数学建模——优秀论文

合集下载

全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。

全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。

数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。

这些获奖论文通常具有一些显著的特点。

首先,它们能够准确地把握问题的关键。

在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。

例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。

其次,优秀论文中的模型建立具有创新性和合理性。

学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。

他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。

再者,数据处理和分析能力也是至关重要的。

为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。

在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。

以一篇关于电商平台商品推荐系统的数学建模论文为例。

在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。

他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。

在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。

并且,通过大量的实验和对比分析,验证了模型的性能和优越性。

此外,优秀的论文还注重结果的解释和应用。

模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。

数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。

下面是店铺为大家整理的数学建模优秀论文,供大家参考。

数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。

1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。

1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。

原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。

1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。

1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。

把求得的数学结果返回到实际问题中去,检验其合理性。

如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。

总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。

2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。

因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。

DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。

聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。

在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。

数学建模经典论文五篇

数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

全国数学建模优秀论文

全国数学建模优秀论文

全国数学建模优秀论文引言数学建模是运用数学方法解决实际问题的过程,具有广泛的应用价值。

每年,全国范围内举办各级数学建模竞赛,以鼓励学生利用数学建模方法解决实际问题并提高数学建模能力。

本文将介绍全国数学建模优秀论文的主要特点及其贡献。

优秀论文的特点1.创新性:全国数学建模优秀论文具有独特的思路和创新的解决方法。

优秀论文能够从原始问题中挖掘出新的问题,提出新颖的数学模型,并给出有效的数学分析和求解方法。

2.实用性:优秀论文通过数学建模方法解决了实际问题,并且解决方案具有实用性和可操作性。

优秀论文所提出的数学模型能够帮助决策者做出科学决策,解决实际的工程和管理问题。

3.论证性:优秀论文能够充分论证所提出的数学模型的合理性和有效性。

论文通过逻辑推理、数学证明和实例分析等方法来验证所提出的数学模型的正确性和准确性。

4.可读性:优秀论文具有良好的文笔和清晰的逻辑结构,能够使读者快速理解所提出的问题、模型和解决方法。

论文应该包括问题的背景介绍、问题的分析与建模过程、模型的数学表述和求解方法等内容。

优秀论文的贡献1.推动学术研究:全国数学建模优秀论文提供了新的问题和方法,推动了数学建模领域的学术研究。

优秀论文通过提出新的问题和解决方法,拓宽了数学建模的研究范围和深度。

2.指导实际应用:优秀论文所提出的数学模型可以指导实际应用。

例如,在环境保护领域,优秀论文提出的数学模型可以帮助相关部门预测大气污染程度,优化排污方案,提高环境监测的效能。

3.培养人才:全国数学建模优秀论文鼓励并培养了一批有创新能力和实践能力的优秀学生。

这些学生通过参与数学建模竞赛,积累了解决实际问题的经验,提高了数学建模能力,为国家培养了一批数学建模人才。

4.促进社会发展:优秀论文所解决的问题通常具有一定的社会影响力和应用价值。

例如,在交通规划领域,优秀论文可以帮助相关部门进行交通流模拟,分析交通拥堵状况,提出改进交通网络的方案,以提高城市交通效率和减少拥堵。

数学建模全国优秀论文范文

数学建模全国优秀论文范文

数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1.准备阶段主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

数学建模优秀论文的研读心得与体会

数学建模优秀论文的研读心得与体会

数学建模优秀论文的研读心得与体会数学建模是应用数学的一个重要领域,旨在通过建立合适的数学模型来解决实际问题。

在研读数学建模优秀论文的过程中,我不仅学习到了数学建模的基本原理和方法,还对如何撰写高质量的数学建模论文有了更深入的理解。

以下是我对数学建模优秀论文的一些研读心得与体会。

首先,一篇优秀的数学建模论文应该具备清晰的问题陈述和明确的解决思路。

在论文的引言部分,作者通常会详细描述问题的背景和研究意义,并准确明确待解决的问题。

这有助于读者快速了解论文的主要研究内容,并引发他们的兴趣。

在解决思路的阐述中,作者需要给出详细的数学模型建立过程和求解方法,包括参数的确定、约束条件的引入以及求解方程的方法等。

通过论文的阅读,我深刻体会到一个合理的问题陈述和解决思路对论文的整体质量起着决定性的作用。

其次,数学建模的优秀论文应该有严密的推导与论证过程。

在数学建模的过程中,作者需要引入适当的理论和方法来推导数学模型,并进行相应的求解。

在论文的理论推导过程中,作者需要清晰地叙述每一步的推导过程,将推导过程与数学原理合理地连接起来,并进行充分的论证。

这可以让读者更好地理解整个推导过程,并验证每一步的正确性。

在论文的求解过程中,作者需要使用严谨的计算方法,并对结果进行充分的分析和讨论。

通过对论文的研读,我意识到一个优秀的数学建模论文必须具备严密的推导与论证过程,这样才能确保论文的可靠性和有效性。

此外,数学建模优秀论文还应该注重实际问题的分析和解释。

数学建模的目标是解决实际问题,因此论文在解决问题的同时,应该对结果进行充分的实际问题分析和解释。

这包括对模型的适用性和局限性进行讨论,对结果进行合理的解释和解读,以及对进一步研究和实践应用的展望等。

这些分析和解释可以让读者更好地理解论文的意义和实际应用价值,同时也为后续研究提供了有益的启示。

通过研读数学建模优秀论文,我深刻认识到实际问题的分析和解释对于一个成功的数学建模论文是至关重要的。

大学数学建模竞赛中优秀论文

大学数学建模竞赛中优秀论文

大学数学建模竞赛中优秀论文引言大学数学建模竞赛是现代教育中非常具有挑战性和实践意义的比赛活动,吸引了众多学生的参与。

在比赛中,学生需要展示他们的数学建模能力和解决实际问题的能力,而优秀论文则是比赛成绩的重要组成部分。

优秀论文不仅在内容上要有独到的见解和深入的分析,还要在形式上符合学术要求。

本篇文章将介绍大学数学建模竞赛中优秀论文应具备的特点,并给出一些写作技巧和注意事项。

优秀论文的特点独到的见解优秀论文首先应该具备独到的见解。

在建模竞赛中,同一题目往往会有很多种不同的解决方案,而一个优秀的论文应该能够从独特的角度去理解和解决问题。

这就要求学生在研究问题时要有创新思维和灵活的思维方式。

他们可以从不同的学科角度出发,运用各种数学工具和方法,对问题进行深入思考和分析,找到问题的本质和规律。

深入的分析优秀论文还应该具备深入的分析。

解决实际问题往往需要进行复杂的数学建模和推理过程,而一个优秀的论文应该对这些过程进行详尽的分析和解释。

学生需要清晰地陈述问题的假设和目标,并逐步展示他们的推理过程和数学计算过程。

他们应该清晰地阐述每个步骤的目的和理论依据,并能够准确地运用数学知识解决问题。

此外,学生还应该对模型和方法的局限性进行深入思考和讨论,提出可能的改进和优化措施。

规范的写作形式一个优秀的论文还应该在形式上符合学术要求。

学生需要注意以下几个方面:1.文章结构:论文应该有清晰的结构,包括引言、背景介绍、问题陈述、模型建立、实验设计、结果分析和结论等部分。

每个部分的内容应该有机衔接,逻辑性强。

2.表达清晰:学生在写作过程中应该注意用词准确、语句通顺。

他们需要清晰地表达自己的思想和观点,避免使用模棱两可的措辞和含糊不清的表述。

3.图表使用:学生可以通过图表的形式更直观地展示自己的研究结果和分析过程。

但是,他们应该注意图表的排版和标注,保证图表的清晰度和可读性。

4.引用规范:学生在写作过程中应该引用相关文献和数据,并标注清楚引用来源。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

数学建模获奖论文(优秀范文10篇)11000字

数学建模获奖论文(优秀范文10篇)11000字

数学建模获奖论文(优秀范文10篇)11000字数学建模竞赛从1992年始,到现如今已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

本篇文章就为大家介绍一些数学建模获奖论文,供给大家欣赏和探讨。

数学建模获奖论文优秀范文10篇之第一篇:高中数学核心素养之数学建模能力培养的研究摘要:数学建模是一种比较重要的能力,教师在进行高中数学教学的过程中应该让学生们学习这种能力,这对于解决高中数学问题是比较有效的,而且对于学生们未来接受高等教育有更重要的意义。

教师在进行高中数学教学的过程中需要让学生们的能力得到锻炼,提升能力是教学的主要目的,学习知识是比较基础的教学目的,教师如果想让学生们的能力得到锻炼应该对教学方法进行更新,高中数学对于很多学生们来说都是比较困难的,所以教师应该不断更新教学方法,让学生们能理解教师的教学目的,而且找到适合自己的学习方法,这也是核心素养的基本内涵。

本文将对高中数学核心素养之数学建模能力培养进行研究。

关键词:高中数学; 核心素养; 数学建模; 能力培养; 应用研究;建模活动是一项比较有创造性的活动,学生们在学习的过程中一定要具备创新思维和自主学习能力,建模活动进行过程中可以让学生们独立,自觉运用数学理论知识去探索以及解决问题,构建模型解决实际问,教学活动中,让学生们的基础知识更加牢固、基本技能得到锻炼是最根本的目的。

学生们的运算能力以及逻辑思维能力也能在建模活动中得到锻炼,提升学生们的空间观念以及增强应用数学意识是延伸目的。

一、对数学建模的基本理解概述高中数学建模最简单的解释就是利用学生们学习过的理论知识来建立数学模型解决遇到的问题。

数学建模的基本过程就是对生活中或者课本中比较抽象问题解决的过程。

通过抽象可以建立刻画出一种较强的数学手段,通过运用数学思维也能观察分析各种事物的基本性质和特点。

学生们可以从复杂的问题中抽离出自己熟悉的模型,然后在利用好数学模型去解决实际问题基本就是事半功倍。

全国数学建模大赛获奖优秀论文.doc

全国数学建模大赛获奖优秀论文.doc

全国数学建模大赛获奖优秀论文者T.L.Satty于代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。

传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。

本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。

关键词:Excel 层次分析法模型一、层次分析法的基本原理层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。

它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。

层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。

用AHP分析问题大体要经过以下七个步骤:⑴建立层次结构模型;首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。

对于决策问题,通常可以将其划分成层次结构模型,如图1所示。

其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

最低层:表示解决问题的措施或政策(即方案)。

⑵构造判断矩阵;设有某层有n个元素,X={Xx1,x2,x3xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。

(即把n个因素对上层某一目标的影响程度排序。

上述比较是两两因素之间进行的比较,比较时取1~9尺度。

用表示第i个因素相对于第j个因素的比较结果,则A则称为成对比较矩阵比较尺度:(1~9尺度的含义)如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。

国赛数学建模竞赛优秀论文

国赛数学建模竞赛优秀论文

I 、问题重述 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?酒的理化指标来评价葡萄酒的质量?II 、问题分析问题思路问题一: 本问题中,两组各10名评酒员分别对27种红葡萄酒和28种白葡萄酒进行评分。

其中,评分标准一样,评酒员都能理性的按照标准给酒一个合理的评分。

由于,每个人的口感、视觉效果和嗅觉不一样,品酒员给每种酒打的分数不一样而产生误差。

品酒员给每种酒打的分数不一样而产生误差。

根据表格,根据表格,分别计算出两组10名评酒员的评价总分、标准方差、平均值。

运用SAS 对两组进行配对样本T 检验,并用Excle 进行图标分析。

对比两种结果并得出统一结论。

给及两组评酒员的评价结果的差异性和可信度进行评估。

组评酒员的评价结果的差异性和可信度进行评估。

问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级,这里的分级问题需要考虑两方面的问题处理:1、对葡萄理化指标和影响葡萄酒质量评定的标准进行整合分析,2、现实中还没有统一的酿酒葡萄分级标准,现实中还没有统一的酿酒葡萄分级标准,对本题中葡萄进行分级需要有一对本题中葡萄进行分级需要有一套标准。

大一数学建模论文范文2000字(热门6篇)

大一数学建模论文范文2000字(热门6篇)

大一数学建模论文范文2000字(热门6篇)文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。

一、数学建模课程对培养创新人才的作用(一)提高实践能力(二)提高创新能力数学建模方法是解决现实问题的一种量化手段。

数学建模和传统数学课程相比,是一种创新性活动。

面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。

(三)提高科学素质二、基于数学建模课程教学全方位推进创新能力培养的实践(一)分解教学内容增强课程的适应性根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。

课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。

课堂教学注重数学建模知识的学习,课后教学重在知识的运用。

随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。

课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。

(二)融入新的教学方法提高学生的参与度1.课堂教学融入引导式和参与式教学方法。

数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的'方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。

此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。

通过收集历史空气质量数据,构建空气质量预测模型。

运用机器学习算法对模型进行训练和优化,提高预测精度。

通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。

二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。

建立物流配送模型,考虑配送成本、时间、距离等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。

三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。

构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。

运用风险度量方法对模型进行评估。

通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。

四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。

建立能源消耗模型,考虑设备运行、生产计划等因素。

运用优化算法对模型进行求解。

通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。

五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。

收集历史交通流量数据,构建交通流量预测模型。

运用时间序列分析方法对模型进行训练和优化。

通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。

数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。

建立医疗资源需求模型,考虑人口分布、疾病类型等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。

本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。

实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。

三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。

本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。

实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。

四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。

本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。

实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。

五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。

本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。

实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

历届数学建模优秀论文

历届数学建模优秀论文

历届数学建模优秀论文引言数学建模是一种将现实问题转化为数学模型,并通过数学方法进行求解和分析的方法。

在数学建模竞赛中,评选出的优秀论文不仅反映了参赛团队的实力,也对数学建模的发展起到了积极的推动作用。

本文将对历届数学建模优秀论文进行回顾和总结,以展示数学建模领域的发展趋势和研究方向。

第一届数学建模优秀论文第一届数学建模竞赛于1995年举办,该届共有来自全国50个高校的120支队伍参赛。

在该届中,以下论文脱颖而出,成为第一届数学建模的优秀论文:1.论文标题:城市交通拥堵与城市规划这篇论文研究了城市交通拥堵问题,通过数学建模的方法,分析了城市规划对交通拥堵的影响,并提出了优化城市规划的方案。

这篇论文不仅展示了数学建模在解决实际问题中的效果,也对城市交通规划提供了有益的参考意见。

2.论文标题:金融风险评估与管理这篇论文对金融风险评估与管理进行了深入研究,通过构建合理的评估模型,分析了金融风险的成因和变化趋势,并提出了有效的风险管理策略。

该论文在金融行业引起了广泛的关注,为金融机构的风险管理提供了有力的支持。

第二届数学建模优秀论文第二届数学建模竞赛于1996年举办,参赛高校增加到100所。

以下是第二届的优秀论文:1.论文标题:航空器设计与优化这篇论文研究了航空器的设计与优化问题,通过数学建模的方法,分析了航空器设计参数对性能的影响,并提出了相应的优化策略。

该论文对航空器设计的理论和实践具有重要意义。

2.论文标题:医院资源优化分配这篇论文研究了医院资源的优化分配问题,通过数学模型的建立,分析了医院资源的利用效率,并提出了相应的优化方案。

该论文在医疗卫生领域引起了广泛的关注,为医院资源的合理配置提供了重要的参考。

第三届数学建模优秀论文… (以下省略若干届的优秀论文介绍)第十届数学建模优秀论文第十届数学建模竞赛于2004年举办,参赛队伍超过1000支。

以下是第十届的优秀论文:1.论文标题:气象预测模型的研究与改进这篇论文对气象预测模型进行了深入研究,通过改进传统的气象预测模型,提高了气象预测的准确度。

数学建模A优秀论文

数学建模A优秀论文

数学建模A优秀论文数学建模A优秀论文在日常学习、工作生活中,大家都接触过论文吧,论文是对某些学术问题进行研究的手段。

一篇什么样的论文才能称为优秀论文呢?以下是小编为大家收集的数学建模A优秀论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学建模A优秀论文11. 问题重述:(略)2. 问题背景:交待问题背景,说明处理此问题的意义和必要性。

优点:叙述详尽,条理清楚,论证充分缺点:前两段过于冗长,可作适当删节3. 问题分析:进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径优点:条理比较清晰,论述符合逻辑,表达清楚缺点:似乎不够详细,尤其是第三段有些过于概括。

4. 模型的假设与约定:共有8条比较合理的假设优点:假设有依据,合情合理。

比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。

第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。

第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

5. 符号说明及名词定义优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

6. 模型建立与求解6.1问题一:对所给数据惊醒处理和统计,得出规律,找到联系。

优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

6.2问题二:6.2.1最短路的确定为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径优点:假设有根据,理由合情合理缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失一般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲈鱼质量分析模型
摘要
本文讨论了鲈鱼的质量和其身长,胸围的关系。

首先我们假设鲈鱼的体重和其身长呈正相关,利用题目中所给出的数据进行拟合,并计算出鲈鱼体重和身长的函数关系以及鲈鱼实际体重和估算值之间的相对误差,验证假设成立。

通过多次拟合,得出最佳函数关系:3726230088023-+-=L L L W ,其相对误差如下:
从表中的数据,我们可以得出鲈鱼体重的实际值与估计值的相对误差较小,说明用二次函数拟合鲈鱼身长与体重的关系式可行的。

然后,我们利用同样的思想分析鲈鱼体重与胸围的关系,其结果如下:
从表中的数据,我们可以看出方法二的相对误差小于方法一的相对误差,所以方法二的结果更贴近实际。

在原有的基础上,我们进而提出,鲈鱼的体重与其身长和胸围都有关系,其结果如下:
平均相对误差为: 4.0375%
根据表三的数据,可以知道模型三的拟合程度也较好,相对于模型一、二,此模型充分考虑到了身长、胸围对体重的相互影响,用此模型估计鲈鱼的体重可能会更符合实际,更合适推广。

一.问题重述
1.1.基本内容
垂钓的乐趣在于修心,放生的乐趣在于养性。

一垂钓俱乐部为鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的质量给予奖励。

由于俱乐部只准备了一把用于鱼的身长和胸围的软尺,于是众垂钓者开始考虑根据测量的长度估计鱼的质量的方法,希望体味到垂钓的更大乐趣。

因此,利用应用软件以及相应的知识找到所测长度与鱼的质量的变化规律,显得尤为重要。

1.2.拟解决的问题
试从鲈鱼的实际质量和身长体重的变化特点出发,利用题中所给数据,建立鲈鱼质量分析的数学模型,并指出最佳模型及模型中存在的优缺点。

二.问题的分析
我们都知道鲈鱼的体重主要由鱼的身长、胸围决定。

一般来说,鲈鱼的胸围越大,鱼的体重会越重,身长越长,体重也越重。

但影响鲈鱼体重的因素并不唯一,我们要考虑单一变量对鱼体重的影响,即身体长度与体重的关系和胸围与体重的关系,我们要根据已知数据,利用相关软件进行模拟,来确定鲈鱼体重与身长、胸围之间的数量规律。

三.基本假设
1).假设题目中所给的数据、信息以及网上查阅的数据都是有效准确的,可以充分的说明问题;
2).假设池塘里只有一种鲈鱼,不存在其他鱼种。

3).假设池塘里鲈鱼数量众多,分布均匀,密度相同。

4).假设鲈鱼全都正常生长,没有人为因素影响鲈鱼的发育于成长。

5).假设鲈鱼的形态近似为与胸围等周长与身长等高的圆柱体。

6).鲈鱼的身长越长体重越重,体重与身长存在正相关关系;
7).鲈鱼的胸围越大体重也越重,体重与胸围存在正相关的关系;
8).鲈鱼的胸围、身长互相影响,共同作用鲈鱼的体重;
四.符号说明
五.模型的建立与求解
模型一:建立鲈鱼的身长与鲈鱼的体重的模型
的数据,利用MATLAB 软件画出散点图,如下:
身长
体重
身长与体重散点图
方法一:我们把图形可以近似看成一条抛物线,身长与体重近似成二次函数关系 通过多次拟合可得:
W=1.6247*L^2-59.3124*L+709.7392 根据拟合的函数,我们画出拟合图:
200400600800100012001400160018002000身长与体重拟合图
方法二: 根据散点图决定利用三次多项式拟合得到的各项系数如下:
1 -80 3008 -37262
从而得到了拟合函数:
3726230088023-+-=L L L W 画出拟合图如下:
30
32
34
36
3840
42
4446
4005006007008009001000
110012001300
1400根据拟合数据得到的图形
L(cm)
W (g )
模型二:鲈鱼体重与胸围模型建立
考虑鲈鱼胸围对体重的影响,我们采用与模型一相同的方法,先画出鲈鱼体
20
22
24
2628
30
32
胸围
体重
胸围与体重散点图
从图形上看,鲈鱼体重与胸围可能成线性关系,利用多项式拟合的方法,我们得到鲈鱼体重与胸围的函数表达式: W=92*C-1497.5
根据拟合函数,画出胸围与体重关系的拟合图:
胸围与体重拟合图
从图形上看,大部分点分布在直线左右,我们可以近似看成二者成线性关系。

模型三.同时考虑身长和体重对鲈鱼体重的影响
题中附录此模型要用到基本假设4及即:鲈鱼的体态用与胸围等周长,与身长等高的圆柱形来近似。

因为圆柱体的体积等于底面积乘高,底面积可以用周长
表示:
π42
C
.因此可以分析得出2
LC
W∝.又物体质量等于密度与体积的乘积,因此只需根据数据求出密度即可。

于是身长、胸围与体重的关系可以表示为:2
LC

=,问题转化为对系数α的求解。

利用MATLAB软件和已知的八组数据可以求出对应的α值:
0.0303 0.0305 0.0322 0.0334 0.0326 0.0346 0.0338 0.0341
为了得到精确地模型对数据进行处理
α≈0.0327
因此2
0327
.0LC
W=
六.模型检验
模型一
平均相对误差为:3.49%
从表中的数据,我们可以得出鲈鱼体重的实际值与估计值的相对误差较小,说明用二次函数拟合鲈鱼身长与体重的关系式可行的。

平均相对误差为:3.51%
从表中的数据,我们可以看出方法一的相对误差小于方法二的相对误差,所以方法一的结果更贴近实际。

模型二
平均相对误差为: 4.98%
从表中的数据,我们可以看出鲈鱼体重的实际值与估计值的相对误差不太大。

模型三
平均相对误差为: 4.0375%
根据表三的数据,可以知道模型三的拟合程度也较好,相对于模型一、二,此模型充分考虑到了身长、胸围对体重的相互影响。

七.模型优缺点
优点:1.模型简单,易于理解。

2.数据处理简明,计算思路清晰。

3.通过对比,结果更有说服力。

缺点:1.模型是基于个人经验建立,可能存在误差。

2.鲈鱼实际呈梭型,看成圆柱体较为牵强。

八.模型中的程序
画两散点图的程序:
x=[36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1]; y=[24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6]; z=[765 482 1162 737 482 1389 652 454 ;
plot(x,z,'*')
xlabel('身长');
ylabel('体重');
title('身长与体重散点图');
plot(y,z,'*')
xlabel('胸围');
ylabel('体重');
title('胸围与体重散点图');
画身长与体重拟合图程序:
x=[36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1]; z=[765 482 1162 737 482 1389 652 454];
x1=[30:0.1:50];
z1=1.6247.*x1.^2-59.312.*x1+709.7392
plot(x,z,'*',x1,z1)
xlabel('身长');
ylabel('体重');
title('身长与体重拟合图');
画胸围与体重拟合图程序:
y=[24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6]; z=[765 482 1162 737 482 1389 652 454];
y1=[20:0.1:40];
z1=92.*y1-1497.5;
plot(y,z,'*',y1,z1)
xlabel('胸围');
ylabel('体重');
title('胸围与体重拟合图');
得到式(1)、(2)表达式的程序:
x=[36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1]; y=[24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6]; z=[765 482 1162 737 482 1389 652 454];
v1=polyfit(x,z,2);
v2=polyfit(y,z,1);
得到模型三的程序:
y=[24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6]; c=y.^2;
x=[36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1]; z=c.*x;
w=[765 482 1162 737 482 1389 652 454]; a=w./z;
sum(a)/8
鲈鱼体重问题
范玉秋
于天缘
詹杰。

相关文档
最新文档