2018-2019武汉市中考必备数学考前押题密卷模拟试卷1-3(共3套)附详细试题答案
武汉市武昌区2019年中考数学一模试卷含答案解析+【精选五套中考模拟卷】
武汉市武昌区2019年中考数学一模试卷含答案解析一、选择题(共10小题,每小题3分,共30分)1.(3分)已知xy <0,则化简后为( )A .B .C .D .2.(3分)同时使分式有意义,又使分式无意义的x 的取值范围是( )A .x ≠﹣4,且x ≠﹣2B .x=﹣4,或x=2C .x=﹣4D .x=23.(3分)下列计算正确的是( )A .a•a 2=a 3B .(a 3)2=a 5C .a+a 2=a 3D .a 6÷a 2=a 34.(3分)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,305.(3分)若(x ﹣2)(x+9)=x 2+px+q ,那么p 、q 的值是( ) A .p=7 q=18B .p=7 q=﹣18C .p=﹣7 q=18D .p=﹣7 q=﹣186.(3分)点P 关于x 轴的对称点P 1的坐标是(4,﹣8),则P 点关于y 轴的对称点P 2的坐标是( ) A .(﹣4,﹣8) B .(﹣4,8)C .(4,8)D .(4,﹣8)7.(3分)如图是某几何体的三视图,则该几何体的全面积等于( )A .112B .136C .124D .848.(3分)x 1、x 2、x 3、…x 20是20个由1,0,﹣1组成的数,且满足下列两个等式:①x 1+x 2+x 3+…+x 20=4,②(x 1﹣1)2+(x2﹣1)2+(x3﹣1)2+…+(x20﹣1)2=32,则这列数中1的个数为()A.8 B.10 C.12 D.149.(3分)若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B. C.D.10.(3分)在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC=∠DAB;(4)△ABE是正三角形,其中正确的是()A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知,m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式:的值为.12.(3分)已知:a+x2=2019,b+x2=2019,c+x2=2019,且abc=12,则﹣= .13.(3分)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为.14.(3分)质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是.15.(3分)如图,四边形ABDC中,AB∥CD,AC=BC=DC=4,AD=6,则BD= .16.(3分)如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.[来源:]三、解答题(共8题,共72分)17.(8分)解方程:(1)2(3x﹣1)=16.18.(8分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.19.(8分)某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?20.(8分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.21.(8分)如图,锐角△ABC内接于⊙O,若⊙O的半径为6,,求BC的长.22.(10分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.23.(10分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD 与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).24.(12分)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)已知xy<0,则化简后为()A.B.C.D.【解答】解:有意义,则y>0,∵xy<0,∴x<0,∴原式=﹣x.故选:B.2.(3分)同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D. x=2【解答】解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.3.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3D.a6÷a2=a3【解答】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6﹣2=a4,故本选项错误.故选:A.4.(3分)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,30【解答】解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选:C.5.(3分)若(x﹣2)(x+9)=x2+px+q,那么p、q的值是()A.p=7 q=18 B.p=7 q=﹣18 C.p=﹣7 q=18 D.p=﹣7 q=﹣18【解答】解:∵(x﹣2)(x+9)=x2+7x﹣18=x2+px+q,∴p=7,q=﹣18.故选:B.6.(3分)点P关于x轴的对称点P1的坐标是(4,﹣8),则P点关于y轴的对称点P2的坐标是()A.(﹣4,﹣8)B.(﹣4,8)C.(4,8)D.(4,﹣8)【解答】解:根据轴对称的性质,得点P的坐标是(4,8),则P点关于y轴的对称点P2的坐标是(﹣4,8).故选B.7.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故选:B.8.(3分)x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足下列两个等式:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2+…+(x20﹣1)2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14【解答】解:∵x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足下列两个等式:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2+…+(x20﹣1)2=32,∴﹣1的个数有8个,则1的个数有12个.故选:C.9.(3分)若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B. C.D.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.[来源:]故选:B.10.(3分)在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC=∠DAB;(4)△ABE是正三角形,其中正确的是()A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【解答】解:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,(1)错误;利用边角边定理可证得△ADE≌△ABC,那么BC=DE,(2)正确;由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=∠DAB,(3)正确;△ABE不一定是等边三角形,那么(4)不一定正确;(2)(3)正确,故选:B.二、填空题(本大题共6个小题,每小题3分,共18分) [来源:]11.(3分)已知,m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式:的值为2019 .【解答】解:根据题意得:m+n=0,pq=1,x=2或﹣2,则原式=0+2019+4=2019,故答案为:201912.(3分)已知:a+x2=2019,b+x2=2019,c+x2=2019,且abc=12,则﹣= 0.25 .【解答】解:由题意得:①﹣②得:a﹣b=﹣1①﹣③得:a﹣c=﹣2②﹣③得:b﹣c=﹣1∴﹣=====0.25故答案为:0.25(3分)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为1:3 .[来13.源:学|科|网]【解答】解:设平行四边形的面积为1,∵四边形ABCD是平行四边形,∴S△DAB=S▭ABCD,又∵M是▭ABCD的AB的中点,则S△DAM=S△DAB=S▭ABCD,而==,∴△EMB上的高线与△DAB上的高线比为==,∴S△EMB=×S△DAB=,∴S△DEC=4S△MEB=,S阴影面积=1﹣﹣﹣=,则阴影部分的面积与▱ABCD的面积比为.故填空答案:.另解:过点E作EG⊥AB于H,交CD于G,∴四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴EF⊥CD,∴S▱ABCD=AB×HG,∵点M是AB的中点,∴AM=BM=AB=CD,∵BM∥CD,∴△BME∽△DCE,∴=,∴EG=2EH,∴GH=3EH,∴S非阴影部分=S△AMD+S△BME+S△CDE=AM•GH+BM•EH+CD•EG=×AB•3EH+×AB•EH+•AB×2EH=2AB•EH=2AB×GH=AB•GH,∴S阴影部分=S▱ABCD﹣S非阴影部分=AB•GH,∴阴影部分的面积与▱ABCD的面积之比为:AB•GH:AB•GH=1:3,14.(3分)质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是.【解答】解:由树状图可知共有4×4=16种可能,第一次底面上的数字能够整除第二次底面上的数字的有5种,所以概率是.15.(3分)如图,四边形ABDC中,AB∥CD,AC=BC=DC=4,AD=6,则BD= 2.【解答】解:如图,延长BC到E,使CE=BC,连接DE.∵BC=CD,∴CD=BC=CE=4,∴∠BDE=90°,BE=8.∵AC=BC,∴∠A BC=∠BAC,∵AB∥CD,∴∠ABC=∠DCB=∠BAC,∠BAC+∠DCA=180°,又∵∠DCB+∠DCE=180°,∴∠DCE=∠DCA,∴在△ACD与△ECD中,,∴△DCE≌△DCA(SAS),∴AD=ED=6.在Rt△BDE中,BE=2BC=8,∴BD===2.故答案是:2.16.(3分)如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为32.【解答】解:∵抛物线y=﹣x2﹣2x+3与x轴交于点A、B,∴当y=0时,则﹣x2﹣2x+3=0,解得x=﹣3或x=1,则A,B的坐标分别为(﹣3,0),(1,0),AB的长度为4,[来源:学&科&网Z&X&X&K]从C1,C3两个部分顶点分别向下作垂线交x轴于E、F两点.根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1与C2.如图所示,阴影部分转化为矩形.根据对称性,可得BE=CF=4÷2=2,则EF=8利用配方法可得y=﹣x2﹣2x+3=﹣(x+1)2+4则顶点坐标为(﹣1,4),即阴影部分的高为4,S阴=8×4=32.三、解答题(共8题,共72分)17.(8分)解方程:(1)2(3x﹣1)=16.【解答】解:(1)去括号得,6x﹣2=16,移项、合并得,6x=18,系数化为1得,x=3;(2)去分母得,3(x+1)﹣12=2(2x+1),去括号得,3x+3﹣12=4x+2,移项、合并得,﹣x=11,系数化为1得,x=﹣11;(3)方程可化为,去分母得,20x﹣3(15﹣20x)=6,去括号得,20x﹣45+60x=6,移项、合并得,80x=51,系数化为1得,x=.18.(8分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.19.(8分)某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?【解答】解:(1)由题意可得,甲民主评议的得分是:200×25%=50(分),乙民主评议的得分是:200×40%=80(分),丙民主评议的得分是:200×35%=70(分);(2)由题意可得,甲的成绩是:75×=70.4(分),乙的成绩是: =77(分),丙的成绩是: =73.9(分),∵70.4<73.9<77,∴乙当选学生会主席.20.(8分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,[来源:学科网ZXXK]则:,解之得.答:A种型号的衣服每件90元,B种型号的衣服100元;(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,可得:,解之得,∵m为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B型号衣服购买10件,A型号衣服购进24件;(2)B型号衣服购买11件,A型号衣服购进26件;(3)B型号衣服购买12件,A型号衣服购进28件.21.(8分)如图,锐角△ABC内接于⊙O,若⊙O的半径为6,,求BC的长.【解答】解:作⊙O的直径CD,连接BD,则CD=2×6=12.∵∠CBD=90°,∠D=∠A,∴BC=CD•sinD=CD•sinA=12×.∴BC=8.22.(10分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.【解答】解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC=•BC•BD∴×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.23.(10分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B 题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= 或 (用含b 的式子表示);②如图4﹣2,若将矩形ABCD 先纵向分割出m 个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=b 或b (用含m ,n ,b 的式子表示).【解答】解:(1)∵点H 是AD 的中点,∴AH=AD ,∵正方形AEOH ∽正方形ABCD ,∴相似比为:==;故答案为:;(2)在Rt △ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为: =,故答案为:;(3)A 、①∵矩形ABEF ∽矩形FECD ,[来源:Z_xx_] ∴AF :AB=AB :AD ,即a :b=b :a ,∴a=b ;故答案为:②每个小矩形都是全等的,则其边长为b 和a ,则b : a=a :b ,∴a=b ;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,[来源:]Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b或b.24.(12分)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,解得b=2,c=3.∴y=﹣x2+2x+3.设直线AB的解析式为y=kx+n,将点A和点B的坐标代入得:,解得:k=﹣1,n=3,∴直线AB的解析式为y=﹣x+3.(2)由题意得:OE=t,AF=t,∴AE=OA﹣OE=3﹣t.∵OA=OB,∠BOA=90°,∴∠BAO=45°.∵△AEF为等腰直角三角形,∠FAE=45°,[来源:学+科+网]∴∠AEF=90°,或∠AFE=90°.当∠AEF=90°时,=cos45°,即=,解得:t=;当∠AFE=90°时, =cos45°,即=,解得:t=1.综上所述可知当t=1或t=时,△AEF为等腰直角三角形.(3)存在.如图所示:过点P作PC⊥x轴,垂足为C,交AB与点D.设点P的坐标为(a,﹣a2+2a+3),则D(a,﹣a+3),PD=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a=﹣(a﹣)2+.∴当a=时,PD有最大值,即△ABP的面积有最大值,PD的最大值为∴P(,).∵△ABP的面积=DP•(x A﹣x B)=×3×=.∴△ABP的面积的最大值为,此时点P的坐标为(,).中考数学模拟试卷一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16各2分.)1.4的平方根是【】A.-2B.2C.±2D.162.下列算式中,结果等于a6的是【】A. a2•a3B.a2+ a2+ a2C. a4+ a2D. a2• a2• a23.将9250000用科学计数法表示为【】A.0.925×107B.9.25×107C.9.25×106D.92.5×1054.下列图形中,既是轴対称图形又是中心对称图形的是【】5.下列列图形中,能肯定∠2<∠1的是【】6.如图是用八块相同的小正方体搭建的几何体,它的左视图是【】7.下列各因式分解正确的是【】A.(x-1)2=x2+2x+1B.x2+2x-1=(x-1)2C.x3-9x=x(x+3)(x-3)D.-x2+(-2)2=(x-2)(x+2)8,反比例函数y=kx的图象如图所示,点A是该函数图象上一点,AB垂直于X轴垂足是点B,如果 S△AOB=1,则k的值为【】A. 1B. -1 C,2 D.-29.直角三角板和直尺如图放置,若∠1=40°,则∠2的度数为【】A.30°B.20°C.40°D.50°10.如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是【】A (m-n)2=m2-2mn+n2 B.m2-n2=(m+n)(m-n)C.(m-n)2= m2-n2 D.m(m-n)= m2-mn11.如图,△A’B’C’是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A’B’C’的面积比是6:9,则OA:OA’为【】A.4:3B.3:4C.9:16D.16;912.如图,在□ABD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别别以P、Q为圆心,以大于12PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD 于点E,则则CE的长为【】A.3 B .5 C.2 D.6.513.已知m≠0,函数y=-mx2十n与y=mnx在同一直角坐标系中的大致图像可能【】14.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调査发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为【】A.11元B.12元C.13元D.14元15.如图,矩形ABCD中,AB=8,BC=6,点E、F、G、H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFCH周长的最小值为【】16.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-2,0),对称轴为直线x=1,下列结论:①abc<0;②2a-b=0③b2-4ac>0:;④无论m为何值时,总有am2+bm≤a+b:⑤9a+c>3b。
2018~2019学年度武汉市部分学校九年级调研测试数学试卷(含答案)
2018~2019学年度武汉市部分学校九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于125.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( ) A .AC 的长 B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________.15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________.三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=0.18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD .19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C 、D 、G 、H )这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(本题8分)如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1).(1) 将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2) 线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线;(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1) 求出y与x的函数关系式;(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE =62,连接BE,P为BE的中点,连接PD、AD.(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 如图3,若∠ACD=45°,求△P AD的面积.24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1) 如图1,m=3.①直接写出A、B、C三点的坐标;②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM·ON是一个定值.。
2019年最新武汉市中考数学第三次模拟试卷及答案解析
21.如图,AB为⊙O的直径,C为⊙O上一点,过C点的切线CE垂直于弦AD于点E,连OD交AC于点F.
(1)求证:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.
22.某地政府计划为农户购买农机设备提供补贴.其中购买Ⅰ型、Ⅱ型设备农民所投资的金额与政府补贴的额度存在下表所示的函数对应关系.
三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.
17.解方程:2x﹣3=3x+4.
18.如图,在△ABC中,AB=AC,点D是BC的中点,BF⊥AC于点F,交AD于点E,∠BAC=45°.求证:△AEF≌△BCF.
19.一位射击运动员在10次射击训练中,命中靶的环数如图.
型号
金额
Ⅰ型设备
Ⅱ型设备
投资金额x(万元)
xห้องสมุดไป่ตู้
5
x
2
4
补贴金额y(万元)
y1=kx(k≠0)
2
y2=ax2+bx(a≠0)
2.8
4
(1)分别求y1和y2的函数解析式;
(2)有一农户共投资10万元购买Ⅰ型、Ⅱ型两种设备,两种设备的投资均为整数万元,要想获得最大补贴金额,应该如何购买?能获得的最大补贴金额为多少?
A.( ,n)B.(m,n)C.( , )D.(m, )
7.如图,下列几何体的左视图不是矩形的是( )
A. B. C. D.
8.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )
A.4月份三星手机销售额为65万元
B.4月份三星手机销售额比3月份有所上升
2018-2019年武汉市数学押题试卷训练试题(2套)附答案
2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。
(完整版)2019年武汉市中考数学模拟试题及答案
22019 年武汉市中考数学模拟试卷一、选择题(共 10 小题,每小题 3 分,共 30 分) 1.下列各数中,最小的数是 ( )A.-2B.-0.1C .0D.|- 3|2. 若代数式1x + 3在实数范围内有意义,则 x 的取值范围是( )A .x <-3B .x >-3C .x ≠-3D .x =-33. 某校在“校园十佳歌手”比赛中,六位评委给 1 号选手的评分如下:90、96、91、96、95、94,那么这组数据的众数和中位数分别是( ) A .96、94.5 B .96、95 C .95、94.5 D .95、95 4. 点 A (2,-3)关于 x 轴对称的点的坐标是( ) A .(2,3) B .(-2,-3) C .(2,-3) D .(3,-2) 5. 如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .6. 在一个不透明的袋中装有 2 个黄球和 2 个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是()1 A.81 B.6 1 C.4 1D.27. 已知关于 x ,y 的二元一次方程组,若 x +y >3,则 m 的取值范围是()A .m >1B .m <2C .m >3D .m >58. 如图,直线 y = kx (k < 0) 与双曲线 y = - x交于 A (x 1 , y 1 ), B (x 2 , y 2 ) 两点,则3x 1 y 2 - 8x 2 y 1 的值为()xB.-10C.5D.10yAoB279. 我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3,6,10…)和“正方形数”(如 1,4,9,16…),在小于 200 的数中,设最大的“三角形数”为 m ,最大的“正方形数”为 n ,则 m+n 的值为( )A .33B .301C .386D .57110. 如图,已知直线 l 与⊙O 相离,OA ⊥l 于点 A ,OA=5,OA 与⊙O 相交于点 P ,AB 与⊙O 相切于点 B ,BP 的延长线交直线 l 于点 C .若在⊙O 上存在点 Q ,使△QAC 是以 AC 为底边的等腰三角形,则⊙O 的半径的最小值为( )A .B . 2C .D .二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11. 计算:- 12 的结果为12. 下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率(精确到 0.1)约是13 计算 3x - 9 的结果为x - 3 x - 314. 如图,在平行四边形 ABCD 中,点 E 为 BC 中点,且 AB =AE .若 AE 平分∠DAB ,∠EAC =25°,则∠AED 的度数为ABDC投篮次数 10 50 100 150 200 250 300 500 投中次数 4356078104123151249投中频率0.40 0.70 0.60 0.52 0.52 0.49 0.51 0.50第14 题图第16 题图15.已知抛物线y=-x2+mx+2-m,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为.16..如图,在△ABC 中,∠ABC=15°,∠ACB=37.5°,点D 是边BC 上的一点,且∠DAC=75°,则B D 的值为.DC三、解答题(共8 题,共72 分)17.(本题8 分)计算:a g a2g a3+ (-2a3 )2- (-a)618.(本题8 分)如图,已知:AD∥BC,∠A=∠C,求证:AB∥DC.A D EF B C19.(本题8 分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90 分~100 分;B 级:75 分~89 分;C 级:60 分~74 分;D 级:60 分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A 级所在的扇形的圆心角度数是;(4)若该校九年级有500 名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为人.20.(本题 8 分)如图,在平面直角坐标系中,点 A、B、C 的坐标分别为(-1,3)、 (-4,1 )、(-2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点 B 的对应点 B1的坐标是(1,2),再将△A1B 1C1绕原点 O 顺时针旋转90°得到△A2B2C2,点 A1的对应点为点 A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点 A 经过点 A1到达点 A2的路径总长.第20 题图21.(本题8 分)如图,⊙O 是△ABC 的外接圆,AC 为直径, =,BE⊥DC 交DC 的延长线于点E.(1)求证:∠1=∠BCE;(2)求证:BE 是⊙O 的切线;(3)若EC=1,CD=3,求cos∠DBA.22.(本题10 分)某网店专门销售某种品牌的漆器笔筒,成本为30 元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240 件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150 元给希望工程,为了保证捐款后每天剩余利润不低于3600 元,试确定该漆器笔筒销售单价的范围.23.(本题10 分)已知:△ABC 中,点D 为边BC 上一点,点E 在边AC 上,且∠ADE=∠B(1)如图1,若AB=AC,求证:CE =BDCD AC(2)如图2,若AD=AE,求证:CE =BDCD AE(3)在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=1,则AB=2124.(本题12 分)已知,抛物线y=- x2+bx+c 交y 轴于点C,经过点Q(2,2).直线2y=x+4 分别交 x 轴、y 轴于点 B、A.(1)求抛物线的解析式;(2)如图 1,点P 为抛物线上一动点(不与点 C 重合),PO 交抛物线于 M,PC 交AB 于N,连MN.求证:MN∥y 轴;(3)如图,2,过点 A 的直线交抛物线于 D、E,QD、QE 分别交 y 轴于G、H.求证:CG •CH 为定值.C MB O xPC QGD OH xE图 2图 1F AH33 22 6参考答案一、选择题(共 10 小题,每小题 3 分,共 30 分)题号 12 3 4 5 6 7 8 9 10 答案A C A AB CDBCC二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.12. 0.5 13. 314. 85°15. m=8 或- 216. 16.6 + 22第 16 题提示:如图,作∠AEB=15°,把△ABD 绕点 A 逆时针旋转 150°得到△AEF ,连接 CF ,DF ,作 CH ⊥EF 则∠FEC=30°,∠CFE=45°,设 CH=FH=1,则 EH= BD = EF = 1 + CD=CF=∴ BD = 1 + = + DC 2BD CE17. 4 a 6 18. 略19.解: (1)总人数为 10÷20%=50 人,则 D 级的学生人数为 50﹣10﹣23﹣12=5 人.据此可补全条形图;(2)D 级的学生人数占全班学生人数的百分比是 1﹣46%﹣24%﹣20%=10%;(3)A 级占 20%,所在的扇形的圆心角为 360×20%=72°;(4)A 级和 B 级的学生占 46%+20%=66%; 故九年级有 500 名学生时,体育测试中 A 级和 B 级的学生人数约为 500×66%=330 人.2 33 520.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)OA1=42+42=4 2,点 A 经过点 A1到达A2的路径总长为21.(1)过点B 作BF⊥AC 于点F,在△ABF 与△DBE 中,∴△ABF≌△DBE(AAS)∴BF=BE,∴∠1=∠BCE(2)连接OB,∵AC 是⊙O 的直径,∴∠ABC=90°,即∠1+∠BAC=90°,∵∠BCE+∠EBC=90°,且∠1=∠BCE,∴∠BAC=∠EBC,52+12+180 =26+2 2π.90·π·4 2∵OA=OB,∴∠BAC=∠OBA,∴∠EBC=∠OBA,∴∠EBC+∠CBO=∠OBA+∠CBO=90°,∴BE 是⊙O 的切线;(3)由(2)可知:∠EBC=∠CBF=∠BAC,在△EBC 与△FBC 中,,∴△EBC≌△FBC(AAS),∴CF=CE=1,由(1)可知:AF=DE=1+3=4,∴AC=CF+AF=1+4=5,∴cos∠DBA=cos∠DCA= =22. 解:(1)由题意得:,解得:.故y 与x 之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50 时,w 随x 的增大而增大,∴x=46 时,w 大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46 元时,每天获取的利润最大,最大利润是3840 元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55 时,捐款后每天剩余利润不低于3600 元.23.证明:(1) (1) ∵△BAD∽△CDE∴ CE =BD =BDCD AB AC(2)在线段AB 上截取DB=DF ∴∠B=∠DFB=∠ADE2x5x22∵AD=AE ∴∠ADE=∠AED ∴∠AED=∠DFB同理:∵∠BAD+∠BDA=180°-∠B,∠BDA+∠CDE=180°-∠ADE ∴∠BAD=∠CDE∵∠AFD=180°-∠DFB,∠DEC=180°-∠AED∴∠AFD=∠DEC ∴△AFD∽△DEC ∴CE=DF=BDCD AD AE(3)过点E 作EF⊥BC 于F∵∠ADE=∠B=45°∴∠BDA+∠BAD=135°,∠BDA+∠EDC=135°∴∠BAD=∠EBC∵tan∠BAD=tan∠EDF=EF=1DF 2∴设EF=x,DF=2x,则DE=5x在DC 上取一点G,使∠EGD=45°∴△BAD∽△GDE∵AD=AE∴∠AED=∠ADE=45°∵∠AED=∠EDC+∠C=45°,∠C+∠CEG=45°∴∠EDC=∠GEC ∴△EDC∽△GEC∴CG=EG=CE∴CG=,CG =4 10CE DE CD 4 5 又CE2=CD·CG∴42=CD·410 ,CD=25∴2x +x +410= 25,解得x =2 105∵△BAD∽△GDE∴DE=DG=AD AB∴ AB =DG=3x=6 5524.(1)y=-1x2+x+2;2⎧y =kx + 2 1 2(2)设PM:y=mx,PC:y=x+2.由⎪⎨y =-1x2+x + 2得x +(k-1)x=0,21-k ⎧y =mx⎩⎪ 212-4 2x p= .由⎪得x +(m-i)x-2=0,x p•x m=-4,∴x m= = .2 ⎨y -1 x2+x + 2 2xpk -1 ⎩⎪ 210102⎩ ⎨ 1由⎧ y = kx + 2 得 x N = ⎨y = x + 42 k -1=x M , ∴MN ∥y 轴.(3)设 G (0,m ),H (0,n ).得 QG :y= 2 - m x+m ,QH :y= 2 - nx+n.2 2⎧y = 2 - mx + m 由 ⎪ 2 图 1 得 x =m-2. 同理得 x =n-2. ⎨ ⎪ y = - 1 ⎩ 2x 2+ x + 2D E ⎧ y = kx + 4 1 设 AE :y=kx+4,由⎪ y = - x 2+ x + 2, 得 x 2-(k-i)x +2=0 2 ⎩⎪ 2∴x D•x E =4,即(m-2)•(n-2)=4. ∴CG•CH=(2-m )•(2-n )=4.y N ACMBOxPy A C QG D OHxE图 2。
2018年湖北省武汉市中考数学模拟题含答案(共4套).doc
、-、-2C.-D.-、--12.化简:-b13.在-1、0、、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A.5B.±5C.-5D.±42.如果分式A.x≠0xx-1无意义,那么x的取值范围是()B.x=1C.x≠1D.x=-13.(-a+3)2的计算结果是()A.-a2+9B.-a2-6a+9C.a2-6a+9D.a2+6a+94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件5.下列运算结果是a6的是()A.a3·a3B.a3+a3C.a6÷a3D.(-2a2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B,则点B的坐标为()A.(-1,-2)B.(2,1)C.(-2,-1)D.(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数人数311321631741A.2和3B.3和3C.2和2D.3和29.在如图的4×4的方格中,与△ABC相似的格点三角形(顶点均在格点上)(且不包括△ABC)的个数有()A.23个B.24个C.31个D.32个10.二次函数y=mx2-nx-2过点(1,0),且函数图象的顶点在第三象限.当m+n为整数时,则mn的值为()A.-1322B.-1、34132434、2二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________1-b+1b+1=__________1314.如图,△ABC中,AB=AC,∠BAC=66°,OD垂直平分线段AB,AO平分∠BAC,将∠C沿EF(点E在BC 上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC=___________=,AD=7,A⎩3x-y=1615.如图,在四边形ABCD中,AC与BD交于点O,∠DAB与∠ACB互补,C=6,AB=8,则BC=___________OD5OB316.如图,C是半径为4的半圆上的任意一点,AB为直径,延长AC至点P使CP=2CA.当点C从B运动到A时,动点P的运动路径长为___________三、解答题(共8题,共72分)⎧x+2y=317.(本题8分)解方程组:⎨18.(本题8分)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AC∥DF,求证:ABC≌△DEF△19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的圆心角是__________(2)补全条形统计图(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1)求1辆大客车和1辆小客车的租金各为多少元?(2)若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC为⊙O的直径,点A为⊙O上一点,点E△为ABC的内心,OE⊥EC(1)若BC=10,求DE的长(2)求sin∠EBO的值22.(本题10分)如图,直线y=2x与函数y k(x>0)的图象交于第一象限的点A,且A点的x横坐标为1,过点A作AB⊥x轴于点B,C为射线BA上一点,作CE⊥AB交双曲线于点E,延长OC 交AE于点F(1)则k=__________(2)作EM∥y轴交直线OA于点M,交OC于点G①求证:AF=FE②比较MG与EG的大小,并证明你的结论(2)若点G在线段EF上,点D在线段BC上,且GF==,α=90°,EB=1,求线段GD的长23.(本题10分)如图,在△ABC△与AFE中,AC=2AB,AF=2AE,∠CAB=∠FAE=α(1)求证:∠ACF=∠ABECD1EF CB3(3)将(2)中改为120°,其它条件不变,请直接写出GDCF的值24.(本题12分)在平面直角坐标系中,抛物线C1:y=ax2+bx-1的最高点为点D(-1,0),将C1左移1个单位,上移1个单位得到抛物线C2,点P为C2的顶点(1)求抛物线C1的解析式(2)若过点D的直线l与抛物线C2只有一个交点,求直线l的解析式(3)直线y=x+c与抛物线C2交于D、B两点,交y轴于点A,连接AP,过点B作BC⊥AP于点C,点Q为C2上PB之间的一个动点,连接PQ交BC于点E,连接BQ并延长交AC于点F,试说明:FC·(AC+E C)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A.8B.-8C.4D.-42.要使分式5x1有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-13.下列计算结果为x8的是()A.x9-x B.x2·x4C.x2+x6D.(x2)44.有两个事件,事件A:投一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中,则()A.只有事件A是随机事件C.事件A和B都是随机事件5.计算(a-3)2的结果是()B.只有事件B是随机事件D.事件A和B都不是随机事件A.a2-4B.a2-2+4C.a2-4a+4D.a2+46.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(a,b)B.(-a,b)C.(b,-a)D.(-b,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)人数313.51424.51A.中位数是4,平均数是3.75C.中位数是4,平均数是3.8B.众数是4,平均数是3.75D.众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A89=()A.(6,7)B.(7,8)C.(7,9)D.(6,9)10.二次函数y=2x2-2x+m(0<m<y的取值范围为()A.y<0B.0<y<m12),如果当x=a时,y<0,那么当x=a-1时,函数值C.m<y<m+4D.y>m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:a⎩3x+2y=81+a-1a-1=___________13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC.若∠ADF=25°,则∠BEC=__________15.如图,从一张腰为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM⊥ON,斜边长为4的等腰直角△ABC的斜边AC在射线ON上,顶点C与O重合.若点A沿NO方向向O运动,△ABC的顶点C随之沿OM方向运动,点A移动到点O为止,则直角顶点B运动的路径长是__________三、解答题(共8题,共72分)⎧2x-y=317.(本题8分)解方程组:⎨18.(本题8分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF,求证:∠B=∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是___________(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题 8 分)荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共 花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不 变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计一种 购买方案,使所需总费用最低21.(本题 8 分)如图,直径 AE 平分弦 CD ,交 CD 于点 G ,EF ∥CD ,交 AD 的延长线于 F ,AP ⊥ AC 交 CD 的延长线于点 P (1) 求证:EF 是⊙O 的切线(2) 若 AC =2,PD = 1CD ,求 tan ∠P 的值222.(本题 10 分)已知,直线 l 1:y =-x +n 过点 A (-1,3),双曲线 C : y m x(x >0),过点B (1,2),动直线 l 2:y =kx -2k +2(k <0)恒过定点 F (1) 求直线 l 1,双曲线C 的解析式,定点 F 的坐标(2) 在双曲线 C 上取一点 P (x ,y ),过 P 作 x 轴的平行线交直线 l 1 于 M ,连接 PF ,求证:PF =PM (3) 若动直线 l 2 与双曲线 C 交于 P 1、P 2 两点,连接 OF 交直线 l 1 于点 E ,连接 P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE =∠ABC=∠ACB=α(1)如图1,当α=60°时,求证:△DCE是等边三角形(2)如图2,当α=45°时,求证:①CD2;②CE⊥DE DE(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy中,抛物线c1:y=ax2-4a+4(a<0)经过第一象限内的定点P(1)直接写出点P的坐标(2)若a=-1,如图1,点M的坐标为(2,0)是x轴上的点,N为抛物线c1上的点,Q为线段MN的中点,设点N在抛物线c1上运动时,Q的运动轨迹为抛物线c2,求抛物线c2的解析式(3)直线y=2x+b与抛物线c1相交于A、B两点,如图2,直线PA、PB与x轴分别交于D、C两点,当PD=PC时,求a的值12.计算:2x2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A.±22.要使分式1x+3B.2C.-2D.2有意义,则x的取值应满足()A.x≥3B.x<3C.x≠-3D.x≠33.下列计算结果为x6的是()A.x·x6B.(x2)3C.x7-x D.x12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球C.摸出的三个球都是红球5.计算(a-1)2正确的是()B.摸出的三个球中有两个球是黄球D.摸出的三个球都是黄球A.a2-1B.a2-2a+1C.a2-2a-1D.a2-a+16.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标为()A.(3,1)B.(2,-1)C.(4,1)D.(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)人数52105158209256则这30名同学每天使用的零花钱的众数和中位数分别是()A.20、15B.20、17.5C.20、20D.15、159.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如图的方式放置,点A1、A2、A3……和点C1、C2、C3……分别在直线y=x+1和x轴上,则点B6的坐标是()A.(31,16)B.(63,32)C.(15,8)D.(31,32)10.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.-1或1C.-1或3B.1或-3D.3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________2-x-1x-1=___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,⎩3x + 2 y = 1则从这 6 名学生中选取 2 名同时跳绳,恰好选中一男一女的概率是 ___________14.如图,将矩形 ABCD 沿 BD 翻折,点 C 落在 P 点处,连接 AP .若∠ABP =26°,则∠APB = ___________15.已知平行四边形内有一个内角为 60°,且 60°的两边长分别为 3、4.若有一个圆与这个平行 四边形的三边相切,则这个圆的半径为___________16.如图,已知线段 AB =6,C 、D 是 AB 上两点,且 AC =DB =1,P 是线段 CD 上一动点,在 AB 同侧分别作等边△APE 和△PBF ,G 为线段 EF 的中点,点 P 由点 C 移动到点 D 时,G 点移动的路 径长度为___________三、解答题(共 8 题,共 72 分)⎧x - y = 217.(本题 8 分)解方程组: ⎨ 18.(本题 8 分)已知:如图,BD ⊥AC 于点 D ,CE ⊥AB 于点 E ,AD =AE ,求证:BE =CD19.(本题 8 分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长 假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别: A 、游三个景区; B 、游两 个景区;C 、游一个景区; D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计 图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为______ (2) 请将条形统计图补充完整(3) 若该校九年级有 1000 名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1)每辆大卡车与每辆小汽车平均各装多少吨化肥?(2)现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O△是ABC的外接圆,弧AB=弧AC,AP是⊙O的切线,交BO的延长线于点P(1)求证:AP∥BC(2)若tan∠P=3,求tan∠PAC的值422.(本题10分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ymx(m≠0)的图象交于A(-3,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标(3)点H为反比例函数第二象限内的一点,过点H作y轴的平行线交直线AB于点G.若HG=2,求此时H的坐标(3)若点P是线段AG上一点,连接BP.若∠PBG=1∠BAF,AB=3,AF=2,求(E23.本题10分)如图,射线BD是∠MBN的平分线,点A、C分别是角的两边BM、BN上两点,且AB=BC,是线段BC上一点,线段EC的垂直平分线交射线BD于点F,连接AE交BD于点G,连接AF、EF、FC(1)求证:AF=EF(2)求证:△AGF△∽BAFEG2GP24.(本题12分)如图,抛物线y=ax2-(2a+1)x+b的图象经过(2,-1)和(-2,7)且与直线y=kx-2k-3相交于点P(m,2m-7)(1)求抛物线的解析式(2)求直线y=kx-2k-3与抛物线y=ax2-(2a+1)x+b的对称轴的交点Q的坐标(3)在y轴上是否存在点T△,使PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题(共10小题,每小题3分,共30分)1.364=()A.4B.±8C.8D.±42.如果分式x没有意义,那么x的取值范围是()x1A.x≠0B.x=0C.x≠-1D.x=-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16B.16-x2C.x2+16D.x2-8x+166.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A 1B1C1△,使A1B1C1与△ABC位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员的平均年龄为()A.13B.14C.13.5D.59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为()A.50B.51C.48D.522C.m≤2D.m>12.计算:x-1P⎩x-2y=5L L10.已知二次函数y=x2-(m+1)x-5m(m为常数),在-1≤x≤3的范围内至少有一个x的值使y≥2,则m的取值范围是()A.m≤0B.0≤m≤1二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________1=___________-x-2x-211213.在-2、-1、0、1、2这五个数中任取两数m、n,求二次函数y=(x-m)2+n的顶点在坐标轴上的概率是___________14.为正方形ABCD内部一点,PA=1,PD=2,PC=3,求阴影部分的面积SABCP=______15.如图,将一段抛物线y=x(x-3)(0≤x≤3)记为C1,它与x轴交于点O和点A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C2,交x轴于点A3.若直线y=x+m于C1、C2、C3共有3个不同的交点,则m的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)⎧3x+2y=317.(本题8分)解方程:⎨18.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1)从上述统计图可知,此厂需组装L1、2、3型自行车的辆数分别是,________辆,________辆,________辆(2)若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3)若组装L1型自行车160辆与组装L3型自行车120辆花的时间相同,求a((m2-1)x y(m+1)2+21是否为一个固定的值?若是,求出其值;若不20.本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O是弦AB、AC、CD相交点P,弦AC、BD的延长线交于E,∠APD =2m°,∠PAC=m°+15°(1)求∠E的度数(2)连AD、BC,若BC=3,求m的值AD22.(本题10分)如图,反比例函数y=为kx与y=mx交于A、B两点.设点A、B的坐标分别A(x1,y1)、B(x2,y2),S=|x1y1|,且(1)求k的值34=s-1s(2)当m变化时,代数式12是,请说理由2x ym+1(3)点C在y轴上,点D的坐标是(-1,32).若将菱形ACOD沿x轴负方向平移m个单位,在平移过程中,若双曲线与菱形的边AD始终有交点,请直接写出m的取值范围②如图2,若AD=,作∠MDN=2α,使点M在AC上,点N在BC的延长线上,完成图G点的直线y=-x+交于点P,C、D两点关于原点对称,DP的延长线交抛物线于点M.当23.(本题10分)如图,△ABC中,CA=CB(1)当点D为AB上一点,∠A=1∠MDN=α2①如图1,若点M、N分别在AC、BC上,AD=BD,问:DM与DN有何数量关系?证明你的结论1BD42,判断DM与DN的数量关系,并证明(2)如图3,当点D为AC上的一点,∠A=∠BDN=α,CN∥AB,CD=2,AD=1,直接写出AB·CN的积24.(本题12分)如图1,直线y=mx+4与x轴交于点A,与y轴交于点C,CE∥x轴交∠CAO的平分线于点E,抛物线y=ax2-5ax+4经过点A、C、E,与x轴交于另一点B(1)求抛物线的解析式(2)点P是线段AB上的一个动点,连CP,作∠CPF=∠CAO,交直线BE于F.设线段PB的长为x,线段BF的长为65y,当P点运动时,求y与x的函数关系式,并写出自变量x的取值范围(3)如图2,点G的坐标为(16,0),过A点的直线y=kx+3k(k<0)交y轴于点N,与过3116k3kk的取值发生变化时,问:tan∠APM的值是否发生变化?若不变,求其值,若变化,请说明理由=22-316.22018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)题号答案1B2C3B4D5B6B7A8B9D10A第10题选A(1)a+a+2<1,即a<0 2当x=a时,y最大=a2-2a-2=1a=-1,a=3(舍去)(2)a+a+2=1,即a=0 2x=a或a+2时,y最大=a2-2a-2=(a+2)2-2(a+2)-2=1无解。
2018精编中考数学押题试卷含答案一套
2018精编中考数学押题试卷含答案一套题号一二三总分得分考生注意:本卷共25题;试卷满分150分,考试时间100分钟;一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填在括号里。
)下列函数中是二次函数的是( )A. y=2(x-1)B. y=(x-1)^2-x^2C. y=a(x-1)^2D. y=2x^2-1下列方程中,有实数根的是( )A. √(x-1)+1=0B. x+1/x=1C. 2x^4+3=0D. 2/(x-1)=-1如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是( )A. BC:DE=1:2B. △ABC的面积:△DEF的面积=1:2C. ∠A的度数:∠D的度数=1:2D. △ABC的周长:△DEF的周长=1:2在△ABC中,点D、E分别在AB、AC的延长线上,下列不能判定DE//BC的条件是( )A. EA:AC=DA:ABB. DE:BC=DA:ABC. EA:EC=DA:DBD. AC:EC=AB:DB下列关于向量的说法中,不正确的是( )A. 3(a-b)=3a-3bB. 若|a|=3|b|,则a=3b 或a=-3bC. 3|a|=|3a|D. m(n a)=(mn)a下列四个命题中,真命题是( )A. 相等的圆心角所对的两条弦相等B. 圆既是中心对称图形也是轴对称图形C. 平分弦的直径一定垂直于这条弦D. 相切两圆的圆心距等于这两圆的半径之和二、填空题(本大题共12小题,每小题4分,共48分,请将结果直接写在横线上。
)已知5a=4b,那么(a+b)/b=______.已知线段AB长是2厘米,P是线段AB上的一点,且满足AP^2=AB⋅BP,那么AP长为______厘米.点A(-1,m)和点B(-2,n)都在抛物线y=(x-3)^2+2上,则m与n的大小关系为m______n(填“<”或“>”).如果二次函数y=x^2-8x+m-1的顶点在x轴上,那么m=______.如图,在梯形ABCD中,AB//DC,AD=2,BC=6,若△AOB的面积等于6,则△AOD的面积等于______.在Rt△ABC中,∠C=〖90〗^∘,如果cos∠A=2/3,那么cot∠A=______.在Rt△ABC中,∠BAC=〖90〗^∘,AD⊥BC,垂足为点D,如果AC=6,AB=8,那么AD的长度为______.如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=______.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是______.如图,在边长为2的菱形ABCD中,∠D=〖60〗^∘,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于______.已知⊙O_1的半径为4,⊙O_2的半径为R,若⊙O_1与⊙O_2相切,且O_1 O_2=10,则R的值为______.如图,在△ABC中,∠ACB=〖90〗^∘,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为______.三、解答题(本大题共7小题,共78.0分)(10分)计算:(√3 cot〖45〗^∘)/(cos〖30〗^∘)+1/(2cos 〖60〗^∘+1)-tan〖60〗^∘×sin〖60〗^∘.(10分)已知:如图,Rt△ABC中,∠ACB=〖90〗^∘,sinB=3/5,点D、E分别在边AB、BC上,且AD:DB=2:3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设AB=a,CD=b,试用a、b表示AC.(10分)如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.(10分)如图,港口B位于港口A的南偏东〖37〗^∘方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东〖45〗^∘方向上,这时,E处距离港口A有多远?(参考数据:sin〖37〗^∘≈0.60,cos〖37〗^∘≈0.80,tan〖37〗^∘≈0.75)(12分)如图,△ABC中,AB=AC,过点C作CF//AB 交△ABC的中位线DE的延长线于F,联结BF,交AC 于点G.(1)求证:AE/AC=EG/CG;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax^2+bx+c(a>0)与x轴相交于点A(-1,0)和点B,与y 轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.答案和解析【答案】1. D2. D3. D4. B5. B6. B7. 9/58. (√5-1)9. <10. 1711. 212. (2√5)/513. 4.814. 1/315. 6√316. 7/517. 6或14cm18. 25/819. 解:原式=(√3×1)/(√3/2)+1/(2×1/2+1)-√3×√3/2=2+1/2-3/2=1.20. 解:(1)∵∠ACB=〖90〗^∘,sinB=3/5,∴AC/AB=3/5,∴设AC=3a,AB=5a.则BC=4a.∵AD:DB=2:3,∴AD=2a,DB=3a.∵∠ACB=〖90〗^∘即AC⊥BC,又DE⊥BC,∴AC//DE.∴DE/AC=BD/AB,CE/CB=AD/AB.∴DE/3a=3a/5a,CE/4a=2a/5a.∴DE=9/5 a,CE=8/5 a,∵DE⊥BC,∴tan∠DCE=DE/CE=9/8.(2)∵AD:DB=2:3,∴AD:AB=2:5,∵AB=a,CD=b,∴AD=2/5 a,DC=-b,∵AC=AD+DC,∴AC=2/5 a-b.21. 解:(1)设OC=x,∵弦CD垂直平分半径AO,∴OE=1/2 OA=1/2 x,∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=〖90〗^∘,∴∠P+∠COP=〖90〗^∘,∠ECO+∠COP=〖90〗^∘,∴∠P=∠ECO,∴△CEO∽△PCO,∴CO/OE=OP/OC,∴x/(1/2 x)=(6+x)/x,x=6则⊙O的半径为6;(2)由(1)得:OC=6,OE=3,由勾股定理得:CE=√(6^2-3^2 )=3√3,∵CD⊥OA,∴CD=2CE=6√3.22. 解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=〖37〗^∘,∵tan〖37〗^∘=CH/AH,∴AH=CH/(tan〖37〗^∘)=x/(tan〖37〗^∘),在Rt△CEH中,∵∠CEH=〖45〗^∘,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH//BD,∴AH/HD=AC/CB,∵AC=CB,∴AH=HD,∴x/(tan〖37〗^∘)=x+5,∴x=(5⋅tan〖37〗^∘)/(1-tan〖37〗^∘)≈15,∴AE=AH+HE=15/(tan〖37〗^∘)+15≈35km,∴E处距离港口A有35km.23. 证明:(1)∵CF//AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴AE/AC=DE/DF=EF/BC=EG/CG,即AE/AC=EG/CG;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中{■(AB=AC@∠BAH=∠CAH@AH=AH)┤,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴HC/HF=GH/CH,∴HC^2=HG⋅HF,∵BH=HC,∴BH^2=HG⋅HF,即BH是HG和HF的比例中项.24. 解:(1)∵抛物线y=ax^2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(-1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x-3),即y=ax^2-2ax-3a,当x=0时,y=-3a,∴C(0,-3a);(2)∴AB=4,OC=3a,∴S_(△ACB)=1/2 AB⋅OC=6a,∴6a=6,解得a=1,∴抛物线解析式为y=x^2-2x-3;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=〖90〗^∘时,∵∠QGH+∠FGH=〖90〗^∘,∠QGH+∠GQH=〖90〗^∘,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴GH/FH=QH/GH,即3/1=m/3,解得m=9,∴Q的坐标为(9,0);当∠CFG=〖90〗^∘时,∵∠GFH+∠CFO=〖90〗^∘,∠GFH+∠FGH=〖90〗^∘,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴GH/FO=FH/CO,即3/(2m+1)=1/3,解得m=4,∴Q的坐标为(4,0);∠GCF=〖90〗^∘不存在,综上所述,点Q的坐标为(4,0)或(9,0).25. 解:(1)如图,∵矩形ABCD,∴∠BAD=∠ABF=〖90〗^∘,∴∠ABD+∠ADB=〖90〗^∘,∵A、P、F在一条直线上,且PF⊥BD,∴∠BPA=〖90〗^∘,∴∠ABD+∠BAF=〖90〗^∘,∴∠ADB=∠BAF,∵tan∠ADB=AB/AD=2/4=1/2,∴tan∠BAF=BF/AB=1/2,∴BF=1,∴S_(△ABF)=1/2⋅AB⋅BF=1/2×2×1=1.(2)如图1中,∵PF⊥BP,∴∠BPF=〖90〗^∘,∴∠PFB+∠PBF=〖90〗^∘,∵∠ABF=〖90〗^∘,∴∠PBF+∠ABP=〖90〗^∘,∴∠ABP=∠PFB,又∵∠BAP=∠FPE∴△BAP∽△FPE,∴AB/PF=BP/EF,∵AD//BC,∴∠ADB=∠PBF,∴tan∠PBF=tan∠ADB=1/2,即PF/BP=1/2,∵BP=2√5-x,∴PF=1/2(2√5-x),∴2/((2√5-x)/2)=(2√5-x)/y,∴y=((2√5-x)^2)/4((2√5)/5≤x<2√5).(3)①当点F在线段BC上时,如图1-1中,∵∠FPB=∠BCD=〖90〗^∘,∴∠1+∠2=〖90〗^∘,∠1+∠3=〖90〗^∘,∴∠2=∠3,∵∠4=∠5,∠4+∠7=〖90〗^∘,∠5+∠6=〖90〗^∘,∴∠6=∠7,∴△PEF∽△PCD,∴PF/PD=EF/CD,∴(1/2(2√5-x))/x=(((2√5-x)^2)/4)/2,整理得:x^2-2√5 x+4=0,解得x=√5±1.②如图2中,当点F在线段BC的延长线上时,作PH ⊥AD于H,连接DF.由△APH∽△DFC,可得AH/DC=PH/CF,∴(4-(2√5)/5 x)/2=(√5/5 x)/(√5/2(2√5-x)-4),解得x=(7√5-√145)/5或(7√5+√145)/5(舍弃),综上所述,PD的长为√5±1或(7√5-√145)/5.【解析】1. 解:A、y=2x-2,是一次函数,B、y=(x-1)^2-x^2=-2x+1,是一次函数,C、当a=0时,y=a(x-1)^2不是二次函数,D、y=2x^2-1是二次函数.故选:D.依据二次函数的定义进行判断即可.本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键.2. 解:A、由题意√(x-1)=-1<0,方程没有实数根;B、去分母得到:x^2-x+1=0,△<0,没有实数根;C、由题意x^4=-3/2<0,没有实数根,D、去分母得到:x=-1,有实数根,故选D.A、移项根据二次根式的性质即可判断;B、去分母后,化为整式方程即可判断;C、根据乘方的意义即可判断;D、去分母化为整式方程即可判断;本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义,用到的知识点是根的判别式.3. 解:A、BC与EF是对应边,所以,BC:DE=1:2不一定成立,故本选项错误;B、△ABC的面积:△DEF的面积=1:4,故本选项错误;C、∠A的度数:∠D的度数=1:1,故本选项错误;D、△ABC的周长:△DEF的周长=1:2正确,故本选项正确.故选D.根据相似三角形对应边成比例,相似三角形面积的比等于相似比的平方,周长的比等于相似比对各选项分析判断即可得解.本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4. 解:A.∵EA:AC=AD:AB,∴DE//BC,选项A能判定DE//BC;B.∵DE:BC=DA:AB,∴DE//BC,选项B不能判定DE//BC;C.∵EA:EC=DA:DB,∴DE//BC,选项C能判定DE//BC;D.∵AC:EC=AB:DB,∴DE//BC,选项D能判定DE//BC.故选:B.根据平行线分线段成比例定理对各个选项进行判断即可.本题考查平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.5. 解:A、正确.根据去括号法则可得结论;B、错误.因为|a|=3|b|,模相等,平面向量不一定共线,故结论错误;C、正确.根据模的性质即可判断;D、正确.根据数乘向量的性质即可判断;故选:B.根据平面向量、模、数乘向量等知识一一判断即可;本题考查平平面向量、模、数乘向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.6. 解:A、错误.应该是在同圆或等圆中,相等的圆心角所对的两条弦相等;B、正确;C、错误.此弦非直径时,平分弦的直径一定垂直于这条弦;D、错误.应该是外切两圆的圆心距等于这两圆的半径之和;故选:B.根据轴对称图形、垂径定理、两圆相切的条件等知识一一判断即可;本题考查命题与定理,垂径定理,两圆相切的性质、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 解:∵5a=4b,∴a=4/5 b,∴(a+b)/b=(4/5 b+b)/b=9/5.故答案为:9/5.利用已知将原式变形进而代入求出答案.此题主要考查了比例的性质,正确得出a,b之间关系是解题关键.8. 解:∵P是线段AB上的一点,且满足AP^2=AB⋅BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=(√5-1)/2 AB=2×(√5-1)/2=(√5-1)厘米.故答案为(√5-1).根据黄金分割点的定义,知AP是较长线段,得出AP=(√5-1)/2 AB,代入数据即可得出AP的长.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的(√5-1)/2倍.9. 解:∵二次函数的解析式为y=(x-3)^2+2,∴该抛物线开口向上,对称轴为x=3,在对称轴y的左侧y随x的增大而减小,∵-1>-2,∴m<n.故答案为:<.由在抛物线y=(x-3)^2+2可知抛物线开口向上,且对称轴为x=3,根据二次函数的性质即可判定.题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.10. 解:∵二次函数y=x^2-8x+m-1的顶点在x轴上,∴(4ac-b^2)/4a=(4(m-1)-(-8)^2)/4=0,即4m-68=0,∴m=17.故答案为:17.由二次函数的顶点在x轴上结合二次函数的性质,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了二次函数的性质,牢记二次函数的顶点坐标为(-b/2a,(4ac-b^2)/4a)是解题的关键.11. 解:∵AD//BC,AD=2,BC=6,∴△ADO∽△CBO,∴OD/OB=AD/BC=1/3,∴S_(△AOD)=1/3 S_(△AOB)=2.故答案为2.由AD//BC,AD=2,BC=6,可得OD/OB=AD/BC=1/3,推出S_(△AOD)=1/3 S_(△AOB),即可解决问题;本题考查相似三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12. 解:∵在Rt△ABC中,∠C=〖90〗^∘,cos∠A=AC/AB=2/3,∴设AC=2x,则AB=3x,∴由勾股定理得到:BC=√(AB^2-AC^2 )=√(9x^2-4x^2 )=√5 x,∴cot∠A=AC/BC=2x/(√5 x)=(2√5)/5;故答案是:(2√5)/5.设AC=2x,则AB=3x,由勾股定理求得BC的长度,继而由三角形函数的定义求得cot∠A的值.此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.13. 解:∵∠BAC=〖90〗^∘,AB=8,AC=6,∴BC=√(AB^2+AC^2 )=10,∵AD⊥BC,∴6×8=AD×10,解得:AD=4.8.故答案为:4.8.首先利用勾股定理得出BC的长,再利用三角形面积求法得出AD的长.此题主要考查了勾股定理以及三角形面积求法,得出BC的长是解题关键.14. 解:连接AG,设正方形的边长为a,AC=√(a^2+a^2 )=√2 a,∵AC/CF=(√2 a)/a=√2,CG/AC=2a/(√2 a)=√2,∴AC/CF=CG/AC,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=AB/BG=a/3a=1/3,故答案为:1/3设正方形的边长为a,求出AC的长为√2 a,再求出△ACF与△GCA中夹∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似,进而得出tan∠CAF=tan∠AGB=1/3.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.15. 解:设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,根据题意,△ABC与△DEF的位似图形,点O、E、B 共线,在Rt△OEG中,∠OEG=〖30〗^∘,EG=1/2 b,∴OG=EG/√3=√3/6 b,同理得到OH=√3/6 a,而OH-OG=1,∴√3/6 a-√3/6 b=1,∴a-b=2√3,∴3(a-b)=6√3.故答案为6√3.设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,利用位似的性质得到点O、E、B共线,根据等边三角形的性质得∠OEG=〖30〗^∘,EG=1/2 b,利用含30度的直角三角形三边的关系得到OG=EG/√3=√3/6 b,同理得到OH=√3/6 a,再利用OH-OG=1得到√3/6 a-√3/6 b=1,然后计算3(a-b)即可.本题考查了含30度角的直角三角形的性质:在直角三角形中,〖30〗^∘角所对的直角边等于斜边的一半.也考查了等边三角形的性质和位似的性质.16. 解:如图,作GH⊥BA交BA的延长线于H,EF交BG于O.∵四边形ABCD是菱形,∠D=〖60〗^∘,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,,∴AH=1/2 AG=1/2,HG=√3/2,在Rt△BHG中,BG=√((√3/2 )^2+(5/2 )^2 )=√7,∵△BEO∽△BGH,∴BE/BG=OB/BH,∴BE/√7=(√7/2)/(5/2),∴BE=7/5,故答案为7/5.如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出BG,再根据△BEO∽△BGH,可得BE/BG=OB/BH,由此即可解决问题;本题考查菱形的性质、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形、相似三角形解决问题,属于中考填空题中的压轴题.17. 解:当⊙O_1和⊙O_2内切时,⊙O_2的半径为10+4=14cm;当⊙O_1和⊙O_2外切时,⊙O_2的半径为10-4=6cm;故答案为:6或14cm.⊙O_1和⊙O_2相切,有两种情况需要考虑:内切和外切.内切时,⊙O_2的半径=圆心距+⊙O_1的半径;外切时,⊙O_2的半径=圆心距-⊙O_1的半径.主要是考查两圆相切与数量关系间的联系,一定要考虑两种情况.18. 解:由折叠可得,∠DCE=∠DFE=〖90〗^∘,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=1/2 AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF^2=CD×CA,即5^2=CD×8,∴CD=25/8,故答案为:25/8.根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=1/2 AB=5,再判定△CDF∽△CFA,得到CF^2=CD×CA,进而得出CD的长.本题主要考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到F是AB的中点.19. 直接利用特殊角的三角函数值代入求出答案.此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20. (1)设AC=3a,AB=5a.则BC=4a.想办法求出DE、CE,根据tan∠DCE=DE/CE即可解决问题;(2)根据AC=AD+DC,只要求出AD、DC即可解决问题;本题考查平面向量、锐角三角函数、平行线的性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,属于中考常考题型.21. (1)设OC=x,证明△CEO∽△PCO,得CO/OE=OP/OC,代入x可得结论;(2)由勾股定理得CE的长,根据垂径定理可得CD的长.本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.22. 如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=CH/(tan〖37〗^∘)=x/(tan〖37〗^∘),在Rt △CEH中,可得CH=EH=x,由CH//BD,推出AH/HD=AC/CB,由AC=CB,推出AH=HD,可得x/(tan 〖37〗^∘)=x+5,求出x即可解决问题.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23. (1)根据平行四边形的判定得出四边形BCFD是平行四边形,进而利用相似比解答即可;(2)根据全等三角形的判定得出△ABH≌△ACH,进而利用全等三角形的性质证明△GHC∽△CHF,再根据相似三角形的性质证明即可.本题主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法是解题的关键.24. (1)先利用抛物线的对称性得到B(3,0),则可设交点式y=a(x+1)(x-3),然后展开即可得到C点坐标;(2)利用三角形面积公式得到6a=6,然后求出a即可得到抛物线解析式;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,利用中心对称的性质得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,则OF=2m+1,HF=1,讨论:当∠CGF=〖90〗^∘时,证明Rt△QGH∽Rt△GFH,利用相似比得到3/1=m/3,解方程求出m即可得到此时Q的坐标;当∠CFG=〖90〗^∘时,证明Rt△GFH∽Rt △FCO,利用相似比得到3/(2m+1)=1/3,解方程求出m即可得到此时Q的坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、中心对称的性质和相似三角形的判定与性质;会利用待定系数法求抛物线解析式;灵活应用相似比表示线段之间的关系;理解坐标与图形的性质;会利用分类讨论的思想解决数学问题.25. (1)首先证明∠ADB=∠BAF,由tan∠ADB=AB/AD=2/4=1/2,推出tan∠BAF=BF/AB=1/2,可得BF=1,根据S_(△ABF)=1/2⋅AB⋅BF计算即可;(2)首先证明△BAP∽△BAP,可得AB/PF=BP/EF,由AD//BC,推出∠ADB=∠PBF,tan∠PBF=tan∠ADB=1/2,即PF/BP=1/2,由BP=2√5-x,可得PF=1/2(2√5-x),代入比例式即可解决问题;(3)分两种情形分别求解:①当点F在线段BC上时,如图1-1中;②如图2中,当点F在线段BC的延长线上时,作PH⊥AD于H,连接DF.寻找相似三角形,构建方程即可解决问题;本题考查四边形综合题.相似三角形的判定和性质、锐角三角函数、矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
湖北省武汉市2019年中考数学考前训练及答案2019-05(PDF版)
2019年中考数学考前训练一、选择题(共10小题,每小题3分,共30分)1.有理数3的倒数的相反数是().A.3 B.-3 C.13D.13-2在实数范围内有意义,则a的取值范围是().A.x<3 B.x≠3C.x≥3D.x≤33.下列事件中,随机事件是()A.在地球上,抛出去的篮球会下落B.通常水加热到100℃时会沸腾C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的字数一定大于零4.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A.晴天B.浮尘C.大雨D.大雪5.如图,下列几何体的左视图不是矩形的是().A.B.C.D.6.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为().A.275,3,x yx y+=⎧⎨=⎩B.275,2,x yx y+=⎧⎨=⎩C.275,23,x yx y+=⎧⎨=⎩D.275,3.x yx y+=⎧⎨=⎩7.小亮与小明一起玩“剪刀、石头、布”的游戏,两人同时做出手势,那么上明获胜的概率是()A.12B.14C.23D.138.将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角的正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2017个正方形,则需要操作的次数是()A.502 B.503C.504 D.5059.如图,在直角坐标系中有等腰△OAB ,OA =OB ,A 点在x 轴正半轴上,C 为边AB 的中点,双曲线y =kx(x >0)经过C 点,交OB 于D 点,若tan ∠AOC =12,则ODOB的值为( ).ABC .34D10.如图,在矩形ABCD 中,AB =10,BC =8,以CD 为直径作⊙O .将矩形ABCD 绕点C 旋转,使所得矩形A 1B 1C 1D 1的边A 1B 1与⊙O 相切于点E ,则BB 1的长为( ). A .245B .CD二、填空题(共6个小题,每小题3分,共18分) 1112.样本数据3,a ,6,b ,8的平均数是5,众数是3,则这组数据的中位数是_____.13.计算:22824x x -+-=_____. 14.如图,在△ABC 中,AB =AC ,AD 、CE 分别△ABC 的中线和角平分线.若∠CEB =75°,则∠B 的度数是_____.15.抛物线y =a (x -h )2+k 经过(-2,0)、(4,0)两点,若x =3是关于x 的一元二次方程a (x -h -t )2+k =0的一个解,则实数t 的值为___________.16.如图,已知P A =PB =PC =2,∠BPC =120°,P A ∥BC ,以AB 、PB 为邻边作平行四边形ABPD ,连接CD ,则CD 的长为____.三、解答题(共8题,共72分) 17.(本题8分)计算:3x 4·2x 2+(-4x 3)2+(-3x 2)3. A E B DCA B CP DA118.(本题8分)如图,在△ABC 中,CD ⊥AB 于点D ,点E 在BC 上,EF ⊥AB 于点F ,点G 在AC 上,且∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.19.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图. 根据所给信息,解答下列问题: (1)m = ; (2)补全条形统计图;(3)这次调查结果的众数是 ;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?20.(本题8分)如图是7×7的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长都是1.线段AB 的端点均在格点上,且A 点的坐标为(-2,3),按下列要求画出图形。
∥3套精选试卷∥武汉市2018-2019中考数学终极压轴试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P 点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【答案】C【解析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.2.已知圆内接正三角形的面积为3)A.2 B.1 C3D3【答案】B【解析】根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x,利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,则AD=3x ,∵tan ∠BAD=BD AD , ∴BD= tan30°·AD=3x ,∴BC=2BD=23x ,∵1332BC AD ⋅= , ∴12×23x×3x=33, ∴x =1所以该圆的内接正三边形的边心距为1,故选B .【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.3.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .4.一、单选题点P (2,﹣1)关于原点对称的点P′的坐标是( )A .(﹣2,1)B .(﹣2,﹣1)C .(﹣1,2)D .(1,﹣2)【答案】A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.5.-4的绝对值是()A.4 B.14C.-4 D.14-【答案】A【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.6.如图,反比例函数kyx=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4【答案】C【解析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则OCE OAD k k S S 22∆∆==,,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k|.又∵M 为矩形ABCO 对角线的交点, ∴S 矩形ABCO =4S □ONMG =4|k|,∵函数图象在第一象限,k >0,∴k k 94k 22++=. 解得:k=1.故选C .【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.7.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-【答案】D 【解析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,33,∴△ABC 的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.8.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.33【答案】B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=2BD.cos∠ACB=222ADAB==,故选B.9.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.2C.2 D2【答案】A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.二、填空题(本题包括8个小题)11.与直线2y x =平行的直线可以是__________(写出一个即可).【答案】y=-2x+5(答案不唯一)【解析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.12.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.【答案】13【解析】根据正方形的性质得出AD=AB ,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB ,根据AAS 推出△AED ≌△BFA ,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】∵ABCD 是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF ⊥a 于点F ,DE ⊥a 于点E ,∴在Rt △AFB 和Rt △AED 中,∵90{AFB DEA FBA EAD AB DA∠=∠=︒∠=∠=,∴△AFB ≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED ≌△BFA 是解此题的关键.13.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.【答案】1:4【解析】由S △BDE :S △CDE =1:3,得到 BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴= 故答案为1:4.【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.14.如图,扇形的半径为6cm ,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .【答案】2cm【解析】求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【详解】扇形的弧长=0208161π⨯=4π, 圆锥的底面半径为4π÷2π=2,2262-2,故答案为2cm .【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.关于x 的一元二次方程x 2﹣2x+m ﹣1=0有两个实数根,则m 的取值范围是_____.【答案】m≤1【解析】根据一元二次方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可.【详解】解:由题意知,△=4﹣4(m ﹣1)≥0,∴m≤1,故答案为:m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.16.已知图中的两个三角形全等,则∠1等于____________.【答案】58° 【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.17.若a 是方程2310x x -+=的解,计算:22331a a a a -++=______. 【答案】1【解析】根据一元二次方程的解的定义得a 2﹣3a+1=1,即a 2﹣3a=﹣1,再代入22331a a a a -++,然后利用整体思想进行计算即可.【详解】∵a 是方程x 2﹣3x+1=1的一根,∴a 2﹣3a+1=1,即a 2﹣3a=﹣1,a 2+1=3a ∴2233=11=01-+-++a a a a 故答案为1.【点睛】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.18.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.【答案】1【解析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC 的长.【详解】∵在Rt △ABC 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,∴∠AMN=∠NMC=∠B ,∠NCM=∠BCM=∠NMC ,∴∠ACB=2∠B ,NM=NC ,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本题包括8个小题)19.如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.写出图中小于平角的角.求出∠BOD 的度数.小明发现OE 平分∠BOC ,请你通过计算说明道理.【答案】(1)答案见解析 (2)155° (3)答案见解析【解析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC ,首先利用角平分线的定义和邻补角的定义求得∠DOC 和∠BOC 即可;(3)根据∠COE=∠DOE ﹣∠DOC 和∠BOE=∠BOD ﹣∠DOE 分别求得∠COE 与∠BOE 的度数即可说明.【详解】(1)图中小于平角的角∠AOD ,∠AOC ,∠AOE ,∠DOC ,∠DOE ,∠DOB ,∠COE ,∠COB ,∠EOB .(2)因为∠AOC=50°,OD 平分∠AOC ,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE ﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD ﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE ,所以OE 平分∠BOC .【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.20.计算:(()2122sin 303tan 45--+--+°° 【答案】1【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可. 试题解析:(()2122sin 303tan 45--+︒-+︒ =2+2×32-3+1 33考点:三角函数,实数的运算.21.某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m 、200m 、1000m (分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .【答案】(1)25;(1)35 ;(3)310; 【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.22.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23.如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,OD ⊥AB ,与AC 交于点E ,与过点C 的⊙O 的切线交于点D .若AC=4,BC=2,求OE 的长.试判断∠A 与∠CDE 的数量关系,并说明理由.【答案】(15;(2)∠CDE=2∠A . 【解析】(1)在Rt △ABC 中,由勾股定理得到AB 的长,从而得到半径AO .再由△AOE ∽△ACB ,得到OE 的长;(2)连结OC ,得到∠1=∠A ,再证∠3=∠CDE ,从而得到结论.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB=90°,在Rt △ABC 中,由勾股定理得: 222242AC BC +=+ =5∴AO=125. ∵OD ⊥AB ,∴∠AOE=∠ACB=90°,又∵∠A=∠A ,∴△AOE ∽△ACB , ∴OE AO BC AC=, ∴OE=254BC AO AC ⋅= 5. (2)∠CDE=2∠A .理由如下:连结OC ,∵OA=OC ,∴∠1=∠A ,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.24.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.【答案】(1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.25.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析.(3)1 2 .【解析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=3162=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.26.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标()x,y()1画树状图列表,写出点M所有可能的坐标;()2求点()M x,y在函数y x1=+的图象上的概率.【答案】()1见解析;()124.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果, ∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤D .122a ≤≤ 【答案】B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小,0,a>开口向上,0,a<开口向下.a的绝对值越大,开口越小.2.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.22C.2 D.2【答案】A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.3.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .32C .3D .23【答案】C 【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半2,高是3.∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅⋅.故选C . 4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10 %【答案】C 【解析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A 选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B 选项错误;C. 全班共有12+20+8+4+6=50名学生,故C 选项正确;D. 最喜欢田径的人数占总人数的4100%50⨯=8 %,故D 选项错误, 故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.5.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( ) A . B .C .D .【答案】D【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC ,∴PA+PC=BC .故选D .考点:作图—复杂作图.6.如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A .33B .32πC .πD .32π 【答案】A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.7.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40°B.60°C.80°D.100°【答案】D【解析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.8.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-4 【答案】D【解析】2122m xx x-=--,去分母,方程两边同时乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D.9.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°【答案】B【解析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.10.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()A.32cm B.3cm C.23cm D.9cm【答案】B【解析】解:∵∠CDB=30°,∴∠COB=60°,又∵OC=3,CD⊥AB于点E,∴3sin603︒==,解得CE=32cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.二、填空题(本题包括8个小题)11.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C 向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.【答案】(﹣2,2)【解析】试题分析:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.12.写出一个一次函数,使它的图象经过第一、三、四象限:______.【答案】y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).13.64的立方根是_______.【答案】4.【解析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.14.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.【答案】5000x=8000600+x【解析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x=8000600+x.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.【答案】210°【解析】根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.【答案】13n【解析】分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.【详解】第1个图形中有1+3×1=4个★,第2个图形中有1+3×2=7个★,第3个图形中有1+3×3=10个★,第4个图形中有1+3×4=13个★,第5个图形中有1+3×5=16个★,…第n个图形中有1+3×n=(3n+1)个★.故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n 的关系与不变的量得到图形中★的个数与n 的关系是解决本题的关键.17.计算(32)3+-的结果是_____ 【答案】2【解析】根据二次根式的运算法则进行计算即可求出答案. 【详解】()323+-=323+-=2,故答案为2.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.18.一元二次方程2x 2﹣3x ﹣4=0根的判别式的值等于_____.【答案】41【解析】已知一元二次方程的根判别式为△=b 2﹣4ac ,代入计算即可求解.【详解】依题意,一元二次方程2x 2﹣3x ﹣4=0,a =2,b =﹣3,c =﹣4∴根的判别式为:△=b 2﹣4ac =(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax 2+bx+c =0(a≠0)的根的判别式为△=b 2﹣4ac 是解决问题的关键.三、解答题(本题包括8个小题)19.如图,在矩形ABCD 中,AB=1DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA=1.求线段EC 的长;求图中阴影部分的面积.【答案】(1)423-;(1)8233π- 【解析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴DE=2223AE AD -= ,∴EC=CD-DE=4-13;(1)∵sin ∠DEA=12AD AE = , ∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB =904130482232336023603πππ⨯⨯-⨯⨯-=- . 【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE 的长是解题关键. 20.解方程:3x 2﹣2x ﹣2=1. 【答案】121717x x +-== 【解析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案.【详解】解:x 22-2-43-2±⨯⨯()() =173 即121717x x 33-== ∴原方程的解为121717x x +-==. 【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.21.如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD .过点D 作DE ⊥AC ,垂足为点E .求证:DE 是⊙O 的切线;当⊙O 半径为3,CE =2时,求BD 长.。
武汉市东西湖区2019年中考模拟考试数学试卷精品解析
中考数学模拟试卷考试时间:2018年5月22日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区某日最高气温21℃,最低12℃,最高气温比最低气温高( ) A .33℃B .22℃C .11℃D .9℃2.若代数式11x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-1 B .x =-1C .x ≠0D .x ≠-1 3.计算x 2-2x 2的结果( )A .-1B .-x 2C .x 2D .x 4 4)A .0.6B .0.8C .0.7D .0.9 5.计算(x +1)(x -2)的结果是( )A .x 2-2B .x 2+2C .x 2-x +2D .x 2-x -2 6.点A (2,-3)关于x 轴对称的点的坐标是( )A .(2,3)B .(-2,-3)C .(2,-3)D .(3,-2)7.如图,下列选项中不是左边正六棱柱的三视图的是( )8.某车间20这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )A .31B .46C .51D .6610.如图,△ABC 内接于⊙O ,AD 是△ABC 边BC 上的高,D 为垂足.若BD =1,AD =3,BC =7,则⊙O 的半径是( )A .552B .5102C .225 D .2103 二、填空题(本大题共6个小题,每小题3分,共18分)A BCD11.计算:3233+的结果是___________ 12.计算xx x 11-+的结果是___________ 13.同时掷两枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,则两枚骰子向上一面的数字相同的概率是___________14.如图,在平行四边形ABCD 中,点E 为BC 中点,且AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠AED 的度数为___________15.已知,四边形ABCD 中,BC =CD ,∠BCD =60°,AB ⊥AD ,AC =4,则四边形ABCD 面积的最小值是___________ 16.已知抛物线y =-x 2+bx +2-b ,在自变量x 的值满足-1≤x ≤2的情况下,函数有最大值m ,则m 的最小值是___________三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧-=-=+12392y x y x18.(本题8分)如图,A 、D 、B 、E 四点顺次在同一条直线上,AC =DF ,BC =EF ,AD =BE19.(本题8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级(从高到底)进行统计,并将统计结果绘制成两幅不完整的统计图,请你结合图中所给信息解答下列问题:(1) 写出D 级学生的人数占全班总人数的百分比为__________ ,C 级学生所在的扇形圆心角的度数为__________ (2) 该班学生体育测试成绩的中位数落在等级__________内(3) 若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?20.(本题8分)下表是某店两天销售两种商品的帐目记录,由于字迹潦草,无法准确辨认.第二天的总金额的个位数字,只知道是0或5,并且已知两种商品的单价均为整数(1) 请求出A 、B 两种商品的销售价(2) 若一件A 产品的进价为8元,一件B 产品的进价为7元,某天共卖出两种产品50件,且两者总利润不低于80元,则至多销售B 商品多少件?21.(本题8分)已知:△ABC 是边长为4的等边三角形,点O 在边AB 上,⊙O 过点B 且分别与边AB 、BC 相交于点D 、E ,EF ⊥AC ,垂足为F (1) 求证:直线EF 是⊙O 的切线(2) 当直线DF 与⊙O 相切时,求⊙O 的半径22.(本题10分)已知,点A 、B 分别是x 轴、y 轴上的动点,A (m ,0)、B (0,n ) (1) 若m =3,n =1,以AB 为边,画等边△ABC ,直接写出点C 的坐标(2) 如图1,若m =-1,n =2,平移线段AB ,到得四边形ABCD 是平行四边形,且BC =2AB .C 、D 两点在反比例函数xky =(x <0)的图象上,求k 的值 (3) 在(2)的条件下,已知点P (-n ,n )(n >0),过点P 作平行于x 轴的直线,交直线y =-x -1于R ,过点P 作平行于y 轴的直线,交函数xky =(x <0)的图象于点T .若PT ≥PR ,结合函数的图象,直接写出n 的取值范围23.(本题10分)在□ABCD 中,∠ABD =90°,∠C =45°,点E 是边BC 上任意一点,连接AE 交对角线BD 与点G (1) 如图1,当点E 是边BC 的中点时.若AB =2,求线段AE 的长(2) 如图2,过点D 作直线AE 的垂线,交边BC 于点F ,连结GF ,求证:AG =DF +GF(3) 如图3,过点D 作直线AE 的垂线,交边BC 于点F ,连结GF 、AF ,线段AF 与对角线BD 交于点O .若点O 恰好是线段BG 的中点,请探究线段DF 与GF 的之间的数量关系,并说明理由24.(本题12分)如图1,点P 是抛物线241x y =在第二象限内的一动点,直线PQ :y =kx -k +1交抛物线于另一点Q(1) 求直线PQ 经过的定点A 的坐标 (2) 如图1,若AP =3AQ ,求点P 的坐标(3) 如图2,过点P 的另一条直线交y 轴于点B (0,-1),交抛物线于另一点C ,且直线CQ 经过定点D ,求S △ABD 的面积2017~2018学年度下学期九年级数学五模测试题参考答案及评分标准一、选一选, 比比谁细心1. D2. D3. B4. C5.D6.A7. A8. D9.B 10.C二、填一填, 看看谁仔细11. 12. 1 13.1614. 85°15. 8 16. 1三、 解一解, 试试谁更棒(本大题共9小题,共72分)17.解:由①+②,得48x =…………………………………3分 解之得2x =…………………………………4分 把2x =代入①,得 229y +=…………………………………6分∴72y =…………………………………7分 ∴这个方程组的解是272x y =⎧⎪⎨=⎪⎩…………………………………8分 18.证明:∵AD =BE ∴AD+DB=BE+DB∴AB=DE …………………………………2分在△ACB 与△DFE 中, …………………………………3分AC DF AB DE CB FE =⎧⎪=⎨⎪=⎩…………………………………6分 ∴△ACB ≌△DFE …………………………………7分 ∴∠C =∠F …………………………………8分19. 解:⑴ 4% ; 72°;…………………………………4分 ⑵ B ;…………………………………5分⑶ 26%+50%=76%…………………………………6分500×76%=380(人)…………………………………7分答:估计这次考试中A 级和B 级的学生共有380人. …………………………………8分20.解:(1) 解:设A 、B 两种产品的销售单价分别为x 元、y 元, 设第二天的总金额个位数字为m …………………………1分依题意30103801510230x y x y m+=⎧⎨+=+⎩ …………………………3分当m =0时, 解得108x y =⎧⎨=⎩ 当m =5时, 解得2939x y ⎧=⎪⎨⎪=⎩ …………………………4分由于两种单价均为整数, 故A 销售单价为10元, B 销售单价为8元. …………………5分 (2) 设销售B 商品x 件, 则销售A 商品(50-x)件依题意 (108)(50)(87)x x -⨯-+-≥ …………………………6分解之得 x ≤20…………………………7分故至多销售B 商品20件. …………………………8分 21.解及证(1)连接OE ,则OB=OE.∵△ABC 是等边三角形,∴∠ABC=∠C=60°. ……………………1分 ∴△OBE 是等边三角形.∴∠OEB=∠C =60°.∴OE∥AC. ……………………2分∵EF⊥AC,∴∠EFC=90°.∴∠OEF=∠EFC=90°. ……………………3分 ∴EF 是⊙O 的切线. ……………………4分(2)连接DF, DE , ∵DF 是⊙O 的切线,∴∠ADF=90°. ……………………5分 设⊙O 的半径为r ,则BE=r ,EC=4r -,AD=42r -.在Rt△ADF 中,∵∠A=60°, ∴AF=2AD=84r -. ∴FC=4(84)44r r --=-.……………………6分 在Rt△CEF 中 , ∵∠C=60°, ∴EC=2FC. ∴4r -=2(44r -). ……………………7分 解之得43r =.∴⊙O 的半径是43. ……………………8分解法较多,其它解法参照给分.22.解:⑴画图如下:点C 2)或(0.-1),画图正确1分,一个点坐标1分⑵如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,过B 点作BM ⊥CF ,垂足为M ,过D点作DH ⊥CF ,垂足为H ,∵CD ∥AB ,CD=AB ,∴△CDH ≌△ABO (AAS ),……………………4分 ∴DH=AO=1,CH=OB=2,设C (p ,q ),D (p -1,q -2),则pq =(p -1)(q -2)=k ,解之得q=2-2p ,…………………………5分 ∵M(,2p ),∴CM=2q -,MB=p ,∴BC =6分AB BC =2AB ,=…………………………7分解之得:p =-2,q =6,所以,k =pq =-12.…………………………8分⑶03n <≤或4n ≥…………………………10分23.解及证:⑴过A 作AH ⊥BC,于点H,∵四边ABCD 是平行四边形,∴AB ∥CD,∠C=45°,∴∠DAB=∠ABH=45°,△ABH,△ABD 是等腰直角三角形,…………………………1分∵AB=2,∴∵∠ABD=90°,…………………………2分 ∵点E 是边BC 的中点,∴∴3分⑵过点B 作BK ⊥BC 交AE 于点K,∵∠ABD=90,∴∠ABK=∠DBF=45°,…………………4分 又∵DF ⊥AE,∴∠GDF+∠DGE=90°,而∠AGB+∠BAG=90°,且∠AGB=∠DGE,∴∠BAG=∠GDF, 由(1)知AB=BD,………………………5分∴△ABK ≌△DBF,∴AK=DF,BK=BF,………………………6分 ∴△KBG ≌△FBG,∴KG=FG ………………………7分 ∴AG=AK+KG=DF+FG.………………………8分证法二:延长DF 、AB 相交点M ,由∠AGB=∠DGE,可得,∠BAG=∠BDM,证△ABG ≌△DBM,AG=DM=FM+DF.再证△BGF ≌△BMF,GF=MF.也可以证出.(3)DF 与GF 的之间的数量关系是DF=2FG .………………………9分 理由如下:∵∠GFB=∠GKB=180°-∠AKB=180°-∠DFB=∠DFC,∴△GBF ∽△DCF,设BF=a,FC=b,a BG BF DC CFb ==,又∵aa+b BO BF OD AD ==,a 2a+bBO BD =,∵BG=2BO,DC=BD,∴a a 2b 2a+b =,解之得,b=2a ,∴b 2aDF GF ==,∴2.DF FG =………………………10分 方法较多,其它方法参照给分.24.解:⑴由条件得(1)10k x y -+-=………………………1分 由10,10x y -=-=得1x =时,1y =.………………………2分∴直线PQ 经过的定点A(1,1).………………………3分 用观察法参照给分. (2)设21(,)4P m m ,过点A 作EF ∥x 轴,PE ⊥EF,QF ⊥EF 分别于点E 、F, 则△PEA ∽△QFA,……………………………………4分 ∵AP=3AQ,∴PE=3FQ,AE=3AF,∴13m AF -=,211(1)34QF m =-, ∴2416(,)312m m Q --,………………………5分 代入抛物线214y x =可得,2280m m --=,………………………6分 解之得122,4()m m =-=舍去 ∴(2,1)P -………………………7分 (3)设21(,)4P m m ,21(,)4Q n n ,21(,)4C t t ,由直线PQ 和抛物线214y x =联立2114y kx k y x =-+⎧⎪⎨=⎪⎩可得,21104x kx k --+=,由根与系数的关系可知 4,44m n k mn k +==-,∴4m n mn +-=,………………………8分设直线PB 为1y ax =-,和抛物线214y x =联立可得,21104x ax -+=,由根与系数的关系可知4mt =,∴4m t =,∴444n n t t+-= 即44()nt t n +=+,………………………9分 由C,Q 两点坐标可求得,直线CQ 为11()44y n t x nt =+-==11(4)416x nt x +-………………………10分当4x =时,1y =,∴直线CQ 过定点D(4,1)………………………11分 ∴1(41)232ABDS=-⨯=.………………………………12分111(1)444tn x nt +-。
2018~2019学年度武汉市九年级调研测试数学试卷
2018~2019学年度武汉市九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( ) A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-2 4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( )A .AC 的长B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1) (1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A、B、C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N 两点,求证:OM·ON是一个定值。
最新2019年最新湖北省武汉市中考数学模拟题及答案(共4套)(已审阅)
2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分) 1.25的平方根为( ) A .5B .±5C .-5D .±42.如果分式1-x x无意义,那么x 的取值范围是( ) A .x ≠0B .x =1C .x ≠1D .x =-13.(-a +3)2的计算结果是( ) A .-a 2+9B .-a 2-6a +9C .a 2-6a +9D .a 2+6a +94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是( ) A .必然事件B .随机事件C .确定事件D .不可能事件5.下列运算结果是a 6的是( ) A .a 3·a 3B .a 3+a 3C .a 6÷a 3D .(-2a 2)36.将点A (1,-2)绕原点逆时针旋转90°得到点B ,则点B 的坐标为( ) A .(-1,-2)B .(2,1)C .(-2,-1)D .(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为( )8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为( )A .2和3B .3和3C .2和2D .3和29.在如图的4×4的方格中,与△ABC 相似的格点三角形(顶点均在格点上)(且不包括△ABC )的个数有( ) A .23个B .24个C .31个D .32个10.二次函数y =mx 2-nx -2过点(1,0),且函数图象的顶点在第三象限.当m +n 为整数时,则mn 的值为( ) A .2321、-B .431--、C .24321---、、 D .243--、 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________ 12.化简:111+-+-b b b =__________ 13.在-1、0、31、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________ 14.如图,△ABC 中,AB =AC ,∠BAC =66°,OD 垂直平分线段AB ,AO 平分∠BAC ,将∠C 沿EF (点E 在BC 上,点F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC =___________ 15.如图,在四边形ABCD 中,AC 与BD 交于点O ,∠DAB 与∠ACB 互补,35=OB OD ,AD =7,AC =6,AB =8,则BC =___________16.如图,C 是半径为4的半圆上的任意一点,AB 为直径,延长AC 至点P 使CP =2CA .当点C 从B 运动到A 时,动点P 的运动路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=-=+16332y x y x18.(本题8分)如图,已知点E 、C 在线段BF 上,BE =CF ,AB ∥DE ,AC ∥DF ,求证:△ABC ≌△DEF19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1) 该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的圆心角是__________(2) 补全条形统计图(3) 若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1) 求1辆大客车和1辆小客车的租金各为多少元?(2) 若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC为⊙O的直径,点A为⊙O上一点,点E为△ABC的内心,OE⊥EC(1) 若BC=10,求DE的长(2) 求sin∠EBO的值22.(本题10分)如图,直线y =2x 与函数xky =(x >0)的图象交于第一象限的点A ,且A 点的横坐标为1,过点A 作AB ⊥x 轴于点B ,C 为射线BA 上一点,作CE ⊥AB 交双曲线于点E ,延长OC 交AE 于点F (1) 则k =__________(2) 作EM ∥y 轴交直线OA 于点M ,交OC 于点G ① 求证:AF =FE② 比较MG 与EG 的大小,并证明你的结论23.(本题10分)如图,在△ABC 与△AFE 中,AC =2AB ,AF =2AE ,∠CAB =∠F AE =α (1) 求证:∠ACF =∠ABE(2) 若点G 在线段EF 上,点D 在线段BC 上,且31==CB CD EF GF ,α=90°,EB =1,求线段GD 的长 (3) 将(2)中改为120°,其它条件不变,请直接写出CFGD的值24.(本题12分)在平面直角坐标系中,抛物线C 1:y =ax 2+bx -1的最高点为点D (-1,0),将C 1左移1个单位,上移1个单位得到抛物线C 2,点P 为C 2的顶点 (1) 求抛物线C 1的解析式(2) 若过点D 的直线l 与抛物线C 2只有一个交点,求直线l 的解析式(3) 直线y =x +c 与抛物线C 2交于D 、B 两点,交y 轴于点A ,连接AP ,过点B 作BC ⊥AP 于点C ,点Q 为C 2上PB 之间的一个动点,连接PQ 交BC 于点E ,连接BQ 并延长交AC 于点F ,试说明:FC ·(AC +EC )为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分) 1.64的算术平方根是( ) A .8B .-8C .4D .-42.要使分式15x 有意义,则x 的取值范围是( ) A .x ≠1B .x >1C .x <1D .x ≠-13.下列计算结果为x 8的是( ) A .x 9-xB .x 2·x4C .x 2+x6D .(x 2)44.有两个事件,事件A :投一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则( ) A .只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件5.计算(a -3)2的结果是( ) A .a 2-4B .a 2-2+4C .a 2-4a +4D .a 2+46.如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b ),则点A ′的坐标为( ) A .(a ,b )B .(-a ,b )C .(b ,-a )D .(-b ,a )7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是( )8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1) (3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 89=( ) A .(6,7)B .(7,8)C .(7,9)D .(6,9)10.二次函数y =2x 2-2x +m (0<m <21),如果当x =a 时,y <0,那么当x =a -1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:(-3)+8=___________ 12.计算:111-+-a a a =___________ 13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC .若∠ADF =25°,则∠BEC =__________ 15.如图,从一张腰为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM ⊥ON ,斜边长为4的等腰直角△ABC 的斜边AC 在射线ON 上,顶点C 与O 重合.若点A 沿NO 方向向O 运动,△ABC 的顶点C 随之沿OM 方向运动,点A 移动到点O 为止,则直角顶点B 运动的路径长是__________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=-82332y x y x18.(本题8分)已知:如图,点B 、F 、C 、E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF ,求证:∠B =∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题: (1) 此次抽样调查的样本容量是___________(2) 补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3) 如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题8分)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低21.(本题8分)如图,直径AE 平分弦CD ,交CD 于点G ,EF ∥CD ,交AD 的延长线于F ,AP ⊥AC 交CD 的延长线于点P(1) 求证:EF 是⊙O 的切线 (2) 若AC =2,PD =21CD ,求tan ∠P 的值22.(本题10分)已知,直线l 1:y =-x +n 过点A (-1,3),双曲线C :xmy (x >0),过点B (1,2),动直线l 2:y =kx -2k +2(k <0)恒过定点F(1) 求直线l 1,双曲线C 的解析式,定点F 的坐标(2) 在双曲线C 上取一点P (x ,y ),过P 作x 轴的平行线交直线l 1于M ,连接PF ,求证:PF =PM(3) 若动直线l 2与双曲线C 交于P 1、P 2两点,连接OF 交直线l 1于点E ,连接P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE =∠ABC =∠ACB =α (1) 如图1,当α=60°时,求证:△DCE 是等边三角形 (2) 如图2,当α=45°时,求证:①2 DECD;② CE ⊥DE (3) 如图3,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4(a <0)经过第一象限内的定点P (1) 直接写出点P 的坐标(2) 若a =-1,如图1,点M 的坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点,设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式(3) 直线y =2x +b 与抛物线c 1相交于A 、B 两点,如图2,直线PA 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分) 1.4的值为( ) A .±2B .2C .-2D .22.要使分式31x 有意义,则x 的取值应满足( ) A .x ≥3B .x <3C .x ≠-3D .x ≠33.下列计算结果为x 6的是( ) A .x ·x6B .(x 2)3C .x 7-xD .x 12÷x 24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是( ) A .摸出的三个球中至少有一个红球 B .摸出的三个球中有两个球是黄球 C .摸出的三个球都是红球D .摸出的三个球都是黄球5.计算(a -1)2正确的是( ) A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2-a +16.在平面直角坐标系中,将点A (x ,y )向左平移5个单位长度,再向上平移3个单位长度后与点B (-3,2)重合,则点A 的坐标为( ) A .(3,1)B .(2,-1)C .(4,1)D .(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是( )8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是( )A .20、15B .20、17.5C .20、20D .15、159.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、……按如图的方式放置,点A 1、A 2、A 3……和点C 1、C 2、C 3……分别在直线y =x +1和x 轴上,则点B 6的坐标是( ) A .(31,16)B .(63,32)C .(15,8)D .(31,32)10.已知关于x 的二次函数y =x 2-2x -2,当a ≤x ≤a +2时, 函数有最大值1,则a 的值为( ) A .-1或1 B .1或-3C .-1或3D .3或-3二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:2-(-4)=___________ 12.计算:1212---x x x =___________ 13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是___________14.如图,将矩形ABCD 沿BD 翻折,点C 落在P 点处,连接AP .若∠ABP =26°,则∠APB =___________15.已知平行四边形内有一个内角为60°,且60°的两边长分别为3、4.若有一个圆与这个平行四边形的三边相切,则这个圆的半径为___________16.如图,已知线段AB =6,C 、D 是AB 上两点,且AC =DB =1,P 是线段CD 上一动点,在AB 同侧分别作等边△APE 和△PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=+=-1232y x y x18.(本题8分)已知:如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE,求证:BE=CD19.(本题8分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为______(2) 请将条形统计图补充完整(3) 若该校九年级有1000名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1) 每辆大卡车与每辆小汽车平均各装多少吨化肥?(2) 现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O是△ABC的外接圆,弧AB=弧AC,AP是⊙O的切线,交BO的延长线于点P(1) 求证:AP∥BC(2) 若tan ∠P =43,求tan ∠PAC 的值22.(本题10分)如图,一次函数y =kx +b (k ≠0)的图象与反比例函数xmy (m ≠0)的图象交于A (-3,1)、B (1,n )两点(1) 求反比例函数和一次函数的解析式(2) 设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标(3) 点H 为反比例函数第二象限内的一点,过点H 作y 轴的平行线交直线AB 于点G .若HG =2,求此时H 的坐标23.(本题10分)如图,射线BD 是∠MBN 的平分线,点A 、C 分别是角的两边BM 、BN 上两点,且AB =BC ,E 是线段BC 上一点,线段EC 的垂直平分线交射线BD 于点F ,连接AE 交BD 于点G ,连接AF 、EF 、FC (1) 求证:AF =EF (2) 求证:△AGF ∽△BAF(3) 若点P 是线段AG 上一点,连接BP .若∠PBG =21∠BAF ,AB =3,AF =2,求GPEG24.(本题12分)如图,抛物线y =ax 2-(2a +1)x +b 的图象经过(2,-1)和(-2,7)且与直线y =kx -2k -3相交于点P (m ,2m -7) (1) 求抛物线的解析式(2) 求直线y =kx -2k -3与抛物线y =ax 2-(2a +1)x +b 的对称轴的交点Q 的坐标(3) 在y 轴上是否存在点T ,使△PQT 的一边中线等于该边的一半?若存在,求出点T 的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题 (共10小题,每小题3分,共30分) 1.364=( ) A .4B .±8C .8D .±42.如果分式1x x没有意义,那么x 的取值范围是( ) A .x ≠0B .x =0C .x ≠-1D .x =-13.下列式子计算结果为2x 2的是( ) A .x +xB .x ·2xC .(2x )2D .2x 6÷x 34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16 B.16-x2 C.x2+16 D.x2-8x+166.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:根据表中信息可以判断该排球队员的平均年龄为()A.13 B.14 C.13.5 D.59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为()A.50 B.51 C.48 D.5210.已知二次函数y=x2-(m+1)x-5m(m为常数),在-1≤x≤3的范围内至少有一个x的值使y≥2,则m 的取值范围是()A .m ≤0B .0≤m ≤21 C .m ≤21 D .m >21 二、填空题(共6小题,每小题3分,共18分) 11.计算:计算7-(-4)=___________ 12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O ,且⊙O 内有一定点A (2,1)、B 、D 为圆弧上的两个点,且∠BAD =90°,以AB 、AD 为边作矩形ABCD ,则AC 的最小值为___________ 三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:⎩⎨⎧=-=+52323y x y x18.(本题8分)如图,AB ∥DE ,AC ∥DF ,点B 、E 、C 、F 在一条直线上,求证:△ABC ∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L 1、L 2、L 3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1) 从上述统计图可知,此厂需组装L 1、L 2、L 3型自行车的辆数分别是,________辆,________辆,________辆 (2) 若组装每辆不同型号的自行车获得的利润分别是L 1:40元/辆,L 2:80元/辆,L 3:60元/辆,且a =40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L 3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元 (1) 求购进A 、B 两种纪念品每件各需多少元?(2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A 种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15°(1) 求∠E 的度数 (2) 连AD 、BC ,若3=ADBC,求m 的值22.(本题10分)如图,反比例函数xky =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为 A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且ss 413=- (1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围23.(本题10分)如图,△ABC 中,CA =CB (1) 当点D 为AB 上一点,∠A =21∠MDN =α ① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论 ② 如图2,若41=BD AD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ·CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B (1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围 (3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx k y 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由2018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)第10题 选A当1222=--==a a y a x 最大时, 舍去),(31=-=a a(212)2(2)2(22222=-+-+=--=+=a a a a y a a x 最大时,或 无解。
2019年3月湖北省武汉市武昌区中考数学模拟试卷(含答案解析)
2019年湖北省武汉市武昌区中考数学模拟试卷(3月份)一、选择题(共10小题,每小题3分,共30分)1.化简的结果为()A.±5B.25C.﹣5D.52.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x84.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9B.a2﹣3a+9C.a2﹣9D.a2﹣6a﹣96.点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)7.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.8.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin26.5°B.C.a cos26.5°D.9.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小10.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:cos45°=.12.计算结果是.13.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为.15.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.16.如图,等边三角形ABC中,AB=3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD=1时,则AE的长为.三、解答题(共8小题,共72分)17.解方程组.18.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.19.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG 经过点A,问FH多少里?21.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD 于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.22.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.23.已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.24.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a 经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.2019年湖北省武汉市武昌区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据算术平方根的定义,直接得出表示25的算术平方根,即可得出答案.【解答】解:∵表示25的算术平方根,∴=5.故选:D.【点评】此题主要考查了算术平方根的定义,此题容易出错选择A,应引起同学们的注意.2.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【分析】根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.【解答】解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选:D.【点评】本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,40.故选:D.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.【分析】将原式直接套用平方差公式展开即可得.【解答】解:(a+3)(a﹣3)=a2﹣32=a2﹣9,故选:C.【点评】本题主要考查平方差公式,熟练掌握(a+b)(a﹣b)=a2﹣b2是关键.6.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:点P(2,﹣5)关于y轴的对称点的坐标是:(﹣2,﹣5).故选:D.【点评】此题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于纵轴的对称点,纵坐标不变,横坐标变成相反数.7.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.8.【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:,故选:B.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.9.【分析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S=AC•CQ=(m﹣1)n=mn﹣n.四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4﹣n随m的增大而增大.四边形ACQE故选:A.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.10.【分析】连结AD,如图,先利用勾股定理计算出BC=10,再根据直角三角形斜边上的中线性质得DA=DC=5,则∠1=∠C,接着根据圆周角定理得到点A、D在以MN为直径的圆上,所以∠1=∠DMN,则∠C=∠DMN,然后在Rt△ABC中利用正弦定义求∠C的正弦值即可得到sin ∠DMN.【解答】解:连结AD,如图,∵∠A=90°,AB=6,AC=8,∴BC=10,∵点D为边BC的中点,∴DA=DC=5,∴∠1=∠C,∵∠MDN=90°,∠A=90°,∴点A、D在以MN为直径的圆上,∴∠1=∠DMN,∴∠C=∠DMN,在Rt△ABC中,sin C===,∴sin∠DMN=,故选:A.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了直角三角形斜边上的中线性质.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据特殊角的三角函数值计算即可.【解答】解:根据特殊角的三角函数值可知:cos45°=.故答案为.【点评】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是基础题,考查了分式的加减法,同分母的分式相加减的法则:分母不变,分子相加.13.【分析】依据∠α=∠3,以及∠1=∠4=52°,即可得到∠α=(180°﹣52°)=64°.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.14.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.【点评】本题考查了三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方.15.【分析】设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a的值,继而得出k的值.【解答】解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点A、B分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0)根据K的几何意义,|﹣a|×|2+b|=|﹣1﹣a|×|b|,整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以|K|=12,由函数图象在第二象限,所以k=﹣12.【点评】本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.【分析】分四种情形分别画出图形,利用全等三角形或相似三角形的性质解决问题即可;【解答】解:分四种情形:①如图1中,当点D在边BC上,点E在边AC上时.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ABD=∠BCE=60°,∵∠BAD=∠CBE,∴△ABD≌△BCE(ASA),∴BD=EC=1,∴AE=AC﹣EC=2.②如图2中,当点D在边BC上,点E在AC的延长线上时.作EF∥AB交BC的延长线于F.∵∠CEF=∠CAB=60°,∠ECF=∠ACB=60°,∴△ECF是等边三角形,设EC=CF=EF=x,∵∠ABD=∠BFE=60°,∠BAD=∠FBE,∴△ABD∽△BFE,∴=,∴=,∴x=,∴AE=AC+CE=③如图3中,当点D在CB的延长线上,点E在AC的延长线上时.∵∠ABD=∠BCE=120°,AB=BC,∠BAD=∠FBE,∴△ABD≌△BCE(ASA),∴EC=BD=1,∴AE=AC+EC=4.④如图4中,当点D在CB的延长线上,点E在边AC上时.作EF∥AB交BC于F,则△EFC 是等边三角形.设EC=EF=CF=m,由△ABD∽△BFE,可得=,∴=,∴x=,∴AE=AC﹣EC=,综上所述,满足条件的AE的值为2或4或或.故答案为2或4或或.【点评】本题是三角形综合题、考查等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.三、解答题(共8小题,共72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,将x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用△PCF∽△PBA,求出PC的长,从而可得PE,再利用△PGE∽△AGD,即可求出DG的长.【解答】解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG的长为.【点评】本题是利用三角形相似,对应边成比例,从而根据比例线段来求未知线段,关键是要找准能够运用的相似三角形.19.【分析】(1)关键描述语是:买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元;设甲种笔记本的单价是x元,乙种笔记本的单价是y元,列方程组解x,y的值即可;(2)关键描述语是:本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元;设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个;可得m+(2m﹣10)≥80,3(2m﹣10)+5m≤320,求得m的整数值范围.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320 解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.20.【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=,∴FH=1.05里.【点评】本题考查了相似三角形的应用,矩形的性质,解题的关键是从实际问题中整理出相似三角形,难度不大.21.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.【点评】本题考查相似三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.22.【分析】(1)利用反比例函数图象上点的坐标特征可得出y1=,y2=,将其代入x1+y1=x2+y2中可得出x1﹣x2=,结合x1<x2可得出x2=y1,x1=y2,再利用两点间的距离公式可证出OC=OD;(2)由正切的定义可得出=,结合+=10可求出x1,y1的值,再由点C在第一象限即可得出点C的坐标;(3)由点C的坐标,利用反比例函数图象上点的坐标特征可求出m的值,重复(2)的过程可得出点D的坐标,再由点C,D的坐标,利用待定系数法即可求出直线CD的解析式.【解答】(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.【点评】本题考查了反比例函数图象上点的坐标特征、两点间的距离公式、正切的定义以及待定系数法求一次函数解析式,解题的关键是:(1)利用反比例函数图象上点的坐标特征结合x1+y1=x2+y2,找出x2=y1,x1=y2;(2)利用正切的定义、OC=及点C在第一象限,求出点C 的坐标;(3)根据点C,D的坐标,利用待定系数法求出一次函数解析式.23.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AO sin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AO sin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AO cos∠AOF=,则DF=OD﹣OF=1﹣,∴S=AC•DF=××(1﹣)=.△ACD【点评】本题主要考查圆的综合题,解题的关键是掌握圆周角和圆心角定理、中位线定理、全等三角形的判定与性质及三角函数的应用等知识点.24.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.。
2019年湖北省武汉市武昌区中考数学模拟试卷(3月)(含答案解析)
2019年湖北省武汉市武昌区中考数学模拟试卷(3月份)一、选择题(共10小题,每小题3分,共30分)1.化简的结果为()A.±5B.25C.﹣5D.52.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x84.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9B.a2﹣3a+9C.a2﹣9D.a2﹣6a﹣96.点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)7.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.8.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin26.5°B.C.a cos26.5°D.9.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小10.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:cos45°=.12.计算结果是.13.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为.15.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.16.如图,等边三角形ABC中,AB=3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD =1时,则AE的长为.三、解答题(共8小题,共72分)17.解方程组.18.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.19.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.22.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.23.已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.24.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.2019年湖北省武汉市武昌区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据算术平方根的定义,直接得出表示25的算术平方根,即可得出答案.【解答】解:∵表示25的算术平方根,∴=5.故选:D.【点评】此题主要考查了算术平方根的定义,此题容易出错选择A,应引起同学们的注意.2.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【分析】根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.【解答】解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选:D.【点评】本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,40.故选:D.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.【分析】将原式直接套用平方差公式展开即可得.【解答】解:(a+3)(a﹣3)=a2﹣32=a2﹣9,故选:C.【点评】本题主要考查平方差公式,熟练掌握(a+b)(a﹣b)=a2﹣b2是关键.6.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:点P(2,﹣5)关于y轴的对称点的坐标是:(﹣2,﹣5).故选:D.【点评】此题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于纵轴的对称点,纵坐标不变,横坐标变成相反数.7.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.8.【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:,故选:B.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.9.【分析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选:A.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.10.【分析】连结AD,如图,先利用勾股定理计算出BC=10,再根据直角三角形斜边上的中线性质得DA=DC=5,则∠1=∠C,接着根据圆周角定理得到点A、D在以MN为直径的圆上,所以∠1=∠DMN,则∠C=∠DMN,然后在Rt△ABC中利用正弦定义求∠C的正弦值即可得到sin∠DMN.【解答】解:连结AD,如图,∵∠A=90°,AB=6,AC=8,∴BC=10,∵点D为边BC的中点,∴DA=DC=5,∴∠1=∠C,∵∠MDN=90°,∠A=90°,∴点A、D在以MN为直径的圆上,∴∠1=∠DMN,∴∠C=∠DMN,在Rt△ABC中,sin C===,∴sin∠DMN=,故选:A.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了直角三角形斜边上的中线性质.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据特殊角的三角函数值计算即可.【解答】解:根据特殊角的三角函数值可知:cos45°=.故答案为.【点评】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是基础题,考查了分式的加减法,同分母的分式相加减的法则:分母不变,分子相加.13.【分析】依据∠α=∠3,以及∠1=∠4=52°,即可得到∠α=(180°﹣52°)=64°.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.14.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.【点评】本题考查了三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方.15.【分析】设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a的值,继而得出k的值.【解答】解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点A、B分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0)根据K的几何意义,|﹣a|×|2+b|=|﹣1﹣a|×|b|,整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以|K|=12,由函数图象在第二象限,所以k=﹣12.【点评】本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.【分析】分四种情形分别画出图形,利用全等三角形或相似三角形的性质解决问题即可;【解答】解:分四种情形:①如图1中,当点D在边BC上,点E在边AC上时.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ABD=∠BCE=60°,∵∠BAD=∠CBE,∴△ABD≌△BCE(ASA),∴BD=EC=1,∴AE=AC﹣EC=2.②如图2中,当点D在边BC上,点E在AC的延长线上时.作EF∥AB交BC的延长线于F.∵∠CEF=∠CAB=60°,∠ECF=∠ACB=60°,∴△ECF是等边三角形,设EC=CF=EF=x,∵∠ABD=∠BFE=60°,∠BAD=∠FBE,∴△ABD∽△BFE,∴=,∴=,∴x=,∴AE=AC+CE=③如图3中,当点D在CB的延长线上,点E在AC的延长线上时.∵∠ABD=∠BCE=120°,AB=BC,∠BAD=∠FBE,∴△ABD≌△BCE(ASA),∴EC=BD=1,∴AE=AC+EC=4.④如图4中,当点D在CB的延长线上,点E在边AC上时.作EF∥AB交BC于F,则△EFC是等边三角形.设EC=EF=CF=m,由△ABD∽△BFE,可得=,∴=,∴x=,∴AE=AC﹣EC=,综上所述,满足条件的AE的值为2或4或或.故答案为2或4或或.【点评】本题是三角形综合题、考查等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.三、解答题(共8小题,共72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,将x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用△PCF∽△PBA,求出PC的长,从而可得PE,再利用△PGE∽△AGD,即可求出DG的长.【解答】解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG的长为.【点评】本题是利用三角形相似,对应边成比例,从而根据比例线段来求未知线段,关键是要找准能够运用的相似三角形.19.【分析】(1)关键描述语是:买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元;设甲种笔记本的单价是x元,乙种笔记本的单价是y元,列方程组解x,y的值即可;(2)关键描述语是:本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元;设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个;可得m+(2m﹣10)≥80,3(2m﹣10)+5m ≤320,求得m的整数值范围.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320 解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.20.【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=,∴FH=1.05里.【点评】本题考查了相似三角形的应用,矩形的性质,解题的关键是从实际问题中整理出相似三角形,难度不大.21.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C +∠DBC =∠EBA +∠ABD , ∵∠EBA =∠C , ∴∠DBC =∠ABD , ∵DB =DC , ∴∠C =∠DBC ,∴∠ABD =∠C ,∵∠BAD =∠CAB , ∴△BAD ∽△CAB ,∴=,∴AB 2=AD •AC .【点评】本题考查相似三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.22.【分析】(1)利用反比例函数图象上点的坐标特征可得出y 1=,y 2=,将其代入x 1+y 1=x 2+y 2中可得出x 1﹣x 2=,结合x 1<x 2可得出x 2=y 1,x 1=y 2,再利用两点间的距离公式可证出OC=OD ;(2)由正切的定义可得出=,结合+=10可求出x 1,y 1的值,再由点C 在第一象限即可得出点C 的坐标;(3)由点C 的坐标,利用反比例函数图象上点的坐标特征可求出m 的值,重复(2)的过程可得出点D 的坐标,再由点C ,D 的坐标,利用待定系数法即可求出直线CD 的解析式.【解答】(1)证明:∵C ,D 是反比例函数y =图象在第一象限内的分支上的两点, ∴y 1=,y 2=.∵x 1+y 1=x 2+y 2,即x 1+=x 2+,∴x 1﹣x 2=.又∵x 1<x 2,∴=1,∴=x 2=y 1,=x 1=y 2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.【点评】本题考查了反比例函数图象上点的坐标特征、两点间的距离公式、正切的定义以及待定系数法求一次函数解析式,解题的关键是:(1)利用反比例函数图象上点的坐标特征结合x1+y1=x2+y2,找出x2=y1,x1=y2;(2)利用正切的定义、OC=及点C在第一象限,求出点C的坐标;(3)根据点C,D的坐标,利用待定系数法求出一次函数解析式.23.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AO sin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AO sin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AO cos∠AOF=,则DF=OD﹣OF=1﹣,=AC•DF=××(1﹣)=.∴S△ACD【点评】本题主要考查圆的综合题,解题的关键是掌握圆周角和圆心角定理、中位线定理、全等三角形的判定与性质及三角函数的应用等知识点.24.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.。