; ②当3-a ≠0时,要使原方程无解,则由(2)知,a =-2. 综上所述,a 的值为3或-2.小结:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.专题四 5种分式求值方法方法1: 直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.解析:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.方法2:活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.解析:由x 2-5x +1=0得x ≠0, ∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527. 小结:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.解析:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xy xy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.方法3:整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z ≠0,求x 2y +z +y 2z +x +z 2x +y 的值.解析:因为x +y +z ≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z .所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z .所以x 2y +z +y 2z +x +z 2x +y=0.小结:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.方法4:巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.解析:∵4x 2-4x +1=0, ∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.方法5:设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.解析:设x 2=y 3=z4=k ≠0,则x =2k ,y =3k ,z =4k .所以x 2-y 2+2z 2xy +yz +xz =(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726.专题五 热门考点整合应用考点1:三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .式子A B一定是分式(A ,B 为整式) 解析:B2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( ) A .m ≥1 B .m >1 C .m ≤1 D .m <1解析:∵x 2-2x +m =x 2-2x +1+m -1=(x -1)2+m -1,∴当m -1>0,即m >1时,式子1x 2-2x +m总有意义,选B概念2 分式方程34.某服装店用10 000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14 700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( ) A.10 000x -10=14 700(1+40%)xB.10 000x +10=14 700(1+40%)xC.10 000(1-40%)x-10=14 700x D.10 000(1-40%)x+10=14 700x 解析:B4.下列关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x=4;⑥x a =35-x ,其中分式方程有 .(填序号) 解析:②④⑤概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( ) A .x =6B .x =5C .x =4D .x =3解析:B6.已知关于x 的方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值. 解析:方程两边同乘x 2-1,得2(x -1)+k (x +1)=6.整理得(2+k )x +k -8=0.∵原分式方程有增根x =1,∴2+k +k -8=0.解得k =3.7.若关于x 的分式方程2m +x x -3-1=2x 无解,求m 的值. 解析:方程两边都乘x (x -3),得(2m +x )x -x (x -3)=2(x -3),即(2m +1)x =-6.①(1)当2m +1=0时,此方程无解,∴原分式方程也无解.此时m =-0.5;(2)当2m +1≠0时,要使关于x 的分式方程2m +x x -3-1=2x 无解, 则x =0或x -3=0,即x =0或x =3.把x =0代入①,m 的值不存在;把x =3代入①,得3(2m +1)=-6,解得m =-1.5.∴m 的值是-0.5或-1.5.考点2:一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y . 解析:(1)原式=12x -30y 15x +40y ;(2)原式=5x +15y 25x -y.考点3:一种运算——分式的运算9.先化简,再求值:⎝⎛⎭⎫2ab 2a +b 3÷⎝⎛⎭⎫ab 3a 2-b 22·⎣⎡⎦⎤12(a -b )2,其中a =-12,b =23. 解析:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2=8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2=2a a +b . 当a =-12,b =23时,2a a +b =2×⎝⎛⎭⎫-12-12+23=-6.考点4:一个解法——分式方程的解法10.小明解方程1x -x -2x=1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解析:方程两边同乘x ,得1-(x -2)=1.……①去括号,得1-x -2=1.……②合并同类项,得-x -1=1.……③移项,得-x =2.……④解得x =-2.……⑤∴原方程的解为x =-2.……⑥解析:步骤①去分母时,没有在等号右边乘x ;步骤②括号前面是“-”,去括号时,没有变号;步骤⑥前没有检验.正确的解答过程如下:解析:方程两边都乘x ,得1-(x -2)=x ,去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3,解得x =32. 经检验x =32是原分式方程的解.考点5:一个应用——分式方程的应用11.近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A ,B 两种设备.每台B 种设备价格比每台A 种设备价格多0.7万元,花3万元购买A 种设备和花7.2万元购买B 种设备的数量相同.(1)求A 种、B 种设备每台各多少万元?(2)根据单位实际情况,需购进A ,B 两种设备共20台,总费用不高于15万元,求A 种设备至少要购买多少台?解析:(1)设每台A 种设备x 万元,则每台B 种设备(x +0.7)万元,根据题意,得3x =7.2x +0.7. 解得x =0.5.经检验,x =0.5是原方程的解且符合题意.∴x +0.7=1.2.答:每台A 种设备0.5万元,每台B 种设备1.2万元.(2)设购买A 种设备m 台,则购买B 种设备(20-m )台,根据题意,得0.5m +1.2(20-m )≤15.解得m ≥907. ∵m 为整数,∴m ≥13.答:A 种设备至少要购买13台.考点6:四种思想思想1 数形结合思想12.如图,点A ,B 在数轴上,它们所表示的数分别是-4,2x +23x -5,且点A ,B 到原点的距离相等,求x 的值.(第12题)解析:由题意,得2x +23x -5=4. 去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.小结:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.思想2 整体思想13.已知实数a 满足a 2+4a -8=0,求1a +1-a +3a 2-1·a 2-2a +1a 2+6a +9的值. 解析:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3) =4(a +1)(a +3) =4a 2+4a +3. 由a 2+4a -8=0得a 2+4a =8,故4a 2+4a +3=411. 小结:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z ≠0,求x 2+y 2+z 22x 2+y 2-z 2的值. 解析:由2x -3y +z =0,3x -2y -6z =0,z ≠0,得到⎩⎪⎨⎪⎧2x -3y =-z ,3x -2y =6z.解得⎩⎪⎨⎪⎧x =4z ,y =3z. 所以原式=(4z )2+(3z )2+z 22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320. 小结:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b. 解析:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b=2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b小结:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合的思想方法(2)---高考题选讲数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想.数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来.在使用过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合思想的使用往往偏重于由“数”到“形”的转化.考试中心对考试大纲的说明中强调:“在高考中,充分利用选择题和填空题的题型特点,为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系转化为直观的几何图形问题来解决的意识,而在解答题中,考虑到推理论证的严密性,对数量关系问题的研究仍突出代数的方法而不提倡使用几何的方法,解答题中对数形结合思想的考查以由…形‟到…数‟的转化为主.”1. 注重图形的内涵与拓展,突出对数字直觉能力的考查【例1】图1有面积关系则由图2有体积关系:_______.解:【点评】本题注重考查图形分析能力.思维方式上从平面向空间拓展,面积与体积类比,直观类比与猜想并举.体现了高考题以能力立意考查注重素质的命题原则.【例2】如图所示,已知椭圆=1的左、右焦点分别为F1,F2,点P在椭圆上,若F1,F2,P是一个直角三角形的三个顶点,则点P到x轴的距离为().解:以O为圆心以OF1为半径画圆,可知此圆与椭圆无交点,则△F1F2P中∠PF1F2(或∠PF2F1)为直角,如此求出P点坐标即得yp=±,故选D.【点评】本题以作图直观判断为突破口,直觉与逻辑推理互动,化解析几何问题为平面几何问题,化计算为判断,在理性的高度认识问题.【例3】某城市各类土地租价y(万元)与该地段和市中心的距离x(km)关系如图所示.其中l1表示商业用地,l2表示工业用地,l3表示居住用地.要使各类用地租金收入最高,应将工业用地划在().A. 与市中心距离分别为3km和5km的圆环型区域上B. 与市中心距离分别为1km和4km的圆环型区域上C. 与市中心距离为5km的区域外D. 与市中心距离为5km的区域内解:由函数y的实际意义知:在区间(1,4)上,即在与市中心距离分别为1km和4km的圆环型区域上,工业用地的租金大于商业用地的租金和居住用地的租金,为了获取最高的租金,因此这个区域应租用给工业,故选B.【点评】这道题考查的是阅读理解能力,提醒我们在日常的学习中,要注意训练直觉思维,养成整体观察、检索信息、把握问题实质的良好习惯.2. 注重绘图,突出对动手能力和探究性学习的考查【例4】设奇函数f(x)定义域为[-5,5],若当x∈[0,5]时,f(x)图象如下图,则不等式f(x)<0的解集是____.解:由奇函数的图象关于原点对称,完成f(x)在定义域内的图象,再由f(x)<0找出使f(x)图象在x轴下方的区域,从而得到不等式f(x)<0的解集为(-2,0)∪(2,5]. 【点评】用数形结合的方法去分析解决问题除了能读图外,还要能画图.绘制图形既是数形结合方法的需要,也是培养我们动手能力的需要.【例5】设集合U={(x,y)x∈R,y∈R},A={(x,y)2x-y+m>0},B={(x,y)x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是().A. m>-1,n<5B. m<-1,n<5C. m<-1,n>5D. m>-1,n>5解:先假定点P(2,3)在直线2x-y+m=0和直线x+y-n=0上,则m=-1,n=5.再确定两个不等式2x-y-1>0和x+y-5>0所共同确定的区域,平移两直线得到答案A.【点评】此题考查了集合、二元一次不等式表示的区域、充要条件等知识.以运动、变化、联系的观点考虑问题,变静态思维方式为动态思维方式,强调辨证思维能力.3. 注重对思维的灵活性和创造性的考查【例6】已知点P是椭圆上的动点,F1,F2分别是左、右焦点,O为原点,则的取值范围是().解:此题的一种解法是:在△PF1F2中,根据中线定理得:PF12+PF22=2OP2+2F1O2,再由椭圆定义,得到(PF1-PF2)2=OP2-16,由2≤OP≤2得答案D.另一种解法是数形结合,根据P点所处的位置对取值的影响来判断出结论.逐渐移动P点到长轴端点,OP值逐渐增大,逐渐接近,当移动P点到短轴端点时PF1=PF2,取最小值0.从而判断出答案为D.【点评】解法二是采用极端性原则变静态思维方式为动态思维方式,把数与形分别视为运动事物在某一瞬间的取值或某一瞬间的相对位置.运用动态思维方式处理、研究问题,揭示了问题的本质,体现了思维的灵活性.4. 注重方法的通用性、应用性,突出能力考查【例7】电信局为了满足客户的不同需求,制定了A,B两种话费计算方案.这两种方案应付话费(元)与通话时间(分钟)之间的关系如下图所示(MN∥CD).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500钟以后,每分钟收费多少元?(3)通话时间在什么范围内方案B才会比方案A优惠?解:由M(60,98),C(500,168),N(500,230).∵MN∥CD.设这两方案的应付话费与通话时间的函数关系式分别为f A(x),f B(x),(1)通话两小时的费用分别是116元和168元.(2)由f B(n+1)-f B(n)=0.3(n>500)或由直线CD的斜率的实际意义知方案B从500分钟以后每分钟收费0.3元.(3)由图知:当0≤x≤60时f A(x)<f B(x);当x>500时f A(x)>f B(x);当60<x≤500时,令f A(x)>f B(x)得x>,即通话时间为(,+∞)时方案B较优惠.【评析】此题在实际问题中融入函数,直线等知识,考查了阅读理解能力,体现了在知识应用过程中对能力的考查.下面就高考中出现的一些相关题进行点评【例8】. 若方程lg(-x2+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围。
【分析】将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决。
【解】原方程变形为30332->-+-=-⎧⎨⎩xx x m x即:30212->-=-⎧⎨⎩xx m ()设曲线y1=(x-2)2 , x∈(0,3)和直线y2=1-m,图像如图所示。
由图可知:①当1-m=0时,有唯一解,m=1;②当1≤1-m<4时,有唯一解,即-3<m≤0,∴ m=1或-3<m≤0此题也可设曲线y1=-(x-2)2+1 , x∈(0,3)和直线y2=m后画出图像求解。
【注】一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图像直观解决,简单明了。
此题也可用代数方法来讨论方程的解的情况,还可用分离参数法来求(也注意结合图像分析只一个x值)。
【例9】. 直线L的方程为:x=-p2(p>0),椭圆中心D(2+p2,0),焦点在x轴上,长半轴为2,短半轴为1,它的左顶点为A。
问p在什么范围内取值,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线L的距离?【分析】 由抛物线定义,可将问题转化成:p 为何值时,以A 为焦点、L 为准线的抛物线与椭圆有四个交点,再联立方程组转化成代数问题(研究方程组解的情况)。
【解】 由已知得:a =2,b =1, A(p 2,0),设椭圆与双曲线方程并联立有: y px x p y 22222241=-++=⎧⎨⎪⎪⎩⎪⎪[()],消y 得:x 2-(4-7p)x +(2p +p 24)=0 所以△=16-64p +48p 2>0,即6p 2-8p +2>0,解得:p<13或p>1。
结合范围(p 2,4+p 2)内两根,设f(x)=x 2-(4-7p)x +(2p +p 24), 所以p 2<472-p <4+p 2即p<12,且f(p 2)>0、f(4+p 2)>0即p>-4+32。
结合以上,所以-4+32<p<13。
【注】 本题利用方程的曲线将曲线有交点的几何问题转化为方程有实解的代数问题。
一般地,当给出方程的解的情况求参数的范围时可以考虑应用了“判别式法”,其中特别要注意解的范围。
另外,“定义法”、“数形结合法”、“转化思想”、“方程思想”等知识都在本题进行了综合运用。
【例10】. 设a 、b 是两个实数,A ={(x,y)|x =n ,y =na +b} (n ∈Z ),B ={(x,y)|x =m ,y =3m 2+15} (m ∈Z),C ={(x,y)|x 2+y 2≤144},讨论是否,使得A ∩B ≠φ与(a,b)∈C 同时成立。
【分析】集合A 、B 都是不连续的点集,“存在a 、b ,使得A ∩B ≠φ”的含意就是“存在a 、b 使得na +b =3n 2+15(n ∈Z)有解(A ∩B 时x =n =m )。
再抓住主参数a 、b ,则此问题的几何意义是:动点(a,b)在直线L :nx +y =3n 2+15上,且直线与圆x 2+y 2=144有公共点,但原点到直线L 的距离≥12。
【解】 由A ∩B ≠φ得:na +b =3n 2+15 ;设动点(a,b)在直线L :nx +y =3n 2+15上,且直线与圆x 2+y 2=144有公共点, 所以圆心到直线距离d =||315122n n ++=3(n 21++412n +)≥12∵ n 为整数 ∴ 上式不能取等号,故a 、b 不存在。
【注】 集合转化为点集(即曲线),而用几何方法进行研究。
此题也属探索性问题用数形结合法解,其中还体现了主元思想、方程思想,并体现了对有公共点问题的恰当处理方法。
本题直接运用代数方法进行解答的思路是:由A∩B≠φ得:na+b=3n2+15 ,即b=3n2+15-an (①式);由(a,b)∈C得,a2+b2≤144 (②式);把①式代入②式,得关于a的不等式:(1+n2)a2-2n(3n2+15)a+(3n2+15)2-144≤0 (③式),它的判别式△=4n2(3n2+15)2-4(1+n2)[(3n2+15)2-144]=-36(n2-3)2因为n是整数,所以n2-3≠0,因而△<0,又因为1+n2>0,故③式不可能有实数解。