(完整word版)基本不等式,高考历年真题

合集下载

历年高考数学真题精选23基本不等式

历年高考数学真题精选23基本不等式

历年高考数学真题精选(按考点分类)专题23基本不等式(学生版)一.选择题(共10小题)1. (2015・湖南)若实h 满足、+七=向,则汕的最小值为()a hA・ J5 B. 2 C. 2>/2 D. 42. (2O15・上海)已知“>O・ /?>O,若“ + b = 4.则( )A. u2+b 2^最小值B.应有最小值C. 1+1有最大值D. L 】L 有最大值3. (2O15・福建)若直线- + ^ = i G/>o.fr>O )过点(1J ).则“ +人的最小值等于(a bA. 2 B・ 3 C. 4 D. 54. (2014f 重庆)若 log 4(3a + 4Z^) = log 2 yfah , WO a + b 的最小值是()A. 6 + 2a /5B. 7 4-2>/3C. 6 + 4>/3D. 7 + 4^35.(2013•山东)设正实数x, y, z 满足f 一3° + 4尸-1 = 0・则当打取得最大值时,+1--的最大值为(V z 76.7.8.9. A. 0(2O13・福建)A. [0. 2](2O12・浙江)A.癸5(2010-四川)A. 2(2010* 四川)A. 1B. 1若2l +2v =l,则x+y 的取值范围是(B. |一2, 0] C. [-2, +x)D・3D. (-x, -21若正数x , y 满足x + 3y = 5a / ,则3x + 4y 的最小值是(设">b>c>0,则2疽 +二 +B. 4C. 5D. 6ab a(a — b )- 10s・ + 25b 的最小值是(D・5H u>h>Q 9 则 u z + ——+------ab u — b )的最小值是(B. 2 C. 3 D.4B ?10. (2010*重庆)己知x>0, y>0,工+ 2)・+ 2个・=8,则x + 2),的最小值是(9 2H 2A.3B.4C.D.二.填空题(共10小题)IL(2019•上海)12・(2019・天津)ye/T,且!+2)・=3,则土的最大值为_.•X设x>0,)>0, x+2y=4,贝I]土旭m的最小值为_,13・(2018・天津)己知a,beR.且〃一%+6=0,则2"+—的最小值为____.O14.(2017•山东)若直线-+-=l(t/>0^>0)过点(1,2),则M+b的最小值为a b15.(2014*上海)若实数工,y满足.口=1,则x2+2/的最小值为16.(2013•上海)设常数〃>0,若9x+—^1+1对一切正实数a•成立,则a的取值范国x为■17.(2O13-四川)已知函数/(x)=4x+-(x>0a/>0)在人=3时取得最小值,则。

高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析1.若且(I)求的最小值;(II)是否存在,使得?并说明理由.【答案】(1)最小值为;(2)不存在a,b,使得.【解析】(1)根据题意由基本不等式可得:,得,且当时等号成立,则可得:,且当时等号成立.所以的最小值为;(2)由(1)知,,而事实上,从而不存在a,b,使得.试题解析:(1)由,得,且当时等号成立.故,且当时等号成立.所以的最小值为.(2)由(1)知,.由于,从而不存在a,b,使得.【考点】1.基本不等式的应用;2.代数式的处理2.已知点A(m,n)在直线x+2y-1=0上,则2m+4n的最小值为________.【答案】2【解析】因为点A(m,n)在直线x+2y-1=0上,所以有m+2n=1;2m+4n=2m+22n≥2=2=2,当且仅当m=2n时“=”成立.3.已知,且,成等比数列,则xy( )A.有最大值e B.有最大值C.有最小值e D.有最小值【答案】C【解析】解:因为,所以又,成等比数列,所以(当且仅当即时等号成立)所以,故选C.【考点】1、基本不等式的应用;2、对数函数的性质.4.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0B.C.2D.【答案】C【解析】∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选C.5.若2x+2y=1,则x+y的取值范围是()A.[0,2]B.[﹣2,0]C.[﹣2,+∞)D.(﹣∞,﹣2]【答案】D【解析】∵1=2x+2y≥2•(2x2y),变形为2x+y≤,即x+y≤﹣2,当且仅当x=y时取等号.则x+y的取值范围是(﹣∞,﹣2].故选D.6.设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大值是 .【答案】2【解析】设则有即的最大值为2.【考点】基本不等式7.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式8.已知正数满足,则的最小值为.【答案】9【解析】由,得,当且仅当,即,也即时等号成立,故最小值是9.【考点】基本不等式.9.若正实数满足,且恒成立,则的最大值为.【答案】1【解析】,恒成立,那么,即,所以的最大值为1.【考点】基本不等式求最值10.已知,且,则的最小值是.【答案】【解析】∵,∴==≥=,当且仅当=取等号,故最小值为.【考点】1.利用基本不等式求最值;2.转化与化归思想.11.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6【答案】C【解析】因为x>0,y>0,x+3y=5xy,所以+=1,所以(+)(3x+4y)=++++≥+2×=5,当且仅当=时,等号成立,所以选C.12.设,,若,则的最小值为A.B.6C.D.【答案】A【解析】因为,,,所以,;所以,当且仅当时,“=”成立,故答案为A.【考点】基本不等式13.在平面直角坐标系xoy中,过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长的最小值是____【答案】【解析】因为过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长,由对称性只要研究部分,设,所以,所以当且仅当时取等号.所以的最小值为.故填.【考点】1.直线与双曲线的关系.2.两点间的距离.3.基本不等式的应用.14.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.15.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.【答案】(1)k=-(2)【解析】(1)f(x)>k⇔kx2-2x+6k<0.由已知{x|x<-3,或x>-2}是其解集,得kx2-2x+6k=0的两根是-3,-2,由根与系数的关系可知(-2)+(-3)=,即k=-.(2)∵x>0,f(x)==≤=.当且仅当x=时取等号,由已知f(x)≤t对任意x>0恒成立,故t≥.即t的取值范围是.16.(-6≤a≤3)的最大值为 ().A.9B.C.3D.【答案】B【解析】由于-6≤a≤3,所以=≤,当且仅当a=-时等号成立.17.若直线ax+by+1=0(a>0,b>0)平分圆x2+y2+8x+2y+1=0,则+的最小值为________.【答案】16【解析】直线平分圆,∴直线过圆心,又圆心坐标为(-4,-1),∴-4a-b+1=0,∴4a+b=1,∴+=(4a+b) =4+++4≥16,当且仅当b=4a,即a=,b=时等号成立,∴+的最小值为16.18.在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③B.①④C.①②D.①②④【答案】C【解析】①;②【考点】1.基本不等式;2.三角函数的性质.19.设均为正数,且证明:(1);(2).【答案】(1)证明:见解析;(2)证明:见解析.【解析】(1)利用基本不等式,得到,,,利用,首先得到,得证;(2)为应用,结合求证式子的左端,应用基本不等式得到,,,同向不等式两边分别相加,即得证.试题解析:(1),,, 2分所以 4分所以 5分(2),, 7分10分【考点】基本不等式,不等式证明方法.20.已知,,则的最小值为____________.【答案】【解析】由得,当且仅当时取等号;两边平方得,,当且仅当时取等号.【考点】基本不等式求最值.21.已知函数的定义域为,则实数的取值范为 .【答案】【解析】由函数定义域可知为正数,根据均值不等式,恒成立即可.【考点】均值不等式求最值.22.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.23.设,若直线与轴相交于点,与轴相交于点,且坐标原点到直线的距离为,则的面积的最小值为A.B.2C.3D.4【答案】C【解析】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.【考点】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.24.已知正数满足,,则的取值范围是______.【答案】【解析】由,,又,得,所以,故.【考点】不等式性质,基本不等式的应用.25.设若是与的等比中项,则的最小值【答案】4【解析】根据题意,由于若是与的等比中项,则可知,则,当a=b时等号成立故答案为4.【考点】不等式的运用点评:主要是考查了均值不等式来求解最值的运用,属于中档题。

2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .62.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .123.(2019•北京)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .74.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .455.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .37.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .68.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 9.(2017•山东)已知x ,y 满足约束条件250302x y x y -+⎧⎪+⎨⎪⎩………则2z x y =+的最大值是( )A .3-B .1-C .1D .310.(2017•浙江)若x 、y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞11.(2017•北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( )A .1B .3C .5D .912.(2017•新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是() A .15-B .9-C .1D .913.(2017•新课标Ⅲ)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]14.(2017•新课标Ⅰ)设x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩………,则z x y =+的最大值为( )A .0B .1C .2D .3二.填空题(共23小题) 15.(2020•上海)不等式13x>的解集为 . 16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 . 18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 . 19.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为 .21.(2019•天津)设0x >,0y >,25x y +=的最小值为 .22.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩………则3z x y =-的最大值是 .23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .24.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 ,最大值为 .25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 . 26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 ,最大值是 .27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 .28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 .29.(2018•新课标Ⅱ)若x ,y 满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩………,则z x y =+的最大值为 .30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 . 31.(2017•上海)不等式11x x->的解集为 . 32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 .33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 . 36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .37.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 .三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 39.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +….2017-2019年高考真题“不等式”全集(含详细解析)参考答案与试题解析一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .2.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .12【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.3.(2019•北京)若x,y满足||1x y-…,且1y-…,则3x y+的最大值为() A.7-B.1C.5D.7【解答】解:由||11x yy-⎧⎨-⎩……作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选:C.4.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .45【解答】解:由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选:C .5.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 【解答】解:当1a =-时,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y -+>,2}x y +…,显然(2,1)不满足,4x y -+>,2x y +…,所以A 不正确;当4a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,44x y +>,42}x y -…,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y +>,2}x y -…,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .3【解答】解:变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图:目标函数z x y =+结果可行域的A 点时,目标函数取得最大值, 由30y x =⎧⎨=⎩可得(0,3)A ,目标函数z x y =+的最大值为:3.故选:D .7.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .6【解答】解:画出约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………表示的平面区域,如图所示;由30350x x y +=⎧⎨++=⎩解得(3,4)A -,此时直线1122y x z =-+在y 轴上的截距最大,所以目标函数2z x y =+的最大值为 3245max z =-+⨯=.故选:C .8.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2ab a a b b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 【解答】解:0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .9.(2017•山东)已知x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………则2z x y=+的最大值是()A.3-B.1-C.1D.3【解答】解:x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………的可行域如图:目标函数2z x y=+经过可行域的A时,目标函数取得最大值,由:2250yx y=⎧⎨-+=⎩解得(1,2)A-,目标函数的最大值为:1223-+⨯=.故选:D.10.(2017•浙江)若x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,则2z x y=+的取值范围是()A.[0,6]B.[0,4]C.[6,)+∞D.[4,)+∞【解答】解:x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,表示的可行域如图:目标函数2z x y=+经过C点时,函数取得最小值,由3020x yx y+-=⎧⎨-=⎩解得(2,1)C,目标函数的最小值为:4目标函数的范围是[4,)+∞.故选:D.11.(2017•北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩………,则2x y+的最大值为()A.1B.3C.5D.9【解答】解:x,y满足32xx yy x⎧⎪+⎨⎪⎩………的可行域如图:由可行域可知目标函数2z x y=+经过可行域的A时,取得最大值,由3xx y=⎧⎨=⎩,可得(3,3)A,目标函数的最大值为:3239+⨯=.故选:D.12.(2017•新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩………,则2z x y=+的最小值是()A .15-B .9-C .1D .9【解答】解:x 、y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………的可行域如图:2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是:15-. 故选:A .13.(2017•新课标Ⅲ)设x ,y 满足约束条件3260x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【解答】解:x ,y 满足约束条件32600x y x y +-⎧⎪⎨⎪⎩………的可行域如图: 目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值, 由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-, 目标函数的取值范围:[3-,2]. 故选:B .14.(2017•新课标Ⅰ)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.二.填空题(共23小题)15.(2020•上海)不等式13x>的解集为1(0,)3.【解答】解:由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 15(,)44 .【解答】解:1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<,x ∴的取值范围为15(,)44.故答案为:15(,)44.17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 6- . 【解答】解:作出不等式组002x y x y ⎧⎪⎨⎪+⎩………表示的平面区域, 由23z x y =-即23x zy -=,表示直线在y 轴上的截距的相反数的13倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-, 故答案为:6-.18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 98 .【解答】解:132y x =+…∴298y x =…;故答案为:9819.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy ++的最小值为 92.【解答】解:0x >,0y >,24x y +=, 则(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+; 0x >,0y >,24x y +=,由基本不等式有:42x y =+…, 02xy ∴<…, 552xy …, 故:5592222xy ++=…; (当且仅当22x y ==时,即:2x =,1y =时,等号成立), 故(1)(21)x y xy ++的最小值为92;故答案为:92.21.(2019•天津)设0x >,0y >,25x y +=的最小值为【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:64xyxy=当且仅当时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:22.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………则3z x y=-的最大值是9.【解答】解:由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.故答案为:9.23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【解答】解:①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元), 即有顾客需要支付14010130-=(元); ②在促销活动中,设订单总金额为m 元, 可得()80%70%m x m -⨯⨯…, 即有8mx …恒成立, 由题意可得120m …, 可得120158x =…, 则x 的最大值为15元. 故答案为:130,1524.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 3- ,最大值为 .【解答】解:由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,【解答】解:设1(A x ,1)y ,2(B x ,2)y , 1(OA x =,1)y ,2(OB x =,2)y ,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB =⨯⨯∠=, 即有60AOB ∠=︒,即三角形OAB 为等边三角形,1AB=,的几何意义为点A ,B 两点 到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行, 可设:0AB x y t ++=,(0)t >, 由圆心O到直线AB 的距离d =,可得1,解得t1=,+26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 2- ,最大值是 .【解答】解:作出x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………表示的平面区域,如图:其中(4,2)B -,(2,2)A . 设(,)3z F x y x y ==+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最小值.()4,22z F ∴=-=-最小值.可得当l 经过点A 时,目标函数z 达到最最大值:()2,28z F ==最大值. 故答案为:2-;8.27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 3 .【解答】解:画出变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………表示的平面区域如图:由2240x x y =⎧⎨-+=⎩解得(2,3)A .13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 3 . 【解答】解:作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:329.(2018•新课标Ⅱ)若x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………,则z x y=+的最大值为9.【解答】解:由x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………作出可行域如图,化目标函数z x y=+为y x z=-+,由图可知,当直线y x z=-+过A时,z取得最大值,由5230xx y=⎧⎨-+=⎩,解得(5,4)A,目标函数有最大值,为9z=.故答案为:9.30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 6 . 【解答】解:作出不等式组对应的平面区域如图: 由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=, 故答案为:631.(2017•上海)不等式11x x->的解集为 (,0)-∞ . 【解答】解:由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞, 故答案为:(,0)-∞.32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 4 .【解答】解:【解法一】a ,b R ∈,0ab >,∴4441a b ab ++2241a b ab +=144ab ab ab ab=+=…,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,即2222214a b a b ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.【解法二】a ,b R ∈,0ab >,∴44334141142222a b a b ab b a ab ab a ab ab++=+++=…, 当且仅当44414ab ab ab ⎧=⎪⎨=⎪⎩,即2222214a b ab ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.故答案为:4.33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 5- . 【解答】解:由x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………作出可行域如图,由图可知,目标函数的最优解为A , 联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -.32z x y ∴=-的最小值为31215-⨯-⨯=-.故答案为:5-.34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 30 .【解答】解:由题意可得:一年的总运费与总存储费用之和6000644240x x =⨯+⨯=…(万元).当且仅当30x =时取等号. 故答案为:30. 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 8 . 【解答】解:直线1(0,0)x ya b a b+=>>过点(1,2),则121a b +=,由12442(2)()2244448a b a b a b a b a b b a b a +=+⨯+=+++=++++=…,当且仅当4a bb a=,即12a =,1b =时,取等号,2a b ∴+的最小值为8,故答案为:8.36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数;()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则424x y y x >⎧⎪>⎨⎪⨯>⎩,即48y x <<<, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1237.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 1- . 【解答】解:由34z x y =-,得344zy x =-,作出不等式对应的可行域(阴影部分), 平移直线344z y x =-,由平移可知当直线344zy x =-, 经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值, 将B 的坐标代入34341z x y =-=-=-, 即目标函数34z x y =-的最小值为1-. 故答案为:1-.三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解答】解:由柯西不等式得2222222()(122)(22)x y z x y z ++++++…, 226x y z ++=,2224x y z ∴++… 是当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,222x y z ∴++的最小值为439.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解答】(Ⅰ)解:由已知,x ,y 满足的数学关系式为70606005530200x y x y x y x y +⎧⎪+⎪⎪⎨⎪⎪⎪⎩……………,即766062000x y x y x y x y +⎧⎪+⎪⎪-⎨⎪⎪⎪⎩…………….该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z 万,则目标函数为6025z x y =+. 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大. 又x ,y 满足约束条件,∴由图可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大. 解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +…. 【解答】证明:224a b +=,2216c d +=, 令2cos a α=,2sin b α=,4cos c β=,4sin d β=.8(cos cos sin sin )8cos()8ac bd αβαβαβ∴+=+=-….当且仅当cos()1αβ-=时取等号.因此8ac bd +….另解:由柯西不等式可得:22222()()()41664ac bd a b c d +++=⨯=…,当且仅当a bc d=时取等号.88ac bd ∴-+剟.。

不等式高考试题及答案

不等式高考试题及答案

不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。

答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。

答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。

答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。

答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。

答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。

历年高三数学高考考点之基本不等式必会题型及答案

历年高三数学高考考点之基本不等式必会题型及答案

历年高三数学高考考点之<基本不等式>必会题型及答案体验高考1.(2015·四川)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25 D.812答案 B解析 ①当m =2时,∵f (x )在[12,2]上单调递减, ∴0≤n <8,mn =2n <16.②m ≠2时,抛物线的对称轴为x =-n -8m -2. 据题意得,当m >2时,-n -8m -2≥2,即2m +n ≤12, ∵2m ·n ≤2m +n 2≤6, ∴mn ≤18,由2m =n 且2m +n =12得m =3,n =6.当m <2时,抛物线开口向下,据题意得,-n -8m -2≤12,即m +2n ≤18, ∵2n ·m ≤2n +m 2≤9, ∴mn ≤812, 由2n =m 且m +2n =18得m =9>2,故应舍去.要使得mn 取得最大值,应有m +2n =18(m <2,n >8).∴mn =(18-2n )n <(18-2×8)×8=16,综上所述,mn 的最大值为18,故选B.2.(2015·陕西)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q 答案 C解析 ∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .选C.3.(2015·天津)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.答案 4解析 log 2a ·log 2(2b )=log 2a ·(1+log 2b )≤⎝⎛⎭⎪⎫log 2a +1+log 2b 22=⎝ ⎛⎭⎪⎫log 2ab +122 =⎝ ⎛⎭⎪⎫log 28+122=4, 当且仅当log 2a =1+log 2b ,即a =2b 时,等号成立,此时a =4,b =2.4.(2016·江苏)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.答案 8解析 在△ABC 中,A +B +C =π,sin A =sin[π-(B +C )]=sin(B +C ),由已知,sin A =2sin B sin C ,∴sin(B +C )=2sin B sin C .∴sin B cos C +cos B sin C =2sin B sin C ,A ,B ,C 全为锐角,两边同时除以cos B cos C 得:tan B +tan C =2tan B tan C .又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C =tan B +tan C tan B tan C -1. ∴tan A (tan B tan C -1)=tan B +tan C .则tan A tan B tan C -tan A =tan B +tan C ,∴tan A tan B tan C =tan A +tan B +tan C=tan A +2tan B tan C ≥22tan A tan B tan C , ∴tan A tan B tan C ≥22,∴tan A tan B tan C ≥8.5.(2016·上海)设a >0,b >0.若关于x ,y 的方程组⎩⎪⎨⎪⎧ ax +y =1,x +by =1无解,则a +b 的取值范围是________.答案 (2,+∞)解析 由已知,ab =1,且a ≠b ,∴a +b >2ab =2.高考必会题型题型一 利用基本不等式求最大值、最小值1.利用基本不等式求最值的注意点(1)在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错.2.结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式.常见的转化方法有:(1)x +bx -a =x -a +bx -a +a (x >a ).(2)若a x +b y =1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝ ⎛⎭⎪⎫a x +b y ≥ma +nb +2abmn (字母均为正数).例1 (1)已知正常数a ,b 满足1a +2b=3,则(a +1)(b +2)的最小值是________. 答案 509解析 由1a +2b =3,得b +2a =3ab , ∴(a +1)(b +2)=2a +b +ab +2=4ab +2,又a >0,b >0,∴1a +2b ≥22ab ,∴ab ≥89(当且仅当b =2a 时取等号), ∴(a +1)(b +2)的最小值为4×89+2=509. (2)求函数y =x 2+7x +10x +1(x >-1)的最小值. 解 设x +1=t ,则x =t -1(t >0),∴y =t -12+7t -1+10t=t +4t+5≥2 t ·4t +5=9. 当且仅当t =4t,即t =2,且此时x =1时,取等号, ∴y min =9.点评 求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.变式训练1 已知x >0,y >0,且2x +5y =20,(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,即xy ≤10,当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧ x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2x y时等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =10 10-203,y =20-4103. ∴1x +1y 的最小值为7+2 1020. 题型二 基本不等式的综合应用例2 (1)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件答案 B 解析 平均每件产品的费用为y =800+x 28x =800x +x 8≥2 800x ×x 8=20,当且仅当800x =x 8,即x =80时取等号,所以每批应生产产品80件,才能使平均到每件产品的生产准备费用与仓储费用之和最小.(2)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由基本不等式得 3 200≥2 40x ·90y +20xy =120 xy +20xy =120 S +20S ,则S +6S -160≤0,即(S -10)·(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米.点评 基本不等式及不等式性质应用十分广泛,在最优化实际问题,平面几何问题,代数式最值等方面都要用到基本不等式,应用时一定要注意检验“三个条件”是否具备.变式训练2 (1)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是________. 答案 92 解析 圆的方程变形为(x -1)2+(y -2)2=5,由已知可得直线ax +by -6=0过圆心O (1,2),∴a +2b =6(a >0,b >0),∴6=a +2b ≥22ab ,∴ab ≤92(当且仅当a =2b 时等号成立), 故ab 的最大值为92. (2)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. ①写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;②当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 ①当0<x <80时, L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250. 当x ≥80时, L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x). ∴L (x )=⎩⎪⎨⎪⎧ -13x 2+40x -2500<x <80,1 200-x +10 000x x ≥80.②当0<x <80时,L (x )=-13x 2+40x -250. 对称轴为x =60,即当x =60时,L (x )最大=950(万元).当x ≥80时,L (x )=1 200-(x +10 000x)≤1 200-2 10 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元),综上所述,当x =100时,年获利最大.高考题型精练1.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值 eC .有最小值eD .有最小值 e答案 C解析 ∵x >1,y >1,且14ln x ,14,ln y 成等比数列,∴ln x ·ln y =14≤⎝ ⎛⎭⎪⎫ln x +ln y 22,∴ln x +ln y =ln xy ≥1⇒xy ≥e.2.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6答案 C解析 方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x5y +12y5x ≥135+125=5(当且仅当3x 5y =12y5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.方法二 由x +3y =5xy 得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y=135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15 ≥135+2 3625=5, 当且仅当y =12时等号成立, ∴3x +4y 的最小值是5.3.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1B .6C .9D .16 答案 B解析 ∵正数a ,b 满足1a +1b=1, ∴b =a a -1>0,解得a >1.同理可得b >1, ∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥2 1a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴最小值为6.故选B.4.已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3答案 B解析 因为a >0,b >0,所以由m 3a +b -3a -1b ≤0恒成立得m ≤(3a +1b )(3a +b )=10+3b a +3a b恒成立.因为3b a +3a b ≥23b a ·3a b=6, 当且仅当a =b 时等号成立,所以10+3b a +3a b≥16, 所以m ≤16,即m 的最大值为16,故选B.5.已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4答案 D解析 由2x -3=(12)y 得x +y =3, 1x +m y =13(x +y )(1x +m y) =13(1+m +y x +mx y) ≥13(1+m +2m )(当且仅当y x =mx y时取等号) ∴13(1+m +2m )=3,解得m =4,故选D. 6.已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( )A .9B .8C .4D .2答案 A解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,所以圆心为C (0,1),因为直线ax +by +c -1=0经过圆心C ,所以a ×0+b ×1+c -1=0,即b +c =1.因此4b +1c =(b +c )(4b +1c)=4c b +b c +5. 因为b ,c >0,所以4c b +b c ≥24cb ·b c=4. 当且仅当4c b =b c时等号成立. 由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 6解析 由已知得x =9-3y 1+y.方法一 (消元法)∵x >0,y >0,∴0<y <3,∴x +3y =9-3y 1+y +3y =121+y +3(y +1)-6 ≥2121+y ·3y +1-6=6,当且仅当121+y=3(y +1), 即y =1,x =3时,(x +3y )min =6.方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0,∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.8.已知三个正数a ,b ,c 成等比数列,则a +cb +b a +c 的最小值为________. 答案 52解析 由条件可知a >0,b >0,c >0,且b 2=ac ,即b =ac ,故a +c b ≥2ac b =2,令a +c b =t ,则t ≥2,所以y =t +1t在[2,+∞)上单调递增, 故其最小值为2+12=52. 9.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号),又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号),综上可知4≤x 2+4y 2≤12.10.当x ∈(0,1)时,不等式41-x ≥m -1x 恒成立,则m 的最大值为________. 答案 9解析 方法一 (函数法)由已知不等式可得 m ≤1x +41-x, 设f (x )=1x +41-x =1-x +4x x 1-x =3x +1-x 2+x ,x ∈(0,1).令t =3x +1,则x =t -13,t ∈(1,4), 则函数f (x )可转化为g (t )=t-⎝ ⎛⎭⎪⎫t -132+t -13=t -19t 2+59t -49=9t -t 2+5t -4=9-t +4t+5, 因为t ∈(1,4),所以5>t +4t≥4, 0<-(t +4t )+5≤1,9-t +4t +5≥9, 即g (t )∈[9,+∞),故m 的最大值为9.方法二 (基本不等式法)由已知不等式可得m ≤1x +41-x,因为x ∈(0,1),则1-x ∈(0,1),设y =1-x ∈(0,1),显然x +y =1.故1x +41-x =1x +4y =x +y x +4x +y y=5+(y x +4x y )≥5+2y x ·4x y=9, 当且仅当y x =4x y ,即y =23,x =13时等号成立. 所以要使不等式m ≤1x +41-x恒成立,m 的最大值为9. 11.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)设所用时间为t =130x(小时), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610, 当且仅当2 340x =13x 18, 即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解 (1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解, 等价于x >25时,a ≥150x +16x +15有解, ∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2, ∴当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。

基本不等式-高考历年真题.

基本不等式-高考历年真题.

温馨提示:高考题库为版,请按住,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。

【考点20】基本不等式2009年考题1.(2009天津高考)设0,0.a b >>1133a b a b+与的等比中项,则的最小值为( )A 8B 4C 1D 14【解析】选B. 因为333=⋅b a ,所以1=+b a ,1111()()224b a a b a b a b a b +=++=++≥+=, 当且仅当b a a b=即21==b a 时“=”成立,故选择B. 2.(2009天津高考)设yx b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为( )A.2B.23 C.1 D.21【解析】选C. 因为3log ,3log ,3b a y x y x b a ====,1)2(log log 11233=+≤=+b a ab y x.3.(2009重庆高考)已知0,0a b >>,则11ab++ )A .2B .C .4D .5【解析】选C. 因为11112222()4ab ab ab a b ab ab++≥+=+≥当且仅当11a b =, 且1ab ab=,即a b =时,取“=”号。

.5 4.(2009湖南高考)若x∈(0, 2π)则2(2π)的最小值为 .【解析】由(0,)2x π∈,知1tan 0,tan()cot 0,2tan παααα>-==>所以12tan tan()2tan 22,2tan παααα+-=+≥当且仅当2tan 2α=时取等号,即最小值是22。

答案:225.(2009湖南高考)若0x >,则2x x+的最小值为 . .5【解析】 0x >222x x⇒+≥22x x x=⇒=时取等号. 答案:226.(2009湖南高考)若0x >,则2x x+的最小值为 . 【解析】选0x >222x x ⇒+≥22x x x=⇒=. 答案:227.(2009江苏高考)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a+;如果他买进该产品的单价为n 元,则他的满意度为n n a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交易的综合满意度为12h h 现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙(1)求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙; (2)设35A B m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

不等式--历届高考真题解析版

不等式--历届高考真题解析版

不等式--历届高考真题一、单选题1.(2019·全国高考真题(文))记不等式组620x y x y +⎧⎨-≥⎩…表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④【答案】A2.(2012·全国高考真题(理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5 C .5- D .7-【答案】D3.(2017·全国高考真题(文))设x,y 满足约束条件{2x+3y −3≤02x −3y +3≥0y +3≥0 ,则z =2x +y 的最小值是( ) A .−15 B .−9 C .1 D .9【答案】A4.(2018·天津高考真题(文))(2018年天津卷文)设变量x ,y 满足约束条件{x +y ≤5,2x −y ≤4,−x +y ≤1,y ≥0, 则目标函数z =3x +5y 的最大值为 A .6 B .19 C .21 D .45 【答案】C5.(2018·全国高考真题(理))已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2} 【答案】B6.(2018·全国高考真题(理))设a =log 0.20.3,b =log 20.3,则 A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b【答案】B7.(2016·北京高考真题(理))袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多 【答案】C8.(2017·浙江高考真题)若x,y 满足约束条件x 0{x+y-30 z 2x-2y 0x y ≥≥=+≤,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞) 【答案】D9.(2017·山东高考真题(理))若a>b>0,且ab=1,则下列不等式成立的是A .()21log 2a b a a b b +<<+B . ()21log 2a b a b a b <+<+ C . ()21log 2a b a a b b +<+< D . ()21log 2a ba b a b +<+<【答案】B10.(2017·山东高考真题(文))已知x ,y 满足约束条件250{302x y x y -+≤+≥≤,则z =x +2y 的最大值是A .-3B .-1C .1D .3 【答案】D11.(2017·天津高考真题(理))已知函数()23,1,{ 2, 1.x x x f x x x x-+≤=+>设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47,216⎡⎤-⎢⎥⎣⎦ B .4739,1616⎡⎤-⎢⎥⎣⎦ C.2⎡⎤-⎣⎦ D.3916⎡⎤-⎢⎥⎣⎦【答案】A12.(2017·全国高考真题(文))设x ,y 满足约束条件{x +3y ≤3,x −y ≥1,y ≥0, 则z =x +y 的最大值为( )A .0B .1C .2D .3 【答案】D13.(2015·上海高考真题(文))下列不等式中,与不等式解集相同的是( ). A .B .C .D .【答案】B14.(2015·广东高考真题(文))若变量x ,y 满足约束条件22{04x y x y x +≤+≥≤,则23z x y=+的最大值为( ) A .10 B .8C .5D .2【答案】C15.(2015·浙江高考真题(文))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++ B .az by cx ++C .ay bz cx ++D .ay bx cz ++【答案】B16.(2015·湖南高考真题(文))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A.8π9B.827πC.24(√2−1)2πD.8(√2−1)2π【答案】A17.(2015·安徽高考真题(文))已知x,y满足约束条件0 {401x yx yy-≥+-≤≥,则的最大值是()A.-1 B.-2 C.-5 D.1【答案】A18.(2015·湖南高考真题(文))若变量x,y满足约束条件{x+y≥1y−x≤1x≤1,则z=2x−y的最小值为()A.−1B.0 C.1 D.2【答案】A19.(2015·湖南高考真题(理))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)()A .89πB .169πC .31)πD .31)π【答案】A20.(2015·四川高考真题(文)) 设实数x ,y 满足{2x +y ≤10x +2y ≤14x +y ≥6 ,则xy 的最大值为( ) A .252B .492C .12D .14【答案】A21.(2015·重庆高考真题(文))若不等式组{x +y −2≤0x +2y −2≥0x −y +2m ≥0 ,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43D .3【答案】B22.(2015·天津高考真题(文))设变量x,y 满足约束条件,则目标函数的最大值为( )A .7B .8C .9D .14【答案】C23.(2015·天津高考真题(理))(2015天津,文2)设变量x,y 满足约束条件{x +2≥0x −y +3≥02x +y −3≤0 ,则目标函数z =x +6y 的最大值为( ) A .3 B .4C .18D .40【答案】C24.(2015·山东高考真题(理))已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( ) A .3 B .2 C .-2 D .-3【答案】B25.(2015·福建高考真题(理))若变量x,y 满足约束条件{x +2y ≥0,x −y ≤0,x −2y +2≥0, 则z =2x −y的最小值等于 ( ) A .−52B .−2C .−32D .2【答案】A26.(2014·四川高考真题(理))已知F 是抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则ΔABO 与ΔAFO 面积之和的最小值是( )A .2B .3C .17√28D .√10【答案】B27.(2014·全国高考真题(文))设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5- B .3C .5-或3D .5或3-【答案】B28.(2014·山东高考真题(理))已知 x y ,满足约束条件10{230x y x y --≤--≥,当目标函数()0? 0z ax by a b =+>>,在约束条件下取到最小值22a b +的最小值为( ) A .5 B .4 CD .2【答案】B29.(2014·北京高考真题(理))若x,y满足2020x ykx yy+-≥⎧⎪-+≥⎨⎪≥⎩,且z y x=-的最小值为4-,则k的值为()A.2B.2-C.12D.12-【答案】D30.(2014·重庆高考真题(文))若的最小值是A.B.C.D.【答案】D31.(2011·广东高考真题(文))已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4【答案】B32.(2011·湖北高考真题(文))(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个【答案】B33.(2011·重庆高考真题(理))已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【答案】C34.(2011·重庆高考真题(文))(5分)(2011•重庆)若函数f(x)=x+(x>2),在x=a处取最小值,则a=()A.1+B.1+C.3 D.4【答案】C35.(2013·重庆高考真题(文))关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【答案】A36.(2011·湖北高考真题(理))已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2] B.[﹣2,3] C.[﹣3,2] D.[﹣3,3]【答案】D37.(2011·浙江高考真题(理))设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14 B.16 C.17 D.19【答案】B38.(2011·山东高考真题(文))设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11 B.10 C.9 D.8.5【答案】B39.(2012·广东高考真题(理))已知变量满足约束条件,则的最大值为()A.12 B.11 C.3 D.-1【答案】B40.(2013·浙江高考真题(文))(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2【答案】C41.(2013·湖北高考真题(文))(2013•湖北)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元【答案】C42.(2010·安徽高考真题(文))设x,y满足约束条件{2x+y−6≥0,x+2y−6≤0,y≥0,则目标函数z=x+y的最大值是A.3 B.4 C.6 D.8【答案】C43.(2013·山东高考真题(文))设正实数满足,则当zxy 取得最大值时,x+2y −z的最大值为( )A.0B.98C.2D.94【答案】C44.(2013·山东高考真题(理))设正实数x,y,z满足x2−3xy+4y2−z=0,则当取得最大值时,的最大值为( )A.0B.1C.D.3【答案】B45.(2013·全国高考真题(理))已知a>0,x,y满足约束条件1{3(3)xx yy a x≥+≤≥-,若z=2x+y的最小值为1,则a=A.B.C.1 D.2【答案】B46.(2013·安徽高考真题(理))已知一元二次不等式的解集为,则的解集为()A.B.C .{x|lg 2x >-}D .{x|lg 2x <-}【答案】D47.(2010·陕西高考真题(理))“a =18”是“对任意的正数x ,2x +ax≥1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A48.(2010·天津高考真题(文))设变量x ,y 满足约束条件{x +y ≤3,x −y ≥−1,y ≥1, 则目标函数z=4x+2y 的最大值为A .12B .10C .8D .2 【答案】B49.(2012·江西高考真题(理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 A .50,0 B .30.0C .20,30D .0,50【答案】B50.(2011·浙江高考真题(文))若实数x y 、满足不等式组250{2700,0x y x y x y +-≥+-≥≥≥,则34x y+的最小值是 A .13B .15C .20D .2851.(2010·重庆高考真题(理))已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C.92D.112【答案】B52.(2010·重庆高考真题(文))设变量满足约束条件则的最大值为A.0 B.2C.4 D.6【答案】C53.(2010·全国高考真题(文))已知Y ABCD的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在Y ABCD的内部,则z=2x-5y的取值范围是A.(-14,16)B.(-14,20)C.(-12,18)D.(-12,20)【答案】B54.(2010·浙江高考真题(理))若实数,x y满足不等式330{23010x yx yx my+-≥--≥-+≥,且x y+的最大值为9,则实数m=()A.2-B.1-C.1D.2【答案】C55.(2010·福建高考真题(文))若1,,{230xx y R x yy x≥∈-+≥≥,则2z x y=+的最小值56.(2008·江西高考真题(文))若01x y <<<,则 A .33y x < B .log 3log 3x y <C .44log log x y <D .1144x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】C57.(2008·福建高考真题(理))若实数x 、y 满足10,{0,x y x -+≤>则yx的取值范围是( ) A .(0,1) B .(]0,1C .(1,+∞)D .[)1,+∞【答案】C58.(2008·湖北高考真题(理))函数f (x )=的定义域为A .(- ∞,-4)[∪2,+ ∞]B .(-4,0) ∪(0,1)C .[-4,0]∪(0,1)]D .[-4,0∪(0,1)【答案】D59.(2008·广东高考真题(理))若变量,x y 满足则32z x y =+的最大值是 A .90 B .80 C .70 D .40【答案】C60.(2015·四川高考真题(理))如果函数f(x)=12(m −2)x 2+(n −8)x +1(m ≥0 ,n ≥0)在区间[12,2]上单调递减,则mn 的最大值为( )A .16B .18C .25D .812【答案】B61.(2014·湖北高考真题(理))由不等式组确定的平面区域记为,内的概率为( ) A .B .C .D .【答案】D62.(2011·重庆高考真题(理))设m ,k 为整数,方程mx 2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k 的最小值为( ) A .﹣8 B .8C .12D .13【答案】D63.(2010·北京高考真题(理))设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0 表示的平面区域为D ,若指数函数y=a x 的图像上存在区域D 上的点,则a 的取值范围是 A .(1,3] B .[2,3] C .(1,2] D .[ 3,+∞] 【答案】A64.(2011·全国高考真题(理))下面四个条件中,使a >b 成立的充分而不必要的条件是A .a >b +1B .a >b −1C .a 2>b 2D .a 3>b 3 【答案】A65.(2007·辽宁高考真题(理))已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,,C .(][)36-∞+∞U ,,D .[36],【答案】A66.(2009·天津高考真题(理))已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a<0 B .0<a<1C .1<a<3D .3<a<6【答案】C二、填空题67.(2019·天津高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________. 【答案】92. 68.(2019·天津高考真题(理))设0,0,25x y x y >>+=最小值为______.【答案】69.(2018·浙江高考真题)若x,y 满足约束条件{x −y ≥0,2x +y ≤6,x +y ≥2, 则z =x +3y 的最小值是___________,最大值是___________. 【答案】 -2 870.(2018·天津高考真题(文))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 【答案】1471.(2018·全国高考真题(理))若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0 ,则z =3x +2y的最大值为_____________. 【答案】672.(2017·全国高考真题(理))已知实数,x y 满足0{20 0x y x y y -≥+-≤≥,则34z x y =-最小值为________. 【答案】1-73.(2017·山东高考真题(理))已知,x y 满足30{350 30x y x y x -+≤++≤+≥,则2z x y =+的最大值是__________. 【答案】574.(2017·全国高考真题(文))设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________. 【答案】1(,)4-+∞75.(2017·天津高考真题(理))若,a b R ∈,0ab >,则4441a b ab++的最小值为___________. 【答案】476.(2017·江苏高考真题)76.(2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【答案】3077.(2017·山东高考真题(文))若直线xa+yb =1(a >0,b >0)过点(1,2),则2a+b 的最小值为______. 【答案】878.(2016·全国高考真题(文))若x,y 满足约束条件{2x −y +1≥0,x −2y −1≤0,x ≤1, 则z =2x +3y −5的最小值为_________. 【答案】−1079.(2016·全国高考真题(文))若x ,y 满足约束条件{x −y +1≥0,x +y −3≥0,x −3≤0, 则z=x−2y 的最小值为__________. 【答案】−580.(2016·上海高考真题(文))设a >0,b >0. 若关于x,y 的方程组{ax +y =1,x +by =1无解,则a +b 的取值范围是 . 【答案】(2,+∞)81.(2016·江苏高考真题)已知实数x,y 满足{x −2y +4≥0,2x +y −2≥0,3x −y −3≤0,则x 2+y 2的取值范围是 .82.(2016·上海高考真题(理))设若关于x,y 的方程组{ax +y =1,x +by =1无解,则的取值范围是____________.【答案】(2,+∞)83.(2015·浙江高考真题(文))已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .【答案】1584.(2015·山东高考真题(文))定义运算“⊗”:x ⊗y =x 2−y 2xy(x ,y ∈R,xy ≠0).当x >0,y >0时,x ⊗y +(2y)⊗x 的最小值是 . 【答案】√285.(2015·湖北高考真题(文))若变量x, y 满足约束条件{x +y ≤4,x −y ≤2,3x −y ≥0, 则3x +y 的最大值是_________. 【答案】10.86.(2015·山东高考真题(文))若x,y 满足约束条件{y −x ≤1x +y ≤3y ≥1 ,则z =x +3y 的最大值为 . 【答案】787.(2015·上海高考真题(文))若满足,则目标函数的最大值为 . 【答案】388.(2015·全国高考真题(理))若x ,y 满足约束条件{x −1≥0,x −y ≤0,x +y −4≤0, 则yx 的最大值 . 【答案】389.(2015·天津高考真题(文))已知a >0,b >0,ab =8,则当a 的值为 时log 2a ⋅log 2(2b)取得最大值. 【答案】490.(2015·浙江高考真题(理))已知函数223,1(){lg(1),1x x f x x x x +-≥=+<,则((3))f f -= ,()f x 的最小值是 .【答案】,.91.(2014·四川高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 . 【答案】592.(2014·陕西高考真题(文))设,且,则的最小值为______.93.(2014·全国高考真题(文))设函数113,1(){,1x e x f x x x -<=≥,则使得()2f x ≤成立的x的取值范围是_______________. 【答案】(,8]-∞94.(2014·湖北高考真题(文))某项研究表明,在考虑行车安全的情况下,某路段车流量(单位时间内测量点的车辆数,单位:辆/小时)与车流速度(假设车辆以相同速度行驶,单位:米/秒)平均车长(单位:米)的值有关,其公式为(1)如果不限定车型,,则最大车流量为_______辆/小时;(2)如果限定车型,,则最大车流量比(1)中的最大车流量增加 辆/小时.【答案】(1)1900;(2)10095.(2014·全国高考真题(理))设x,y 满足约束条件{x −y ≥0x +2y ≤3x −2y ≤1 ,则z =x +4y 的最大值为 . 【答案】5.96.(2014·浙江高考真题(理))当实数,x y 满足240{101x y x y x +-≤--≤≥时,14ax y ≤+≤恒成立,则实数a 的取值范围是 .【答案】31,2⎡⎤⎢⎥⎣⎦97.(2014·浙江高考真题(文))若、满足和240{101x y x y x +-≤--≤≥,则的取值范围是________. 【答案】98.(2014·辽宁高考真题(文))对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使2a b +最大时,124a b c++的最小值为________. 【答案】1-99.(2014·湖南高考真题(理))若变量满足约束条件,且的最小值为,则【答案】−2100.(2011·重庆高考真题(文))(5分)(2011•重庆)若实数a ,b ,c 满足2a +2b =2a+b ,2a +2b +2c =2a+b+c ,则c 的最大值是 . 【答案】2﹣log 23101.(2013·全国高考真题(文))若x y 、满足约束条件0,{34,34,x x y x y ≥+≥+≤则z x y =-+的最小值为 . 【答案】0.102.(2013·广东高考真题(文))已知变量,x y 满足约束条件30{111x y x y -+≥-≤≤≥,则z x y=+的最大值是 . 【答案】5103.(2008·山东高考真题(理))若不等式的解集中的整数有且仅有1,2,3,则的取值范围是104.(2008·广东高考真题(理))(不等式选讲选做题)已知,a ∈R 若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 。

基本不等式--历年高考题汇编-含详细解析

基本不等式--历年高考题汇编-含详细解析

基本不等式--历年高考题汇编一、选择题(本大题共3小题,共15.0分)1.已知过点(1,3)的直线l的倾斜角为135°,设点(x,y)是直线l在第一象限内的部分上的一点,则1x +4y的最小值是()A. 92B. 2 C. 94D. 42.已知正数x,y满足x+4y=2,则x+40y+43xy的最小值为()A. 852B. 24C. 20D. 183.设x>0、y>0、z>0,则三个数1x +4y、1y+4z、1z+4x()A. 都大于4B. 至少有一个大于4C. 至少有一个不小于4D. 至少有一个不大于4二、填空题(本大题共13小题,共65.0分)4.设x,y∈R+且1x +4y=2,则x+y的最小值为______.5.若2a+b=2(a>0,b>0),则1a +1b的最小值是______.6.函数y=x2+6x2+1的最小值是______.7.已知x>0,y>0,x+2y=1,则2x +1y的最小值为______.8.已知a>3,则4a−3+a−316的最小值为______.9.已知m+n=2,其中mn>0,则1m +1n的最小值为______.10.若正数a,b满足ab−2a−b=0,则ab的最小值为______.11.已知a+b=4,则2a+2b的最小值为______.12.设a+b=2,b>0,则14|a|+2|a|b的最小值为______.13.已知x>0,y>0,x+2y+2xy=3,则x+2y的最小值为______.14.已知x,y∈R+,求z=(x+2y)(2x +4y)的最值.甲、乙两位同学分别给出了两种不同的解法:甲:z=(x+2y)(2x+4y)=2+4x y+4y x+8≥18乙:z=(x+2y)(2x +4y)≥2√2xy⋅2√8xy=16①你认为甲、乙两人解法正确的是______.②请你给出一个类似的利用基本不等式求最值的问题,使甲、乙的解法都正确.15.已知a,b∈R,且a−2b+8=0,则2a+14b的最小值为______.16.若a,b均为正实数,则ab+ba2+b2+1的最大值为______.三、解答题(本大题共4小题,共48.0分)17.已知a,b为正整数,且a+b=1,求证:1a +1b≥4.18.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m⋅2t+21−t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.19.已知函数f(x)=m−|2−x|,且f(x+2)>0的解集为(−1,1).(1)求m的值;(2)若正实数a、b,满足a+2b=m.求1a +12b的最小值.20.已知函数f(x)=|x−1|−|x+a|(a∈N∗),f(x)≤2恒成立.(1)求a的值;(2)若正数x,y满足1x +2y=a.证明:1xy+x+12y≥√2答案和解析1.【答案】C【解析】解:过点(1,3)的直线l 的倾斜角为135°,可得直线方程:y −3=−(x −1),化为:x +y =4. 设点(x,y)是直线l 在第一象限内的部分上的一点,∴x +y =4,且x ,y >0.则1x +4y =14(x +y)(1x +4y )=14(5+y x +4x y )≥14(5+2√y x ⋅4x y )=94,当且仅当y =2x =83时取等号. 故选:C .过点(1,3)的直线l 的倾斜角为135°,可得直线方程:x +y =4.再利用“乘1法”与基本不等式的性质即可得出. 本题考查了直线方程、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.2.【答案】D【解析】解:∵正数x ,y 满足x +4y =2,12x +2y =1,∴x+40y+43xy=x+40y+2x+8y 3xy =3x+48y 3xy =x+16y xy =1y +16x , ∴1y +16x =(1y +16x )(12x +2y)=10+x 2y +32y x ≥10+2√x 2y ⋅32y x =10+8=18, 当且仅当x 2y =32y x 时,x =43,y =16 故x+40y+43xy 的最小值为18,故选:D .由题意可得x+40y+43xy =1y +16x ,再利用乘“1”法,根据基本不等式即可求出本题主要考查了基本不等式的应用,考查了转化思想和计算能力,属于中档题.3.【答案】C【解析】解:假设三个数1x +4y <4且1y +4z <4且1z +4x <4,相加得:1x+4x +1y +4y +1z +4z <12,由基本不等式得: 1x+4x ≥4;1y +4y ≥4;1z +4z ≥4; 相加得:1x +4x +1y +4y +1z +4z ≥12,与假设矛盾;所以假设不成立,三个数1x +4y 、1y +4z 、1z +4x 至少有一个不小于4.故选:C .由题意知利用反证法推出矛盾,即可得正确答案.本题考查反证法和基本不等式的应用,属于简单题.4.【答案】92【解析】解:∵x ,y ∈R +且1x +4y =2,∴x +y =12(x +y)(1x +4y) =52+2x y +y 2x ≥52+2√2x y ⋅y 2x =92 当且仅当2x y =y 2x 即x =32且y =3时取等号,∴x +y 的最小值为92故答案为:92由题意可得x +y =12(x +y)(1x +4y )=52+2x y +y 2x ,下面由基本不等式可得. 本题考查基本不等式,变形为基本不等式的情形是解决问题的关键,属基础题.5.【答案】32+√2【解析】解:2a +b =2(a >0,b >0),则1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ≥32+2√b 2a ⋅a b =32+√2, 当且仅当b 2a =a b 时,即a =2−√2,b =2√2−2时取等号,故1a +1b 的最小值是32+√2,故答案为:32+√2利用乘“1”法,可得1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ,再根据基本不等式即可求出.本题考查了基本不等式的应用,考查了转化与划归思想,属于基础题 6.【答案】2√6−1【解析】解:y =x 2+6x 2+1=x 2+1+6x 2+1−1≥2√(x 2+1)⋅6x 2+1−1=2√6−1,当且仅当x 2=√6+1时取等号, 故答案为:2√6−1.由y =x 2+6x 2+1=x 2+1+6x 2+1−1,根据基本不等式即可求出.本题考查了基本不等式的应用,属于基础题.7.【答案】8【解析】解:∵2x +1y=(x+2y)(2x+1y)=4+4yx+xy≥4+2√4yx⋅xy=8(当且仅当x=12,y=14时取等)故答案为:8先变形:2x +1y=(x+2y)(2x+1y)=4+4yx+xy,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.8.【答案】1【解析】解:∵a>3,∴a−3>0,∴4a−3+a−316≥2√4a−3⋅a−316=1,当且仅当4a−3=a−316,即a=11时取等号,故答案为:1根据基本不等式即可求出最小值.本题考查了基本不等式的应用,属于基础题.9.【答案】2【解析】解:∵m+n=2,其中mn>0,则1m +1n=12(m+n)(1m+1n)=12(2+nm+mn)≥12(2+2)=2当且仅当m=n=1时取得最小值2.故答案为:2.由已知可得,1m +1n=12(m+n)(1m+1n),利用基本不等式即可求解本题主要考查了利用基本不等式求解最值,解题关键是对应用条件的配凑,1的代换是求解条件配凑的关键10.【答案】8【解析】解:∵正数a,b满足ab−2a−b=0,∴ab=2a+b≥2√2ab,∴a2b2≥8ab,∴ab≥8.∴ab的最小值为8.故答案为:8.推导出ab=2a+b≥2√2ab,从而a2b2≥8ab,由此能求出ab的最小值.本题考查两数积的最小值的求法,考查不等式的性质等基础知识,考查运算求解能力,是基础题.11.【答案】8【解析】解:∵a+b=4,∴2a+2b≥2√2a+b=2√24=8,当且仅当a=b=2时取等号,∴2a+2b的最小值为8.故答案为:8.利用基本不等式直接求解.本题考查了基本不等式及其应用,属基础题.12.【答案】78【解析】解:a+b=2,b>0,则14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b≥a8|a|+2√b8|a|⋅2|a|b=a8|a|+1≥−18+1=78.当且仅当b8|a|=2|a|b,a<0且a+b=2即a=−23,b=83时取等号.故答案为:78.由已知可得,14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b,利用基本不等式即可求解本题主要考查了基本不等式在求解最值的应用,基本不等式条件的配凑是求解本题的难点.13.【答案】2【解析】解:考察基本不等式:x+2y=3−x⋅(2y)≥3−(x+2y2)2(当且仅当x=2y时取等号),整理得:(x+2y)2+4(x+2y)−12≥0,即:(x+2y−2)(x+2y+6)≥0,又:x+2y>0,所以:x+2y≥2(当且仅当x=2y时取等号),则:x+2y的最小值是2.故答案为:2.首先分析题目由已知x >0,y >0,x +2y +2xy =3,求x +2y 的最小值,猜想到基本不等式的用法,利用a +b ≥2√ab 代入已知条件,化简为函数求最值.此题主要考查基本不等式的用法,对于不等式a +b ≥2√ab 在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.14.【答案】甲【解析】解:①甲正确,乙解法中两次不等式中取等的条件不相同;②已知x ,y ∈R +,求z =(a +b)(1a +1b )的最小值.甲:z =(a +b)(1a +1b )=1+b a +a b +1≥4,乙:z =(a +b)(1a +1b )≥2√ab ⋅2√1a ⋅1b=4. 故填甲.乙解法中两次不等式取等条件不同,故乙错误.本题考查了基本不等式及其应用,属中档题. 15.【答案】18【解析】解:∵a −2b +8=0,则2a +14b ≥2√2a ⋅14b =2√2a−2b =2√2−8=18 当且仅当a =−2b 即b =2,a =−4时取等号,故答案为:18.由基本不等式可得,2a +14b ≥2√2a ⋅14b ,结合已知即可求解. 本题主要考查了指数的运算性质及基本不等式在求解最值中的应用,属于基础试题.16.【答案】√22【解析】解:∵a 2+12b 2≥2√a 2⋅b 22=√2ab ,当且仅当a =√22b 时取等号, 12b 2+1≥2√12b 2=√2b ,当且当且仅当b =√2时取等号, ∴ab+b a 2+b 2+1=ab+b a 2+b 22+b 22+12≤√2ab+√2b =√2=√22,当且仅当a =1,b =√2时取等号, 故ab+b a 2+b 2+1的最大值为√22, 故答案为:√22由:a2+12b2≥2√a2⋅b22=√2ab,当且仅当a=√22b时取等号,12b2+1≥2√12b2=√2b,当且当且仅当b=√2时取等号,即可求出答案.本题考查了基本不等式的应用,考查了转化思想,属于中档题.17.【答案】证明:∵a,b为正整数,且a+b=1,∴1a+1b=(1a+1b)(a+b)=2+ba +ab≥2+2√ba⋅ab=4,当且仅当ba =ab即a=b=12时取等号.【解析】由题意可得1a +1b=(1a+1b)(a+b)=2+ba+ab,由基本不等式可得.本题考查不等式的证明,涉及基本不等式求最值问题,属基础题.18.【答案】解:(1)依题意可得5=2⋅2t+21−t,即2⋅(2t)2−5⋅2t+2=0.亦即(2⋅2t−1)(2t−2)=0,又∵t≥0,得2t=2,∴t=1.故经过1分钟该物体的温度为5摄氏度.(2)问题等价于m⋅2t+21−t≥2(t≥0)恒成立.∵m⋅2t+21−t=m⋅2t+2⋅2−t≥2√2m,①∴只需2√2m≥2,即m≥12.当且仅当12⋅2t=2⋅2−t,即t=1时,①式等号成立,∴m的取值范围是[12,+∞).【解析】(1)将m=2,θ=5代入θ=m⋅2t+21−t(t≥0)解指数方程即可求出t的值;(2)问题等价于m⋅2t+21−t≥2(t≥0)恒成立,求出m⋅2t+21−t的最小值,只需最小值恒大于等于2建立关系,解之即可求出m的范围.本题主要考查了不等式的实际应用,以及恒成立问题,同时考查了转化与划归的思想,属于中档题.19.【答案】解:(1)∵f(x+2)=m−|x|∴由f(x+2)>0得|x|<m.由|x|<m有解,得m>0,且其解集为(−m,m)又不等式f(x+2)>0解集为(−1,1),故m=1;(2)由(1)知a+2b=1,又a,b是正实数,由基本不等式得1a +12b=(1a+12b)(a+2b)=1+1+2ba+a2b≥4当且仅当a=12,b=14时取等号,故1a +12b的最小值为4.【解析】(1)由f(x+2)>0得|x|<m.由|x|<m有解,得m>0,且其解集为(−m,m),根据解集为(−1,1)可得m;(2)由(1)知a+2b=1,则1a +12b=(1a+12b)(a+2b)然后利用基本不等式求解即可.本题考查了绝对值不等式的解法和基本不等式,属基础题.20.【答案】解:(1)由f(x)=|x−1|−|x+a|≤|x−1−x−a|=|a+1|,又f(x)≤2恒成立,∴|a+1|≤2,∴−3≤a≤1,∵a∈N∗,∴a=1;(2)由(1)知1x +2y=1,∴2x+y=xy,∴1xy +x+12y=1xy+12xy≥2√1xy⋅12xy=√2.【解析】(1)由f(x)=|x−1|−|x+a|≤|x−1−x−a|=|a+1|,结合已知可求a,(2)由(1)知1x +2y=1,从而有2x+y=xy,然后利用基本不等式可证.本题主要看考查了绝对值不等式的性质及基本不等式的应用,属于基础试题。

五年(2019-2023)年高考真题 平面向量、不等式及复数(解析版)

五年(2019-2023)年高考真题 平面向量、不等式及复数(解析版)

五年(2019-2023)年高考真题分项汇编专题09平面向量、不等式及复数考点精析考点一基本不等式及其应用1.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为.【解析】132yx =+,∴298y x =;故答案为:982.(2020•上海)下列不等式恒成立的是()A .222a b ab+B .222a b ab+-C .a b +D .222a b ab+-【解析】A .显然当0a <,0b >时,不等式222a b ab +不成立,故A 错误;B .2()0a b + ,2220a b ab ∴++,222a b ab ∴+-,故B 正确;C .显然当0a <,0b <时,不等式a b +不成立,故C 错误;D .显然当0a >,0b >时,不等式222a b ab +-不成立,故D 错误.故选:B .3.(2022•上海)若实数a 、b 满足0a b >>,下列不等式中恒成立的是()A .a b +>B .a b +<C .22ab +>D .22ab +<【解析】因为0a b >>,所以a b +,当且仅当a b =时取等号,又0a b >>,所以a b +>,故A 正确,B 错误,22a b +=22a b =,即4a b =时取等号,故CD 错误,故选:A .4.【多选】(2020•山东)已知0a >,0b >,且1a b +=,则()A .2212a b +B .122a b ->C .22log log 2a b +-D 【解析】①已知0a >,0b >,且1a b +=,所以222()22a b a b ++,则2212a b +,故A 正确.②利用分析法:要证122a b ->,只需证明1a b ->-即可,即1a b >-,由于0a >,0b >,且1a b +=,所以:0a >,110b -<-<,故B 正确.③22222log log log log ()22a b a b ab ++==-,故C 错误.④由于0a >,0b >,且1a b +=,利用分析法:要证成立,只需对关系式进行平方,整理得2a b ++,即1,故122a b +=,当且仅当12a b ==时,等号成立.故D 正确.故选:ABD .5.(2021•上海)已知函数()3(0)31x xaf x a =+>+的最小值为5,则a =.【解析】()3311153131x xx x a a f x =+=++--=++,所以9a =,经检验,32x =时等号成立.故答案为:9.6.【多选】(2022•新高考Ⅱ)若x ,y 满足221x y xy +-=,则()A .1x y +B .2x y +-C .222x y +D .221x y +【解析】方法一:由221x y xy +-=可得,22()12y x y -+=,令cos 2sin 2y x y θθ⎧-=⎪⎪⎪=⎪⎩,则sin cos 3x y θθθ⎧=+⎪⎪⎨⎪=⎪⎩,cos 2sin()[26x y πθθθ∴+=+=+∈-,2],故A 错,B对,222214242cos ))2cos 2sin(2)[333633x y πθθθθθθ+=++=-+=-+∈ ,2],故C 对,D 错,方法二:对于A ,B ,由221x y xy +-=可得,22()1313()2x y x y xy ++=++,即21()14x y +,2()4x y ∴+,22x y ∴-+,故A 错,B 对,对于C ,D ,由221x y xy +-=得,222212x y x y xy ++-=,222x y ∴+,故C 对;222x y xy +- ,222222223()122x y x y x y xy x y ++∴=+-++=,∴2223x y +,故D 错误.故选:BC .考点二平面向量的线性运算7.(2020•海南)在ABC ∆中,D 是AB 边上的中点,则(CB =)A .2CD CA +B .2CD CA -C .2CD CA- D .2CD CA+【解析】在ABC ∆中,D 是AB 边上的中点,则CB CD DB CD AD =+=+ ()CD AC CD =++ 2CD CA =- .故选:C .8.(2019•浙江)已知正方形ABCD 的边长为1.当每个(1i i λ=,2,3,4,5,6)取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是,最大值是.【解析】如图,建立平面直角坐标系,则(0,0)A ,(1,0)B ,(1,1)C ,(0,1)D ,∴(1,0)AB = ,(0,1)BC = ,(1,0)CD =- ,(0,1)DA =- ,(1,1)AC = ,(1,1)BD =-,123456||AB BC CD DA AC BD λλλλλλ∴+++++ 1356|(λλλλ=-+-,2456)|λλλλ-++2213562456()()λλλλλλλλ=-+-+-++,(*),(*)中第一个括号中的1λ,3λ与第二个括号中的2λ,4λ的取值互不影响,只需讨论5λ,6λ的取值情况即可,当5λ,6λ同号时,不妨取51λ=,61λ=,则(*)221324()(2)λλλλ-+-+,1λ ,2λ,3λ,4{1λ∈-,1},13λλ∴=,2422(1λλλ-=-=-,41)λ=时,(*)取得最小值0,当13||2λλ-=(如11λ=,31)λ=-,2422(1λλλ-==,41)λ=-时,(*)式取得最大值为25,当5λ,6λ异号时,不妨取51λ=,61λ=-,则(*)221224(2)()λλλλ-++-,同理可得最小值为0,最大值为25故答案为:0;59.(2020•上海)已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈ 是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是.【解析】如图,设11OA a = ,22OA a = ,由12||1a a -=,且||{1i j a b -∈ ,2},分别以1A ,2A 为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k 的最大值为6.故答案为:6.考点三平面向量的基本定理10.(2022•新高考Ⅰ)在ABC ∆中,点D 在边AB 上,2BD DA =.记CA m = ,CD n =,则(CB = )A .32m n- B .23m n-+C .32m n+ D .23m n+ 【解析】如图,1111()2222CD CA AD CA DB CA CB CD CA CB CD =+=+=+-=+- ,∴1322CB CD CA =- ,即3232CB CD CA n m =-=-.故选:B .考点四平面向量数量积的运算11.(2023•上海)已知向量(2,3)a =- ,(1,2)b = ,则a b ⋅=.【解析】 向量(2,3)a =-,(1,2)b = ,故答案为:4.12.(2021•浙江)已知非零向量a,b ,c ,则“a c b c ⋅=⋅ ”是“a b = ”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a c ⊥ 且b c ⊥ ,则0a c b c ⋅=⋅= ,但a与b 不一定相等,故a b b c ⋅=⋅ 不能推出a b = ,则“a c b c ⋅=⋅ ”是“a b =”的不充分条件;由a b = ,可得0a b -= ,则()0a b c -⋅= ,即a b b c ⋅=⋅ ,所以a b = 可以推出a b b c ⋅=⋅ ,故“a c b c ⋅=⋅ ”是“a b =”的必要条件.综上所述,“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件.故选:B .13.(2021•上海)如图正方形ABCD 的边长为3,求AB AC ⋅=.【解析】由数量积的定义,可得cos AB AC AB AC BAC ⋅=⨯⨯∠,因为cos AB AC BAC =⨯∠,所以29AB AC AB ⋅== .故答案为:9.14.(2021•新高考Ⅱ)已知向量0a b c ++= ,||1a =,||||2b c == ,则a b b c c a ⋅+⋅+⋅=.【解析】方法1:由0a b c ++= 得a b c +=- 或a c b +=- 或b c a +=-,22()()a b c ∴+=- 或22()()a c b +=- 或22()()b c a +=-,又||1a = ,||||2b c == ,524a b ∴+⋅= ,524a c +⋅=,821b c +⋅= ,∴12a b ⋅=- ,12a c ⋅=- ,72b c ⋅=- ,∴92a b a c b c ⋅+⋅+⋅=-.故答案为:92-.方法2222()||||||014492:222a b c a b c a b b c c a ++------⋅+⋅+⋅===-.故答案为:92-.15.(2020•上海)三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB =.【解析】 在ABC ∆中,2AB =,3BC =,4AC =,∴由余弦定理得,222416911cos 222416AB AC BC BAC AB AC +-+-∠===⨯⨯ ,∴111124162AB AC =⨯⨯= ,且D 是BC 的中点,∴1()2AD AB AB AC AB=+ 21()2AB AB AC =+111(4)22=⨯+194=.故答案为:194.16.【多选】(2021•新高考Ⅰ)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos()P αβ+,sin())αβ+,(1,0)A ,则()A .12||||OP OP = B .12||||AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【解析】法一、1(cos ,sin )P αα ,2(cos ,sin )P ββ-,3(cos()P αβ+,sin())αβ+,(1,0)A ,∴1(cos ,sin )OP αα= ,2(cos ,sin )OP ββ=- ,3(cos()OP αβ=+ ,sin())αβ+,(1,0)OA =,1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,则1||1OP == ,2||1OP = ,则12||||OP OP = ,故A 正确;1||AP == ,2||AP =,12||||AP AP ≠ ,故B 错误;31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin sin cos()OP OP αβαβαβ⋅=-=+ ,∴312OA OP OP OP ⋅=⋅,故C 正确;11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()sin sin()cos[()]cos(2)OP OP βαββαββαβαβ⋅=+-+=++=+,∴123OA OP OP OP ⋅≠⋅,故D 错误.故选:AC .法二、如图建立平面直角坐标系,(1,0)A ,作出单位圆O ,并作出角α,β,β-,使角α的始边与OA 重合,终边交圆O 于点1P ,角β的始边为1OP ,终边交圆O 于3P ,角β-的始边为OA ,交圆O 于2P ,于是1(cos ,sin )P αα,3(cos()P αβ+,sin())αβ+,2(cos ,sin )P ββ-,由向量的模与数量积可知,A 、C 正确;B 、D 错误.故选:AC .17.(2022•上海)若平面向量||||||a b c λ=== ,且满足0a b ⋅= ,2a c ⋅=,1b c ⋅= ,则λ=.【解析】由题意,有0a b ⋅= ,则a b ⊥,设,a c θ<>= ,21a c b c ⋅=⎧⎪⎨⋅=⎪⎩⇒2,1,2a c cos bc cos θπθ⎧=⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩①②则②①得,1tan 2θ=,由同角三角函数的基本关系得:cos θ=,则25||||cos 25a c a c θλλ⋅==⋅⋅=,2λ=,则λ=..18.(2020•山东)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是()A .(2,6)-B .(6,2)-C .(2,4)-D .(4,6)-【解析】画出图形如图,||||cos ,AP AB AP AB AP AB ⋅=<> ,它的几何意义是AB 的长度与AP 在AB向量的投影的乘积,显然,P 在C 处时,取得最大值,1||cos ||||32AC CAB AB AB ∠=+=,可得||||cos ,236AP AB AP AB AP AB ⋅=<>=⨯= ,最大值为6,在F 处取得最小值,1||||cos ,2222AP AB AP AB AP AB ⋅=<>=-⨯⨯=- ,最小值为2-,P 是边长为2的正六边形ABCDEF 内的一点,所以AP AB ⋅的取值范围是(2,6)-.故选:A .19.(2021•上海)在ABC ∆中,D 为BC 中点,E 为AD 中点,则以下结论:①存在ABC ∆,使得0AB CE ⋅=;②存在ABC ∆,使得//()CE CB CA +;它们的成立情况是()A .①成立,②成立B .①成立,②不成立C .①不成立,②成立D .①不成立,②不成立【解析】不妨设(2,2)A x y ,(1,0)B -,(1,0)C ,(0,0)D ,(,)E x y ,①(12,2)AB x y =--- ,(1,)CE x y =-,若0AB CE ⋅=,则2(12)(1)20x x y -+--=,即2(12)(1)2x x y -+-=,满足条件的(,)x y 存在,例如,满足上式,所以①成立;②F 为AB 中点,()2CB CA CF +=,CF 与AD 的交点即为重心G ,因为G 为AD 的三等分点,E 为AD 中点,所以CE 与CG不共线,即②不成立.故选:B .20.(2022•浙江)设点P 在单位圆的内接正八边形128A A A ⋯的边12A A 上,则222128PA PA PA ++⋯+ 的取值范围是.【解析】以圆心为原点,73A A 所在直线为x 轴,51A A 所在直线为y 轴,建立平面直角坐标系,如图所示,则1(0,1)A ,222(22A ,3(1,0)A ,422(,)22A -,5(0,1)A -,622(,22A --,7(1,0)A -,822(22A ,设(,)P x y ,则222222222222212812345678||||||||||||||||8()8PA PA PA PA PA PA PA PA PA PA PA x y ++⋯+=+++++++=++ ,cos 22.5||1OP ︒ ,∴221cos 4512x y +︒+,∴222214x y ++,2212228()816x y ∴+++,即222128PA PA PA ++⋯+ 的取值范围是[1222+,16],故答案为:[1222+,16].21.(2021•浙江)已知平面向量a,b ,(0)c c ≠ 满足||1a = ,||2b = ,0a b ⋅= ,()0a b c -⋅= .记平面向量d 在a ,b 方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值是.【解析】令(1,0),(0,2),(,)a b c m n ===,因为()0a b c -⋅= ,故(1,2)(m -⋅,)0n =,20m n ∴-=,令(2,)c n n =,平面向量d 在a ,b方向上的投影分别为x ,y ,设(,)d x y = ,则:(1,),()2(1),|||d a x y d a c n x ny c n -=--⋅=-+=,从而:()||d a c z c -⋅==22x y +±=,方法一:由柯西不等式可得22x y +=,化简得22242105x y z ++=,当且仅当21x y z ==,即215,,555x y z ===-时取等号,故222x y z ++的最小值为25.方法二:则222x y z ++表示空间中坐标原点到平面220x y +±-=上的点的距离的平方,由平面直角坐标系中点到直线距离公式推广得到的空间直角坐标系中点到平面距离公式可得:222242()105min x y z ++===.故答案为:25.考点五平面向量的数量积的应用22.(2023•新高考Ⅰ)已知向量(1,1)a =,(1,1)b =- .若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【解析】 (1,1)a =,(1,1)b =- ,∴(1,1)a b λλλ+=+- ,(1,1)a b μμμ+=+-,由()()a b a b λμ+⊥+,得(1)(1)(1)(1)0λμλμ+++--=,整理得:220λμ+=,即1λμ=-.故选:D .23.(2023•新高考Ⅱ)已知向量a,b 满足||a b -= |||2|a b a b +=- ,则||b =.【解析】||a b -=,|||2|a b a b +=- ,∴2223a b a b +-⋅= ,2222244a b a b a b a b ++⋅=+-⋅ ,∴22a a b =⋅,∴23b = ,∴||b =..24.(2022•新高考Ⅱ)已知向量(3,4)a = ,(1,0)b = ,c a tb =+ ,若a <,c b >=< ,c > ,则(t =)A .6-B .5-C .5D .6【解析】 向量(3,4)a =,(1,0)b = ,c a tb =+ ,∴(3,4)c t =+,a < ,cb >=<,c > ,∴||||||||a c b c a c b c ⋅⋅=⋅⋅,∴253351t t++=,解得实数5t =.故选:C .25.(2020•浙江)已知平面单位向量1e ,2e满足12|2|e e - .设12a e e =+ ,123b e e =+ ,向量a,b 的夹角为θ,则2cos θ的最小值是.【解析】设1e 、2e 的夹角为α,由1e ,2e为单位向量,满足12|2|e e -所以2211224444cos 12e e e e α-+=-+ ,解得3cos 4α;又12a e e =+ ,123b e e =+ ,且a,b 的夹角为θ,所以2211223444cos a b e e e e α=++=+ ,2221122222cos a e e e e α=++=+ ,222112296106cos b e e e e α=++=+ ;则222228()(44cos )44cos 43cos (22cos )(106cos )53cos 353cos a b a bααθαααα++====++++⨯ ,所以3cos 4α=时,2cos θ取得最小值为842833329534-=+⨯.故答案为:2829.考点六复数的基本概念26.(2022•浙江)已知a ,b R ∈,3()(a i b i i i +=+为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【解析】3()1a i b i i bi +=+=-+ ,a ,b R ∈,1a ∴=-,3b =,故选:B .27.(2020•浙江)已知a R ∈,若1(2)(a a i i -+-为虚数单位)是实数,则(a =)A .1B .1-C .2D .2-【解析】a R ∈,若1(2)(a a i i -+-为虚数单位)是实数,可得20a -=,解得2a =.故选:C .考点七复数的几何意义28.(2023•新高考Ⅱ)在复平面内,(13)(3)i i +-对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【解析】(13)(3)39368i i i i i +-=-++=+,则在复平面内,(13)(3)i i +-对应的点的坐标为(6,8),位于第一象限.故选:A .29.(2021•新高考Ⅱ)复数213ii--在复平面内对应点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限【解析】 2222(2)(13)263551113(13)(13)1(3)1022i i i i i i i i i i i --++--+====+--++-,∴在复平面内,复数213i i --对应的点的坐标为1(2,1)2,位于第一象限.故选:A .考点八复数的运算A .i -B .iC .0D .1【解析】21111(1)122212(1)(1)2i i i z i i i i i ---==⋅=⋅=-+++-,则12z i =,故z z i -=-.故选:A .31.(2022•新高考Ⅱ)(22)(12)(i i +-=)A .24i-+B .24i--C .62i +D .62i-【解析】2(22)(12)242462i i i i i i +-=-+-=-.故选:D .32.(2021•浙江)已知a R ∈,(1)3(ai i i i +=+为虚数单位),则(a =)A .1-B .1C .3-D .3【解析】因为(1)3ai i i +=+,即3a i i -+=+,由复数相等的定义可得,3a -=,即3a =-.故选:C .33.(2020•海南)(12)(2)(i i ++=)A .45i+B .5iC .5i -D .23i+【解析】2(12)(2)2425i i i i i i ++=+++=,故选:B .34.(2020•山东)2(12ii-=+)A .1B .1-C .i D .i-【解析】2(2)(12)512(12)(12)14i i i ii i i i ----===-++-+,故选:D .35.(2023•上海)已知复数1(z i i =-为虚数单位),则|1|iz +=.【解析】1z i =- ,|1||1(1)||2|iz i i i ∴+=+-=+=.36.(2021•上海)已知11z i =+,223z i =+,求12z z +=.【解析】因为11z i =+,223z i =+,所以1234z z i +=+.故答案为:34i +.37.(2020•上海)已知复数12(z i i =-为虚数单位),则||z =.【解析】由12z i =-,得||z ==.38.(2019•上海)已知z C ∈,且满足15i z =-,求z =.【解析】由15i z =-,得15z i -=,即155z i i=+=-.故答案为:5i -.39.(2019•浙江)复数1(1z i i=+为虚数单位),则||z =.【解析】11111(1)(1)22i z i i i -===-++- .||2z ∴==.故答案为:22.考点九共轭复数40.(2022•新高考Ⅰ)若(1)1i z -=,则(z z +=)A .2-B .1-C .1D .2【解析】由(1)1i z -=,得211iz i i i --===--,1z i ∴=+,则1z i =-,∴112z z i i +=++-=.故选:D .41.(2021•新高考Ⅰ)已知2z i =-,则()(z z i +=)A .62i-B .42i-C .62i +D .42i+【解析】2z i =- ,2()(2)(2)(2)(22)442262z z i i i i i i i i i i ∴+=-++=-+=+--=+.故选:C .42.(2022•上海)已知1z i =+(其中i 为虚数单位),则2z =.【解析】1z i =+,则1z i =-,所以222z i =-.故答案为:22i -.43.(2020•上海)已知复数z 满足26z z i +=+,则z 的实部为.【解析】设z a bi =+,(,)a b R ∈. 复数z 满足26z z i +=+,36a bi i ∴-=+,可得:36a =,1b -=,解得2a =,1b =-.则z 的实部为2.故答案为:2.。

高考真题与模拟训练 专题14 基本不等式(解析版)

高考真题与模拟训练 专题14 基本不等式(解析版)

专题14 基本不等式第一部分真题分类1.(2021·江苏高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,()()240f a f b +-=则11a +A 3B C .2D .4【答案】B0,所以因为奇函数()f x 是定义在R 上的单调函数,,所以24a b =-,即24a b +=,6,即⎭⎦⎦=,即1,32a b ==时取等号,故选:B2.(2021·C 的最大值为()A .13B .12C .9D .6【答案】C4,则123MF MF ==时,等号成立).故选:C .3.(2021·γ是互不相同的锐角,则在A .0B .1C .2D .3【答案】C【解析】法1故sin cos sin cos sin cos αββγγα++≤α不可能均大于62,故选:C.法2,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,α不可能均大于取6α=,3πβ=,γ=2,故选:C.4.(2021·全国高考真题(文))下列函数中最小值为4的是()A 4B CD .4ln ln y x x=+【答案】C【解析】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=2x =时取等号,等号取不到,所以B 不符合题意;对于C20x >,即1x =时取C 符合题意;对于D ,ln y x =()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当5y =-,D 不符合题意.故选:C .5.(2019·北京高考真题(理))数学中有许多形状优美、寓意美好的曲线,曲线C 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③【答案】Cy 2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭……,x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,所以曲线C 上任意一点到原点的距离都不超过 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,ABCD 很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.6.(2020·海南高考真题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥BC 2D 【答案】ABD【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,A 正确;对于B 1122a b-->=B 正确;对于C 当且仅当12a b ==时,等号成立,故C 不正确;对于D2D 正确;故选:ABD7.(2021·天津高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________.2a212a b b a b b b ∴++≥=+≥=的最小值为.8.(2020·01ab =182b a b++的最小值为_________.【答案】4842a b a b +=+≥=+,当且仅当a b+=4时取等号,结合1ab =,.49.(2020·),则22x y +的最小值是_______.5102x5.∴22x y +.10.(2019·天津高考真题(文))设0x >,0y >(1)(21)x y xy ++的最小值为__________.4,得24x y +=≥,得2xy ≤等号当且仅当2x y =,即2,1x y ==时成立.11.(2021·江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元.【解析】(12000245x x=+-=时,即100x =取“=”,符合题意;∴年产量为100吨时,平均成本最低为16万元.(2110,∴当答:年产量为110吨时,最大利润为860万元.12.(2020·全国高考真题(文))设a ,b ,,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】(1,0()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,1可知,0,0,0a b c ><<,bc 当且仅当b c =时,取等号,4,即第二部分模拟训练一、单选题1()142f x x x '≥+--,则不A B .()()1,0,e -⋃+∞C .()()0,2,e ⋃+∞D .()()1,02,-⋃+∞【答案】D3是定义在的图像关于点()2,3时,20x ->,时取等号,()2,+∞上单调递增,的图像关于点()2,3中心对称,在()()30ln10f xx⎧->⎪⎨+>⎪⎩,即,解得2x>,,解得10x-<<,,故选:D2,,A B是上、下顶点,P大值为120°,若((,0,M N4PN+的最小值为()A.9B.3C3D.32【答案】D【解析】由题可得,椭圆焦点在y轴上,且当P 为左右顶点时,APB∠取最大值为120°,,又3b=为椭圆焦点,则()441141566PN PMPM PNPN PM PN PM PN⎛⎫⎛⎫+=++=++⎪ ⎪⎪⎪⎝⎭⎝⎭32.故选:D.3.已知正数m ,n 2则32m n +的最小值为()A .24B .18C .16D .12【答案】A2()233232m n m n m n ⎛⎫+=++= ⎪⎝⎭,6n =时取等号.故选:A42F 1F 的直线l 与双曲线的左右两支分别交于A ,B 两点,若△2ABF 为等边三角形,则221b a +的最小值为()AB C .6+D 【答案】Da ,又2BA BF =由双曲线定义知212AF AF a -=,得24AF a =,2,6.故选:D.5.已知平面向量a ,b·1a b =A .1BC .2D 【答案】D【解析】平面向量a ,b∴,时取等号,|的最小值为故选:D .6的图象在1x =A .1BC .3-D .3+【答案】D可得函数()f x 的图象在1x =处的切线斜率为2+a b ,0垂直,可得(0,0)a b >>,即1a ==-时,取得等号,的最小值为3+,.7.已知ABC cos sin 0A a C +=,若角A 的平分线交点,且1AD =,则( )AB 3C D 【答案】C0及正弦定理,得因为(0,180)C ∈︒0,所以,即tan A =,),所以120A =︒.如图,ABC ABD ACD S S S =+ ,c∴()11224b c b c b c c b ⎛⎫+⋅+=++≥+=⎪⎝⎭,当且仅当c b =,bc b c =+,即2c b ==时,等号成立,c 的最小值为4.故选:C.8中,//AB CD ,ADB ∠的最大值为()A B C D .23π【答案】Ba ,则的中点M ,延长AB 到N 点,使BN a =,由平面几何知识MC ,m ,MBC 中,在NBC 中,222)2cos()n a a MBC π=+-⨯⋅-∠,,在ABD △中,又∵22228mn m n a +=…,∴222441cos 282a a ADB mn a ∠==…,ADB故选:B二、填空题9l ,若l 的倾斜角的取值范围是,42ππ⎡⎫⎪⎢⎣⎭,则实数a =______.8【解析】 ,0x >,2ax x=时等号成立,l的倾斜角的取值范10.对于任意的正实数a ,b,则范围为___________.【答案】,12⎫⎪⎪⎣⎭【解析】法一:转化为斜率先看作3Aab⎛⨯⎝⎭A在故ABk 最小值为相切时取得,5)联0舍)极限思想)范法二:0)当且仅当1x=时取等号,再令22m=+>1,又x→+∞范故答案为:,12⎫⎪⎪⎣⎭11.已知向量||||||1a b c===2c xa yb=+,则x y+的最大值为____.|a与的夹角为60︒,设(1,0)a =,,∴221122x y y ⎛⎫⎛⎫++=⎪ ⎪ ⎪⎝⎭⎝⎭,化简得221x xy y ++=,∴22()()14x y x y xy ++-=…12.在正项等比数列{}n a 1,前三项的和为7,若存使__________.3【解析】依依题意存在*,m n ∈N ,使14a =,16,即1122241112162m n m n m n a qa q a q --+-+-⋅=⋅===,,.n三、解答题131.(1)求不等式()2f x x m +->的解集﹔(2【答案】(12)3.【解析】解:(133x x m x x m m -+-≥-+-=-,当且仅当()()30x x m --≥时,的最小值为12,∴∴()2f x x m +->,等价于3242x x -+->.3时,所求不等式等价于3112x -+>,解得4时,所求不等式等价于,解得3x <,与条件矛盾;当4x ≥133x >,符合题意.综(2422232362a b c m ++==.∴()()2222222623222a b c a c b c ac bc =++=+++≥+..当且仅当1a b c ===±时,3.14x 的不等式(1)若存,使不等式()002f x x m -≥范围;(2有三个不同的实数解,求实数k的取值范围.【答案】(1⎦2【解析】解:(10的解集为∴121,3x x =-=是方程2210ax x b -++=的两个根,14a b =⎧⎨=-⎩,∴存,使不等式()002f x x m -≥成立,[]1,3x ∈上有解,x∴m 的取值范围为(,2⎤-∞--⎦;(2,1xt -=,则12,t t ,其中1201,1t t <<>,或,32k >,或()()023********2h k h k k ⎧⎪=->⎪=--=⎨⎪+⎪<<⎩②,不等式组②无实数解,∴实数k的取值范15.已知()34f x x x =-++.(1的解集;(2k 【答案】(1){}54x x -≤≤;(2)1.【解析】(1,解得,此时54x -≤≤-;3时,当3x ≥,解得4x ≤,此时34x ≤≤.综上所述9的解集为(2)由绝,的最小值为()22222222216191619161 916251494949b a a b b a b a b ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝21,1.16,其中常(1)判断偶性,并说明理由;(2a 的取值范围;(3定义域内的任意x ,都有,则函数()y h x =的图利用以上结论探究()y f x =是否都有对称中心?若是,求出对称中心的坐标();若不是,证明你的结论.【答案】(1)答案见解析;(23【解析】(10时,),.0时,,所以不是奇函数也不是偶函数.(2)原问x1,12⎡⎤⎢⎥⎣⎦有解,则min 122a x x ⎛⎫>+ ⎪⎝⎭,1,12⎡⎤⎢⎥⎣⎦单调递减,52a >,所以a 的取值范围是5(,)2+∞.(3)假设存),则成立,成立3。

(完整word)高中数学高考题详解-基本不等式

(完整word)高中数学高考题详解-基本不等式

考点 29 基本不等式一、选择题1. ( 2013·重庆高考理科·T 3) (3 a)(a 6)( 6 a 3) 的最大值为 ()A.9B. 9C.3D.3 222【解题指南】 直接利用基本不等式求解 .【分析】 选 B. 当 a 6 或 a 3 时, (3 a)(a 6)0,当6 a 3时, (3 a)(a 6)3 a a 69, 当且仅当 3 aa 6, 即 a3时取等号 .2222. (2013 ·山东高考理科·T 12)设正实数 x,y,z知足 x 2-3xy+4y 2 -z=0.则当 xy 获得最大值时, 2 1 2 的最大值为()zx y zA.0B.1C.9D.34【解题指南】 本题可先利用已知条件用 x,y 来表示 z ,再经过变形,转变为基本不等式的问题,取等号的条件可直接代入212,从而再利用基xy z本不等式求出212x y z的最值 .【分析】 选 B. 由 x 2 3xy 4 y 2 z 0 ,得 zx 2 3xy 4y 2 .因此xyx 2xy4 y 2x 111,当且仅当 x4y,即 x 2 y 时z3xy 4 y 3 2x4 y 3 yxyxy x取等号此时 z2 y 2 ,11 21 (xy)max1.21 2 2 1 2 2(1 1 )2(11 ) 42 y2 y1 .2zxy z 2 y y xyyxy2 y3. ( 2013·山东高考文科·T 12)设正实数 x, y, z 知足 x 23xy 4 y 2 z0 ,则当 z获得最大值时, x 2 y z 的最大值为()xyA.0B.9C.2D.98 4【解题指南】 本题可先利用已知条件用 x,y 来表示 z ,再经过变形,转变为基本不等式的问题,取等号的条件可直接代入 x 2y z ,从而再利用基本不等式求出 x2 y z 的最值 .【分析】 选 C. 由 x 2 3xy 4 y 2 z 0 ,得 z x 2 3xy 4y 2 .因此zx23xy 4y 2x 4 y 3 2 x 4 y 31 ,当且仅当x 4 y,xyxyy x y xyx即 x 2 y 时取等号此时 z2 y 2 ,2 y 2 y 2y 2 y2因此 x 2 y z 2y 2 y 2 y 24 y 2 y 22 ,2当且仅当 y=2-y 时取等号 .4. (2013 ·福建高考文科· T7) 若 2x +2y =1, 则 x+y 的取值范围是 ()A . 0,2B . 2,0C . 2,D ., 2【解题指南】 “一正二定三相等” , 当题目出现正数 , 出现两变量 , 一般而言, 这类题就是在考察基本不等式 .【分析】 选 D. 2 2x y≤ 2x+2y=1, 因此 2x+y≤ 1, 即 2x+y ≤ 2-2 , 因此 x+y ≤ -2.4二、填空题5. ( 2013·四川高考文科·T 13)已知函数 f ( x) 4xa( x 0,a 0) 在 x 3 时x获得最小值,则a____________ 。

基本不等式--历年高考题汇编-含详细解析

基本不等式--历年高考题汇编-含详细解析

基本不等式--历年高考题汇编-含详细解析基本不等式--历年高考题汇编一、选择题(本大题共3小题,共15.0分)1.已知过点(1,3)的直线l的倾斜角为135°,设点(x,y)是直线l在第一象限内的部分上的一点,则1x +4y的最小值是()A. 92B. 2 C. 94D. 42.已知正数x,y满足x+4y=2,则x+40y+43xy的最小值为()A. 852B. 24C. 20D. 183.设x>0、y>0、z>0,则三个数1x +4y、1y+4z、1z+4x()A. 都大于4B. 至少有一个大于4C. 至少有一个不小于4D. 至少有一个不大于4二、填空题(本大题共13小题,共65.0分)4.设x,y∈R+且1x +4y=2,则x+y的最小值为______.5.若2a+b=2(a>0,b>0),则1a +1b的最小值是______.6.函数y=x2+6x2+1的最小值是______.7.已知x>0,y>0,x+2y=1,则2x +1y的最小值为______.8.已知a>3,则4a?3+a?316的最小值为______.9.已知m+n=2,其中mn>0,则1m +1n的最小值为______.10.若正数a,b满足ab?2a?b=0,则ab的最小值为______.11.已知a+b=4,则2a+2b的最小值为______.12.设a+b=2,b>0,则14|a|+2|a|b的最小值为______.13.已知x>0,y>0,x+2y+2xy=3,则x+2y的最小值为______.14.已知x,y∈R+,求z=(x+2y)(2x +4y)的最值.甲、乙两位同学分别给出了两种不同的解法:甲:z=(x+2y)(2x+4y)=2+4x y+4y x+8≥18乙:z=(x+2y)(2x +4y)≥2√2xy?2√8xy=16①你认为甲、乙两人解法正确的是______.②请你给出一个类似的利用基本不等式求最值的问题,使甲、乙的解法都正确.15.已知a,b∈R,且a?2b+8=0,则2a+14b的最小值为______.16.若a,b均为正实数,则ab+ba2+b2+1的最大值为______.三、解答题(本大题共4小题,共48.0分)17.已知a,b为正整数,且a+b=1,求证:1a +1b≥4.18.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m?2t+21?t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.19.已知函数f(x)=m?|2?x|,且f(x+2)>0的解集为(?1,1).(1)求m的值;(2)若正实数a、b,满足a+2b=m.求1a +12b的最小值.20.已知函数f(x)=|x?1|?|x+a|(a∈N?),f(x)≤2恒成立.(1)求a的值;(2)若正数x,y满足1x +2y=a.证明:1xy+x+12y≥√2答案和解析1.【答案】C【解析】解:过点(1,3)的直线l 的倾斜角为135°,可得直线方程:y ?3=?(x ?1),化为:x +y =4.设点(x,y)是直线l 在第一象限内的部分上的一点,∴x +y =4,且x ,y >0.则1x +4y =14(x +y)(1x +4y )=14(5+y x +4x y )≥14(5+2√y x ?4x y )=94,当且仅当y =2x =83时取等号.故选:C .过点(1,3)的直线l 的倾斜角为135°,可得直线方程:x +y =4.再利用“乘1法”与基本不等式的性质即可得出.本题考查了直线方程、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.2.【答案】D【解析】解:∵正数x ,y 满足x +4y =2,12x +2y =1,∴x+40y+43xy=x+40y+2x+8y 3xy =3x+48y 3xy =x+16y xy =1y +16x ,∴1y +16x =(1y +16x )(12x +2y)=10+x 2y +32y x ≥10+2√x 2y ?32y x =10+8=18,当且仅当x 2y =32y x 时,x =43,y =16 故x+40y+43xy 的最小值为18,故选:D .由题意可得x+40y+43xy =1y +16x ,再利用乘“1”法,根据基本不等式即可求出本题主要考查了基本不等式的应用,考查了转化思想和计算能力,属于中档题.3.【答案】C【解析】解:假设三个数1x +4y <4且1y +4z <4且1z +4x <4,相加得:1x+4x +1y +4y +1z +4z <12,由基本不等式得: 1x+4x ≥4;1y +4y ≥4;1z +4z ≥4;相加得:1x +4x +1y +4y +1z +4z ≥12,与假设矛盾;所以假设不成立,三个数1x +4y 、1y +4z 、1z +4x 至少有一个不小于4.故选:C .由题意知利用反证法推出矛盾,即可得正确答案.本题考查反证法和基本不等式的应用,属于简单题.4.【答案】92【解析】解:∵x ,y ∈R +且1x +4y =2,∴x +y =12(x +y)(1x +4y) =52+2x y +y 2x ≥52+2√2x y ?y 2x =92 当且仅当2x y =y 2x 即x =32且y =3时取等号,∴x +y 的最小值为92故答案为:92由题意可得x +y =12(x +y)(1x +4y )=52+2x y +y 2x ,下面由基本不等式可得.本题考查基本不等式,变形为基本不等式的情形是解决问题的关键,属基础题.5.【答案】32+√2【解析】解:2a +b =2(a >0,b >0),则1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ≥32+2√b 2a ?a b =32+√2,当且仅当b 2a =a b 时,即a =2?√2,b =2√2?2时取等号,故1a +1b 的最小值是32+√2,故答案为:32+√2利用乘“1”法,可得1a +1b =(1a +1b )(a +b 2)=1+12+b 2a +a b ,再根据基本不等式即可求出.本题考查了基本不等式的应用,考查了转化与划归思想,属于基础题 6.【答案】2√6?1【解析】解:y =x 2+6x 2+1=x 2+1+6x 2+1?1≥2√(x 2+1)?6 x 2+1?1=2√6?1,当且仅当x 2=√6+1时取等号,故答案为:2√6?1.由y =x 2+6x 2+1=x 2+1+6x 2+1?1,根据基本不等式即可求出.本题考查了基本不等式的应用,属于基础题.7.【答案】8【解析】解:∵2x +1y=(x+2y)(2x+1y)=4+4y+xy≥4+2√4yxxy=8(当且仅当x=12,y=14时取等)故答案为:8先变形:2x +1y=(x+2y)(2x+1y)=4+4yx+xy,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.8.【答案】1 【解析】解:∵a>3,∴a?3>0,∴4a?3+a?3≥2√4a?3a?316=1,当且仅当4a?3=a?316,即a=11时取等号,故答案为:1根据基本不等式即可求出最小值.本题考查了基本不等式的应用,属于基础题.9.【答案】2 【解析】解:∵m+n=2,其中mn>0,则1m +1n=12(m+n)(1m+1n)=12(2+nm+mn)≥1(2+2)=2当且仅当m=n=1时取得最小值2.故答案为:2.由已知可得,1m +1n=12(m+n)(1m+1n),利用基本不等式即可求解本题主要考查了利用基本不等式求解最值,解题关键是对应用条件的配凑,1的代换是求解条件配凑的关键10.【答案】8【解析】解:∵正数a,b满足ab?2a?b=0,∴ab=2a+b≥2√2ab,∴a2b2≥8ab,∴ab≥8.∴ab的最小值为8.故答案为:8.推导出ab=2a+b≥2√2ab,从而a2b2≥8ab,由此能求出ab的最小值.本题考查两数积的最小值的求法,考查不等式的性质等基础知识,考查运算求解能力,是基础题.11.【答案】8【解析】解:∵a+b=4,∴2a+2b≥2√2a+b=2√24=8,当且仅当a=b=2时取等号,∴2a+2b的最小值为8.故答案为:8.利用基本不等式直接求解.本题考查了基本不等式及其应用,属基础题.12.【答案】78【解析】解:a+b=2,b>0,则14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b≥a8|a|+2√b8|a|2|a|b=a8|a|+1≥?18+1=78.当且仅当b8|a|=2|a|b,a<0且a+b=2即a=?2 3,b=83时取等号.故答案为:78.由已知可得,14|a|+2|a|b=a+b8a|+2|a|b=a8|a|+b8|a|+2|a|b,利用基本不等式即可求解本题主要考查了基本不等式在求解最值的应用,基本不等式条件的配凑是求解本题的难点.13.【答案】2【解析】解:考察基本不等式:x+2y=3?x?(2y)≥3?(x+2y2)2(当且仅当x=2y时取等号),整理得:(x+2y)2+4(x+2y)?12≥0,即:(x+2y?2)(x+2y+6)≥0,又:x+2y>0,所以:x+2y≥2(当且仅当x=2y时取等号),则:x+2y的最小值是2.故答案为:2.首先分析题目由已知x >0,y >0,x +2y +2xy =3,求x +2y 的最小值,猜想到基本不等式的用法,利用a +b ≥2√ab 代入已知条件,化简为函数求最值.此题主要考查基本不等式的用法,对于不等式a +b ≥2√ab 在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.14.【答案】甲【解析】解:①甲正确,乙解法中两次不等式中取等的条件不相同;②已知x ,y ∈R +,求z =(a +b)(1a +1b )的最小值.甲:z =(a +b)(1a +1b )=1+b a +a b +1≥4,乙:z =(a +b)(1a +1b )≥2√ab ?2√1a ?1b=4.故填甲.乙解法中两次不等式取等条件不同,故乙错误.本题考查了基本不等式及其应用,属中档题. 15.【答案】18【解析】解:∵a ?2b +8=0,则2a +14b ≥2√2a ?14b =2√2a?2b =2√2?8=18 当且仅当a =?2b 即b =2,a =?4时取等号,故答案为:18.由基本不等式可得,2a +14b ≥2√2a ?14b ,结合已知即可求解.本题主要考查了指数的运算性质及基本不等式在求解最值中的应用,属于基础试题.16.【答案】√22【解析】解:∵a 2+12b 2≥2√a 2?b 22=√2ab ,当且仅当a =√22b 时取等号,12b 2+1≥2√12b 2=√2b ,当且当且仅当b =√2时取等号,∴ab+b a 2+b 2+1= ab+b a 2+b 22+b 22+12≤2ab+2b =2=√22,当且仅当a =1,b =√2时取等号,故ab+b a 2+b 2+1的最大值为√22,故答案为:√22由:a2+12b2≥2√a2?b22=√2ab,当且仅当a=√22b时取等号,12b2+1≥2√12b2=√2b,当且当且仅当b=√2时取等号,即可求出答案.本题考查了基本不等式的应用,考查了转化思想,属于中档题.17.【答案】证明:∵a,b为正整数,且a+b=1,∴1a+1b=(a+1b)(a+b)=2+ba +ab≥2+2√baab=4,当且仅当ba =ab即a=b=12时取等号.【解析】由题意可得1 a +1b=(1a+1b)(a+b)=2+ba+a,由基本不等式可得.本题考查不等式的证明,涉及基本不等式求最值问题,属基础题.18.【答案】解:(1)依题意可得5=2?2t+21?t,即2?(2t)2?5?2t+2=0.亦即(2?2t?1)(2t?2)=0,又∵t≥0,得2t=2,∴t=1.故经过1分钟该物体的温度为5摄氏度.(2)问题等价于m?2t+21?t≥2(t≥0)恒成立.∵m?2t+21?t=m?2t+2?2?t≥2√2m,①∴只需2√2m≥2,即m≥12.当且仅当122t=2?2?t,即t=1时,①式等号成立,∴m的取值范围是[12,+∞).【解析】(1)将m=2,θ=5代入θ=m?2t+21?t(t≥0)解指数方程即可求出t的值;(2)问题等价于m?2t+21?t≥2(t≥0)恒成立,求出m?2t+21?t的最小值,只需最小值恒大于等于2建立关系,解之即可求出m的范围.本题主要考查了不等式的实际应用,以及恒成立问题,同时考查了转化与划归的思想,属于中档题.19.【答案】解:(1)∵f(x+2)=m?|x|∴由f(x+2)>0得|x|<m.< p="">由|x|0,且其解集为(?m,m)又不等式f(x+2)>0解集为(?1,1),故m=1;(2)由(1)知a+2b=1,又a,b是正实数,由基本不等式得1a +12b=(1a+12b)(a+2b)=1+1+2ba+a2b≥4当且仅当a=12,b=14时取等号,故1a +12b的最小值为4.【解析】(1)由f(x+2)>0得|x|<m.由|x|0,且其解集为(?m,m),根据解集为(?1,1)可得m;</m.由|x|(2)由(1)知a+2b=1,则1a +12b=(1a2b)(a+2b)然后利用基本不等式求解即可.本题考查了绝对值不等式的解法和基本不等式,属基础题.20.【答案】解:(1)由f(x)=|x?1|?|x+a|≤|x?1?x?a|=|a+1|,又f(x)≤2恒成立,∴|a+1|≤2,∴?3≤a≤1,∵a∈N?,∴a=1;(2)由(1)知1x +2y=1,∴2x+y=xy,∴1xy +x+12y=1xy+12xy≥2√1xy12xy=√2.【解析】(1)由f(x)=|x?1|?|x+a|≤|x?1?x?a|=|a+1|,结合已知可求a,(2)由(1)知1y=1,从而有2x+y=xy,然后利用基本不等式可证.本题主要看考查了绝对值不等式的性质及基本不等式的应用,属于基础试题</m.<>。

不等式--历届高考真题试题

不等式--历届高考真题试题

不等式--历届高考真题一、单选题1.(2019·全国高考真题(文))记不等式组620x y x y +⎧⎨-≥⎩…表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④2.(2012·全国高考真题(理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-3.(2017·全国高考真题(文))设x,y 满足约束条件{2x+3y −3≤02x −3y +3≥0y +3≥0 ,则z =2x +y 的最小值是( ) A .−15B .−9C .1D .94.(2018·天津高考真题(文))(2018年天津卷文)设变量x ,y 满足约束条件{x +y ≤5,2x −y ≤4,−x +y ≤1,y ≥0, 则目标函数z =3x +5y 的最大值为 A .6 B .19 C .21 D .455.(2018·全国高考真题(理))已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2} 6.(2018·全国高考真题(理))设a =log 0.20.3,b =log 20.3,则 A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b7.(2016·北京高考真题(理))袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多8.(2017·浙江高考真题)若x,y 满足约束条件x 0{x+y-30 z 2x-2y 0x y ≥≥=+≤,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)9.(2017·山东高考真题(理))若a>b>0,且ab=1,则下列不等式成立的是A .()21log 2a b a a b b +<<+ B . ()21log 2a b a b a b <+<+ C . ()21log 2a b a a b b +<+< D . ()21log 2a ba b a b +<+<10.(2017·山东高考真题(文))已知x ,y 满足约束条件250{302x y x y -+≤+≥≤,则z =x +2y 的最大值是A .-3B .-1C .1D .311.(2017·天津高考真题(理))已知函数()23,1,{ 2, 1.x x x f x x x x-+≤=+>设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47,216⎡⎤-⎢⎥⎣⎦ B .4739,1616⎡⎤-⎢⎥⎣⎦ C.2⎡⎤-⎣⎦ D.3916⎡⎤-⎢⎥⎣⎦12.(2017·全国高考真题(文))设x ,y 满足约束条件{x +3y ≤3,x −y ≥1,y ≥0, 则z =x +y 的最大值为( )A .0B .1C .2D .313.(2015·上海高考真题(文))下列不等式中,与不等式解集相同的是( ). A .B .C .D .14.(2015·广东高考真题(文))若变量x ,y 满足约束条件22{04x y x y x +≤+≥≤,则23z x y=+的最大值为( ) A .10B .8C .5D .215.(2015·浙江高考真题(文))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++16.(2015·湖南高考真题(文))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A .8π9B .827πC .24(√2−1)2πD .8(√2−1)2π17.(2015·安徽高考真题(文))已知x ,y 满足约束条件0{401x y x y y -≥+-≤≥,则的最大值是( ) A .-1B .-2C .-5D .118.(2015·湖南高考真题(文))若变量x ,y 满足约束条件{x +y ≥1y −x ≤1x ≤1 ,则z =2x −y 的最小值为( )A .−1B .0C .1D .219.(2015·湖南高考真题(理))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)( )A .89πB .169πC .31)πD .31)π20.(2015·四川高考真题(文)) 设实数x ,y 满足{2x +y ≤10x +2y ≤14x +y ≥6 ,则xy 的最大值为( ) A .252 B .492 C .12D .1421.(2015·重庆高考真题(文))若不等式组{x +y −2≤0x +2y −2≥0x −y +2m ≥0 ,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43 D .322.(2015·天津高考真题(文))设变量x,y 满足约束条件,则目标函数的最大值为( )A .7B .8C .9D .1423.(2015·天津高考真题(理))(2015天津,文2)设变量x,y 满足约束条件{x +2≥0x −y +3≥02x +y −3≤0 ,则目标函数z =x +6y 的最大值为( ) A .3B .4C .18D .4024.(2015·山东高考真题(理))已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( ) A .3 B .2 C .-2D .-325.(2015·福建高考真题(理))若变量x,y 满足约束条件{x +2y ≥0,x −y ≤0,x −2y +2≥0, 则z =2x −y的最小值等于 ( ) A .−52B .−2C .−32D .226.(2014·四川高考真题(理))已知F 是抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则ΔABO 与ΔAFO 面积之和的最小值是( )A .2B .3C .17√28D .√1027.(2014·全国高考真题(文))设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5-B .3C .5-或3D .5或3-28.(2014·山东高考真题(理))已知 x y ,满足约束条件10{230x y x y --≤--≥,当目标函数()0? 0z ax by a b =+>>,在约束条件下取到最小值22a b +的最小值为( )A .5B .4 CD .229.(2014·北京高考真题(理))若x ,y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( ) A .2B .2-C .12D .12-30.(2014·重庆高考真题(文))若的最小值是A.B.C.D.31.(2011·广东高考真题(文))已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4 32.(2011·湖北高考真题(文))(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个33.(2011·重庆高考真题(理))已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5 34.(2011·重庆高考真题(文))(5分)(2011•重庆)若函数f(x)=x+(x>2),在x=a处取最小值,则a=()A.1+B.1+C.3 D.4 35.(2013·重庆高考真题(文))关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.36.(2011·湖北高考真题(理))已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2] B.[﹣2,3] C.[﹣3,2] D.[﹣3,3] 37.(2011·浙江高考真题(理))设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14 B.16 C.17 D.1938.(2011·山东高考真题(文))设变量x ,y 满足约束条件,则目标函数z=2x+3y+1的最大值为( ) A .11B .10C .9D .8.539.(2012·广东高考真题(理))已知变量满足约束条件,则的最大值为( ) A .12B .11C .3D .-140.(2013·浙江高考真题(文))(2013•浙江)设a ,b ∈R ,定义运算“∧”和“∨”如下: a ∧b=a ∨b=若正数a 、b 、c 、d 满足ab≥4,c+d≤4,则( )A .a ∧b≥2,c ∧d≤2B .a ∧b≥2,c ∨d≥2C .a ∨b≥2,c ∧d≤2D .a ∨b≥2,c ∨d≥2 41.(2013·湖北高考真题(文))(2013•湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元42.(2010·安徽高考真题(文))设x,y 满足约束条件{2x +y −6≥0,x +2y −6≤0,y ≥0, 则目标函数z=x+y的最大值是A .3B .4C .6D .8 43.(2013·山东高考真题(文))设正实数满足,则当zxy取得最大值时,x +2y −z 的最大值为( ) A .0B .98C .2D .9444.(2013·山东高考真题(理))设正实数x,y,z 满足x 2−3xy +4y 2−z =0,则当取得最大值时,的最大值为( )A .0B .1C .D .345.(2013·全国高考真题(理))已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y的最小值为1,则a= A .B .C .1D .246.(2013·安徽高考真题(理))已知一元二次不等式的解集为,则的解集为( )A .B .C .{x|lg 2x >-}D .{x|lg 2x <-}47.(2010·陕西高考真题(理))“a =18”是“对任意的正数x ,2x +ax ≥1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件48.(2010·天津高考真题(文))设变量x ,y 满足约束条件{x +y ≤3,x −y ≥−1,y ≥1, 则目标函数z=4x+2y 的最大值为A .12B .10C .8D .249.(2012·江西高考真题(理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A .50,0B .30.0C .20,30D .0,5050.(2011·浙江高考真题(文))若实数x y 、满足不等式组250{2700,0x y x y x y +-≥+-≥≥≥,则34x y +的最小值是 A .13B .15C .20D .2851.(2010·重庆高考真题(理))已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3B .4C .92D .11252.(2010·重庆高考真题(文))设变量满足约束条件则的最大值为A .0B .2C .4D .653.(2010·全国高考真题(文))已知Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在Y ABCD 的内部,则z=2x-5y 的取值范围是 A .(-14,16) B .(-14,20) C .(-12,18) D .(-12,20)54.(2010·浙江高考真题(理))若实数,x y 满足不等式330{23010x y x y x my +-≥--≥-+≥,且x y +的最大值为9,则实数m =( ) A .2-B .1-C .1D .255.(2010·福建高考真题(文))若1,,{230 x x y R x y y x≥∈-+≥≥,则2z x y =+的最小值等于( )A .2B .3C .5D .956.(2008·江西高考真题(文))若01x y <<<,则 A .33y x < B .log 3log 3x y <C .44log log x y <D .1144x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭57.(2008·福建高考真题(理))若实数x 、y 满足10,{0,x y x -+≤>则yx的取值范围是( ) A .(0,1)B .(]0,1C .(1,+∞)D .[)1,+∞58.(2008·湖北高考真题(理))函数f (x )=的定义域为A .(- ∞,-4)[∪2,+ ∞]B .(-4,0) ∪(0,1)C .[-4,0]∪(0,1)]D .[-4,0∪(0,1)59.(2008·广东高考真题(理))若变量,x y 满足则32z x y =+的最大值是 A .90B .80C .70D .4060.(2015·四川高考真题(理))如果函数f(x)=12(m −2)x 2+(n −8)x +1(m ≥0 ,n ≥0)在区间[12,2]上单调递减,则mn 的最大值为( ) A .16B .18C .25D .81261.(2014·湖北高考真题(理))由不等式组确定的平面区域记为,不等式组,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为( ) A .B .C .D .62.(2011·重庆高考真题(理))设m ,k 为整数,方程mx 2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k 的最小值为( )A .﹣8B .8C .12D .1363.(2010·北京高考真题(理))设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0 表示的平面区域为D ,若指数函数y=a x 的图像上存在区域D 上的点,则a 的取值范围是 A .(1,3] B .[2,3] C .(1,2] D .[ 3,+∞]64.(2011·全国高考真题(理))下面四个条件中,使a >b 成立的充分而不必要的条件是A .a >b +1B .a >b −1C .a 2>b 2D .a 3>b 365.(2007·辽宁高考真题(理))已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,,C .(][)36-∞+∞U ,,D .[36],66.(2009·天津高考真题(理))已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a<0 B .0<a<1 C .1<a<3 D .3<a<6二、填空题67.(2019·天津高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.68.(2019·天津高考真题(理))设0,0,25x y x y >>+=最小值为______.69.(2018·浙江高考真题)若x,y 满足约束条件{x −y ≥0,2x +y ≤6,x +y ≥2, 则z =x +3y 的最小值是___________,最大值是___________.70.(2018·天津高考真题(文))已知,R a b ∈,且360a b -+=,则128ab +的最小值为_____________.71.(2018·全国高考真题(理))若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0 ,则z =3x +2y 的最大值为_____________.72.(2017·全国高考真题(理))已知实数,x y 满足0{20 0x y x y y -≥+-≤≥,则34z x y =-最小值为________.73.(2017·山东高考真题(理))已知,x y 满足30{350 30x y x y x -+≤++≤+≥,则2z x y =+的最大值是__________.74.(2017·全国高考真题(文))设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.75.(2017·天津高考真题(理))若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.76.(2017·江苏高考真题)76.(2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________.77.(2017·山东高考真题(文))若直线xa +yb =1(a >0,b >0)过点(1,2),则2a+b 的最小值为______.78.(2016·全国高考真题(文))若x,y 满足约束条件{2x −y +1≥0,x −2y −1≤0,x ≤1, 则z =2x +3y −5的最小值为_________.79.(2016·全国高考真题(文))若x ,y 满足约束条件{x −y +1≥0,x +y −3≥0,x −3≤0, 则z=x−2y 的最小值为__________.80.(2016·上海高考真题(文))设a >0,b >0. 若关于x,y 的方程组{ax +y =1,x +by =1无解,则a +b 的取值范围是 .81.(2016·江苏高考真题)已知实数x,y 满足{x −2y +4≥0,2x +y −2≥0,3x −y −3≤0,则x 2+y 2的取值范围是 .82.(2016·上海高考真题(理))设若关于x,y 的方程组{ax +y =1,x +by =1无解,则的取值范围是____________.83.(2015·浙江高考真题(文))已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .84.(2015·山东高考真题(文))定义运算“⊗”:x ⊗y =x 2−y 2xy(x ,y ∈R,xy ≠0).当x >0,y >0时,x ⊗y +(2y)⊗x 的最小值是 .85.(2015·湖北高考真题(文))若变量x, y 满足约束条件{x +y ≤4,x −y ≤2,3x −y ≥0, 则3x +y 的最大值是_________.86.(2015·山东高考真题(文))若x,y 满足约束条件{y −x ≤1x +y ≤3y ≥1 ,则z =x +3y 的最大值为 .87.(2015·上海高考真题(文))若满足,则目标函数的最大值为 .88.(2015·全国高考真题(理))若x ,y 满足约束条件{x −1≥0,x −y ≤0,x +y −4≤0, 则yx 的最大值 .89.(2015·天津高考真题(文))已知a >0,b >0,ab =8,则当a 的值为 时log 2a ⋅log 2(2b)取得最大值.90.(2015·浙江高考真题(理))已知函数223,1(){lg(1),1x x f x x x x +-≥=+<,则((3))f f -= ,()f x 的最小值是 .91.(2014·四川高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 .92.(2014·陕西高考真题(文))设,且,则的最小值为______.93.(2014·全国高考真题(文))设函数113,1(){,1x e x f x x x -<=≥,则使得()2f x ≤成立的x的取值范围是_______________.94.(2014·湖北高考真题(文))某项研究表明,在考虑行车安全的情况下,某路段车流量(单位时间内测量点的车辆数,单位:辆/小时)与车流速度(假设车辆以相同速度行驶,单位:米/秒)平均车长(单位:米)的值有关,其公式为(1)如果不限定车型,,则最大车流量为_______辆/小时;(2)如果限定车型,,则最大车流量比(1)中的最大车流量增加 辆/小时.95.(2014·全国高考真题(理))设x,y 满足约束条件{x −y ≥0x +2y ≤3x −2y ≤1 ,则z =x +4y 的最大值为 .96.(2014·浙江高考真题(理))当实数,x y 满足240{101x y x y x +-≤--≤≥时,14ax y ≤+≤恒成立,则实数a 的取值范围是 .97.(2014·浙江高考真题(文))若、满足和240{101x y x y x +-≤--≤≥,则的取值范围是________.98.(2014·辽宁高考真题(文))对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使2a b +最大时,124a b c++的最小值为________. 99.(2014·湖南高考真题(理))若变量满足约束条件,且的最小值为,则100.(2011·重庆高考真题(文))(5分)(2011•重庆)若实数a ,b ,c 满足2a +2b =2a+b ,2a +2b +2c =2a+b+c ,则c 的最大值是 .101.(2013·全国高考真题(文))若x y 、满足约束条件0,{34,34,x x y x y ≥+≥+≤则z x y =-+的最小值为 .102.(2013·广东高考真题(文))已知变量,x y 满足约束条件30{111x y x y -+≥-≤≤≥,则z x y=+的最大值是 .103.(2008·山东高考真题(理))若不等式的解集中的整数有且仅有1,2,3,则的取值范围是104.(2008·广东高考真题(理))(不等式选讲选做题)已知,a ∈R 若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 。

高考数学不等式真题及答案一

高考数学不等式真题及答案一

A.(−∞,12)C.(12,+∞)D.(0,12)A.(2,114)C.(−∞,2)∪(114,+∞)D.(−∞,2]∪(114,+∞)(2017春•东湖区校级月考)不等式|x|•(1-2x)>0的解集是( )题型:计算题;转化思想;综合法;不等式的解法及应用.答案:B思路:将不等式等价变形为1-2x>0且x≠0然后求解集.解析:解:不等式变形为1-2x>0且x≠0,解得x<12且x≠0,所以不等式的解集为(-∞,0)∪(0,12);故选:B.总结:本题考查了不等式的解法;关键是等价变形.(2021秋•单县校级期末)若不等式(a-2)x2+4(a-2)x+3>0的解集为R,则实数a的取值范围是( )题型:分类讨论;转化法;函数的性质及应用;逻辑推理;数学运算.答案:B思路:讨论二次项系数a-2,①a-2=0,②a-2≠0,列出满足要求的不等式,求解即可.解析:解:①当a-2=0,即a=2时,不等式为3>0恒成立,∴a=2符合题意;②当a-2≠0,则V WX a−2>0Δ=16(a−2)2−12(a−2)<0,解得2<a<114,综上所述,实数a的取值范围是[2,114),故选:B.总结:本题考查了不等式恒成立问题的解法,关键是讨论二次项系数,属于中档题.(2022•浦东新区校级模拟)不等式x3x−2>2的解集是(23,45).A.x≥−53B.x≥−53或x≤-2C.x≤-53题型:计算题;转化思想;整体思想;转化法;不等式的解法及应用;数学运算.答案:(23,45).思路:通过作差化简x3x−2-2=−5x+43 x−2>0,从而转化为整式不等式(3x-2)(5x-4)<0,从而解得.解析:解:∵x3x−2>2,∴x3x−2-2=−5x+43 x−2>0,即(3x-2)(5x-4)<0,即23<x<45,故答案为:(23,45).总结:本题考查了分式不等式的解法,考查了转化思想的应用,注意分式不等式应通过作差转化为整式不等式求解.是基础题.(2022•弋江区校级开学)不等式1x+2≤3的解为( )题型:对应思想;综合法;不等式的解法及应用;数学运算.答案:D思路:将不等式1x+2≤3等价变形为V WX(3x+5)(x+2)≥0x+2≠0,求解即可.解析:解:1x+2≤3⇔1x+2-3≤0⇔-3x+5x+2≤0⇔3x+5x+2≥0⇔V WX(3x+5)(x+2)≥0x+2≠0,解得:x<-2或x≥−53.故选:D.总结:本题考查了分式不等式的解法,易错点在于直接去分母,属于基础题.(2023春•金东区校级期中)关于x的不等式ax>3,当a<0时的解集为{x|x<3a}.C .若a+1a>2,则a >1题型:转化思想;综合法;不等式的解法及应用;数学运算.答案:{x |x <3a}.思路:由题意,利用不等式的性质可得不等式ax >3的解集..解析:解:当a <0时,解不等式ax >3,解得x <3a ,即原不等式的解集为{x |x <3a}.故答案为:{x |x <3a }.总结:本题主要考查不等式的性质,属于基础题.(2023春•浙江期中)以下四个命题中,真命题的是( )题型:转化思想;综合法;不等式的解法及应用;数学运算.答案:ABD思路:由题意,利用不等式的性质,逐一判断各个选项是否正确,从而得出结论.解析:解:不等式xx −1<0,即x (x-1)<0,∴0<x <1,故不等式的解集为(0,1),故A 正确;若a <b <0,则1a >1b,故B 正确;若a +1a >2,则a >1错误,例如当a=13时,也有若a +1a >2,故C 错误;若1<a <2,-1<b <0,则2<2a <4,b 2-b=(b −12)2-14∈(0,2),故有2a >b 2-b,则2a+b >b 2,故D 正确.故选:ABD .总结:本题主要考查不等式的性质,其它不等式的解法,属于基础题.A.(1,a)(2022秋•枣庄期末)已知a∈R,关于x的不等式a(x−1)x−a>0的解集可能是( )题型:计算题;转化思想;分类法;不等式的解法及应用;数学运算.答案:BCD思路:分类讨论a的值,再把分式不等式转化为二次不等式求解即可.解析:解:当a=0时,则x∈∅,当a>0时,则a(x−1)x−a>0⇔(x-1)(x-a)>0,①若a>1时,则x>a或x<1,②若0<a<1时,则x>1或x<a,③若a=1时,则x≠1,当a<0时,则a<x<1,综上,当a=0,不等式的解集为∅,当a=1时,不等式的解集为{x|x≠1},当a>1时,不等式的解集为{x|x>a或x<1},当0<a<1时,不等式的解集为{x|x>1或x<a},当a<0时,不等式的解集为{x|a<x<1},故选:BCD.总结:本题考查不等式的解法,主要考查分式不等式转化为二次不等式,考查运算能力,属于中档题.(2023春•徐汇区校级期末)记关于x的不等式1−a+1x+1<0的解集为P,不等式|x+2|<3的解集为Q.(1)若a=3,求P;(2)若P∪Q=Q,求正数a的取值范围.题型:计算题;函数的性质及应用;不等式的解法及应用.答案:见试题解答内容思路:(1)当a=3时,分式不等式可化为x−3x−1<0,结合分式不等式解法的结论,即可得到解集P;(2)由含有绝对值不等式的解法,得Q=(-5,1).根据a是正数,得集合P=(-1,a),并且集合P是Q的子集,由此建立不等式关系,即可得到正数a的取值范围.解析:解:(1)a=3时,1−a+1x+1<0即1−4x+1<0,化简得x−3x−1<0∴集合P={x|x−3x+1<0},根据分式不等式的解法,解得-1<x<3B .m <-32,或m >3C .-32<m <3D .-3<m <32由此可得,集合P=(-1,3).(2)Q={x||x+2|<3}={x|-3<x+2<3}={x|-5<x <1}可得Q=(-5,1)∵a >0,∴P={x |x −ax +1<0}=(-1,a ),又∵P ∪Q=Q ,得P ⊆Q ,∴(-1,a )⊆(-5,1),由此可得0<a≤1即正数a 的取值范围是(0,1].总结:本题给出分式不等式和含有绝对值的不等式,求两个解集并讨论它们的包含关系,着重考查了分式不等式的解法、含有绝对值的不等式的解法和集合包含关系的运算等知识,属于基础题.(2023•龙口市模拟)若正实数x,y 满足x+y=1,且不等式4x +1+1y <m 2+32m 有解,则实数m 的取值范围是( )题型:转化思想;综合法;不等式的解法及应用;数学运算.答案:A思路:先拼凑,利用“乘1法”求得4x +1+1y 的最小值,从而将问题转化为92<m 2+32m 成立,再解关于m 的一元二次不等式,即可.解析:解:因为x+y=1,所以(x+1)+y=2,所以4x +1+1y =12(4x +1+1y )•[(x+1)+y]=12(4+4y x +1+x +1y +1)≥12•(5+24)=92,当且仅当4y x +1=x +1y ,即x=13,y=23时,等号成立,此时4x +1+1y 取得最小值92,原不等式有解,可转化为92<m 2+32m 成立,即2m 2+3m-9>0,所以m <-3或m >32.故选:A .√总结:本题考查一元二次不等式的解法,基本不等式的应用,熟练掌握“乘1法”是解题的关键,考查逻辑推理能力和运算能力,属于中档题.(2023春•黄浦区期末)不等式xx +1<0的解是(-1,0).题型:不等式的解法及应用.A.(−12,3]B.(−12,3)D.(−∞,23]答案:见试题解答内容思路:不等式xx+1<0,即 x(x+1)<0,由此求得它的解集.解析:解:不等式xx+1<0,即 x(x+1)<0,求得-1<x<0,故答案为:(-1,0).总结:本题主要考查分式不等式的解法,体现了转化的数学思想,属于基础题.(2023•宝山区二模)不等式xx−1<0的解集为(0,1).题型:不等式的解法及应用.答案:见试题解答内容思路:由不等式xx−1<0可得 x(x-1)<0,由此解得不等式的解集.解析:解:由不等式xx−1<0可得 x(x-1)<0,解得 0<x<1,故答案为:(0,1).总结:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于基础题.(2021春•赣县区校级期末)不等式3−x2x+1≥1的解集为( )题型:转化思想;转化法;不等式的解法及应用;数学运算.答案:C思路:解不等式,求出不等式的解集即可.解析:解:∵3−x2x+1≥1,∴3x−22x+1≤0,解得:-12<x≤23,故选:C.总结:本题考查了分式不等式的解法,考查转化思想,是基础题.A.(−∞,−3)∪(13,3)B.(−∞,14)∪(16,+∞)D.不能确定(2022秋•普陀区校级期末)设关于x的不等式ax−1x2−a<0的解集为S,且3∈S,4∉S,则实数a的取值范围为( )√√题型:计算题.答案:C思路:由已知中关于x的不等式ax−1x2−a<0的解集为S,且3∈S,4∉S,将3,4分别代入可以构造一个关于a的不等式,解不等式即可求出实数a的取值范围.解析:解:∵关于x的不等式ax−1x2−a<0的解集为S,若3∈S,则3a−19−a<0,解得a∈(-∞,13)∪(9,+∞)若4∉S,则16-a=0,或4a−116−a≥0,解得a∈[14,16]∵[(-∞,13)∪(9,+∞)]∪[14,16]=[14,13)∪(9,16]故实数a的取值范围为[14,13)∪(9,16]故选:C.总结:本题考查的知识点是分式不等式的解法,元素与集合关系的判定,其中根据已知条件构造关于a的不等式是解答本题的关键,本题易忽略4∉S时,包括4使分母为0的情况,而错解为[14,13)∪(9,16)(2017•上海)不等式x−1x>1的解集为(-∞,0).题型:转化思想;转化法;不等式的解法及应用.答案:见试题解答内容思路:根据分式不等式的解法求出不等式的解集即可.解析:解:由x−1x>1得:1−1x>1⇒1x<0⇒x<0,A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)故不等式的解集为:(-∞,0),故答案为:(-∞,0).总结:本题考查了解分式不等式,考查转化思想,是一道基础题.(2020•全国)不等式组V Y WY X x2−2x−3>0,−x2−3x+4≥0的解集为{x|-4≤x<-1}.题型:转化思想;综合法;不等式的解法及应用;数学运算.答案:{x|-4≤x<-1}.思路:由一元二次不等式的解法和集合的交集运算可得所求.解析:解:由x2-2x-3>0可得x>3或x<-1;由-x2-3x+4≥0可得-4≤x≤1.所以不等式组V Y WY X x2−2x−3>0,−x2−3x+4≥0即为V WX x>3或x<−1−4≤x≤1,解得-4≤x<-1.故答案为:{x|-4≤x<-1}.总结:本题考查一元二次不等式的解法,考查转化思想和运算能力,属于基础题.(2020•北京)已知函数f(x)=2x-x-1,则不等式f(x)>0的解集是( )题型:转化思想;综合法;函数的性质及应用;数据分析.答案:D思路:不等式即 2x>x+1.由于函数y=2x和直线y=x+1的图象都经过点(0,1)、(1,2),数形结合可得结论.解析:解:不等式f(x)>0,即 2x>x+1.由于函数y=2x和直线y=x+1的图象都经过点(0,1)、(1,2),如图所示:不等式f(x)>0的解集是(-∞,0)∪(1,+∞),故选:D.A.(0,+∞)B.(1,+∞)D.(0,12)总结:本题主要考查其它不等式的解法,函数的图象和性质,属于中档题.(2023•全国)不等式1x>1x−1的解集为( )题型:转化思想;转化法;不等式的解法及应用;数学运算.答案:C思路:根据已知条件,结合不等式的解法,即可求解.解析:解:1x>1x−1,则1x−1x−1=−1x(x−1)>0,解得0<x<1,故原不等式的解集为(0,1).故选:C.总结:本题主要考查不等式的解法,属于基础题.(2021•上海)不等式2x+5x−2<1的解集为(-7,2).题型:转化思想;综合法;不等式的解法及应用;数学运算.答案:(-7,2).思路:由已知进行转化x+7x−2<0,进行可求.解析:解:2x+5x−2<1⇒2x+5x−2−1<0⇒x+7x−2<0,解得,-7<x<2.故答案为:(-7,2).A.(-∞,-2)∪(3,+∞)B.(-∞,-3)∪(2,+∞)D.(-3,2)A.2f(−π6)>f(−π4)总结:本题主要考查了分式不等式的求解,属于基础题.(2023•日喀则市模拟)已知f′(x)是函数f(x)的导函数,且对于任意实数x都有f′(x)=e x(2x-1)+f (x),f(0)=-1,则不等式f(x)<5e x的解集为( )题型:计算题;转化思想;综合法;导数的综合应用;数学运算.答案:C思路:构造函数g(x)=f(x)ex,依题意可得g′(x)=2x−1⇒g(x)=x2−x+c=f(x)ex,再利用f(0)=-1,可求得c=-1,从而可求得不等式f(x)<5e x的解集.解析:解:令g(x)=f(x)ex,①则g′(x)=f′(x)−f(x)ex,∵f′(x)=e x(2x-1)+f(x),∴f′(x)−f(x)ex=2x−1,即g′(x)=2x-1,∴g(x)=x2-x+c,②由①②知,f(x)ex=x2−x+c,∴f(x)=e x(x2-x+c),又f(0)=-1,∴e0⋅c=-1,即c=-1,∴f(x)ex=x2−x−1,∴不等式f(x)<5e x⇔f(x)ex=x2−x−1<5,∴-2<x<3,即不等式f(x)<5e x的解集为(-2,3).故选:C.总结:本题主要考查利用导数研究函数的单调性,考查运算求解能力,属于中档题.(2023春•成都期末)记函数f(x)的导函数为f′(x),若f(x)为奇函数,且当x∈(−π2,0)时恒有f(x)<f′(x)tanx成立,则( )√C.2f(π3)>3f(π4)D.f(−π3)<3f(−π6)√√√题型:计算题;转化思想;综合法;导数的综合应用;数学运算.答案:B思路:由已知可得f′(x)sinx-f(x)cosx>0,所以构造函数g(x)=f(x)sinx,求导后可判断出g(x)=f(x)sinx在x∈(−π2,0)上单调递增,然后利用函数的单调性逐个分析判断即可.解析:解:由f(x)<f′(x)tanx,得f(x)<f′(x)⋅sinxcosx,因为x∈(−π2,0),所以cosx>0所以f(x)cosx<f′(x)sinx,所以f′(x)sinx-f(x)cosx>0,令g(x)=f(x)sinx,x∈(−π2,0),则g′(x)=f′(x)sinx−f(x)cosxsin2x>0,所以g(x)=f(x)sinx在x∈(−π2,0)上单调递增,对于A,因为−π2<−π4<−π6<0,所以g(−π4)<g(−π6),所以f(−π4)sin(−π4)<f(−π6)sin(−π6),f(−π4)−22<f(−π6)−12,所以2f(−π6)<f(−π4),所以A错误;对于C,因为−π2<−π3<−π4<0,所以g(−π3)<g(−π4),所以f(−π3)sin(−π3)<f(−π4)sin(−π4),f(−π3)−32<f(−π4)−22,所以2f(−π3)>3f(−π4),因为f(x)为奇函数,所以−2f(π3)>−3f(π4),所以2f(π3)<3f(π4),所以C错误;对于BD,因为−π2<−π3<−π6<0,所以g(−π3)<g(−π6),所以f(−π3)sin(−π3)<f(−π6)sin(−π6),f(−π3)−32<f(−π6)−12,所以3f(−π6)<f(−π3),√√√√√√√√√√√√因为f(x)为奇函数,所以f(−π3)>−3f(π6(2023春•双流区月考)已知a>1,b>1,且e aa =eb+1b,则下列结论一定正确的是( )B.2a+1<2b C.2a+2b<23D.a<b A.[-1,0)∪(0,1]C.(-∞,-1]∪(0,1]√答案:A思路:由eaa=eb+1b可得eaa−ebb=1b>0,构造函数f(x)=exx,x>1,求导后判断函数的单调性,由此证明a>b,结合指数函数性质判断BC.解析:解:由eaa=eb+1b,化简可得eaa=ebb+1b,故eaa−ebb=1b>0,又a>1,b>1,故考虑构造函数f(x)=exx,x>1,则当x>1时,f′(x)=ex(x−1)x2>0恒成立,所以f(x)在(1,+∞)上单调递增,因为f(a)−f(b)=eaa−ebb=1b>0,即f(a)>f(b),所以a>b,A正确,D错误;因为a>b,所以2a+1>2a>2b,B错误;取b=3,则eaa=e3+13>e33,因为f(x)在(1,+∞)上单调递增,且f(3)=e33,f(4)=e44>e3+13,存在a=a0∈(3,4)满足该方程,此时2a+2b=2a0+23>23,C错误.故选:A.总结:本题考查导数的综合运用,考查运算求解能力,属于中档题.(2023春•鼓楼区校级期末)设函数y=f(x),(x≠0),对于任意正实数x1,x2(x1≠x2),都有x32f(x1)−x31f(x2)lnx1−lnx2<0.已知函数y=f(x+1)的图象关于点(-1,0)中心对称,且f(1)=1,则不等式f(x3题型:函数思想;构造法;导数的综合应用;数学运算.答案:B思路:先判断函数y=f(x)的奇偶性,构造函数g(x)=f(x)x3,判断g(x)的单调性和奇偶性,分情况讨论,利用单调性即可求解.解析:解:函数y=f(x+1)的图象关于点(-1,0)成中心对称,故函数y=f(x)的图象关于点(0,0)成中心对称,记y=f(x)是奇函数,f(x)f(x)f(x)A.C.2D.3A.a2>b B.a2<bD.log a b<2记g(x)=f(x)x3,g(-x)=f(−x)(−x)3=f(x)x3=g(x),所以g(x)是偶函数,对于任意正数x1,x2(x1≠x2),都x32f(x1)−x31f(x2)lnx1−lnx2<0,即x13x23•f(x1)x13−f(x2)x22lnx1−lnx2<0,所以g(x)在(0,+∞)单调递减,因为f(1)=1,所以g(1)=1,因为g(x)是偶函数,故g(x)在(-∞,0)单调递增,且g(-1)=1,当x>0时,f(x)⩽x3⇔g(x)≤1=g(1)⇒x≥1,当x<0时,f(x)⩽x3⇔g(x)≥1=g(-1)⇒-1≤x<0,故f(x)⩽x3的解集为[-1,0)∪[1,+∞).故选:B.总结:本题考查了导数的应用,函数单调性和奇偶性的综合,属于中档题.(2022秋•临汾期末)已知函数f(x)=xlnx-lnx-x+1,f'(x)是f(x)的导函数,则函数f'(x)( )答案:B思路:先对函数求导,结合导数分析函数的单调性,然后结合函数零点判定定理可求.解析:解:因为f(x)=xlnx-lnx-x+1,则f′(x)=lnx+1-1x-1=lnx-1x,f″(x)=1x+1x2=x+1x2>0在x>0时恒成立,故f′(x)在(0,+∞)上单调递增,又f′(1)=-1<0,f′(e)=1−1e>0,所以f'(x)在x>0时有唯一零点.故选:B.总结:本题主要考查了导数与单调性关系的应用,还考查了函数零点判定定理的应用,属于基础题.(2023春•青羊区校级月考)已知实数a>0,b>0,a≠1,且满足a•lnb=a2-1,则下列判断正确的是( )答案:C思路:由lnb−ln a2=a2−1a−ln a2,构造函数f(x)=x2−1x−2lnx,通过函数的单调性和值域求解判断.解析:解:因为a⋅lnb=a2-1,所以lnb=a2−1a,则lnb−lna2=a2−1a−lna2,令f(x)=x2−1x−2lnx,则f′(x)=2x2−x2+12−2x=(x−1)22≥0,A.a<c<bC.b<a<c D.c<a<bA.2B.3D.e3xxx所以f(x)在(0,+∞)上递增,且f(1)=0,当0<x<1时,f(x)<0,当x>1时,f(x)>0,所以当0<a<1时,f(a)<0,即lnb-lna2<0,则b<a2,所以lnb<lna2,则lnblna>2,即log a b>2,当a>1时,f(a)>0,即lnb-lna2>0,则b>a2,所以lnb>lna2,则lnblna>2,即log a b>2,故选:C.总结:本题主要考查了利用导函数判断函数单调性以及对数函数相关知识,属于中档题.(2023•贵阳模拟)已知实数a=e0.9−22,b=log5.14,c=log65,则a,b,c的大小关系为( )√答案:B思路:先利用对数函数性质证明0<b<log54,c>0,利用比商法结合基本不等式比较b,c,结合指数函数性质证明e0.9<e<22,由此证明a<0,即可得出答案.√解析:解:∵函数y=log4x为(0,+∞)上的增函数,∴0=log41<log45<log45.1,故0<1log45.1<1log45,即0<b<log54,又c=log65>0,∴log54log65=lg4lg5⋅lg6lg5<(lg4+lg62)2lg25=lg2244lg25=lg224lg225<1,故log54<log65,即0<b<c,∵7<e2<8,故e<22,∴e0.9<e<22,则a=e0.9−22<0,故a<b<c,故选:B.√√√总结:本题考查对数函数的性质,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.(2023春•商丘期末)3-a lnb=e2-lnb(a,b∈R),则ab=( )答案:C思路:根据题意,构造函数f(x)=x-e3-x,由其单调性可得a=1+lnb,然后代入计算,即可得到结果.解析:解:由题意可知,1+lnb=e2-lnb=e3-(1+lnb),可设f(x)=x-e3-x,则f′(x)=1+e3-x>0,即y=f(x)单调递增,由a=e3-a⇒f(a)=a-e3-a=0,由1+lnb=e3-(1+lnb)⇒f(1+lnb)=1+lnb-e3-(1+lnb)=0,所以f(a)=f(1+lnb),于是有a=1+lnb,又lna=lne3-a=3-a,故lna+lnb=lnab=3-a+(a-1)=2,所以ab=e2.故选:C.总结:本题主要考查了利用导数研究函数的单调性,属于中档题.(2023•临河区校级模拟)已知函数f(x)及其导函数f′(x)的定义域均为R f(1-2x)为A.[−52,32]C.[−2,32]D.[−32,2]A.c<a<bC.a<b<c D.c<b<a(2023临河区校级模拟)已知函数f(x)及其导函数f(x)的定义域均为R,f(12x)为奇函数,f(2x-1)为偶函数.记 g(x)=f'(x),当-1<x≤1时,g(x)=x+1,则满足g (x)≥|x|-2的)答案:B思路:根据函数f(1-2x)为奇函数,得出f(1+x)=-f(1-x),两边同时求导数得出g (x)的图象关于x=1对称,根据f(2x-1)为偶函数,得出f(-1-x)=f(-1+x),两边同时求导数,得出g(x)的图象关于点(-1,0)成中心对称,结合-1<x≤1时g(x)=x+1,在同一坐标系内作出函数y=g(x)和y=|x|-2的图象,结合图象求出g(x)≥|x|-2解集.解析:解:因为函数f(1-2x)为奇函数,所以f(1+2x)=-f(1-2x),即f(1+x)=-f(1-x),两边同时求导数,得f′(1+x)=f′(1-x),所以g(x)的图象关于x=1对称,又因为f(2x-1)为偶函数,所以f(-2x-1)=f(2x-1),即f(-x-1)=f(x-1),即f(-1-x)=f(-1+x),两边同时求导数,得-f′(-1-x)=f′(-1+x),所以g(x)的图象关于点(-1,0)成中心对称,当-1<x≤1时,g(x)=x+1,在同一坐标系内作出函数y=g(x)和y=|x|-2的图象,如图所示:由图象知,-3≤x<-1时,g(x)=x+1,y=|x|-2=-x-2,由V WX y=−x−2y=x+1,解得A(-32,-12);1<x≤3时,g(x)=-x+3,y=|x|-2=x-2,由V WX y=−x+3y=x−2,解得B(52,12),所以满足g(x)≥|x|-2的x的取值范围是[-32,52].故选:B.总结:本题考查了函数的奇偶性与对称性的应用问题,也考查了推理与运算能力,是难题.(2023•雨花区校级一模)已知a=(e-0.1)e+0.1,b=e e,c=(e+0.1)e-0.1,则a,b,c的大小关系为( )答案:B思路:对a,b,c变形后构造函数f(x)=lnxx,利用极值点偏移证a,b,c的大小关系.解析:解:要比较a,b,c等价于比较lna,lnb,lnc的大小,等价于比较lna(e+0.1)(e−0.1),lnb(e+0.1)(e−0.1),lnc(e+0.1)(e−0.1),即比较,ln(e−0.1)e−0.1,ee2−0.01,ln(e+0.1)e+0.1,构造函数f(x)=lnxx,f′(x)=1−lnxx2,令f′(x)>0,得0<x<e,令f′(x)<0,得x>e,所以f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以f(x)max=f(e)=1e,因为ln(e−0.1)e−0.1=f(e-0.1),ee2−001>ee2=1e=f(x)max,ln(e+0.1)e+0.1=f(e+0.1),B.(ln2,+∞)C.(1,+∞)D.(0,1)e0.e−0.01e e e+0.所以ee2−0.01最大,即a,b,c中b最大,设x1=e-0.1,x2=e+0.1,f(x1)=f(x3)=m,m<1e,x1≠x3,结合f(x)的单调性得x1<e<x3,先证明x1−x3lnx1−lnx3<x1+x32,其中0<x1<e<x3,即证lnx1x3<2(x1−x3)x1+x3=2(x1x3−1)x1x3+1,令t=x1x3∈(0,1),h(t)=lnt-2(t−1)t+1,其中0<t<1,则h′(t)=1t-4(t+1)2=(t−1)2t(t+1)2>0,所以函数h(t)在(0,1)上为增函数,当0<t<1时,h(t)<h(1)=0,所以x3>x1>0时,x1−x3lnx1−lnx3<x1+x32,则2×x1−x3lnx1−lnx3<x1+x3,由f(x1)=f(x3)=m,可知lnx1x1=lnx3x3=m,所以2×x1−x3lnx1−lnx3=2×x1−x3m(x1−x3)=2m<x1+x3,因为m1<e,f(x)在(0,e)单调递增,所以f(x1)>f(2e-x3),即f(x1)>f(2e-x3),因为x1+x2=2e,所以x1=2e-x2,所以f(2e-x2)>f(2e-x3),即2e-x2>2e-x3,所以x2<x3,因为e<x2<x3,所以f(x)在(e,+∞)单调递减,所以f(x2)>f(x3)=f(x1),即ln(e+0.1)e+0.1>ln(e−0.1)e−0.1,即c>b,综上所述,a<c<b,故选:B.总结:本题考查导数的综合应用,解题中需要理清思路,属于中档题.(2023春•重庆期中)已知定义在R上的函数f(x)满足:xf'(x)-f(x)>0,且f(1)x x( )学运算.答案:A思路:由题意设g(x)=f(x),函数定义域为{x|x≠0},则g'(x)=xf′(x)−f(x)2,可得g(x)B.a>c>b C.b>a>c D.c>a>bx x2在(-∞,0)和(0,+∞)上单调递增,题意转化为f(ex)ex>2,结合单调性,即可得出答案.解析:解:由题意设g(x)=f(x)x,函数定义域为{x|x≠0},则g'(x)=xf′(x)−f(x)x2,∵xf'(x)-f(x)>0,∴g'(x)>0在(-∞,0)∪(0,+∞)上恒成立,即g(x)在(-∞,0)和(0,+∞)上单调递增,又f(1)=2,则g(1)=2,∵f(e x)>2e x,即f(ex)ex>2,∴g(e x)>g(1),∴e x>1,解得x>0,又当x=0时,f(1)=2,不符合f(e x)>2e x,故f(e x)>2e x的解集为(0,+∞).故选:A.总结:本题考查利用导数研究函数的单调性,考查转化思想和函数思想,考查逻辑推理能力和运算能力,属于中档题.(2023•泸县校级模拟)设a=111e0.1,b=110,c=ln1110,则( )答案:A思路:根据a=111e0.1=0.11+0.1e0.1,b=0.1,c=ln(1+0.1),构造函数f(x)=xx+1[e x−(x+1)],(x≥0),令g(x)=x-ln(x+1),(x≥0),研究h(x)=e x-(x+1),g(x)在[0,+∞)上的单调性,且f(0)=g(0)=0,即可得到f(0.1)> 0,g(0.1)>0,由此即可得到结论.解析:解:由题意得a=111e0.1=0.11+0.1e0.1,b=0.1,c=ln(1+0.1),构造函数f(x)=xx+1[e x−(x+1)],(x≥0),令g(x)=x-ln(x+1),(x≥0),g(0)=0,且g′(x)=1−1x+1≥0,所以g(x)在[0,+∞)单调递增,所以g(0.1)>0,即g(0.1)>0,得b>c;令h(x)=e x-(x+1),x≥0,由h′(x)=e x-1≥0在[0,+∞)上恒成立,得h(x)在[0,+∞)上单调递增,由h(0)=0,所以h(0.1)>0,即f(0.1)=0.11+0.1e0.1−0.1>0,故a>b;所以a>b>c.故选:A.总结:本题考查利用导数研究函数的单调性,进而解决数的大小比较问题,属于较难的题目.。

(完整word版)数学不等式高考真题

(完整word版)数学不等式高考真题

1.(2018•卷Ⅱ)设函数(1) 当时,求不等式的解集;(2)若,求的取值范围2。

(2013•辽宁)已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3。

(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.4。

(2017•新课标Ⅱ)[选修4-5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.5.(2017•新课标Ⅰ卷)[选修4-5:不等式选讲]已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.6。

(2017•新课标Ⅱ)[选修4—5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.7。

(2018•卷Ⅰ)已知(1)当时,求不等式的解集(2)若时,不等式成立,求的取值范围8.(2018•卷Ⅰ)已知f(x)=|x+1|-|ax—1|(1)当a=1时,求不等式f(x)〉1的解集(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围9。

(2017•新课标Ⅲ)[选修4—5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.10.(2014•新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.11。

高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析1.实数x,y满足x+2y=2,则3x+9y的最小值是________________.【答案】6【解析】3x+9y=3x+32y≥2考点:基本不等式2.(5分)(2011•重庆)若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是.3【答案】2﹣log2【解析】由基本不等式得2a+2b≥,可求出2a+b的范围,再由2a+2b+2c=2a+b+c=2a+b2c=2a+b+2c,2c可用2a+b表达,利用不等式的性质求范围即可.解:由基本不等式得2a+2b≥,即2a+b≥,所以2a+b≥4,令t=2a+b,由2a+2b+2c=2a+b+c可得2a+b+2c=2a+b2c,所以2c=因为t≥4,所以,即,所以3故答案为:2﹣log2点评:本题考查指数的运算法则,基本不等式求最值、不等式的性质等问题,综合性较强.3.证明以下不等式:(1)已知,,求证:;(2)若,,求证:.【答案】见解析【解析】(1)构造函数因为对一切xÎR,恒有≥0,所以≤0,从而得(另解:利用重要不等式)(2)构造函数因为对一切xÎR,都有≥0,所以△=≤0,从而证得:.4.在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为 (m).【答案】20【解析】利用均值不等式解决应用问题。

设矩形高为y, 由三角形相似得:.5.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6【答案】C【解析】∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选C6.已知且,则存在,使得的概率为()A.B.C.D.【答案】D【解析】可行域是一个三角形,面积为2;又直线系与圆相切,故该三角形不被该直线系扫到的部分是一个半径为圆心角为的扇形,面积为,从而被直线系扫到部分的面积为,故所求概率为.【考点】1、不等式组表示的平面区域;2、几何概型.7.设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大值是 .【答案】2【解析】设则有即的最大值为2.【考点】基本不等式8.若正实数满足,且恒成立,则的最大值为.【答案】1【解析】,恒成立,那么,即,所以的最大值为1.【考点】基本不等式求最值9.已知,且,则的最小值是.【答案】【解析】∵,∴==≥=,当且仅当=取等号,故最小值为.【考点】1.利用基本不等式求最值;2.转化与化归思想.10.函数y=x+(x≠0)的值域是________.【答案】(-∞,-4]∪[4,+∞)【解析】当x>0时,y=x+≥2=4,当x<0时,y=x+=-≤-2=-4.11.设a+b=2,b>0,则+的最小值为.【答案】【解析】由a+b=2,b>0.则+=+=++,由a≠0,若a>0,则原式=++≥+2=.当且仅当b=2a=时,等号成立.若a<0,则原式=---≥-+2=.当且仅当b=-2a即a=-2,b=4时等号成立.综上得当a=-2,b=4时,+取最小值.12.若实数x,y满足x2+y2+xy=1,则x+y的最大值是.【答案】【解析】∵xy≤(x+y)2,∴1=x2+y2+xy=(x+y)2-xy≥(x+y)2-(x+y)2=(x+y)2,∴(x+y)2≤,∴-≤x+y≤,当x=y=时,x+y取得最大值.13.若a>0,b>0,且a+b=2,则下列不等式恒成立的是()A.>1B.+≤2C.≥1D.a2+b2≥2【答案】D【解析】由2=a+b≥2得≤1,ab≤1,所以选项A、C不恒成立,+==≥2,选项B也不恒成立,a2+b2=(a+b)2-2ab=4-2ab≥2恒成立.故选D.14.设a+b=2,b>0,则当a=________时,+取得最小值.【答案】-2【解析】因为+=+=++≥+2=+1≥-+1=,当且仅当=,a<0,即a=-2,b=4时取等号,故+取最小值时,a=-2.15.若向量a=(x-1,2),b=(4,y)相互垂直,则9x+3y的最小值为()A.4B.6C.9D.12【答案】B【解析】由a=(x-1,2),b=(4,y)垂直得2x+y=2,∴9x+3y=32x+3y≥2 =2×3=6.16.设P是函数y= (x+1)图象上异于原点的动点,且该图象在点P处的切线的倾斜角为θ,则θ的取值范围是________.【答案】【解析】因为y′=x- (x+1)+=+≥2=,(当且仅当x=时,“=”成立)设点P(x,y)(x>0),则在点P处的切线的斜率k≥,所以tan θ≥,又θ∈[0,π),故θ∈.17.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________.【答案】9【解析】依题意知f′(x)=12x2-2ax-2b,∴f′(1)=0,即12-2a-2b=0,∴a+b=6.又a>0,b>0,∴ab≤2=9,当且仅当a=b=3时取等号,∴ab的最大值为918.已知,且是常数,又的最小值是,则________.【答案】7【解析】法一、,所以.又的最小值是,所以.又,所以.法二、由柯西不等式得:.以下同法一.【考点】1、重要不等式;2、解方程组;3、柯西不等式.19.已知是关于的一元二次方程的两根,若,则的取值范围是()A.B.C.D.【答案】C.【解析】由韦达定理可得..当时,当时,综上可得当时,.【考点】应用不等式性质及重要不等式处理一元二次方程根的分布问题.20.设为实常数,是定义在R上的奇函数,当时,, 若对一切成立,则的取值范围为________.【答案】【解析】设,则,所以,当时,,要使对一切成立,当时,成立;当时,,成立,综上可知.【考点】函数奇偶性、基本不等式.21.下列命题错误的是()A.若,,则B.若,则,C.若,,且,则D.若,且,则,【答案】D【解析】A选项为基本不等式,故正确;若,说明为正数且可以取0,故B正确;若,,且,则,因为基本不等式中等号成立的条件是两数相等,故C正确;基本不等式中,等号成立的条件是,既然等号不成立,定有,D选项将结论作为了条件,故错误,选D.【考点】基本不等式.22.设满足约束条件,若目标函数的最大值为4,则的最小值为 .【答案】【解析】不等式表示的平面区域如图所示阴影部分.当直线过直线与直线的交点时,目标函数取得最大值4,即,即.所以.【考点】1.线性规划;2.基本不等式.23.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为 ( )A.35m B.30m C.25m D.20m【答案】D【解析】如图所示,设另一边长为,则,所以,所以面积,当且仅当时等号成立,即当时面积最大.24.已知,则的最小值是()A.2B.C.4D.5【答案】C【解析】,,,当且仅当,即当且时,上式取等号,故的最小值为.【考点】基本不等式25.已知,,则的最小值为____________.【答案】【解析】由得,当且仅当时取等号;两边平方得,,当且仅当时取等号.【考点】基本不等式求最值.26.已知函数,对于满足的任意实数,给出下列结论:①;②;③;④,其中正确结论的序号是 .【答案】④【解析】①.因为函数是上的增函数,所以所以①不正确.②. 为上的减函数,即为上的减函数,而时,为增函数,或者取代入得,显然所以②不正确.③. ,即说明函数是上的增函数,而在区间上,所以③不正确.④. ,又,所以,即.【考点】对数运算,对数函数的单调性判断,导数运算及应用,均值不等式.27.已知函数,若,则的最大值为________.【答案】【解析】,,,当且仅当时,上式取等号,由于,即当时,取最大值,,即的最大值为.【考点】基本不等式、对数运算28.已知正数满足,,则的取值范围是______.【答案】【解析】由,,又,得,所以,故.【考点】不等式性质,基本不等式的应用.29.设、满足约束条件,若目标函数的最大值为,则的最小值为 .【答案】【解析】根据题意,由于、满足约束条件,围成了封闭的三角形区域,并且当目标函数平移到点(2,4)的最大值为,.故可知2,故答案为2.【考点】线性规划的运用点评:主要是考查了线性规划的最优解的运用,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 [ ,2],
4
2
(1 4)(1 y)
5 ,(1 x)(1 4y)
5 , 当且仅当 x
y
1 ,即 mA = 3 mB 时,取等号。 由(1)知 mA = 3 mB
2
2
4
5
5
时 h 甲=h 乙
所以不能否适当选取 mA 、 mB 的值,使得 h甲 h0 和 h乙 h0同时成立,但等号不同时成立。
8(. 2009 湖北高考) 围建一个面积为 360m2 的矩形场地, 要求矩形场地的一面利用旧墙 (利用旧墙需维修) ,
h0
mA 12 mB 5
10 得: mA 12 mB
5
5

5
mA
mB
2
令3
5 x,
y, 则 x、 y
1 [ ,1] ,即: (1
4 x)(1
y)
5

mA
mB
4
2
同理,由 h乙 h0
10 得: (1 x)(1 4y) 5
5
2
另一方面, x、 y
1 [ ,1] 1
4x、 1+4y
[2,5], 1
x、 1+y
11
11
ba
ba
( a b )(
)2
22
4,
ab
ab
ab
ab
ba
1
当且仅当
即 a b 时 “ =成”立,故选择 B.
ab
2
2.( 2009 天津高考)设 x, y
R, a
1, b
1, 若 a x
by
3, a b
1 2 3,则
1
的最大值为(

xy
3
1
A.2
B.
C.1
D.
2
2
【解析】 选 C. 因为 a x b y 3, x log a 3, y log b 3, 1 1 log 3 ab log 3 ( a b ) 2 1 (当且仅

——
(Ⅱ)试确定 x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
【解析】( 1)如图,设矩形的另一边长为 a m, 则 y 2 =45x+180(x-2)+180 2a·=225x+360a-360
由已知
xa=360, 得
360
a= ,
x
所以 y=225x+ 3602 360( x 0) w.w.w.k.s.5.u.c.o.m x
(II) Q x 0, 225 x 360 2 2 225 3602 10800 x
y 225x 360 2 360 10440 .当且仅当 225x= 360 2 时,等号成立 .
x
x
即当 x=24m 时,修建围墙的总费用最小,最小总费用是
2
答案: 2 2
5.( 2009 湖南高考)若 x
0 ,则 x
2
的最小值为
x
. w.w.w.k.s.5.u.c.o.m
【解析】 Q x 0
2
2
x
2 2 ,当且仅当 x
x
2 时取等号 .
x
x
答案: 2 2
6.( 2009 湖南高考)若 x
0 ,则 x
2
的最小值为
x
【解析】 选Q x 0
2
2
x
2 2 ,当且仅当 x
xy
2
当 a=b= 3 时等号成立 ) .
11
3.( 2009 重庆高考)已知 a 0, b 0 ,则
2 ab 的最小值是(
ab
A.2
B. 2 2
C.4
) D. 5
11
1
1
【解析】 选 C. 因为
2 ab 2
2 ab 2(
ab
ab
ab
ab )
4 当且仅当 1
1

ab
1

ab
ab ,即 a b 时,取 “ =”号。 w.w.w.k.s.5.u.c.o.m
1
20 5
(1 )(1 )
mB
mB
1
,
100( 1 )2 25 1 1
mB
mB
由 mB [5, 20]得 1
11
1
[ , ] ,故当
mB 20 5
mB
1 即 mB 20, mA 12 时,
20
甲乙两人同时取到最大的综合满意度为
10 。 5
( 3)由( 2)知: h0 = 10 5
由 h甲 =
mA
mB
x
x
x
.
2 时取等号 .
答案: 2 2
7.( 2009 江苏高考)按照某学者的理论,假设一个人生产某产品单件成本为
a 元,如果他卖出该产品的单
价为 m 元,则他的满意度为 m ;如果他买进该产品的单价为
ma
n 元,则他的满意度为 n .如果一个人
na
对两种交易 (卖出或买进 )的满意度分别为 h1 和 h2 ,则他对这两种交易的综合满意度为
h0 和 h乙
h0 同时
当 mA
3 mB 时, h甲 5
3
mB 5
mB
3 mB
12 mB
5
5
mB 2 (mB 20)( mB 5) ,

——
3
h乙
mB 5
mB
3 mB
3 mB
20
2
mB
,
( mB 5)( mB 20)
5
h甲 = h乙
( 2)当 mA
3 mB 时,
5
h甲 =
mB 2
(mB 20)(mB 5)
其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为
2m 的进出口,如图所示,已知旧墙的维修费
用为 45 元 /m,新墙的造价为 180 元 /m, 设利用的旧墙的长度为 x( 单位:米 ),修建此矩形场地围墙的总费用
为 y(单位:元) 。
(Ⅰ)将 y 表示为 x 的函数: w.w.w.k.s.5.u.c.o.m
h1h2 .
现假设甲生产 A 、B 两种产品的单件成本分别为 12 元和 5 元,乙生产 A 、B 两种产品的单件成本分别为 3
元和 20 元,设产品 A、 B 的单价分别为 mA 元和 mB 元,甲买进 A 与卖出 B 的综合满意度为 h甲 ,乙卖出
A 与买进 B 的综合满意度为 h乙
(1) 求 h甲 和 h乙 关于 mA 、 mB 的表达式;当 mA
4.( 2009 湖南高考)若 x∈ (0, )则 2tanx+tan( -x) 的最小值为
2
2
【解析】 由 x (0, ) ,知 tan 0, tan(
ห้องสมุดไป่ตู้
) cot
1
2
2
tan

.
0, 所以
——
2tan tan( ) 2tan
1 2 2, 当且仅当 tan
2
tan
2 时取等号,即最小值是 2 2 。
——
温馨提示: 高考题库为 Word 版,请按住 Ctrl ,滑动鼠标滚轴,调节合适的
观看比例,点击右上角的关闭按钮可返回目录。
【考点 20】基本不等式
2009 年考题
1.( 2009 天津高考)设 a 0, b 0. 若 3是3a与3b的等比中项,则 1 1 的最小值为(

ab
A8
B4
C1
1
D
4
【解析】 选 B. 因为 3 a 3 b 3 ,所以 a b 1 ,
3 5 mB 时,求证: h甲 = h乙 ;
(2) 设 mA
3 5 mB ,当 mA 、 mB 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度
为多少?
(3) 记 (2) 中最大的综合满意度为 h0 ,试问能否适当选取 mA 、 mB 的值, 使得 h甲
成立,但等号不同时成立?试说明理由。 【解析】 (1)
相关文档
最新文档