人教版初三数学上册25.1.1随机事件与概率
数学人教版九年级上册25.1.1随机事件教案
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《随机事件》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的事情?”比如抛硬币、抽奖等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索随机事件的奥秘。
数学人教版九年级上册25.1.1随机事件教案
一、教学内容
《数学人教版九年级上册》25.1.1随机事件教案:
1.理解随机事件的概念,掌握随机事件的表示方法。
2.掌握随机事件的分类:必然事件、不可能事件、可能事件。
3.掌握并Leabharlann 用概率的基本性质,求解简单随机事件的概率。
4.通过实例分析,学会判断和比较随机事件的可能性。
2.提高学生逻辑推理和数学思维能力,通过分类讨论和概率性质的应用,培养他们解决随机事件问题的策略。
3.强化学生的数学应用意识,将理论知识与生活实际相结合,学会在实际情境中发现、提出并解决与随机事件相关的问题。
4.培养学生的合作意识和团队精神,通过小组讨论和交流活动,共同探索随机事件的规律和解决方法。
举例:求解抛两枚硬币,同时出现正面的概率。
(3)在生活实际中,如何提取出随机事件并运用所学知识进行分析。
难点解析:学生可能在面对复杂的生活情境时,无法准确识别出随机事件。教师应通过案例分析,引导学生如何从实际问题中提炼出随机事件。
举例:分析某商场促销活动的中奖概率问题。
在教学过程中,教师要关注学生的掌握情况,针对重点和难点内容进行详细讲解,并通过丰富的实例和练习题,帮助学生突破难点,提高解决实际问题的能力。
5.激发学生对数学学科的兴趣,引导他们积极探索概率论及其在日常生活中的应用,为后续学习打下坚实基础。
人教版九年级上册数学教案 25.1 随机事件与概率
如果学生感到困难,教师可再举几个随机事件的经典例子,如,任意抛掷一枚硬币,正面朝上.以引导学生独立地总结,归纳出随机事件的共同特点:在一定条件下,这些事件可能发生,也可能不发生.
教师应允许学生充分发表意见,学生相互合作,相互交流,尝试着给出随机事件的定义.
3.达标练习阶段
指出下列事件中,哪些是必然事件,哪些是不可能事件?
(1)通常加热到 C时,水沸腾;
(2)任意点击数字按钮,栏框中的数字是偶数.
(3)汽车经过城市中某一有交通信号灯的路口,遇到红灯.
(4)度量三角形的内角和,结果是
(5)篮球运动员在罚球线上投篮一次,未命中;
(6)掷一次骰子,向上的一面是6点;
这些现象的结果是确定的吗?进而教师提出问题。
对于其中一些问题,教师(或学生)进行实物演示。学生需阅读、观察、思考、回答问题。
本次活动中,教师应重点关注学生的表情变化,学生的参与程度,学生是否细心观察、认真阅读,勤于思考。
首先通过几个实际生活中的几个生动、鲜活的实例,自然而然地引出必然事件和不可能事件。
教师引导学生建构,总结出随机事件的定义.
我们以往研究的各种量,起码其结果都是确定的,而随机事件不同,因此,这里应留出一些时间,让同学们充分思考讨论.
问题3袋子中装有4个黑球2个白球,这些球形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
⑴摸出的这个球是白球还是黑球?
⑵如果两种球都有可能被摸出,那么“摸出黑球”和“摸出白球”的可能性一样大吗?
课题:25.1.1随机事件
教学任务分析
教
学
目
标
知识技能
了解必然事件、不可历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
人教版九年级上册数学课件:25.1 随机事件与概率 25.1.1 随机事件
16.口袋中有15个球,其中白球有x个,绿球有2x个,其余为黑 球.小红从中任意摸出一个球,若为绿色则小红获胜;小红摸出的 球放回袋中,小文从中摸出一个球,若为黑色则小文获胜.问x为何 值时,小红和小文两人获胜的可能性一样大?
若要小红和小文两人获胜的可能性一样大,则黑球和绿球一样多, 即黑球有2x个,则得到x+2x+2x=15,解得x=3,此时,绿球、黑 球各6个,故x为3时,小红和小文两人获胜的可能性一样大.
17.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、 质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的 是( ) B
A.摸出的四个球中至少有一个是白球 B.摸出的四个球中至少有一个球是黑球 C.摸出的四个球中至少有两个球是黑球 D.摸出的四个球中至少有两个球是白球
18.一个布袋装有7个红球,2个黑球,1个白球,从中任意摸出一 个球,比较A,B,C,D,E五个事件发生的可能性大小,并按可能 性从小到大的顺序把它们排列起来.(用“必然”“很可能”“不大 可能”“不可能”来描述这些事件发生的可能性大小)
2.(2016·武汉)不透明的袋子中装有形状、大小、质地完全相同 的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列 事件是不可能事件的是( A )
A.摸出的是3个白球 B.摸出的是3个黑球 C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球
3.“射击运动员射击一次,未命中靶心”这个事件是( D ) A.确定性事件 B.必然事件 C.不可能事件 D.不确定事件 4.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张. (1)为偶数是___必__然___事件; (2)为奇数是_不__可__能___事件; (3)为4的倍数是___随__机___事件.
人教版九年级数学上册《25.1随机事件与概率——25.1.1随机事件》 教 案
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件一、教学目标1.了解必然事件、不可能事件、随机事件的特点.2.了解影响随机事件发生的可能性大小的因素.二、教学重点及难点重点:1.理解必然事件、不可能事件、随机事件的概念.2.对随机事件发生的可能性大小作定性分析.难点:1.辨别某个事件是否是随机事件.2.理解大量重复试验的必要性.三、教学用具多媒体课件.四、相关资源《箱子中装10个白球》、《箱子中5白球5红球》、《箱子中10红球》图片五、教学过程【创设情境,引入新课】下列现象哪些是必然发生的,哪些是不可能发生的?(1)将白糖放入一杯温水中,并搅拌,白糖溶解;(2)测量某天气温,结果为-150℃;(3)物体在重力作用下自由下落;(4)两个正数相加,结果是负数.师生活动:教师进行课件演示,并提出问题.学生阅读、观察、思考,回答问题.教师应关注:学生的表情变化,学生的参与程度,学生是否细心观察,认真阅读,勤于思考.设计意图:首先通过实际生活中几个生动,鲜活的实例,自然而然地引出必然事件和不可能事件.必然事件和不可能事件,相对于随机事件而言,学生更容易接受和理解.【合作探究,形成新知】1.摸球游戏三个不透明的箱子里均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的箱子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出红色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.师生行为:教师事先准备三个箱子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个红色的乒乓球;10个红色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第一个箱子中摸出红色球是不可能的;在第二个箱子中能否摸出红色球是不确定的;在第三个箱子中摸出红色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.归纳总结:必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.随机事件:在一定条件下,有些事件有可能会发生,也有可能不会发生,事先无法确定,这种事件称为随机事件.设计意图:做游戏是学习数学的最好方法之一,在这个环节上,设计三次摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,同时也活跃了课堂气氛,培养了学生的合作能力,在轻松快乐的氛围中,领悟了数学的道理,突出了本节课的重点.2.解决问题问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的序号小于6吗?这是什么事件?(3)抽到的序号会是吗?这是什么事件?(4)抽到的序号会是1吗?这是什么事件?师生活动:根据学生回答的具体情况,教师适当地加以点拔和引导.问题2小伟掷一个质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,观察骰子向上的一面,请考虑以下问题:(1)可能出现哪些点数?(2)出现的点数大于0吗?这是什么事件?(3)出现的点数是7吗?这是什么事件?(4)出现的点数是4吗?这是什么事件?师生活动:学生先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件.设计意图:通过抽签和掷骰子两个问题,引导学生进入生活中的数学,为学生提供一个开放的空间,放手让学生去探索和发现,再通过小组的合作交流,展示成果,更进一步的加深了对三种事件的理解,化解难点,贯彻课改中的数学来源于生活同时又指导生活的理念.问题3袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?师生活动:教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.3.实验论证(1)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是白球.(2)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是黄球.师生活动:教师让一部分学生动手操作并把摸出的白、黄球分成两类.让学生通过它们的数量差异归纳结论:摸到白球的可能性小.归纳总结:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:让学生自己概括出所感知的知识,有利于学生在实践中感悟知识的生成过程,并能培养学生的语言表达能力.得出结论:随机事件的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.4.思考能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?师生活动:小组讨论、交流,小组代表汇报讨论结果,教师给予表扬.归纳总结:可以增加2个白球或减少2个黑球,使“摸出黑球”和“摸出白球”的可能性大小相同.设计意图:把问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念.【例题分析,深化提升】例指出下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.1.通常加热到100℃时,水沸腾;2.篮球队员在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是180°;5.经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天.师生活动:学生先思考,回答问题.教师引导学生从必然事件、不可能事件和随机事件的定义来判断各事件.解:1.通常加热到100℃时,水沸腾,是必然事件.2.篮球队员在罚球线上投篮一次,命中,是随机事件.3.掷一次骰子,向上的一面是6点,是随机事件.4.度量三角形的内角和,结果是180°,是必然事件.5.经过城市中某一有交通信号灯的路口,遇到红灯,是随机事件.6.某射击运动员射击一次,命中靶心,是随机事件.7.太阳东升西落,是必然事件.8.人离开水可以正常生活100天,是不可能事件.设计意图:通过大量丰富多彩的实例,激发学生的学习热情,调动学生的学习兴趣,使学生对随机现象有比较充分的感知,从不同的侧面,不同的视角进一步深化对随机事件的理解和认识.【练习巩固,综合应用】1.下列事件中,是必然事件的为( ).A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》2.下列说法正确的是( ).A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中装有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球3.为了了解参加某运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,“某运动员被抽到”这一事件是事件,抽到的可能性为.4.小明和小华在做抛掷骰子游戏,规则是这样的:抛掷出去的骰子落地后,朝上的点数是偶数,则小明获胜,否则小华获胜,那么这个游戏是(填“公平”或“不公平”)的.5.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的可能性为P(偶数),指针指向标有奇数所在区域的可能性为P(奇数),则P(偶数) P(奇数)(填“>”“<”或“=”).6.指出下列事件中,哪些是不可能事件,哪些是必然事件,哪些是随机事件.(1)地球不停地转动;(2)木柴燃烧,产生能量;(3)一天中在常温下,石头被风化;(4)某人射击一次,击中十环;(5)掷一枚硬币,出现正面;(6)在标准大气压下且温度低于0℃时,雪融化.7.已知地球表面陆地面积与海洋面积的比均为3︰7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?参考答案1.C2.B3.随机;1204.公平5.<设计意图:巩固学生对概念的理解与判断,巩固新知,同时培养学生的发散思维.6.解:(1)地球不停地运动,是必然事件.(2)木柴燃烧,产生热量,是必然事件.(3)一天中在常温下,石块被风化,是不可能事件.(4)某人射击一次,击中十环,是随机事件.(5)掷一枚硬币,出现正面,是随机事件.(6)在标准大气压下且温度低于0℃时,雪融化,是不可能事件.设计意图:考查了必然事件、不可能事件和随机事件的概念的应用.7.解:因为“落在陆地上”的可能性为310,“落在海洋里”的可能性为710,因为710>310,所以“落在海洋里”的可能性更大.设计意图:考查了对随机事件发生的可能性大小的比较.六、课堂小结1.必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.2.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.3.随机事件:在一定条件下,有些事件可能会发生,也可能不会发生,事先无法确定,这种事件称为随机事件.4.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:通过回顾和反思,把所学内容内化成自己的思考问题的能力,让学生看到自己的进步,提高学生的学习热情.同时也是给教师一个反思提高的机会.七、板书设计25.1 随机事件与概率——25.1.1 随机事件1.必然事件2.不可能事件3.随机事件。
人教版初三数学上册25.1.1随机事件和概率
课堂“教”与“学”规划方案( ) 课题:25..1.1 使用时间:2016 年12月18 日无例少直觉无练少心得讲使春风化雨练使行知合一环节二:归纳必然事件:在一定条件下,某些事件一定会发生,称之为必然事件. (如:抽到的数字一定小于6;出现的点数一定大于0)不可能事件:在一定条件下,某些事件一定不会发生,称之为不可能事件.(如: 抽到的数字不可能是0,出现的点数绝对不是7.) 随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.(如抽到的数字可能是1也可能不是1;出现的点数可能是4也可能不是 4.)环节四:练习1.教科书第128页练习.2.指出下列事件中,哪些是必然发生的,哪些是不可能发生的,哪些是随机事件:(1)通常加热到100 C时,水沸腾;(2)篮球队员在罚球线上投篮一次,未投中(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360 °;(5)经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心. 环节五:拔咼袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相冋•即除颜色外无其他差别•在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?(3)能否通过改变袋子中某种颜色球的数量,使摸出的黑球”和摸出的白球”的可能性大小相同?环节六:小结(1)本节课学习了哪些主要内容?(2)你是怎样认识随机事件发生可能性大小的?环节七:作业教科书习题25.1 第1题.通过归纳形成概念通过练习进行概念巩固发展能力课堂反思:通过本节学习学生对必然事件、不可能事件、随机事件有了初步的认识,对随机事件发生的可能性大小也有了一定的了解。
但是有个别后进生在做题时还是容易混淆。
需要通过练习慢慢感悟。
真交流真互动真学知真动情。
人教版九年级数学上册第二十五章 25.1.1 随机事件与概率(共24张PPT)
不可能事件:在一定条件下不可能发生的事件
比如:“在常温下,铁能熔化”, “在标准大气压下且温度低于0℃时,冰融化” “掷一枚骰子,正面向上数字为7”。
随机事件: 在一定条件下可能发生也可能不
发生的事件. 比如:“李强射击一次,中十环”,
“掷一枚硬币,出现反面”.
前面同学们所看到例子有必然 发生的,不可能发生的、可能 发生也可能不发生的(即随机 发生的),我们把
⑤明天太阳从西边出来. ( 不可能事件 )
⑥拨打电话给同学时正好遇到忙 音.(随机事件 ) ⑦马路上接连驶过的两辆汽车,它们的牌 照尾数都是奇数. ( 随机事件 ) ⑧掷一枚均匀的硬币1000次都是正面向 上 。( 随机事件 )
一休得罪了幕府将军,将军决定处罚一休,幸得安 国寺长老和百姓们的求情,将军终于同意让一休用 自己的聪明才智来决定自己的命运.
方法是将军写下两张签,一张“罚”,一张 “免”,让,将军会在写签时怎么写呢?
原来将军在两张签上都写上了“罚”。一休不 论抽到哪一张都一样要罚。
爱动脑筋的一休早就料到了这一点。一休会用 什么办法应对狡诈的幕府将军呢?
•从原本应该写有“罚”“免”的两张 字条中任抓一张,一休抓到“罚”字 的纸条是什么事件?
11.同一枚骰子连续掷两次,朝上一面出现点数之和 为13 12.任意四边形的内角和都等于360°.
13.一辆小汽车从面前经过,它的车牌号码为偶数.
14.从一副完整扑克牌中任抽一张,它是草花.
15.一袋中有若个干球,其中只有2个红球,小明从中 摸出3个球,其中一个是红球.
大家谈谈:摸球实验
(1)在实验1中任意摸出一个球,一定是红球吗?说 说你的理由。
指出下列事件中,哪些是必然事件, 哪些是不可能事件哪些是随机事件
人教版初三数学上册25.1.1随机事件.1.1随机事件
25.1 随机事件与概率(第1课时)
摸球实验
规 问则123::你通觉过得抽你签会方抽式到选几05择号0号3吗?名吗?同?学上台摸球,每位同 学每次摸一个球,每次摸好后放回搅匀,共摸5次.摸 出黄色球次数最多的为第一名,其次为第二名,最少 的为第三名.
12 3
判断
生活中
经过城市中某一有交通信号灯的路口, 遇到红灯;
随机事件 小华:4cm、5cm、6cm、7cm、8cm
随机事件 小红:6cm、7cm、8cm、9cm、10cm
实验探究
问题3 箱子中装有 4 个黄球、2 个白球,这些球的 形状、大小、质地等完全相同.即除颜色外无其他差 别.在看不到球的条件下,随机从箱子中摸出 1 个球.
球的颜色 黄色 白色 摸到的次数 规则:思每考名:同学从盒子中轮流摸球,每次摸1个,每位同 学摸能2次否,通然过后改将变球袋放子回里盒某中种,颜搅色匀的,球组的长数记量录,下使摸“摸到出黄 球黄和球白”球和的“摸次出数白,球并”由的组可长能将性最大终小结相果同填.在黑板上.
可能发生也可能不发生
判断
生活中
在校运动会上,李杰同学在男子100米比赛中 跑出了0.5秒的好成绩;
必然不会发生
判断
生活中
Hale Waihona Puke 篮球队员在罚线上投篮一次,未投中;
可能发生也可能不发生
判断
学科学习
a 2 +b 2 = -1(其中 a,b 都是实数);
必然不会发生
三角形的内角和为180°;
必然会发生
判断 太阳从西边下山;
小结
本节课学习了哪些主要内容?
必然事件
事件
不可能事件
概率
随机事件
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
人教版数学九年级上册25.1.1《随机事件》教学设计
人教版数学九年级上册25.1.1《随机事件》教学设计一. 教材分析《随机事件》是人教版数学九年级上册第25章第1节的内容。
本节课主要介绍随机事件的定义及其相关概念。
通过本节课的学习,使学生了解随机事件的定义,理解必然事件、不可能事件与随机事件的关系,能正确判断事件的类型。
教材通过丰富的实例,引导学生探究、总结随机事件的定义,培养学生的抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对事件的概念有一定的了解。
但在判断事件类型方面,部分学生可能还存在一定的困难。
因此,在教学过程中,要关注学生的个体差异,引导学生通过观察、思考、交流、总结,提高他们判断事件类型的能力。
三. 教学目标1.理解随机事件的定义,能正确判断事件的类型。
2.培养学生的观察能力、思考能力和抽象思维能力。
3.通过对实际问题的分析,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:随机事件的定义及其相关概念。
2.难点:必然事件、不可能事件与随机事件的关系;判断事件类型。
五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、交流、总结,掌握随机事件的定义。
2.运用实例分析法,使学生理解必然事件、不可能事件与随机事件的关系。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关教学课件和教学素材。
2.准备学生分组讨论所需材料。
3.教师熟练掌握教材内容,明确教学目标和要求。
七. 教学过程1.导入(5分钟)利用生活中的实例,如抛硬币、抽奖等,引导学生关注随机现象。
提问:这些现象有什么共同特点?学生回答后,教师总结:这些现象都是随机事件。
2.呈现(10分钟)展示教材中的实例,引导学生观察、思考,总结随机事件的定义。
提问:什么是随机事件?必然事件、不可能事件与随机事件有什么关系?学生回答后,教师总结:随机事件是在一定条件下,可能发生也可能不发生的事件。
3.操练(10分钟)分组讨论:让学生结合实例,判断所给事件类型。
人教版初三数学上册25.1.1随机事件
1.(必做题)下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?
①拨打电话给同学时正好遇到忙音;
②13个人中,至少有两个人出生的月份相同;
③在一副完整的扑克牌中任意抽1张牌,是黑桃K;
④方程 在实数范围内有解;
抛掷一枚硬币,落地后有国徽一面的朝上;
一箭双雕。
2.(选做题)从3名女生和5名男生当中选5名学生参加智力竞赛,规定男生选n名,当n为何值时,女生小樱当选是:
①必然发生事件
②不可能发生事件
③随机事件
3.(必做题)列举一些生活中的随机事件,不可能事件和必然事件的例子。
九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.1随机事件
Image
12/11/2021
第十五页,共十五页。
现许多(xǔduō)偶然事件的发生也是有规律可循
的.
第三页,共十五页。
分析说明下列问题哪些是必然发生的?哪些是不可能发生的?
(1)太阳从西边下山.
必然(bìrán)事件
(2)某人的体温是100℃.
不可能(kěnéng) 事件
ab 1 2
2
(3)
(其中a,b都是实数(shìshù)).
不可能事件
(4)水往低处流.
第二十五章 概率初步
25.1 随机(suí jī)事件与概率
25.1.1 随机事件
第一页,共十五页。
一、情境 导 (qíngjìng) 入
第二页,共十五页。
“天有不测风云”.这句话被引申世 界上有很多事情具有偶然性.人们不能事
先判断这些事情是否会发生,但是随着人 们对事件发生可能性的深入研究,人们发
随机事件
(4)13个人中,至少有两个人出生的月份相同. 必然事件
(5)经过有信号灯的十字路口,遇见(yù jiàn)红灯. 随机事件
(6)在装有3个球的布袋里摸出4个球.
不可能事件
(7)物体在重力的作用下自由落下. (8)抛掷一千枚硬币,全部正面朝上.
必然事件
随机事件
第十二页,共十五页。
四、归纳 小 (guīnà) 结
本节课你学到了哪些(nǎxiē)有关随机事件的知 识?你有哪些(nǎxiē)收获和体会?
第十三页,共十五页。
第十四页,共十五页。
内容 总结 (nèiróng)
第二十五章 概率初步。25.1 随机事件与概率。25.1.1 随机事件。(5)酸和碱反应生成盐和水.。(1)抽到的数 字有几种可能的结果。(4)出现的点数会是4吗。2.列举一些生活(shēnghuó)中的随机事件、不可能事件和必然事件.。 A.男生的身高一定超过女生的身高。2.下列事件中,哪些是随机事件。(3)掷一枚骰子,向上一面是3点.。(6)在
人教版初中数学九年级上册 25(1).1 随机事件与概率
第二十五章概率初步25.1.1 随机事件尹淑英教材分析本课内容属于“统计与概率〞领域,主要学习随机事件的概念.它是概率论中的一个根本概念,是概率问题研究的主要对象.所以本课在教材中占有非常重要的地位.课件说明:现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步〞一章的第一节课.教学中,通过分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,表达了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习气氛中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.教学目标:1、了解必然发生的事件、不可能发生的事件、随机事件的特点.2、通过学习过程,开展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.3、引领学生感受随机事件就在身边,增强学生珍惜时机,把握时机的意识.4、通过实验操作等体会随机事件发生的可能性是有大小的.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程一、【问题情境】指出以下事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?〔1〕木柴燃烧,产生热量〔2〕明天,地球还会转动〔3〕煮熟的鸭子,飞了〔4〕在00C下,这些雪融化〔5〕翻开电视正在播刘翔夺冠的体育片〔6〕这两人各买1张彩票,她们中奖了【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.二、【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.三、【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.四、【问题情境】1、盒子中装有4个黄球2个白球,这些球形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
人教版九年级数学上册《25章 概率初步 25.1 随机事件与概率 概率
人教版九年级数学上册《25章概率初步 25.1 随机事件与概率概率人教版九年级数学上册《25章概率初步25.1随机事件与概率概率25.1.2概率教学设计教学目标知识技能:1.理解什么是随机事件的概率,并认识到概率是反映随机事件概率的数量。
2.理解“事件a发生的概率是p(a)=(在一次试验中有n种等可能的结果,其中事件a包含m种)”的求概率的方法,并能求出简单问题的概率。
过程和方法:经过实验操作、观察、思考和总结,理解随机事件概率的定义,掌握概率的计算方法。
情感态度和价值观:理解概率的含义,渗透辩证思维,感受数学与现实生活的联系,实现数学在现实生活中的应用价值。
教学重点:随机事件的概率的定义;“事件a发生的概率是p(a)=(在一次试验中有n种等可能的结果,其中事件a包含m种)”求概率的方法及运用。
教学难度:理解P(a)=n并运用。
教学过程设计:一、回顾与介绍(一)上节课我们学习了那些知识?1.不可避免的事件:在一定条件下必然发生的事件。
2.不可能事件:在特定条件下不会发生的事件。
3、随机事件:在一定条件下,可能会发生,也可能不发生的事件.也成为不确定性事件。
(二)、判断下列事件中哪些事件是必然事件?哪些是不可能事件?哪些事件是随机事件?(学生举手回答)。
1.铅球会落下。
2.运动员在100米赛跑中的成绩是2秒。
23.购买电影票的座位号为订单号。
4.X+1是一个正数。
5、投掷硬币时,国徽朝上。
6、直线y=kx+1过定点(-1,0)7、打开电视机,正在播广告。
8、明天的太阳从西方升起来。
(设计意图:通过复习旧知,唤起学生学习新知的欲望)二、情境引入,探索新知通过回顾不可避免事件、不可能事件和随机事件的定义,列出现实生活中的随机事件,我们觉得随机事件的概率是不同的。
在相同的条件下,随机事件可能会发生,也可能不会发生。
发生的可能性有多大?我们能用数值来描述它吗?(引导话题:如何计算概率和其他可能事件的概率)老师首先解释概率的含义和概率的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1.1随机事件导学案(第一课时)
学习目标
1、了解随机事件、必然事件、不可能事件的基本概念和特点.
2、能根据随机事件、必然事件、不可能事件判断一件事情属于哪种事
件.
3、能举出简单的随机事件、必然事件、不可能事件.
学习重点
随机事件、必然事件、不可能事件的基本概念和特点. 学习难点能够准确的判断3 种事件,并举出事例
学习过程:
一、情景导入:
问题1、小明从盒中任意摸出一球,一定能摸到红球吗?小麦能摸
到红球吗?小米呢?
问题2、从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?
二、自主学习:P127-128
1、在一定条件下:
必然会发生的事件叫必然事件;
必然不会发生的事件叫不可能事件;
可能会发生,也可能不发生的事件叫不确定事件或随机事件
2、联系生活实际举例说明
必然事件:随机事件:
三、合作交流
1、5 名同学参加演讲比赛以抽签方式决定每个人的出场顺序签筒中有5 根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的不可能事件:数字
的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:
(1).抽到的序号有几种可能的结果?
(2).抽到的序号小于6 吗?这是什么事件?
(3).抽到的序号会是0 吗?这是什么事件?
(4).抽到的序号会是1 吗?这是什么事件?
(5).你能列举与事件(4)相似的事件吗?
2、小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有
1 至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:
(1)可能出现哪些点数?
(2)出现的点数会是7 吗?
(3)出现的点数大于0 吗?
(4)出现的点数会是4 吗?
四、展示提升:
判断下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件。
1、在地球上,太阳每天从东方升起。
2、有一匹马奔跑的速度是70 千米/秒。
3、明天,我买一注体育彩票,得500 万大奖。
4、用长为3cm、4cm、7cm 的三条线段首尾顺次连结,构成一个三角形。
5、掷一枚均匀的硬币,正面朝上。
总结:
确定性事件:
必然事件:在一定条件下重复进行试验时,在每次试验中必然
会发生的事件
不可能事件:在一定条件下重复进行试验时,在每次试验中不
可能发生的事件。
随机事件:在一定条件下,可能发生也可能不发生的事件.
五、课堂检测练一练:
1、指出下列事件中哪些事件是必然事件,哪些事件是不可以事件
哪些事件是随机事件.
⑴度量三角形内角和,结果是360° .
⑵正常情况下水加热到100 ° C,就会沸腾.
⑶掷一个正面体的骰子,向上的一面点数为6. ⑷经过城市中某一有交通信
号灯的路口,遇到红灯.
(5) 某射击运动员射击一次,命中靶心
2、下列成语反映的事件是随机事件的是(
①水中捞月②一箭双雕
③刻舟求剑④守株待兔
⑤拔苗助长⑥瓮中捉鳖
3、一个口袋中装有1 个红球、1 个黄球、8 个黑球,它们除颜色不同外,其余均相同。
小强从口袋中摸出3 个球,他会摸出哪三个球呢?请分别说出一个不可能事件、一个随机事件、一个必然事件。
六、反馈提升
⑴同一枚骰子连续掷两次,朝上一面出现点数之和为14. ⑵任意四边形的内角和都等于360° .
⑶一辆小汽车从面前经过,它的车牌号码为偶数. ⑷从一副完整扑克牌中任抽一张,它是草花.
2015 年10 月17 日晴
早上,我迟到了。
于是就急忙去学校上学,可是在楼梯上遇到了班主任,她批评了我一顿。
我想我真不走运,她经常在办公室的啊,今天我真倒霉。
我明天不能再迟到了,不然明天早上我将在楼梯上遇到班主任。
中午放学回家,我看了一场篮球赛,我想长大后我会比姚明还高,我将长到100 米高。
看完比赛后,我又回到学校上学。
下午放学后,我开始写作业。
今天作业太多了,我不停的写啊,一直写到太阳从西边落下。