北京市通州区2016-2017学年八年级(下)《数学》期末检测卷

合集下载

北京市通州区2016-2017学年八年级下学期期末考试数学试题(含答案)(原卷版)

北京市通州区2016-2017学年八年级下学期期末考试数学试题(含答案)(原卷版)

通州区八年级第二学期数学期末检测卷时间:90分钟,满分:100分. 2017年7月一、选择题:(共10小题,每小题3分,共30分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题后的括号内.1. 一元二次方程的二次项系数、一次项系数及常数项分别是()A. ,,B. ,,C. ,,D. ,,2. 我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3. 如图,在菱形中,对角线、交于点.若,,则的长为()A. 1B.C. 2D.4. 某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为()A. B. C. D.5. 很多运动员为了参加北京—张家口冬季奥运会,进行了积极的训练.下表记录了国家队4名队员在500米短道速滑训练成绩的平均数与方差:方差(秒2)根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员甲B. 队员乙C. 队员丙D. 队员丁6. 若一次函数的函数值随的增大而减小,且图象与轴的负半轴相交,那么对和的符号判断正确的是()A. ,B. ,C. ,D. ,7. 若关于x的一元二次方程有两个相等的实数根,那么k的取值为()A. B. C. D. 且8. 如图所示,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是()A. B.C. D.9. 如图所示,在矩形纸片中,,为边上两点,且;,为边上两点,且.沿虚线折叠,使点落在点上,点落在点上;然后再沿虚线折叠,使落在点上,点落在点上.叠完后,剪一个直径在上的半圆,再展开,则展开后的图形为()A. B.C. D.10. 如图,在平面直角坐标系中,,,一次函数与线段有公共点,则的取值范围是()A. B. C. D.二、填空题:(共6小题,每小题3分,共18分)11. 在平面直角坐标系中,点的坐标为,则点关于轴的对称点的坐标是_______.12. 一次函数的图象如图所示,其中b =___________,k =__________ .13. 如果是一元二次方程的一个解,那么代数式的值为__________________.14. 线段是由线段平移得到的,点的对应点为,则点的对应点的坐标是_________.15. 如图,点是矩形的对角线的中点,是边的中点.若,,则线段的长为__________.16. 阅读下面材料:在数学课上,老师提出如下问题:小颖的作法如下:老师说:“小颖的作法正确.”请回答:小颖的作图依据是___________________________________________.三、解答题(共9题,17题6分,18-21题5分,22题6分,23题5分,24题7分,25题8分,共52分)17. 解下列一元二次方程:(1)(2)18. 在平面直角坐标系中,已知一次函数与相交于点,且与轴交于点.(1)求一次函数和的解析式;(2)当时,求出的取值范围.19. 已知:如图,,,,在同一直线上,且,,.求证:四边形是平行四边形.20. 已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.21. 生产某电器,原来每件的成本是300元,由于技术革新,连续两次降低成本,现在的成本是192元。

北京市海淀区2016-2017学年八年级下学期期末考试数学试题

北京市海淀区2016-2017学年八年级下学期期末考试数学试题

北京市海淀区2016-2017学年八年级下学期期末考试数学试题一、选择题.1.下列各式中,运算正确的是()A、B、C、D、+2.如图,在△中,,,,点,分别是边,的中点,那么的长为()A、1.5B、2C、3D、4+3.要得到函数的图象,只需将函数的图象()A、向左平移3个单位B、向右平移3个单位C、向上平移3个单位D、向下平移3个单位+4.在△中, 为斜边的中点,且,,则线段的长是()A、B、C、D、+ 5.已知一次函数.若随的增大而增大,则的取值范围是()D、A、B、C、+6.如图,在△ 的长 是() 中,, , 边上的中线 ,那么A 、B 、C 、+D 、 7.如图,在点 中,一次函数的图象不可能经过的点是()A 、B 、C 、D 、 +8.如图是某一天北京与上海的气温(单位: )随时间(单位:时)变化的图象.根据图中信息,下列说法错误 的是()A 、12时北京与上海的气温相同B 、从8时到11时,北京比上海的气温高C 、从4时到14时,北京、上海两地的气温逐渐升高D 、这一天中上海气温达到的时间大约在上午10时+9.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是()A、B、C、D、+10.已知两个一次函数,的图象相互平行,它们的部分自变量与相应的函数值如下表:则m的值是()A、B、C、D、+二、填空题.11. 在实数范围内有意义,那么的取值范围是+12.已知,那么的值是+13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形,则的长为中,,+14.如图,分别是边长为4的正方形四条边上的点,且.那么四边形的面积的最小值是+15.第24届冬季奥林匹克运动会,将于2022年2月在北京市和张家口市联合举行. 某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目40次的训练测试,每次测试成绩分别为5分,4分,3分,2分,1分五档.甲乙两位同学在这个项目的测试成绩统计结果如图所示.根据上图判断,甲同学测试成绩的众数是 ;甲乙两位同学中单板滑雪成绩更稳定的是 ;乙同学测试成绩的中位数是 . +16.已知一次函数的图象过点,则x 的取值范围是 和点 .若 +三、解答题17.计算:. +18.如图,在中,点,分别在边 , 上, ,求证:. +19.已知,求 的值. +20.在平面直角坐标系xOy 中,已知点的图象与直线 、点 ,一次函数 交于点 .(1)、求直线(2)、若点是 轴上一点,且△的函数解析式及点的坐标; 的面积为6,求点的坐标. +21.如图,在△中,点,,分别是边 , , 的中点,且.(1)、求证:四边形(2)、若 为矩形; ,,写出矩形 的周长. +22.阅读下列材料: 2016年人均阅读16本书!2017年4月23日“世界读书日”之前,国际网络电商亚马逊发布了“亚马逊中国2 017全民阅读报告”.报告显示,大部分读者已养成一定的阅读习惯,阅读总量 在10本以上的占56%,而去年阅读总量在10本以上的占48%.京东图书也发布了2016年度图书阅读报告.根据京东图书文娱业务部数据统 计,2016年销售纸书人均16册,总量叠在一起相当于15000个帝国大厦的高.(1)、在亚马逊这项调查中,以每年有效问卷1.4万份来计,2017年阅读量十本 以上的人数比去年增加了 人;(2)、小雨作为学校的图书管理员,根据初二年级每位同学本学期的借书记录 ,对各个班借阅的情况作出了统计,并绘制统计图表如下:①全年级140名同学中有科技社团成员40名,他们人均阅读科普类书籍1.5本 ,年级其他同学人均阅读科普类书籍1.08本,请你计算全年级人均阅读科普 类书籍的数量,再通过计算补全统计表;②在①的条件下,若要推荐初二某个班级为本学期阅读先进集体,你会推荐 哪个班,请写出你的理由. +23.在四边形中,一条边上的两个角称为邻角.一条边上的邻角相等,且这条边的对边上的邻角也相等,这样的四边形叫做I T 形.请你根据研究平行四边形及特殊四边形的方法,写出IT 形的性质,把你的发 现都写出来. +24.如图,四边形的对称点是,直线 是正方形,是 垂直平分线上的点,点关于 与直线 交于点 .(1) 、若点是边的中点,连接 ,则 = ;(2)、小明从老师那里了解到,只要点不在正方形的中心,则直线所夹锐角不变.他尝试改变点与的位置,计算相应角度,验证老师的说法.如图,将点 选在正方形内,且△所夹锐角的度数; 为等边三角形,求出直线 与(3)、请你继续研究这个问题,可以延续小明的想法,也可用其它方法.我选择小明的想法;并简述求直线 与 所夹锐角度数的思路.+25.对于正数,用符号表示的整数部分,例如:,,.点在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直.其中垂直于轴的边长为,垂直于轴的边长为,那么,把这个矩形覆盖的区域叫做点A的矩形域.例如:点的矩形域是一个以为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)、在图2所示的坐标系中画出点的矩形域,该矩形域的面积是;(2)、点的矩形域重叠部分面积为1,求的值;(3)、已知点在直线上,且点B的矩形域的面积满足,那么的取值范围是.(直接写出结果)+。

2016至2017学年度八年级数学下学期期末测试卷

2016至2017学年度八年级数学下学期期末测试卷

2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。

2016-2017学年八年级下期末数学试题含答案

2016-2017学年八年级下期末数学试题含答案

2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。

满分100分。

考试时间90分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。

2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)

2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)

第5题图 2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )8. 下列说法中,正确的是( )设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)(1)因式分解 m 3n -9mn . (2)计算 2111a a a a -++-20. (本小题满分8分)(1)解方程 )12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt △ABC 中,∠C =90°,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连结DE .(1)证明DE ∥CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形.一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′25x1=即正方形的边长为中,,=AC= AC=2016—2017学年期末测试八年级数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。

2015-2016学年北京市通州区八下期末数学

2015-2016学年北京市通州区八下期末数学

2015-2016学年北京市通州区八下期末数学一、选择题(共10小题;共50分)1. 函数中自变量的取值范围是A. B. C. D.2. 下列多边形内角和为的是A. B.C. D.3. 在平面直角坐标系中,点关于轴对称点的坐标是,则点的坐标是A. B. C. D.4. 下列图形中,是中心对称图形的是.A. B.C. D.5. 一次函数在平面直角坐标系中的图象如图所示,则可判断A. ,B. ,C. ,D. ,6. 已知一元二次方程,则可判断A. B. C. D.7. 右图是天安门广场周围的主要景点分布示意图.在此图中建立平面直角坐标系,表示故宫的点坐标为,表示电报大楼的点的坐标为,则表示下列景点的坐标正确的是A. 美术馆B. 人民大会堂C. 王府井D. 前门8. 将一张矩形的纸对折,旋转后再对折,然后沿着右图中的虚线剪下并且打开,则剪下的图片外形一定为A. 三角形B. 菱形C. 矩形D. 正方形9. 某一段时间,小华收集了某空气质量检测站点发布的连续五个小时浓度最高值,整理得出下表(有两个数据被遮盖)时间一二三四五方差平均浓度值浓度最高值被遮盖的两个数据依次是A. ,B. ,C. ,D. ,10. 如图,在等边三角形中,,为的中位线,动点由点出发,沿点作匀速运动,到达点时停止运动,则的面积与点经过的路程之间关系的图象大致是A. B.C. D.二、填空题(共6小题;共30分)11. 的解是______.12. 写出在函数的图象上的两个点的坐标______,______.13. 如图,一个正五边形绕着它的中心旋转,至少旋转______ 度后与原来的图形重合.14. 一次函数的图象如图所示,则关于的不等式的解集为______.15. 木工师傅在做门窗框架、桌面、椅面等物件时,需要检测做出的物件是否为矩形.这时,木工师傅通常不仅要测量它们的两组对边的长度是否分别相等,而且还要测量它们的两条对角线是否相等.这样做的理由是______.16. 如图,矩形纸片,折叠,使点落到边上,得折痕.若,,则求的长为(本题可以直接写出的长,或者只写出求的思路,均可以得到满分).______.三、解答题(共9小题;共117分)17. 解方程:.18. 解方程:.19. 如图,在平行四边形中,,.求证:四边形为矩形.20. 列方程(组)解应用题某校将学农基地以班级承包的形式分配给该校的各个班级自主管理,二年级(1)班承包了一块长为米的矩形土地,班级成员决定以此矩形的宽为边长,截出一个正方形,在此正方形土地中种植西瓜.剩余的土地面积为平方米种植蔬菜,求种植西瓜的正方形土地边长为多少米?21. 如图,一次函数的图象经过点和.(1)求此一次函数的表达式;(2)点是正比例函数图象上一点,且的面积是,直接写出点的坐标.22. 为了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高分组表组别身高女生身高频数分布表组别频数频率合计请根据以上图表提供的信息,解答下列问题:(1)在女生身高频数分布表中: ______, ______, ______;(2)补全男生身高频数分布直方图;(3)已知该校共有女生人,男生人,请估计身高在之间的学生约有多少人.23. 已知:关于的方程.(1)求证:无论取任何实数,方程总有实数根;(2)若方程的其中一根是另一根的倍,求的值.24. 阅读理解:一动点沿着数轴向右平移个单位,再向左平移个单位,相当于向右平移个单位.用实数加法表示为.若平面直角坐标系中的点作如下平移:沿轴方向平移的数量为(向右为正,向左为负,平移个单位),沿轴方向平移的数量为(向上为正,向下为负,平移个单位),则把有序数对叫做这一平移的“平移量”;“平移量”与“平移量”的加法运算法则为.解决问题(1)计算: ______; ______;(2)若动点从坐标点出发,按照“平移量”平移到,则点的坐标为______;(3)若动点从坐标原点出发,先按照“平移量”平移到,再按照“平移量”平移到;再按照“平移量”平移到,最后按照“平移量”平移回到原点.①当四边形是你学习过的一个特殊四边形时,请你直接写出“平移量”,,,.②在(1)的前提下,请你在平面直角坐标系中画出四边形.25. 已知正方形,点是直线上一点,点是直线上一点.连接,过点作,与所在的直线交于点.(1)如图 1:当点与点重合时,补全图形,直接写出线段与的数量关系.(2)如图 2 、 3:当点不与点,重合时,请你将图 2 、 3 补全,那么(1)中两条线段满足的数量关系还成立吗?如果成立,选择其中一图进行证明,如果不成立请说明理由.答案第一部分1. D2. D3. A4. A5. B6. A7. A8. B9. C 10. A第二部分11. ,12. (答案不唯一)13.14.15. 两组对边分别相等的四边形是平行四边形,对角线相等的平行四边形是矩形.16. ;作点关于直线的对称点,根据勾股定理可知,设,则,,,利用勾股定理可求的长.第三部分17. 因式分解,得解得,.18. 因式分解,得于是得或即19. 因为在平行四边形中,所以.所以,.所以.所以四边形为矩形.20. 设种植西瓜的正方形土地边长为米,根据题意,得解得,(均符合题意).答:种植西瓜的正方形土地边长为米或者米21. (1)因为一次函数的图象经过点和.所以所以所以.(2)点的坐标为或者.22. (1),,.(2)(3)(人),身高在之间的学生约有人.23. (1)当时,方程为一元一次方程 .当时,因为,因为,所以.无论取任何实数时,方程总有实数根.(2)方程的两个根为,.当时,;当时,.24. (1);(2)(3)①当是平行四边形时,“平移量”为,“平移量”为,“平移量”为,“平移量”为.②(答案不唯一).25. (1)补全图1如下,.(2)补全图2、3如下:作于点,过点作于点.,,.因为,,所以.所以.所以.。

北师大版2016-2017学年八年级数学(下册)期末测试卷及答案

北师大版2016-2017学年八年级数学(下册)期末测试卷及答案

2016-2017学年八年级(下)期末数学试卷一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b23.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=04.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.85.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=39.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.12.函数的自变量x的取值范围是.13.若=,则=.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.17.先化简,再求值已知:,求的值.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=.22.若关于x的分式方程﹣1=无解,则m的值.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.参考答案与试题解析一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选D.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.3.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.4.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选D.【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【考点】规律型:图形的变化类.【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=3【考点】一元二次方程的解.【专题】压轴题.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=0代入方程式即可解.【解答】解:关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,把x=0代入得到m2﹣2m﹣3=0,解得m=3或﹣1,因为m+1≠0,则m≠﹣1,因而m=3.故本题选D.【点评】本题主要考查了方程的根的定义,就是能使方程左右两边相等的未知数的值,本题特别要注意一元二次方程的二次项系数不等于0.9.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对【考点】相似三角形的判定.【分析】已知平行四边形的对边平行,平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似.【解答】解:∵AD∥BC∴△ADG∽△ECG,△ADG∽△EBA,△ABC∽△CDA,△EGC∽△EAB;所以共有四对故选C.【点评】本题考虑平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似,注意要找全,不可漏掉任何一个.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式,将已知代入求出即可.【解答】解:∵2x﹣y=,xy=2,∴2x2y﹣xy2=xy(2x﹣y)=2×=.故答案为:.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.函数的自变量x的取值范围是x>2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.若=,则=.【考点】比例的性质.【分析】根据比例的性质,即可解答.【解答】解:∵,∴7m=11n,∴,故答案为:.【点评】本题考查了比例的性质,解决本题的关键是熟记比例的性质.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=±4.【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,求出m的值即可.【解答】解:∵关于x的方程x2﹣mx+4=0有两个相等实根,∴△=(﹣m)2﹣4×4=0,解得m=±4.故答案为:±4.【点评】本题考查的是根的判别式,根据题意得出关于m的方程是解答此题的关键.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为81.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】压轴题.【分析】作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD 的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.【解答】解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,∵正方形ABCD,∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,∴PE=PF,∴四边形AEPF是正方形,∴AE=PE=PF=AF,∵AP=2,由勾股定理得:AE2+PE2=,∴AE=PE=PF=AF=2,∴PG=BF,且∠PFB=∠PGQ=90°;∵∠FBP+∠FPB=90°,∴∠FBP=∠GPQ,在△PQG和△BPF中,∴△PQG≌△BPF,则QG=PF=2,∴AB=BC=CD=2+2+5=9,则大正方形的边长是9,即面积是81;故答案为81.【点评】此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.【考点】解一元一次不等式组;因式分解-提公因式法;解一元二次方程-公式法;一元一次不等式组的整数解.【分析】(1)利用提公因式法分解,然后利用公式法即可分解;(2)利用求根公式即可求解;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:(1)原式=4a(a﹣1)2+(a﹣1)=(a﹣1)【4a(a﹣1)+1】=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2;(2)∵a=2,b=4,c=﹣1,b2﹣4ac=16+8=24>0,∴x=,则x1=,x2=;(3),解①得x<,解②得:x≥﹣5.则不等式组的解集是﹣5≤x<.则整数解是:﹣5,﹣4,﹣3,﹣2,﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.17.先化简,再求值已知:,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再=,设x=2k,y=3k(k≠0),再代入进行计算即可.【解答】解:原式=[﹣]×=×==;解法一:∵=,不妨设x=2k,y=3k(k≠0),∴原式==;解法二:=∵=,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【专题】作图题.【分析】(1)根据关于原点对称的点的坐标特征,画出点A、B、C的对应点A′、B′、C′,即可得到△A′B′C′;(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A″,B″、C″,即可得到△A″B″C″;(3)分类讨论:分别以AB、BC和AC为对角线作出平行四边形,然后写出第四个顶点D的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所作,点B的对应点B″的坐标的坐标为(0,﹣6);(3)如图,四边形ABCD′、四边形ADBC和四边形ABD″C为所作,第四个顶点D的坐标为(3,3)或(﹣7,3)或(﹣5,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的性质.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.【考点】菱形的性质.【专题】计算题.【分析】(1)菱形的四边相等,周长是20,则边长为5;根据菱形对角线互相垂直平分,可得OC= AC,OD=3.运用勾股定理求出OC便可求出AC.(2)利用等积法求解:S△ABD=AB•DE=BD•OA.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=.∵BD=6,∴OD=3.在Rt△DOC中==4.∴AC=2OC=8.(2)∵S△ABD=AB•DE=BD•OA,∴5•DE=6×4∴DE=.【点评】此题考查了菱形的性质:对角线互相垂直平分;四边相等.问题(2)亦可运用菱形面积的两种表达式求解.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【考点】菱形的判定;矩形的判定.【分析】(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得OE=OC,同理可证OC=OF,则可证得OE=OF=OC;(2)根据平行四边形的判定以及矩形的判定得出即可.(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直,进而分析求出即可.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.【点评】本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=15.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a变形后求出a+=3,两边平方求出a2+的值,原式第一个因式利用平方差公式化简,变形后将各自的值代入计算即可求出值.【解答】解:∵a2﹣3a+1=0,∴a+=3,两边平方得:(a+)2=a2++2=9,即a2+=7,则原式=(a+)(a﹣)2=3(a2+﹣2)=15.故答案为:15.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.【点评】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第三象限.【考点】一次函数与一元一次不等式.【分析】根据关于x的一元一次不等式组有解即可得到b的范围,即可判断直线经过的象限.【解答】解:根据题意得:b+2<3b﹣2,解得:b>2.当b>2时,直线经过第一、二、四象限,不过第三象限.故填:三.【点评】根据不等式组的解集的确定方法首先确定b的范围是解决本题的关键.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.【考点】相似三角形的判定与性质;梯形.【分析】在梯形ABCD中,由于AD∥BC,于是得到△ADO∽△BCO,求出,即可得到结论.【解答】解:在梯形ABCD中,∵AD ∥BC ,∴△ADO ∽△BCO ,∴,∴,∴==,故答案为:【点评】本题考查了梯形的性质,相似三角形的判定和性质,知道等高三角形的面积的比等于底的比是解题的关键.25.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 ﹣1 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N 的运动过程中A ′在以M 为圆心、AD 为直径的圆上的弧AD 上运动,当A ′C取最小值时,由两点之间线段最短知此时M 、A ′、C 三点共线,得出A ′的位置,进而利用锐角三角函数关系求出A ′C 的长即可.【解答】解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM ×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【考点】根与系数的关系;根的判别式;勾股定理;矩形的性质.【分析】(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.【点评】解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?【考点】分式方程的应用.【分析】(1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得:=+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.则x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元【点评】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.【考点】相似三角形的判定与性质;根的判别式.【专题】综合题;分类讨论.【分析】(1)由于EF∥x轴,则S△PEF=EF•OE.t=15时,OE=15,关键是求EF.易证△BEF∽△BOA,则,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴当t=15时,OE=BE=15,OA=40,OB=30,∴∴S△PEF=EF•OE=(平方单位)(2)∵△BEF∽△BOA,∴∴整理,得t2﹣30t+240=0∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于160(平方单位)的t值(3)当∠EPO=∠BAO时,△EOP∽△BOA∴,即解得,t=12当∠EPO=∠ABO时,△EOP∽△AOB∴,即解得,∴当t=12或时,△EOP∽△BOA【点评】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。

北京市通州区2016-2017学年八年级上期末数学试题及答案.

北京市通州区2016-2017学年八年级上期末数学试题及答案.

北京市通州区初二数学期末检测测试卷2017年1月考生须知:1.本检测试卷共4页,三道大题,26道小题,满分100分.2.检测时间为90分钟,请用蓝色或黑色钢笔、碳素笔在答题卡上作答.3.本检测完毕后,请你将试卷、答题卡一并交回.一、 选择题:(共10个小题,每小题3分,共30分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题后的括号内.1. 下列标志是轴对称图形的是 ( )A .B .C .D .2. 如果分式32x x -+的值为0,则x 的值是 ( ) A .3x ≠ B .2x ≠- C .3x = D . 2x =-3. 下列运算正确的是 ( )A .326x x x = B .y x yx y x +=++22 C .y x y x =++33 D .1-=-+-y x y x 4. 下列所给的事件中,是必然事件的是( )A .一个标准大气压下,水加热到100°C 时会沸腾B .买一注福利彩票会中奖C .连续4次投掷质地均匀的硬币,4次均硬币正面朝上D .掷两枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后朝上的面的点数之和为105. 下列说法正确的是 ( )A .三角形的中线所在直线是这个三角形的对称轴B .三角形的中线把三角形分成面积相等的两个三角形C .三角形的角平分线所在直线是这个三角形的对称轴D .三角形的角平分线把三角形分成面积相等的两个三角形6. 若x 21-有意义,则x 应满足的条件是( )A .21=x B .21<x C .21≤x D .21≥x7. 下列各选项中,线段的长度能组成直角三角形的是 ( )A .2,3,4B .1,2,3C .2,3,5D .3,5,68. 在猜商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的四张卡片中任意拿走一张,使剩下的三张卡片上的数字从左到右连成一个三位数,该数就是他猜的价格.假如参与者可以猜中商品的价格,就可以免费拿走该商品.若商品的价格是360元,那么他能免费拿走商品的可能性大小是 ( )A .1B .43C .31 D .419. 下列说法中一定正确的是( )A .底边相等的两个等腰三角形是全等三角形B .斜边相等的两个直角三角形是全等三角形C .两个等边三角形是全等三角形D .斜边相等的两个等腰直角三角形是全等三角形10. 如图,现有一张边长大于4cm 的正方形纸片,从距离四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分. 中间阴影部分的面积一定是 ( )A .4cm 2B .8 cm 2C .16 cm 2D .32 cm 2二、填空题(共6个小题,每小题3分,共18分) 11. 计算:=----33233x x x . 12. 计算:=-2)3(π .13. 如图,已知DCB ABC ∠=∠,请你添加一个条件....,使得 DCB ABC ≌△△.你添加的条件是 .14. 等腰三角形中一条边的长是1,另一条边的长是3,则这个三角形的周长是 .15. 如图,ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,连接BD .若8=AC ,4=BC ,则线段CD 的长为 . 16. 如图,已知AOB ∠.小明按如下步骤作图:① 以点O 为圆心,任意长为半径画弧,交OA 于点D ,交OB 于点E . ② 分别以D ,E 为圆心,大于DE 21长为半径画弧,在AOB ∠的内部两弧交于点C . ③ 画射线OC .所以射线OC 为所求AOB ∠的平分线.根据上述作图步骤,小明的作图依据是 .二、 解答题:(共52分,17~25题5分,26题7分)17. 计算: ⎪⎪⎭⎫⎝⎛--32512 18. 化简:aa a --+24219. 已知:如图, D 是AC 上一点,DA AB =,DE AB ∥,DAE B ∠=∠. 求证:AE BC =.20. 解方程:01112=--++x x x .21. 已知:()02532=-+-++z y x ,求代数式xzy -+2的值.22. 已知:如图,在ABC △中,BC AB =,D 是BC 上一点,且AC AD BD ==,求B∠的度数.23. 先化简,再求值:如果2-=x ,请你求出代数式xx x x x x 2121122-÷----+ 的值. 24. 已知:如图,E 是BC 中点,线段AC ,BD 相交于点O ,线段ED 与AC 交于点F ,AE 与BD 交于点G .若C B ∠=∠,A D ∠=∠,FEC GEB ∠=∠.请你在不添加其他线段的情况下,写出图中所有的全等三角形,并选择一对你喜欢的全等三角形进行证明.25. 为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.B26. 在等边△ABC 的外侧作直线AM ,若点B 关于直线AM 的对称点为D ,连结BD 、CD .直线AM 与线段CD 所在直线交于点E .(1) 依题意,在图1中完成作图,并求出BDC ∠的度数; (2) 如果直线AM 的位置如图2所示,求BEC ∠的度数; (3) 当直线AM 与线段AB 的夹角发生改变时,若EC DE 21=,请直接写出线段DC 与线段BC 之间的数量关系.图1 图2备用图 备用图通州区初二第一学期数学期末检测测试卷标准答案2017年1月三、 选择题:(共10个小题,每小题3分,共30分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在四、 填空题(每题3分,共18分) 11. 2-; 12.3-π;13. BA CD =,D A ∠=∠,ACB DBC ∠=∠,ACD DBA ∠=∠; 14. 7; 15. 3;16. 1)三边对应相等的两个三角形全等;全等三角形对应角相等----------- 3分;【其他合理答案酌情给分】五、 解答题:(共52分,17~25题5分,26题7分) 17.⎪⎪⎭⎫⎝⎛--32512 解:原式32532+-= ---------------------------------------------------- 3分; 21033-= ---------------------------------------------------- 5分; 18. 方法一:aa a --+242解:原式()2+-=a a ---------------------------------------------------- 4分;2-= ---------------------------------------------------- 5分;方法二: aa a --+242解:原式aa a a --+-=24222 -------------------------------------------------- 3分;aa --=242 -------------------------------------------------- 4分; 2-= -------------------------------------------------- 5分; 19. 解:∵DE AB ∥∴ADE BAC ∠=∠ -------------------------------------------------- 1分;∴在ADE △与BAC △中⎪⎩⎪⎨⎧∠=∠=∠=∠B DAE ABDA BAC ADE -------------------------------------------------- 3分; ∴()ASA BAC ADE ≌△△ -------------------------------------------------- 4分; ∴BC AE = -------------------------------------------------- 5分; 20. 方法一:01112=--++x x x 解:()()()()111112=-+++-x x x x x 112222=-++-x xx x 12322-=-+x x x ------------------------------------------------- 3分;13=x31=x ------------------------------------------------- 4分; 经检验,31=x 是原分式方程的解 ∴原方程的解为31=x ---------------------------------------------------- 5分; 方法2:01112=--++x x x . 解:0111112=-+-++x x -------------------------------------------------- 2分;1112--=+x x ()()112+-=-x x -------------------------------------------------- 3分; 122--=-x x31=x --------------------------------------------------- 4分; 经检验,31=x 是原分式方程的解 ∴原方程的解为31=x --------------------------------------------------- 5分; 【其他解法略】 21.解: ∵03≥+x ,05≥-y ,()022≥-z 且()02532=-+-++z y x -- 1分;∴03=+x ,05=-y ,()022=-z ---------------------------------------- 2分;∴03=+x ,05=-y ,02=-z∴3-=x ,5=y ,2=z ------------------------------------------- 4分; ∴当3-=x ,5=y ,2=z 时()5732252=--+=-+x z y ----------------------------------------- 5分; 22. 解:设︒=∠x B ∵AD BD =∴︒=∠=∠x B BAD ----------------------------------------------- 1分 ∵ADC ∠为ABD △外角∴︒=∠+∠=∠x BAD B ADC 2 ------------------------------------------------ 2分 又∵AC AD =∴︒=∠=∠x ADC C 2 -------------------------------------------------- 3分 ∵BC AB =∴︒=∠=∠x C BAC 2 --------------------------------------------------- 4分 ∴在ABC △中,︒=︒=∠+∠+∠1805x C B BAC∴︒=︒=∠36x B --------------------------------------------------- 5分23. 解:原式2121122-⋅----+=x xx x x x 11122---+=x x x x ------------------------------------------------- 1分 ()11122-+-+=x x x x 11222---+=x x x x -------------------------------------------------- 3分11112+-=--=x x x ---------------------------------------------------- 4分 ∴当2-=x 时原式=1 ---------------------------------------------------- 5分【若学生不经过化简,将数值直接代入原式,若最终答案正确,给2分;否则不给分】24. 1)ECF EBG ≌△△;ECA EBD ≌△△;AOG DOF ≌△△;AFE DGE ≌△△写出任意两个给1分,写出任意三个给2分,写出全部4个给3分2)以证明ECA EBD ≌△△为例,其他证明参照该过程给分 ∵点E 为线段BC 中点∴EC BE = -------------------------------------- 4分 ∴在EBD △与ECA △中⎪⎩⎪⎨⎧=∠=∠∠=∠EC EB C B A D ∴)(AAS ECA EBD ≌△△ ---------------------------------------------------- 5分;25. 解:设原计划平均每天铺设排污管道的长度为x 米.--------------------------- 1分()2%10122002200=+-x x ------------------- ------- 3分 21.122002200=-x x 解得:100=x --------------------------------------------------- 4分经检验,100=x 是原分式方程的解,且符合实际意义.答:原计划平均每天铺设排污管道的长度为100米. ---------------- 5分 26. (1)完成作图 ----------------------------------------------------------------------- 1分 证明:连接AD∵点B ,D 关于直线AE 对称 ∴AD AB =又∵ABC △是等边三角形 ∴AC AB =∴AC AD AB == -------------------------------------------- 2分 ∴设︒=∠a BAD 2∴在BAD △中,()︒-=︒-︒=∠=∠a a ABD BDA 9022180∴在DAC △中,()︒+=∠602a DAC ∴()()︒-=︒+-︒=∠a a ADC 602602180∴()()︒=︒--︒-=∠-∠=∠306090a a ADC BDA BDC -------------------- 3分(2)证明:连接AD∵点B ,D 关于直线AE 对称∴AD AB =又∵ABC △是等边三角形∴AC AB =∴AC AD AB ==∴设︒=∠=∠a ADC ACD∴()︒-=∠=∠a ADE ABE 180∴()︒-=︒-︒=∠-∠=∠6060a a ACB ACD BCE()()︒-=︒-︒-=∠-∠=∠a a ABC EBA EBC 12060180∴在BEC △中,︒=∠+∠+∠180EBC BCE BEC∴()()︒=︒--︒--︒=∠-∠-︒=∠12012060180180a a EBC BCE BEC --- 5分(3)当点D 在直线BC 上方时:BC CD 3= ------------------- 6分;当点D 在直线BC 下方时:CD BC 7= --------------------------------- 7分.【注】学生的正确答案如果与本答案不同,请老师们参照本答案酌情给分.。

2016-2017学年八年级下学期期末质量检测数学试题及答案

2016-2017学年八年级下学期期末质量检测数学试题及答案

八年级数学期末试卷答案1—5 CDCAB 6-10 ACDCA11. (m+3)(m - 3)12. x < 313. 十二14. 50°15. 12或2016. 5√6/217. (1) a(a-b)2 (2) x=2(增根) (3) -2<x≤618.图5 图6 图719.∵ABCD为平行四边形∴A D∥BC∴∠EAO=∠FCO且AO=C O……………2′又∠AOE=∠COF(对顶角相等)……………4′∴△AO E≌△COF(ASA)………………5′∴OE=OF………………6′20.∵AD平分∠BAC,∴∠EAD=∠CAD∵DE⊥AB∴∠DEA=90︒=∠ACB………………3′又AD=AD ∴Rt△ADE≌Rt△ADC………………5′∴AE=AC………………6′又AD平分∠BAC ∴AD是CE的垂直平分线………………8′21.解:设该地驻军原来每天加固x米………………1′依题有600/x+(4800-600)∕2x =9 ………………4′解这个分式方程得x=300 ………………7′答:该地驻军原来每天加固的米数是300米。

…………8′22. (1)不彻底…………2′,(x-2)4…………4′(2)令x²-2x=y,则原式=y(y+2)+1=y²+2y+1=(y+1)²=(x²-2x+1)²=[(x-1)²]²=(x-1)4………………8′23.(1)设BC边长为a.………………1′∵△ABC为Rt△且∠BAC=30︒∴AB=2a,由勾股定理得AC=√AB²-BC² =√3 a………………2′又∵△ABE为等边三角形且EF⊥AB∴F为AB中点,AF=a,又AE=2a由勾股定理得EF=√3 a ………………4′∴AC=EF ………………………………5′(2)∵△ACD为等边三角形∴∠DAC=60︒又∠BAC=30︒∴∠DAB=90︒………………………………6′又EF⊥AB∴∠DAF=∠EFA∴AD‖EF(内错角相等,两直线平行)………………8′又由(1)知AD=EF∴ADFE是平行四边形。

2017北京通州区初二数 学(下)期末

2017北京通州区初二数    学(下)期末

2017北京通州区初二数学(下)期末2017年7月时间:90分钟,满分:100分一、选择题:(共10小题,每小题3分,共30分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题后的括号内.1. 一元二次方程的二次项系数、一次项系数及常数项分别是()A. ,,B. ,,C. ,,D. ,,2. 我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3. 如图,在菱形中,对角线、交于点.若,,则的长为()A. 1B.C. 2D.4. 某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为()A. B. C. D.5. 很多运动员为了参加北京—张家口冬季奥运会,进行了积极的训练.下表记录了国家队4名队员在500米短道速滑训练成绩的平均数与方差:队员甲队员乙队员丙队员丁平均数(秒)45 46 45 46方差(秒2) 1.5 1.5 3.5 4.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员甲B. 队员乙C. 队员丙D. 队员丁6. 若一次函数的函数值随的增大而减小,且图象与轴的负半轴相交,那么对和的符号判断正确的是()A. ,B. ,C. ,D. ,7. 若关于x的一元二次方程有两个相等的实数根,那么k的取值为()A. B. C. D. 且8. 如图所示,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是()A. B.C. D.9. 如图所示,在矩形纸片中,,为边上两点,且;,为边上两点,且.沿虚线折叠,使点落在点上,点落在点上;然后再沿虚线折叠,使落在点上,点落在点上.叠完后,剪一个直径在上的半圆,再展开,则展开后的图形为()A. B. C. D.10. 如图,在平面直角坐标系中,,,一次函数与线段有公共点,则的取值范围是()A. B. C. D.二、填空题:(共6小题,每小题3分,共18分)11. 在平面直角坐标系中,点的坐标为,则点关于轴的对称点的坐标是_______.12. 一次函数的图象如图所示,其中b =___________,k =__________ .13. 如果是一元二次方程的一个解,那么代数式的值为__________________.14. 线段是由线段平移得到的,点的对应点为,则点的对应点的坐标是_________.15. 如图,点是矩形的对角线的中点,是边的中点.若,,则线段的长为__________.16. 阅读下面材料:在数学课上,老师提出如下问题:小颖的作法如下:老师说:“小颖的作法正确.”请回答:小颖的作图依据是___________________________________________.三、解答题(共9题,17题6分,18-21题5分,22题6分,23题5分,24题7分,25题8分,共52分)17. 解下列一元二次方程:(1)(2)18. 在平面直角坐标系中,已知一次函数与相交于点,且与轴交于点.(1)求一次函数和的解析式;(2)当时,求出的取值范围.19. 已知:如图,,,,在同一直线上,且,,.求证:四边形是平行四边形.20. 已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.21. 生产某电器,原来每件的成本是300元,由于技术革新,连续两次降低成本,现在的成本是192元。

2016-2017学年八年级数学下册期末综合练习(二)及答案

2016-2017学年八年级数学下册期末综合练习(二)及答案

2016-2017学年八年级数学下册期末综合练习(二)姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A.a+a=2a B.a6÷a3=a2C.+=D.(a﹣b)2=a2﹣b2 2.下列四组数据中,不能作为直角三角形的三边长是()A.3,4,5 B.3,5,7 C.5,12,13 D.6,8,103.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A.B.C.D.4.在九龙坡区中学生初中组篮球比赛中,我校篮球队取得了全区第一名的好成绩,为了参加此次比赛,校篮球队准备购买10双运动鞋,各种尺码的统计如表所示,则这10双运动鞋尺码的众数和中位数分别为()尺码/厘米25 25.5 26 26.5 27购买量/双 2 4 2 1 1 A.25.5 26 B.26 25.5 C.26 26 D.25.5 25.55.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直6.与不是同类二次根式的是()A.B.C.D.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=288.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.(第8题) (第9题) (第13题)9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<310.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2 D.2+2二、填空题(本大题共8小题,每小题3分,共24分)11.若多边形的每一个内角均为135°,则这个多边形的边数为.12.两组数据:3,a ,2b , 5与a ,6 ,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________________________.13.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=.14.如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.(第14题) (第15题) (第18题)15.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是.16.设a,b是方程x2+x﹣9=0的两个实数根,则a2+2a+b的值为.17.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.18.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为个.三、解答题(本大题共8小题,共66分)19.解方程:(x﹣1)2﹣2(x﹣1)=0.20.计算:+4×+(﹣1).21.已知a=8,求2a2•﹣﹣的值.22.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分 数 段 频数 频率 60≤x <70 9 a 70≤x <80 36 0.4 80≤x <90 27 b 90≤x ≤100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a = ,b = ,c = ; (2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?23.如图,□ABCD 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.AD BCFE O24.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?25.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=C D.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)26.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.答案解析一、选择题1.分析:根据合并同类项、同底数幂的除法、二次根式的化简、完全平方公式解答.解:A.a+a=(1+1)a=2a,故本选项正确;B、a6÷a3=a6﹣3≠a2,故本选项错误;C、+=2+=3≠,故本选项错误;D、(a﹣b)2=a2+2ab+b2≠a2﹣b2,故本选项错误.故选A.2.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A.∵32+42=52,∴此三角形为直角三角形,故选项错误;B、∵32+52≠72,∴此三角形不是直角三角形,故选项正确;C、∵52+122=132,∴此三角形为直角三角形,故选项错误;D、∵62+82=102,∴此三角形为直角三角形,故选项错误.故选B.3.分析:由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.4.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中尺码为25.5的最多,有4双,故众数是25.5;排序后处于中间位置的那个数是25.5,25.5,那么由中位数的定义可知,这组数据的中位数是25.5;故选:D.5.分析:由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.6.分析:根据同类二次根式的意义,将题中的根式化简,找到被开方数相同者即可.解:=A.=与被开方数不同,不是同类二次根式;B、=与被开方数相同,是同类二次根式;C、=与被开方数相同,是同类二次根式;D、=与被开方数相同,是同类二次根式.故选:A.7.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.8.分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.9.分析:先求出方程的解,再求出的范围,最后即可得出答案.解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.10.分析:要求△BDE周长的最小值,就要求DE+BE的最小值.根据勾股定理即可得.解:过点B作BO⊥AC于O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小.连接CB′,易证CB′⊥BC,根据勾股定理可得DB′==2,则△BDE周长的最小值为2+2.故选C.二、填空题11.分析:先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.12.分析:由题意得,解得,∴这组新数据是3,4,5,6,8,8,8,其中位数是6.解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.13.分析:根据三角形的中位线定理得到DE=BC,即可得到答案.解:∵D、E分别是边AB、AC的中点,BC=8,∴DE=BC=4.故答案为:4.14.分析:由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去).故答案为:.15.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故答案为:.16.分析:由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.解答:解:∵a是方程x2+x﹣9=0的根,∴a2+a=9;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=9+(﹣1)=8.故答案为:8.17.分析:利用二次方根式的被开方数是非负数求得a=2;然后将a=2代入已知等式中求得b=﹣1;最后利用新定义运算法则知2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1.解:∵,∴a=2,∴由,得2b=,解得,b=﹣1,∵X*Y=aX+bY,∴2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1;故答案是1.18.分析:连接BG,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBG=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余交相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.解:连接BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴EH=AB,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1+∠EBH=90°,∠EBH+∠4=90°,∴∠1=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.则与∠BEG相等的角有3个.故答案为:3.三、解答题19.分析:本题可以运用因式分解法解方程.因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.解答:解:(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.20.分析:原式第一项利用二次根式性质化简,第二项利用立方根定义化简,最后一项利用单项式乘以多项式法则计算,即可得到结果.解:原式=10+4×(﹣)+2﹣=10﹣2+2﹣=10﹣.21.分析:由a=8>0,首先把原式子通过开方运算、分母有理化进行化简,合并同类二次根式,然后把a的值代入求值即可.解:∵a=8>0,∴原式=2a2•﹣a﹣=2a﹣a﹣===16.22.分析:(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400, 即“优秀”等次的学生约有400人.23.分析:(1)先证出OE =OF ,再由SAS 即可证明△BOE ≌△DOF ;(2)由对角线互相平分证出四边形EBFD 是平行四边形,再由对角线相等,即可得出四边形EBFD 是矩形.解答:(1)证明:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC∵AE =CF∴AO -AE =OC -CF即:OE =OF在△BOE 和△DOF 中,OB OD BOE DOFOE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS );(2)矩形.理由:∵△BOE ≌△DOF ,∴BE =DF ,∠BEO =∠DFO ,∴BE ∥DF ,∴四边形EBFD 为平行四边形.∵BD =EF ,∴平行四边形EBFD 为矩形.24.分析: (1)等量关系为:2013年教育经费的投入×(1+增长率)2=2015年教育经费的投入,把相关数值代入求解即可;(2)2016年该区教育经费=2015年教育经费的投入×(1+增长率).解:(1)2013年教育经费:40000×15%=6000(万元)设每年平均增长的百分率为x,根据题意得:6000(1+x)2=7260,(1+x)2=1.21,∵1+x>0,∴1+x=1.1,x=10%.答:该县这两年教育经费平均增长率为10%;(2)2016年该县教育经费为:7260×(1+10%)=7986(万元),∵7986>8000,∴2016年教育经费不会达到8000万元.25.分析:(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=C D.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′26.分析:(1)可把正方形分割为四个全等的正方形,作出这些正方形的对角线,把装置放在交点处,交点到其余各个小正方形顶点的距离相等通过计算看是否适合;(2)由(1)得到启示,把正方形分割为三个长方形,左边的一个矩形的对角线能辐射的最大直径为31,看能否把三个装置放在三个长方形的对角线的交点处.解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求;(2)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=O C.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.。

北京西城区2016-2017学年八年级下册期末模拟数学试卷(含答案)

北京西城区2016-2017学年八年级下册期末模拟数学试卷(含答案)

北京西城区2016-2017学年八年级下册期末模拟数学试卷一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.938.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.4812.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=014.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树棵.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.22.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班90二班87.680(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y 关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.北京西城区2016-2017学年八年级下册期末模拟数学试卷参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义即可求出答案.【解答】解:(A)当x﹣1<0时,此时原式无意义,故A不一定是二次根式;(B)当x<0时,此时原式无意义,故B不一定是二次根式;(D)当x2﹣2<0时,此时原式无意义,故D不一定是二次根式;故选(C)【点评】本题考查二次根式的定义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.在以下图标中,是轴对称图形的是()A.节水标志B.回收标志C.绿色食品D.环保标志【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故此选项错误;.故选C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.4.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为S甲2=0.45,S乙2=0.50,S丙2=0.55,S丁2=0.60,所以s甲2<s乙2<s丙2<s丁2,由此可得成绩最稳定的为甲.故选A.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.两条对角线相等C.一条对角线平分另一条对角线D.两组对角分别相等【分析】根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,分别进行判断即可.【解答】解:A、两组对边分别相等的四边形为平行四边形,故此选项错误;B、两条对角线互相平分的四边形为平行四边形,故此选项错误;C、一条对角线平分另一条对角线,不行,必须两条对角线互相平分的四边形为平行四边形,故此选项错误;D、两组对角分别相等的四边形为平行四边形,故此选项正确;故选:D.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.6.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,其中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的公式,套入数据即可得出结论.【解答】解:小彤这学期的体育成绩为=(20×95+30×90+50×94)=93(分).故选D.【点评】本题考查了折线统计图以及加权平均数,解题的关键是利用加权平均数的公式求出小彤这学期的体育成绩.本题属于基础题,难度不大,解决该题型题目时,熟记加权平均数的公式是解题的关键.8.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.角的边越大,角就越大【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、不在同一直线上的三点确定一个圆,真命题;B、角平分线上的点到角两边的距离相等,真命题;C、正六边形的内角和是720°,真命题;D、角的边越大,角就越大是假命题,因为角的大小与边的长短无关.故选D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.11.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.12.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣ B.k<﹣ C.k=D.k=0【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.14.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠BAD′的大小是()A.30°B.45°C.50°D.60°【分析】利用翻折变换前后图形全等,推出∠DED′=120°,得∠DAD′=60°,所以∠BAD′=30°.【解答】解:如图,∵△EDA≌△ED′A,∴∠D=∠D′=∠DAB=90°,∠DEA=∠D′EA,∵∠CED′=60°,∴∠DED′=120°,∴∠DAD′=60°,∴∠BAD′=30°.故选A.【点评】本题主要考查了翻折变换的性质、矩形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.15.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④正确.综上即可得出结论.【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.【点评】本题考查了一次函数的应用,观察函数图象结合数量关系逐一分析四个说法的正误是解题的关键.16.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C.AB D.AC【分析】如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.由三角形中位线的性质得到EF=AE.则由平行线的性质和邻补角的定义得到∠DEF=∠BFC=90°﹣∠C,即∠FBC=∠BFC,等角对等边得到BC=FC,故BC+2AE=AC.【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选B.【点评】本题考查了三角形中位线定理和等腰三角形的判定与性质.三角形的中位线平行于第三边且等于第三边的一半.二.填空题(共4小题,满分12分,每小题3分)17.若式子有意义,则x的取值范围是x.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,解得:x<,故答案为:x,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.18.下面三个命题:①若是方程组的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【分析】①根据方程组的解的定义,把代入,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把代入,得,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.19.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树4棵.【分析】利用加权平均数的计算公式进行计算即可.【解答】解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4.【点评】本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,难度不大.20.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三.解答题(共6小题,满分60分)21.(12分)计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(8分)(2017•台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.23.(8分)罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、79分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班87.69090二班87.680100(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【分析】(1)利用总人数减去A、B、D等级的人数即可得出C等级的人数.(2)根据平均数、众数、中位数的定义即可求出答案.(3)根据平均数、众数、中位数进行分析即可.【解答】(1)一班中C级的有25﹣6﹣12﹣5=2人,如图所示:(2)一班的平均数为:a=(6×100+12×90+2×80+70×5)÷25=87.6;一班的中位数为:b=90;一班的众数为:c=100;(3)①从平均数和中位数的角度来比较一班的成绩更好;②从平均数和众数的角度来比较二班的成绩更好;③从B级以上(包括B级)的人数的角度来比较一班的成绩更好﹣(只回答一个即可)故答案为:(2)87.6;90;100【点评】本题考查统计问题,涉及统计学相关公式,中位数、平均数和众数等知识,属于中等题型.24.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.25.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.26.(12分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y 关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x 之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x﹣30)=1.5x﹣18;③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣0.6m ﹣18.∴y=;(3)由题意,得①当50≤m≤60时,则人均面积为50平方米没有超过m,所以应缴纳的房款:y=1.5x﹣18=1.5×50﹣18=57(舍);②当45≤m<50时,则人均面积为50平方米超过m,则y=2.1x﹣0.6m﹣18=2.1×50﹣0.6m﹣18=87﹣0.6m,∵57<y≤60,∴57<87﹣0.6m≤60解得45≤m<50.综上,45≤m<50.【点评】本题考查了房款=房屋单价×购房面积在实际生活中的运用,求分段函数的解析式的运用,建立不等式组求解的运用,解答本题时求出函数的解析式是关键.。

北京市朝阳区2016-2017学年八年级下学期期末考试数学试题(含答案)

北京市朝阳区2016-2017学年八年级下学期期末考试数学试题(含答案)

北京市朝阳区2016~2017学年度第二学期期末检测八年级数学试卷2017. 7(考试时间90分钟 满分100分)一、选择题(每小题3分,共30分)第1-10题均有四个选项,其中符合题意的选项只有..一个 1.用配方法解一元二次方程x 2-8x -1=0,此方程可化为的正确形式是( )A .(x -4)2=17B .(x -4)2=15C .(x +4)2=15D .(x +4)2=17 2.如图,菱形花坛ABCD 的面积为12平方米,其中沿对角线AC 修建的小路长为4米,则沿对角线BD 修建的小路长为( )A .3米B .6米C .8米D .10米第2题 第3题3.小楠所在社会实践活动小组的同学们响应“垃圾分类,从我做起”的号召,主动到附近的7个社区宣传垃圾分类.她们记录的各社区参加活动的人数如图所示,那么这组数据的众数和中位数分别是( ) A .42,40B .42,38C .2,40D .2,384.如图,在我海军某次海上编队演习中,两艘航母护卫舰从同一港口O 同时出发,1号舰沿南偏东30°方向以12节(1节=1海里/小时)的速度 航行,2号舰以16节的速度航行,离开港口1.5小时后它 们分别到达A ,B 两点且相距30海里,则2号舰的航行方 向是( )A .北偏西30°B .南偏西30°C .南偏东60°D .南偏西60°5. 图象过点(0,0)且y随x的增大而减小的函数表达式为()A.y=x B.y=-x C.y=x+1 D.y=-x-16. 如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD,若AC=2,则四边形OCED的周长为()A.16 B.8C.4 D.27.北京国际长跑节已经成为这座城市体育文化的新名片,小斌参加了2017年的北京半程马拉松比赛,如果小斌想要知道自己的成绩是否超过一半选手,他需要了解所有参赛选手成绩的相关统计量是()A.方差B.平均数C.众数D.中位数8.如图,在正方形ABCD中,E是CD上的点,若BE=3,CE=1,则正方形ABCD的对角线的长为()A.84B.2C.6D.49.在平面直角坐标系中,过点(3,-1)的直线l经过一、二、四象限,若点(m,-2),(0,n)都在直线l上,则下列判断正确的是()A.m<0B.m >3 C.n<-1 D.n=010.如图,△ABC中,AC=BC=13,把△ABC放在平面直角坐标系xOy中,且点A,B的坐标分别为(2,0),(12,0),将△ABC沿x轴向左平移,当点C落在直线y=-x+8上时,线段AC扫过的面积为()A.66B.108C.132D.162二、填空题(每小题3分,共18分)11.城市绿道串连起绿地、公园、人行步道和自行车道,改善了城市慢行交通的环境,引导市民绿色出行. 截至2016年底某市城市绿道达2000公里,该市人均绿道长度y (单位:公里)随人口数x 的变化而变化,指出这个问题中的所有变量 . 12.根据特殊四边形的定义,在下图的括号内填写相应的内容:13.某校开展“快乐阅读”活动,倡导利用课余时间阅读纸质书籍.该学校共有300名学生,随机调查了其中30名学生在活动开展的一年里阅读纸质书籍的数量,将收集的数据进行了整理,绘制的统计表如下:请你估计该学校这一年里平均每名学生阅读纸质书籍的数量是 本(结果保留整数). 14. 用硬纸板剪一个平行四边形ABCD ,作出它的对角线的交点O ,我们可以做如下操作:用大头针把一根平放在平行四边形上的直细木条固定在 点O 处,并使细木条可以绕点O 转动,拨动细木条, 它可以停留在任意位置. 如果设细木条与一组对边AB , CD 的交点分别为点E ,F ,则下列结论:①OE=OF ; ②AE=CF ;③BE=DF ;④△AOE ≌△COF ,一定成立 的是 (填写序号即可).15. 根据物理学规律,如果把一个物体从地面以10(m/s )的速度竖直上抛(如图所示),那么物体经过x s 离地面的高度(单位:m )为29.410x x . 根据上述规律,该物体落回地面所需要的时间x 约为 s (结果保留整数).16.阅读下列材料:如图1,在线段AB 上找一点C (AC > BC ),若BC : AC = AC : AB ,则称点C 为线段AB 的黄金分割点,这时比值为618.0215≈-,人们把215-称为黄金分割数.长期以来,很多人都认为黄金分割数是一个很特别的数,我国著名数学家华罗庚先生所推广的优选法中,就有一种0.618法应用了黄金分割数.我们可以这样作图找到已知线段的黄金分割点:如图2,在数轴上点O 表示数0,点E 表示数2,过点E 作EF ⊥OE OE ,连接OF ;以F 为圆心,EF 为半径作弧,交OF 于H ;再以O 为圆心,OH 为半径作弧,交OE 于点P ,则点P 就是线段OE 的黄金分割点.图1 图2三、解答题(17-22题每小题5分,23-24题每小题7分,25题8分,共52分) 17.(本小题5分)解一元二次方程 2x 2+3x-1=0.18.(本小题5分)如图,矩形ABCD 中,AB =8,AD =12,E 为AD 中点,F 为CD 边上任意一点,G ,H 分别为EF ,BF 中点,求GH 的长.关于x 的一元二次方程x 2+2(k ﹣1)x +k 2﹣1=0有两个不相等的实数根. (1)求k 的取值范围;(2)写出一个满足条件的k 值,并求此时方程的根.20.(本小题5分)如图,等边三角形ABC 中, D ,E 分别是AB ,AC 的中点,延长BC 至点F ,使CF =21BC ,连接DE ,CD ,EF .(1)求证:四边形DCFE 是平行四边形;(2)若等边三角形ABC 的边长为a ,写出求EF 长的思路.21.(本小题5分)“一带一路”战略为民营快递企业转变为跨境物流商提供了机遇.也让国民可以足不出户地买到世界各国的商品.小丝购买了一些物品,并了解到两家快递公司的收费方式.甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x 千克,甲、乙公司快递该物品的 费用分别为y 甲,y 乙.(1)写出y 乙与x 的函数表达式;(2)图中给出了y 甲与x 的函数图象,请在图中画出(1)中的函数图象;(3)小丝需要快递的物品重量为4千克,如果想节省快递费用,结合图象指出,应选择的快递公是 .2017年5月18日“北京第9届月季文化节”拉开帷幕,月季花已经成为北京绿化美化的“当家花旦”,月季“花墙”成为了北京城市一道靓丽的风景线. 近几十年,园林技术人员一直在开展月季花的培育和驯化研究,其中一些品种的月季花的花朵大小是技术人员关心的问题,技术人员在条件相同的试验环境下,对两个试验田的月季花随机抽取了15朵,并把抽样花朵的直径数据整理记录如下:表1 甲试验田花朵的直径统计表表2 乙试验田花朵的直径统计表回答下列问题:(1)若将花朵的直径不小于10(单位:cm )的月季花记为优良品种,完成下表:(2)根据以上数据,你认为技术人员应选用哪个试验田的月季花?说明理由.23.(本小题7分)如图1,C 是线段AB 上一个定点,动点P 从点A 出发向点B 匀速移动,动点Q 从点B 出发向点C 匀速移动,点P ,Q 同时出发,移动时间记为x (s ),点P 与点C 的距离记为y 1(cm ),点Q 与点C 的距离记为y 2(cm ). y 1、y 2与x 的关系如图2所示. (1)线段AB 的长为 cm ;(2)求点P 出发3秒后y 1与x 之间的函数关系式;(3)当P ,Q 两点相遇时,x= s .图2图1如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C,O,A都不重合),过点A,C分别向直线BM作垂线段,垂足分别为E,F,连接OE,OF.(1)①依据题意补全图形;②猜想OE与OF的数量关系为.(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.……请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是.备用图我们约定,在平面直角坐标系xOy 中,经过象限内某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“参照线”.例如,点M (1,3)的参照线有:x =1,y =3,y =x +2,y =﹣x +4(如图1).图1 图2如图2,正方形OABC 在平面直角坐标系xOy 中,点B 在第一象限,点A ,C 分别在 x 轴和y 轴上,点D (m ,n )在正方形内部.(1)直接写出点D 的所有参照线: ; (2)若A (6,0),点D 在线段OA 的垂直平分线上,且点D 有一条参照线是y =﹣x +7,则点D 的坐标是 ;(3)在(2)的条件下,点P 是AB 边上任意一点(点P 不与点A ,B 重合),连接OP ,将△OAP 沿着OP 折叠,点A 的对应点记为A ′,当点A ′在点D 的平行于坐标轴的参照线上时,写出相应的点P 的坐标 . 备用图一 备用图二北京市朝阳区2016~2017学年度第二学期期末检测八年级数学试卷参考答案及评分标准2017.7一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)三、解答题(17-22题每小题5分,23-24题每小题7分,25题8分,共52分) 17. 解:2=a ,3=b ,1-=c ,017)1(243422>=-⨯⨯-=-=∆ac b . ………………………………3分∴4173±-=x .即41731+-=x ,41732--=x . …………………5分18. 解:连接BE .………………………………………………1分∵E 为AD 中点,AD =12, ∴AE =6.∵四边形ABCD 是矩形,∴∠A =90º.……………………………………………2分 在Rt △ABE 中,AB =8,依据勾股定理 222AE AB BE +=∴BE=10. ……………………………………………4分 ∵G ,H 分别为EF ,BF 中点,∴GH=21BE =5.………………………………………5分19. 解:(1)根据题意,得[]0)1(4)1(222>---k k . ………………………………………2分解得 1<k . ……………………………3分(2)答案不惟一. 如取0=k ,此时方程为0122=--x x . …………4分解得 211+=x ,212-=x . ……………………………5分20. (1)证明:∵点D ,E 分别为AB ,AC 的中点,∴DE ∥BC ,DE=21BC . ………………………………1分 ∵CF =21BC , ∴DE=CF . 又∵DE ∥CF ,∴四边形DCFE 是平行四边形. ………………………2分(2)求解思路如下:①由四边形DCFE 是平行四边形,可得EF =DC . ②由△ABC 是等边三角形,D 为AB 的中点,可得BD =AB 21=a 21,CD ⊥AB . ③在Rt △BCD 中,BC=a ,依据勾股定理DC 长可求,即EF 长可求.………5分21. 解:(1)y 乙=7x +10. ………………2分 (2)如图所示:……………………………4分(3)甲. ……………………………5分22.(1)8. ………………………………1分 (2)乙. ………………………………………3分因为乙试验田花朵的直径较集中地分布在平均数附近,波动较小,直径大小更均匀. ………5分23.(1)27. ………………………………2分(2)设点P 出发3秒后,y 1与x 之间的函数关系式为b kx y +=1(0≠k ),观察图象可知,点P 的运动速度为每秒2cm ,由5.13227=÷,可知b kx y +=1的图象过点(13.5,21). 又因为b kx y +=1的图象过点(3,0),所以⎩⎨⎧=+=+.03,215.13b k b k ………………………………3分 解方程组得 ⎩⎨⎧-==.6,2b k ………………………………4分y 1与x 的函数关系式为621-=x y . ……………………………5分 (3)527. …………………………………………7分24. 解:(1)① 补全的图形如图所示. ……………………1分② OE =OF . …………………2分(2)法一:证明:如图,延长EO 交FC 的延长线于点N ,∵四边形ABCD 是菱形,∴AO =CO .∵AE ⊥BM ,CF ⊥BM , ∴AE ∥CF . ∴∠AEO =∠CNO . 又∵∠AOE =∠CON , ∴△AOE ≌△CON . ∴OE =ON =EN 21. …………………………4分 ∵Rt △EFN 中,O 是斜边EN 的中点, ∴OF =EN 21. …………………………5分 ∴OE =OF . ………………………………6分 法二:证明:如图,取线段AB ,BC 的中点P ,Q ,连接OP ,PE ,OQ ,QF ,∵四边形ABCD 是菱形,∴AB =BC ,AC ⊥BD . …………………3分 ∵P ,Q 是AB ,BC 的中点, ∴AB PB OP 21==, BC QB OQ 21==. ∴OP =OQ . ……………………………4分 同理,PE =QF .∵PB OP =,PB PE =,∴OBA OPA ∠=∠2,EBA EPA ∠=∠2.∴EBA OBA EPA OPA ∠+∠=∠+∠22,即OBE OPE ∠=∠2. 同理,OCF OQF ∠=∠2. ∵AC ⊥BD ,CF ⊥BM ,∴︒=∠+∠=∠+∠90OMB OCF OMB OBE . ∴OCF OBE ∠=∠.∴OQF OPE ∠=∠. ……………………………………5分 ∴△OPE ≌△OQF .∴OE =OF . …………………………6分(3))(3AE CF EF +=. ……………………………7分25.(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +n +m . ……………4分 (2)(3,4). ……………………………………………………6分(3)P 1(6,32),P 2(6,539-). ………………………………8分更多初中数学资料,初中数学试题精解 微信扫一扫,关注周老师工作室公众号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市通州区 2016-2017 学年八年级(下)期末检测卷
初二 数学 试卷
时间:90 分钟,满分:100 分.
2017 年 7 月
一、选择题:(共 10 小题,每小题 3 分,共 30 分) 在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题
后的括号内.
1. 一元二次方程2x 2 5x 4 0 的二次项系数、一次项系数及常数项分别是( )
B. x 2 65x 350 0
C. x 2 130x 1400 0
D. x 2 65x 350 0
9.如图所示,在矩形纸片 ABCD 中,E ,G 为 AB 边上两点,且 AE EG GB ;F ,H 为 CD 边上两点,且 DF FH HC .沿虚线 EF 折叠,使点 A 落在点G 上,点 D 落在点 H 上;然后 再沿虚线GH 折叠,使 B 落在点 E 上,点 C 落在点 F 上.叠完后,剪一个直径在 EF 上的半圆, 再.2
D. 2 3
4.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在 这三个过程中洗衣机内水量 y(升)与时间 x(分)之间的函数关系对应的图象大致为( )
A.
B.
C.
D.
5.很多运动员为了参加北京—张家口冬季奥运会,进行了积极的训练.下表记录了国家队 4
所以点 B 为所求.
老师说:“小颖的作法正确.”
请回答:小颖的作图依据是

三、解答题(共 9 题,17 题 6 分,18-21 题 5 分,22 题 6 分,23 题 5 分,24 题 7 分,25 题 8 分,共 52 分) 17.解下列一元二次方程:
(1) x 12 2
(2) x 2 4x 5
20.已知关于 x 的一元二次方程 x 2 2x 2k 4 0 有两个不相等的实数根. 1 求 k 的取值范围; 2 若 k 为正整数,且该方程的根都是整数,求 k 的值.
A. 2 , 5 , 4
B. 2 , 5 , 4
C. 2 , 5 , 4 D. 2 , 5 , 4
2.我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,
又是中心对称图形的是( )
A.
B.
C.
D.
3.如图,在菱形 ABCD 中,对角线 AC 、 BD 交于点O .若 ABC 60, OA 1 ,则 CD 的长为( )
6.若一次函数 y kx bk 0的函数值 y 随 x 的增大而减小,且图象与 y 轴的负半轴相交,
那么对k 和 b 的符号判断正确的是( ) A. k 0 , b 0 B. k 0 , b 0 C. k 0 , b 0 D. k 0 , b 0
7. 若关于 x 的一元二次方程kx2 6x 9 0 有两个相等的实数根,那么 k 的取值为( )
值为

14.线段CD 是由线段 AB 平移得到的,点 A1,0的对应点为C1,1,则点 B0,3的对应 点
D 的坐标是

15. 如图,点 O 是矩形 ABCD 的对角线 AC 的中点,M 是 CD 边的中点.若 AB 8 ,OM 3 ,
则线段OB 的长为

14 题图
16.阅读下面材料: 在数学课上,老师提出如下问题:
18.在平面直角坐标系 xoy 中,已知一次函数 y1 mxm 0与 y2 kx bk 0相交于点 A1,2,且 y2 kx bk 0与 y 轴交于点 B0,3.
(1)求一次函数 y1 和 y2 的解析式;
第 4 页 共 15 页
(2)当 y1 y2 0 时,求出 x 的取值范围. 19. 已知:如图, A , B ,C , D 在同一直线上,且 AB CD , AE DF , AE ∥ DF .求证:四边形 EBFC 是平行四边形.
名队员在 500 米短道速滑训练成绩的平均数 x 与方差s2 :
队员甲
队员乙
队员丙 队员丁
平均数 x (秒)
45
46
45
46
方差 s2 (秒 2)
1.5
1.5
3.5
4.5
第 1 页 共 15 页
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择
A.队员甲
B.队员乙
C.队员丙
D.队员丁
11.在平面直角坐标系中,点 A 的坐标为1,4,则点 A 关于 x 轴的对
称点的坐标是

12.一次函数 y kx b 的图象如图所示,其中 b =
,k =
.
13 . 如 果 a 是 一 元 二 次 方 程 x2 3x 3 0 的 一 个 解 , 那 么 代 数 式 2a 2 6a 8 的
A.
B.
C.
D.
10.如图,在平面直角坐标系 xoy 中, A1,1,B2,2,一次函数
y 2x b 与线段 AB 有公共点,则 b 的取值范围是( )
A. 3 b 6 C.1 b 2
B. 3 b 4 D. 2 b 1
第 2 页 共 15 页
二、填空题:(共 6 小题,每小题 3 分,共 18 分)
尺规作图:作直线外一点关于直线的对称点.
已知:如图,直线l 与直线l 外一点 A . 求作:直线外一点 A 关于直线l 的对称点 B .
15 题图
第 3 页 共 15 页
小颖的作法如下:
1
如图,在直线l 上任取点C ;
2
以点 A 为圆心, AC 长为半径作弧,交直线l 于点 D ;
3
分别以点C ,点 D 为圆心, AC 长为半径作弧,处于直线l 异侧的两弧交点为 B .
A. k 1
B. k 1
C. k 1
D. k 1且 k 0
8. 如图所示,在一幅长80cm ,宽 50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形
挂图.如果要使整幅挂图的面积是5400cm2 ,设金色纸边的宽为 xcm ,那么 x 满足的方程是
()
A. x 2 130x 1400 0
相关文档
最新文档