人教版数学八年级下册期末测试题2
2013-2014新人教版八年级数学下期期末试题2(含答案)
2013—2014年八年级下学期期末考试 数学模拟试卷(人教版)(二)(满分100分,考试时间100分钟)学校________________ 班级_____________ 姓名________________ 一、选择题(每小题3分,共24分) 1. 下列运算错误的是()A=B.=C=D .2(2=2. 已知函数y =kx +b 的图象如图所示,则y =2kx +b 的图象可能是( )3. 下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤有一个角是直角的平行四边形是正方形.其中正确的有( ) A .1个B .2个C .3个D .4个4. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )201525247724251520157242025157242025A .B .C .D .5. 已知一个一次函数,当自变量x 的取值范围为-1≤x ≤2,相应的函数值y 的取值范围为3≤y ≤6,则这个一次函数的解析式是( ) A .4y x =+ B .45或y x y x =+=-- C .5y x =-- D .45或y x y x =+=-+6. 如图,一架长25米的梯子AB 斜靠在墙上,梯子底端距墙脚7米,当梯子顶端沿墙壁向下滑动9米时,梯子的底端水平向外滑动了( ) A .13米B .9米C .6米D .5米NHF E DCBA第6题图 第7题图 第8题图7. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形共有( ) A .12个B .9个C .7个D .5个8. 一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x 的取值范围是( ) A .1<x <9 B .1≤x ≤9 C .1<x ≤3 D .3<x <9二、填空题(每小题3分,共21分)9. 两个不相等的无理数,他们的乘积是有理数,请写出一对这样的数:_____、______.10. 若一组数据为1,2,3,则这组数据的方差为_____.11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.12. 已知11()A x y ,,22()B x y ,是一次函数y =kx +2(k >0)图象上不同的两点,若1212()()t x x y y =--,则t ________0.(选填“>”、“≥”、“<”或“≤”)13. 如图,点A 1,B 1,C 1,D 1分别是四边形ABCD 各边上的中点,两条对角线AC ,BD 互相垂直.若AC =3,BD =4,则四边形A 1B 1C 1D 1的面积为_________. 14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(4,0),点C 在第一象限内,∠CAB =90°,且BC =6.将△ABC 沿x 轴向右平移,当点C 落在直线y =-BC 扫过的面积为________________.D 1C 1B 1A 1DC BADC BPEA第13题图 第14题图 第15题图15. 如图,E 为正方形ABCD 外一点,连接AE ,BE ,DE ,过点A 作AP ⊥AE ,交DE 于点P .若AE =AP =1,BPAPD ≌△AEB ;②点B 到直线AE的距离为;③BE ⊥DE;④1APB APD S S +=△△4ABCD S =正方形.其中正确的是___________________.(填写序号) 三、解答题(本大题共7小题,满分55分)16. (6分)(1)已知-1<x <4,4x -.(2)17. (8分)如图,圆柱的底面周长为16 cm ,AC 是底面圆的直径,高BC =9 cm ,点P 是母线BC 上一点,且PC 23BC .一只蚂蚁从点A 出发沿着圆柱体的侧面爬行到点P 的最短距离是多少?18. (8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形统计图(如图1)和条形统计图(如图2),经确认图1是正确的,而图2尚有一处错误.类型C D B A 40%20%30%10%图1 图2回答下列问题:(1)写出条形统计图中存在的错误,并说明理由. (2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.19.20.(8分)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)之间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:((3)求第二档每月电费y (元)与用电量x (度)之间的函数关系式; (4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度,交电费153元,求m 的值.21. (8分)如图,以△ABC 的三边为边在BC 同侧分别作等边三角形,即△ABD ,△BCE ,△ACF .(1)四边形ADEF 为__________四边形;(2)当△ABC 满足条件____________时,四边形ADEF 为矩形; (3)当△ABC 满足条件____________时,四边形ADEF 为菱形; (4)当△ABC 满足条件____________时,四边形ADEF 不存在.FAEDB22. (9分)如图,在平面直角坐标系中,直线1y x =-+与3y x =+交于点A ,与x 轴分别交于点B 和点C .若D 是直线AC 上一动点,则在直线AB 上是否存在点E .使得以O ,D ,A ,E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.2013—2014年八年级下学期期末考试数学模拟试卷(二)(人教版)参考答案一、选择题1.A 2.C 3.A 4.C5.D 6.A7.B8.A二、填空题9,10.2311.4912.>13.3 14.15.①③⑤三、解答题16.(1)2x-2 (2)217.10cm18.(1)条形统计图中D类型对应的人数应为2人(2)5棵,5棵(3)①从第二步开始出错;②5.3,1378 19.(1)证明略(2)菱形,证明略(3)2:120.(1)140<x≤230;x>230(2)920 y x =(3)m=0.2521.(1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°(4)∠BAC=60°22.111 () 22E,;257 ()22E-,。
新人教版八年级数学下册期末考试题(带答案)
新人教版八年级数学下册期末考试题(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.21273=___________. 3x 2-x 的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:22x4x4x1x1x11x⎛⎫-+-+÷⎪--⎝⎭,其中x满足2x x20+-=.3.若方程组3133x y mx y m+=+⎧⎨+=-⎩的解满足x为非负数,y为负数.(1)请写出x y+=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、D5、B6、A7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-23、x 2≥4、2≤a+2b ≤5.5、36、8三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、112x -;15.3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
2022人教版初中八年级数学期末综合素质检测卷(二)含答案
八年级数学期末综合素质检测卷(二)含答案一、选择题(每题3分,共30分)1.【教材P104习题T1变式】下列运算正确的是()A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a3 2.【教材P4练习T2改编】下列长度的三条线段,不能..构成三角形的是() A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9 3.【教材P147习题T8变式】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076 g.将数0.000 000 076用科学记数法表示为()A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×108 4.【教材P60练习T1拓展】在如图所示的4个图案中,属于轴对称图案的有()A.1个B.2个C.3个D.4个5.如果把分式xyx+y中的x和y都扩大为原来的5倍,那么分式的值() A.扩大为原来的10倍B.扩大为原来的5倍C.不变D.缩小为原来的1 56.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于()A.100°B.110°C.120°D.150°(第6题)(第9题)(第10题)7.下列各式中,计算结果是x2+7x-18的是()A.(x-1)(x+18) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-2)(x+9)8.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±59.如图,沿过点A的直线折叠这个直角三角形纸片的直角,使点C落在AB边上的点E处,折痕为AD.若BC=24,∠B=30°,则DE的长是() A.12 B.10 C.8 D.610.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若式子(x-4)0有意义,则实数x的取值范围是______________.12.【教材P117练习T2(3)变式】分解因式:xy-xy3=________________.13.【教材P24练习T2改编】一个多边形的每个内角都是150°,这个多边形是________边形.14.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是____________.(第14题)(第15题)(第18题)15.【教材P56复习题T10改编】如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=________.16.已知点P(1-a,a+2)关于y轴的对称点在第二象限,则a的取值范围是____________.17.已知3x+5y-5=0,则8x×32y的值是________.18.如图,在平面直角坐标系中,点A,B分别在x轴和y轴上,∠BAO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点共有________个.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.先化简后求值:(x+3)2-(x-4)(x+4).其中x=-2.20. 解方程:1-xx-2=12-x-2.21.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.22.如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度,△ABC 的顶点都在格点上,点A的坐标为(-3,2).请按要求完成下列问题:(1)把△ABC先向下平移7个单位长度,再向右平移7个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;画出△A1B1C1关于y轴对称的△A3B3C3;(3)求△ABC的面积.23.如图,在△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠ABC.24.某商店老板第一次用1 000元购进了一批口罩,很快销售完;第二次购进时发现每只口罩的进价比第一次上涨了2.5元.老板用2 500元购进了第二批口罩,所购进口罩的数量是第一次购进口罩数量的2倍,同样很快销售完,两批口罩的售价均为每只15元.(1)第二次购进了多少只口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?25.(1)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,点A,B分别是y 轴,x轴上的两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.①如图①,当点C的横坐标为-1时,求点A的坐标;②如图②,当点D恰好为AC中点时,连接DE,求证:∠ADB=∠CDE.(2)如图③,点A在x轴上,且A(-4,0),点B在y轴的正半轴上,分别以OB,AB为直角边在第一、二象限作等腰直角三角形BOD和等腰直角三角形ABC,且∠OBD=90°,∠ABC=90°,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化,请说明理由;若不变化,请求出BP的长.答案一、1.C 2.D 3.B 4.B 5.B 6.C7.D 8.A 9.C 10.C二、11.x ≠4 12.xy (1+y )(1-y )13.十二 14.AC =ED (答案不唯一)15.8 16.-2<a <1 17.32 18.6三、19.解:原式=x 2+6x +9-(x 2-42)=x 2+6x +9-x 2+16=6x +25,当x =-2时,原式=6×(-2)+25=-12+25=13.20.解:方程两边同时乘(x -2),得1-x =-1-2(x -2),解得x =2.检验:当x =2时,x -2=0,故此方程无实数根.21.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ACB 和△ECD 中,⎩⎨⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD (ASA).∴∠B =∠D .22.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2,△A 3B 3C 3即为所求.(3)S △ABC =2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52.23.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A =∠C =65°.∴∠EDF =360°-65°-155°-90°=50°.(2)证明:如图,连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC , ∠ABF =∠CBF =12∠ABC .∴∠CFD +∠BFD =90°.∵FD ⊥BC ,∴∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴∠CFD =12∠ABC .24. 点方法:利润问题的相关公式及其数量关系:1.相关公式.售价=进价×(1+利润率);售价=标价×折扣;利润率=利润进价×100%.2.基本数量关系.利润=售价-进价;利润=进价×利润率;销售额=销售量×销售单价.进价×(1+利润率)=标价×折扣.解:(1)设第一次购进了x只口罩,则第二次购进了2x只口罩,依题意,得1 000x=2 5002x-2.5,解得x=100.经检验,x=100是原方程的解,且符合题意.则2x=2×100=200.答:第二次购进了200只口罩.(2)[100×(1-3%)+200×(1-5%)]×15-1 000-2 500=805(元).答:商店老板销售完这些口罩后盈利,盈利805元.25.(1)①解:如图①,过点C作CF⊥y轴于点F,则∠CAF+∠ACF=90°.∵∠BAC=90°,即∠BAO+∠CAF=90°,∴∠ACF=∠BAO.又∵∠AFC=∠BOA=90°,AC=BA,∴△AFC≌△BOA(AAS).∴AO=CF=1.∴点A的坐标是(0,1).②证明:如图②,过点C作CG⊥AC,交y轴于点G.∵CG⊥AC,∴∠ACG=90°.∴∠CAG+∠AGC=90°.∵∠AOD=90°,∴∠ADO+∠DAO=90°.∴∠AGC=∠ADO.又∵∠ACG=∠BAD=90°,AC=BA,∴△ACG≌△BAD(AAS).∴CG=AD=CD.∵∠BAC=90°,AB=AC,∴∠ACB=45°.又∵∠ACG=90°,∴∠DCE=∠GCE=45°.又∵CD=CG,CE=CE,∴△DCE≌△GCE(SAS).∴∠CDE=∠CGE.∴∠ADB=∠CDE.(2)解:BP的长度不变化.如图③,过点C作CH⊥y轴于点H.∵∠ABC=90°,∴∠CBH+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBH=∠BAO.又∵∠CHB=∠AOB=90°,BC=AB,∴△CBH≌△BAO(AAS).∴CH=BO,BH=AO=4.∵BD=BO,∴CH=BD.又∵∠CHP=∠DBP=90°,∠CPH=∠DPB,∴△CPH≌△DPB(AAS).∴BP=HP=12BH=2.。
2022—2023年人教版八年级数学下册期末试卷(及参考答案)
2022—2023年人教版八年级数学下册期末试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .65.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④7.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 ______ …______(元)方式二的总费用90 135 ______ …______(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、C6、D7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)12、-2 -33、60°或120°4、(﹣5,4).5、36、4.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-11x+,-143、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.4、略.5、(1)略(2)90°(3)AP=CE6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
2022年人教版八年级数学下册期末考试(带答案)
2022年人教版八年级数学下册期末考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( ) A .1x - B .1x + C .21x - D .()21x - 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.已知点P (2a+4,3a-6)在第四象限,那么a 的取值范围是( )A .-2<a <3B .a <-2C .a >3D .-2<a <25.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根8.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若ABC60∠=,BAC80∠=,则1∠的度数为()A.50B.40C.30D.209.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知(x﹣1)3=64,则x的值为__________.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.5.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为__________.6.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是________.三、解答题(本大题共6小题,共72分)1.解下列不等式组:(1)2132(1);x xx x>+⎧⎨<+⎩,(2)231213(1)8;xxx x-⎧+≥+⎪⎨⎪--<-⎩,2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.4.如图,已知一次函数y kx b=+的图象经过A (-2,-1), B (1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式(2)△AOB的面积5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、C6、D7、C8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-22、53、14、5、30°.6、20三、解答题(本大题共6小题,共72分)1、(1)1<x<2 (2)-2<x2≤2、-11x+,-143、非负整数解是:0,1、2.4、(1)4533y x=+;(2)525、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
人教版八年级数学下册期末测试卷含答案
人教版八年级数学下册期末测试卷含答案人教版八年级数学下册期末测试卷02一、选择题(每小题3分,共30分)1.在函数y=(x+2)/(x-1)中,自变量x的取值范围是()A。
x≥-2且x≠1B。
x≤2且x≠1C。
x≠1D。
x≤-22.下列各组二次根式中,可以进行合并的一组是()A。
12与72B。
63与78C。
8√3与22√xD。
18与63.下列命题中,正确的是()A。
梯形的对角线相等B。
菱形的对角线不相等C。
矩形的对角线不能互相垂直D。
平行四边形的对角线可以互相垂直4.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A。
20B。
24C。
28D。
405.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A。
AE=CFB。
BE=FDC。
BF=DED。
∠1=∠26.已知一次函数y=kx+b(k≠0)的图象经过两点,则它不经过(2,-1)的象限是()A。
第一象限B。
第二象限C。
第三象限D。
第四象限7.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据。
若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是()A。
20B。
28C。
30D。
318.园林队在某公园进行绿化,中间休息了一段时间已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A。
40平方米B。
50平方米C。
80平方米D。
100平方米9.如图,在△ABC中,AC=BC,D、E分别是边AB、AC 的中点,△ADE≌△CFE,则四边形ADCF一定是()A。
矩形B。
菱形C。
正方形D。
梯形10.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合XXX行驶情况的大致图象是()无法提供图象)二、填空题(每小题3分,共30分)11.计算:(48-327)÷3=_________.12.一次函数y = (m+2)x + 1,若y随x的增大而增大,则m的取值范围为什么?答案:m。
人教版八年级下册数学期末试题(附答案)
2021——2022学年第二学期数学期末检测卷一、选择题(每小题3分,共30分)1.代数式11x -有意义,则x 的取值范围是( ) A . x ≥0 B . x ≠1 C . x >0 D . x ≥0且x ≠12.如果一次函数 y =x +k 的图象经过第一、三、四象限,那么 k 的取值范围是 ( ) k >0 B . k <0 C . k >1 D . k <13.如图,在平行四边形 ABCD 中,∠A =140∘,则 ∠B 的度数是 ( )A. 40∘B . 70∘C . 110∘D . 140∘ 书名 《西游记》 《水浒传》 《三国演义》 《红楼梦》销量量/本 180120 125 85 些《西游记》,你认为最影响该书店决策的统计量是( )A .平均数B .众数C .中位数D .方差5.已知点(-3,y 1)、(2,y 2)都在直线y =-2x +1上,则y 1、y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能比较6.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A .22︒B .68︒C .96︒D .112︒7.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm8.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .79.实数a ,b 在数轴上的位置如图所示,则化简√(a -2)2-√(a +b)2的结果是( )A.-b-2 B.b+2 C.b-2 D.-2a-b-210.如图,在平行四边形ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF;④EA平分∠GEF.其中正确的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共12分)11.在二次根式√7,√14,√21,√28,√35,√42,√49中,属于最简二次根式的有个12.某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分2:3:5的比例计算,已知八(1)班在比赛中三项得分依次是8分,9分,10分,则八(1)班这次比赛的总成绩为__________分.13.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________14.关于自变量x的函数y=(k-3)x+2k,下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(-2,6);③若函数经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3.其中结论正确的序号是__________.三、解答题(本大题共5小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.计算2132)4882-16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.17.如图,在平面直角坐标系中,直线y=-12x -1与直线y =-2x +2相交于点P . (1)求交点P 的坐标; (2)请把图象中直线y =-2x +2在直线y =-12x -1上方的 部分描黑加粗,并写出不等式-2x +2>-12x -1的解集.18.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人19.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题: x yO A BP y =-2x +2 y =-12x -1(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.20.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.答案:一、选择题1.B2.B C3.A4.B5.C6.B7.C8.C9.B 10.B二、填空题11.5 12.9.3 13. 20,99,101 14.②③三、解答题15.716.证明:∵BE ∥AC ,CE ∥DB ,∴四边形OBEC 是平行四边形,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠AOB=90°,∴平行四边形OBEC 是矩形.17. (1)(2,-2) (2)x<218. (1)200 (2)C (3)略(4)36019.解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.20.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元. 依题意得2000120020x x =-,解得50x =, 经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件, 依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a , ∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元; ②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.。
人教版八年级数学下册期末测试卷(二)(原卷+解析)
人教版八年级数学下册期末测试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.23.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=度.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是.(填序号)16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在组;(2)4月份生产的该产品抽样检测的合格率是;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2021年人教版八年级数学下册期末测试卷(二)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.2【分析】先求出这组数据的平均数,然后代入方差公式求出即可.【解答】解:这组数据的平均数为:(3+2+1+2)÷4=2;则方差为:S2==,故选:B.【点评】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.3.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【分析】由偶次方非负可得出k2+1>0,利用一次函数的性质可得出y值随x值的增大而增大,再结合3>﹣1可得出m>n,此题得解.【解答】解:∵k2≥0,∴k2+1>0,∴y值随x值的增大而增大.又∵3>﹣1,∴m>n.故选:B.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.【点评】本题考查了函数图象,利用抽水时间确定剩下的水量是解题关键,注意两台抽水机同时工作的剩余水量迅速减少.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【分析】利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,故能构成直角三角形;B、()2+()2=()2,故能构成直角三角形;C、22+()2≠()2,故不能构成直角三角形;D、12+()2=22,故能构成直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长【分析】证明EF为三角形AMC的中位线,那么EF长恒等于定值AC的一半.【解答】解:连接AC,如图所示:∵E,F分别是AM,MC的中点,∴EF=AC,∵C是定点,∴AC是定长,∴无论M运动到哪个位置EF的长不变,故选:A.【点评】此题考查的是进行的性质、三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=150度.【分析】由折叠易得∠OCB=∠DBC=15°,由平行四边形对边平行易得∠ACB=∠DBC =15°,利用三角形内角和即可求得所求的角的度数.【解答】解:∵△BEC是△BDC翻折变换的三角形,∴△BEC≌△BDC,∠EBC=∠DBC=15°,∵AC∥BD,∴∠OCB=∠DBC=15°,∴∠BOC=180°﹣∠OCB﹣∠EBC=180°﹣15°﹣15°=150°.故答案为150.【点评】本题考查的是经过翻折变换后的图形与原图形全等的性质,及平行四边形的性质.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为y=x+3.【分析】根据“在y轴上的截距为3”计算求出b值,然后代入点(1,4)即可得解.【解答】解:∵直线y=kx+b在y轴上的截距为3,∴b=3,∴y=kx+3,∵经过点(1,4),∴4=k+3,∴k=1,∴这条直线的解析式是y=x+3.故答案是:y=x+3.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是①②③.(填序号)【分析】①通过证明四边形AMCE是平行四边形,可得AM∥CE;②由“SAS”可证△DCF≌△CBE,可得∠BCE=∠CDF,由直角三角形的性质可求∠CND=90°;③由直角三角形的性质可得DM=MN,由等腰三角形的性质可得AM垂直平分DN,可得AN=AD=BC;④由等腰三角形的性质和余角的性质可得∠ADN=∠DCN=∠AND=∠CNM,即可求解.【解答】解:∵E,F,M分别是正方形ABCD三边的中点,∴AE=BE=BF=CF=DM=CM,CD∥AB,∴四边形AMCE是平行四边形,∴AM∥CE,故①正确;在△DCF和△CBE中,,∴△DCF≌△CBE(SAS),∴∠BCE=∠CDF,∵∠DCE+∠BCE=90°,∴∠CDF+∠DCN=90°,∴∠CND=90°,∴DF⊥CE,故②正确;∵DF⊥CE,DM=CM,∴DM=MN=CM,∵AM∥CE,∴AM⊥DN,∴AM垂直平分DN,∴AD=AN,∴AN=BC,故③正确;∵AN=BC,∴∠ADN=∠AND,∵DM=MN=CM,∴∠DNM=∠NDM,∠MCN=∠MNC,∵∠ADN+∠CDN=90°,∠CDN+∠DCN=90°,∴∠ADN=∠DCN=∠AND=∠CNM,故④错误,故答案为:①②③.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【解答】解:如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ﹣AE=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.【分析】(1)先化简二次根式,再合并同类二次根式;(2)按二次根式的乘除法法则计算求值即可;(3)先算括号里面的,再除法运算.【解答】解:(1)原式=3﹣×3﹣2=﹣;(2)原式===;(3)原式=(4﹣9)÷2==﹣.【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解决本题的关键.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)直接利用待定系数法可先确定n的值,然后再把C的坐标代入一次函数y =﹣x+m可得m的值;(2)首先确定A点坐标,进而可得AO的长,再集合C点坐标可得△OAC的面积;(3)根据题意可得S△BCP=PB•|x C|=S△OAC=6,解出PB的值,进而可得P点的坐标.【解答】解:(1)∵点C(﹣2,n)在正比例函数y2=﹣x图象上,∴n=﹣×(﹣2)=3,∴点C的坐标为(﹣2,3).∵点C(﹣2,3)在一次函数y=﹣x+m的图象上,∴3=﹣(﹣2)+m,解得:m=2,∴一次函数解析式为y=﹣x+2.∴m的值为2,n的值为3.(2)当y=0时,0=﹣x+2,解得x=4,∴点a的坐标为(4,0),∴S△OAC=OA•y C=×4×3=6.(3)存在.当x=0时,y=﹣x+2=2,∴B(0,2),∵S△BCP=PB•|x C|=S△OAC=6,∴PB•2=6,∴PB=6,∴点P的坐标为(0,8)或(0,﹣4).【点评】此题主要考查了两直线相交问题,关键是掌握待定系数法求函数解析式,掌握凡是函数图象经过的点必能满足解析式.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.【分析】(1)根据平行四边形的性质和平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的性质推知∠DAE+∠ADF=∠BAD+∠ADC=90°,即∠AGD=90°.证得∠BAF=∠AFB,由等腰三角形的判定可得出AB=BF,同理可得CD=CE,则可得出结论;(2)过点C作CK∥AF交AD于K,交DE于点I,证明四边形AFCK是平行四边形,∠AGD=∠KID=90°,得出AF=CK=8,由勾股定理求出DI,则可得出答案.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握平行四边形的判定与性质是解题的关键.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在80<x≤90组;(2)4月份生产的该产品抽样检测的合格率是98.4%;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据频数分布直方图中的数据,可以得到4月份随机抽取的若干件产品中位数在哪一组;(2)根据频数分布直方图中的数据,可以得到4月份生产的该产品抽样检测的合格率;(3)根据统计图中的数据,可以分别计算出3月和4月不合格的件数,然后比较大小即可解答本题.【解答】解:(1)4月份随机抽取的产品数为:8+132+160+200=500,则4月份随机抽取的若干件产品中位数在80<x≤90这一组,故答案为:80<x≤90;(2)4月份生产的该产品抽样检测的合格率为:×100%=98.4%,故答案为:98.4%;(3)4月的不合格件数多,理由:由题意可得,3月的不合格件数为:6000×2%=120,4月的不合格件数为:9000×(1﹣98.4%)=144,∵144>120,∴4月的不合格件数多.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)根据AAS先证明△ABD≌△AEF,根据全等三角形的对应边相等得出BD=EF,再根据等式的基本性质证出BF=DE.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=50°,∴∠ABC=(180°﹣∠BAC)=65°,∵BD平分∠ABC,∴∠CBD=∠ABC=32.5°,∵AE∥BC,∴∠E=∠CBD=32.5°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AE∥BC,∴∠AEF=∠CBD,∴∠ABD=∠AEF,∵AD=AF,∴∠ADF=∠AFD,∵∠ADB=180°﹣∠ADF,∠AFE=180°﹣∠AFD,∴∠ADB=∠AFE,在△ABD与△AEF中,,∴△ABD≌△AEF(AAS),∴BD=EF,∴BD+DF=EF+DF,∴BF=DE.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形全等,考核学生的推理能力,证明三角形全等是解题的关键.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.【分析】(1)先判断出△ABD为等腰直角三角形,进而得出AB=AD,即可得出结论;(2)先利用三角函数得出,证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图3,先利用勾股定理求出EF=CF =CD=,BF=,即可得出BE的长,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)=,理由是:在Rt△ABC中,AB=AC,根据勾股定理得,BC=AB,又∵点D为BC的中点,∴AD⊥BC,∴AB=AD,∵四边形CDEF是正方形,∴AF=EF=AD,∴AB=AF,即=,故答案为:;(2)(1)中的结论成立.证明:∵tan B=1,∴∠ABC=45°,∵AB=AC=3,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴sin45°=,∴,∵四边形CDEF是正方形,∴∠FEC=45°,∴sin45°==,∴,∵∠FCA=∠ECB,∴△ACF∽△BCE,∴;(3)或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD=,∵在Rt△BCF中,CF=,CB=3,∴BF==,∴BE=BF﹣EF==.由(2)知,∴BE=AF,∴=AF,∴AF=,如图3,当点E在线段BF的延长线上时,同理可得BE=BF+EF=,∴,∴AF=,综上所述,当正方形CDEF旋转到B,E,F三点共线时,线段AF的长为或.【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,熟练掌握正方形的性质及相似三角形的性质是解题的关键.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.【分析】(1)连接BP,先求出点A(4,0),点B(0,3),可得AO=4,OB=3,由勾股定理可求AB的长,由面积法可求PC的长,由勾股定理可求AC的长,即可求解;(2)由“AAS”可证△BOP≌△BCP,可得BO=BC=3,OP=CP,由勾股定理可求OP 的值,即可求点P坐标;(3)分OB为边和OB为对角线两种情况讨论,利用菱形的性质两点距离公式先求出点C坐标,再求出CP解析式,即可求解.【解答】解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S△ABP=×AP×OB=×AB×CP,∴CP=,∴AC===,∴S△APC=×AC×PC=;(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,勾股定理,菱形的性质等知识,利用分类讨论思想解决问题是本题的关键.。
新人教版八年级数学(下册)期末试卷(带答案)
新人教版八年级数学(下册)期末试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、B7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、x1≥.3、±2.4、20°.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级下册数学期末试卷2
八年级下册期末考试数学试卷2班级 姓名 (201206)一、选择题(本题有12小题,每小题3分,共36分) 1.下列各式中,与yx 的值相等的是( ) .A.55++y x B.yx --22 C.yx 33-- D.22yx2.不解方程,判断232112-=++-xx 的根是( ).A .B.C.D.32-=x3.反比例函数)0(≠=k xky 的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( ).A.10B.5C.2D.14.下列数组中,能组成直角三角形的一组边长的是( )A.1,1,3B.5,3,2C.0.2,0.3,0.5D.51,41,31 5.下列命题错误的是( ).A.平行四边形的对角相等B.对角线互相垂直的四边形是菱形C.两条对角线相等的平行四边形是矩形D.等腰梯形的对角线相等6.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天用水量的中位数是( ). A.31吨 B.32吨 C.31.5吨 D.34.5吨7.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 中,边长为无理数的边数为( ). A .0 B .1 C .2 D .38.轮船顺流航行40千米由A 地到达B 地,然后又返回A 地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x 千米,则轮船往返共用的时间为( ). A.小时 B.小时 C. 小时 D. 小时9.若函数y=k(3-x)与xk y 2=在同一坐标系内的图象相交,其中k <0,则交点在( ).A.第一、三象限B.第四象限C.第二、四象限D.第二象限10.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分。
”王老师:“我班大部分的学生都考在80分到85分之间喔。
”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对( ) A.平均数、众数 B.平均数、极差 C.中位数、方差 D.中位数、众数(第6题) (第7题) (第11题) (第12题)11.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD的面积的( ) A.51 B.41 C.31 D.10312.如图,在△ABC 中,D 、E 、F 三点将BC 分成四等分,XG :BX =1:3,H 为AB 中点.则△ABC 的重心是( ) A.X B.Y C.Z D.W二、填空题(本题有6小题,每小题3分,共18分) 13.近视眼镜的度数y (度)与镜片焦距x (米)成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 . 14.若矩形一个角的平分线把一边分成4㎝、6㎝,则矩形的周长是 。
人教版八年级数学下册期末学情评估附答案 (2)
人教版八年级数学下册期末学情评估一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是()A. 2B.12C.15 D.a22.下列计算正确的是()A.3+7=10 B.2+2=2 2 C.3×6=3 2 D.15÷5=3 3.下列三条线段能构成直角三角形的是()A.2,3,4 B.5,12,13 C.3,4, 5 D.13,14,154.如图,在正方形ABCD的内部作等边三角形CDE,连接AE,则∠DAE的度数为()A.80°B.75°C.70°D.60°(第4题) (第5题)5.如图,在平面直角坐标系中,点P的坐标为(-3,2),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在()A.-5和-4之间B.-4和-3之间C.3和4之间D.4和5之间6.一次函数y=kx+m(k>0)的图象过点A(2-5,a),B(2,b),C(-2,c),则a,b,c的大小关系为()A.b>c>a B.b>a>cC.c>a>b D.a>b>c7.已知y=mx m+2-m是y关于x的一次函数,则下列说法正确的是() A.图象与y轴交于点(0,-1)B.图象不经过第四象限C.图象与x轴交于点(1,0)D.y随x的增大而增大8.某班数学兴趣小组5名同学的一次数学测验成绩(单位:分)为82,83,88,85,87,小李和小明的成绩均为85分,若将这2名同学的成绩加入该组数据,则()A.平均数变小B.方差变大C.方差变小D.方差不变9.如图,将一个相邻两边长分别为4,8的矩形纸片ABCD折叠,使点C与点A 重合,则四边形AEFD′的面积是()A.16 B.20 C.12 D.24(第9题) (第10题)10.如图①,点P从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图②是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5 B.103 C.256 D.253二、填空题(每小题3分,共15分)11.若代数式33x-9有意义,则x的取值范围是________.12.某校规定学生的数学学期综合成绩由平时、期中和期末三项成绩按3∶3∶4的比计算所得.若某学生本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期的数学学期综合成绩是__________分.13.一艘轮船以16 n mile/h的速度离开港口向东南方向航行,另一艘轮船在同时同地以12 n mile/h的速度向西南方向航行,则1.5 h后两船相距________n mile.14.已知A地在B地正南方向3 km处,甲、乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(km)与所行时间t(h)之间的函数关系如图所示.当他们行走3 h后,他们之间的距离为________km.(第14题) (第15题)15.如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20 cm,D是AB的中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD=10 cm;②∠CDA=60°;③线段CM长度的最小值是5 cm;④点P运动路径的长度是10 cm.其中正确的结论是__________.(写出所有正确结论的序号)三、解答题(一)(每小题8分,共24分)16.计算.(1)20-5+1 5;17.如图,E,F都是平行四边形ABCD的对角线BD上的点,且BE=DF.求证:∠DAF=∠BCE.18.如图,在四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.四、解答题(二)(每小题9分,共27分)19.学校开展“书香校园”活动以来,受到学生们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如下不完整的统计图表.请你根据统计图表中的信息,解答下列问题:(1)此次调查的学生人数为__________,a=________,b=________;(2)该调查统计数据的中位数是________,众数是________;(3)求扇形统计图中“2次”所对应扇形的圆心角的度数;(4)若该校共有3 000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.借阅图书的次数0次1次2次3次4次及以上人数813 a 41020.广州某剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,且每个团体购票时只能选择其中一种优惠方案.方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与x(x>4)名学生听音乐会,设用方案1和方案2的付款总金额分别为y1元和y2元.(1)分别求出y1,y2与x之间的函数解析式;(2)请通过计算确定最省钱的购票方案.21.如图,在矩形ABCD中,点E,F分别在边CD,AB上,且DE=BF,∠ECA =∠FCA.(1)求证:四边形AFCE是菱形;(2)若AB=8,BC=4,求菱形AFCE的面积.五、解答题(三)(每小题12分,共24分)22.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?请说明理由.23.如图,直线l1的解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析式;(3)求△ADC的面积;(4)在直线l2上存在一点P,使得△ADP的面积是△ADC面积的2倍,请求出点P的坐标.答案一、1.A 2.C 3.B4.B提示:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°.∵△CDE是等边三角形,∴DE=CD,∠EDC=60°,∴AD=DE,∠ADE=30°,∴∠DAE=180°-30°2=75°.5.B 6.B7.C8.C9.A10.C二、11.x>312.8813.30提示:如图,东南方向即南偏东45°,西南方向即南偏西45°,故∠AOB =90°,OA=16×1.5=24(n mile),OB=12×1.5=18(n mile).连接AB,在Rt△AOB 中,由勾股定理得AB2=AO2+BO2=242+182=900,所以AB=30 n mile.14.1.515.①④三、16.解:(1)原式=2 5-5+55=6 55.(2)原式=82+182-(18-6 2+1)=2+3-18+6 2-1=6 2-14.17.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD.又∵DF=BE,∴△ADF≌△CBE,∴∠DAF=∠BCE.18.解:连接AC.∵AB⊥BC,∴∠ABC=90°.∵AB=1,BC=2,∴AC=AB2+BC2=12+22= 5.在△ACD中,∵(5)2+22=32,即AC2+CD2=AD2,∴△ACD 是直角三角形,且∠ACD =90°,∴S 四边形ABCD =12AB ·BC +12AC ·CD =12×1×2+12×5×2=1+ 5. 四、19.解:(1)50;15;8(2)2次;2次(3)扇形统计图中“2次”所对应扇形的圆心角的度数为360°×1550=108°.(4)估计该校学生在一周内借阅图书“4次及以上”的人数为3 000×1050=600. 20.解:(1)按优惠方案1,可得y 1=4×20+5(x -4)=5x +60.按优惠方案2,可得y 2=(4×20+5x )×90%=4.5x +72. (2)y 1-y 2=5x +60-(4.5x +72)=0.5x -12(x >4). 当y 1-y 2=0时,0.5x -12=0,解得x =24; 当y 1-y 2<0时,0.5x -12<0,解得x <24; 当y 1-y 2>0时,0.5x -12>0,解得x >24.∴当x =24时,两种优惠方案付款一样多;当4<x <24时,优惠方案1更省钱;当x >24时,优惠方案2更省钱. 21.(1)证明:∵四边形ABCD 是矩形,∴CD ∥AB ,CD =AB . ∵DE =BF ,∴EC =AF .又∵EC ∥AF ,∴四边形AFCE 是平行四边形. ∵CD ∥AB ,∴∠ECA =∠F AC . ∵∠ECA =∠FCA ,∴∠F AC =∠FCA , ∴F A =FC ,∴四边形AFCE 是菱形. (2)解:设FB =x ,则AF =CF =8-x ,在Rt △BCF 中, 42+x 2=(8-x )2,解得x =3, ∴AF =8-3=5,∴菱形AFCE 的面积为5×4=20.五、22.(1)证明:∵CF 平分∠ACD ,且MN ∥BD ,∴∠ACF =∠FCD =∠CFO .∴OF =OC .同理可证:OC =OE .∴OE =OF .(2)解:∵CE 平分∠ACB ,CF 平分∠ACD , ∴∠ACE =12∠ACB ,∠ACF =12∠ACD . ∵∠ACB +∠ACD =180°,∴∠ACE +∠ACF =12∠ACB +12∠ACD =90°, 即∠ECF =90°.∴EF =CE 2+CF 2=122+52=13. ∵OE =OF , ∴OC =12EF =132.(3)解:当点O 运动到AC 中点时, 四边形AECF 是矩形. 理由:∵OE =OF ,OA =OC , ∴四边形AECF 是平行四边形. 又∵∠ECF =90°, ∴四边形AECF 是矩形.23.解:(1)对于y =-3x +3,令y =0,得-3x +3=0,∴x =1,∴D (1,0).(2)设直线l 2的解析式为y =kx +b ,由题图知A (4,0),B ⎝ ⎛⎭⎪⎫3,-32,将(4,0),⎝ ⎛⎭⎪⎫3,-32代入解析式y =kx +b ,得⎩⎪⎨⎪⎧4k +b =0,3k +b =-32,∴⎩⎪⎨⎪⎧k =32,b =-6, ∴直线l 2的解析式为y =32x -6.(3)由⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,解得⎩⎨⎧x =2,y =-3,∴C (2,-3).易知AD =3,∴S △ADC =12×3×|-3|=92. (4)∵△ADP 的面积是△ADC 面积的2倍,∴12AD·|y P|=2×92,∴y P=±6.当y P=6时,令32x-6=6,解得x=8,∴P1(8,6).当y P=-6时,令32x-6=-6,解得x=0,∴P2(0,-6).综上所述,点P的坐标为(8,6)或(0,-6).。
初中数学人教版八年级下册期末-章节测试习题(2)
章节测试题1.【题文】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x=______,y=______.(写出x与y的一组整数值即可).【答案】(1)甲;(2)丙;(3)1,8【分析】(1)运用求平均数公式即可求出三人的平均成绩,比较得出结果;(2)将三人的总成绩按比例求出测试成绩,比较得出结果.(3)根据专业知识、语言能力和综合素质三项测试得分可知,乙的语言能力最好,可将语言能力的比例提高,乙将被录用.【解答】(1),,.∵73>70>68,∴甲将被录用;(2)综合成绩:4+3+1=8,,,,∵77.5>76.625>69.625,∴丙将被录用;(3)x=1,y=8或x=2,y=7或x=3,y=6或x=4,y=5时,乙被录用.(答案不唯一,写对一种即可)故答案为:1,8.2.【题文】直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.(1)求点B坐标.(2)求直线BC的解析式.(3)直线EF的解析式为y=x,直线EF交AB于点E,交BC于点F,求证:S△EBO=S△FBO.【答案】(1)B(0,6);(2)y=3x+6;(3)见解答【分析】(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.【解答】(1)把A(6,0)代入y=-x+b得-6+b=0,解得b=6,所以直线AB的解析式为y=-x+6,当x=0时,y=-x+6=6,所以点B的坐标为(0,6);(2)解:∵OB:OC=3:1,而OB=6,∴OC=2,∴C点坐标为(-2,0),设直线BC:y=mx+n,把B(0,6),C(-2,0)分别代入得,解得,∴直线BC的解析式为y=3x+6;(3)证明:解方程组得,则E(3,3),解方程组得,则F(-3,-3),所以S△EBO=×6×3=9,S△FBO=×6×3=9,所以S△EBO=S△FBO.3.【题文】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.【答案】(1)详见解答;(2)详见解答【分析】(1)直接利用勾股定理结合网格得出符合题意的图形,(2)直接利用勾股定理结合网格得出符合题意的图形.【解答】解:(1)如图1所示:正方形ABCD即为所求;(2)如图2所示:三角形ABC即为所求.4.【题文】某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)条形图中存在错误的类型是______,人数应该为______人;(2)写出这20名学生每人植树量的众数______棵,中位数______棵;(3)估计这300名学生共植树______棵.【答案】(1)D,2;(2)5,5;(3)1590【分析】(1)利用总人数乘对应的百分比求解即可;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数300即可.【解答】(1)D错误,理由:20×10%=2≠3;故答案为:D,2;(2)由题意可知,植树5棵人数最多,故众数为5,共有20人植树,其中位数是第10、11人植树数量的平均数,即(5+5)=5,故中位数为5;故答案为:5,5;(3)(4×4+5×8+6×6+7×2)÷20=5.3,∴300名学生共植树5.3×300=1590(棵).故答案为:1590.5.【题文】如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【答案】见解答【分析】(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE 是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.【解答】证明:(1)∵AE∥BC,∴∠AEF=∠DBF,∠EAF=∠FDB,∵点F是AD的中点,∴AF=DF,∴△AFE≌△DFB,∴AE=CD,∵AD是△ABC的中线,∴DC=AD,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵BE平分∠AEC,∴∠AEB=∠CEB,∵AE∥BC,∴∠AEB=∠EBC,∴∠CEB=∠EBC,∴EC=BC,∵由(1)可知,AD=EC,BD=DC=AE,∴AD=BC,又∵AF=DF,∴AF=DF=BD=DC=AE,即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.6.【题文】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为______km/h,快车的速度为______km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【答案】(1).80(2).120【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】(1)设慢车的速度为ak m/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1h或6.25h,两车之间的距离为500km.7.【题文】如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D 点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.【答案】(1)BN=2﹣t;(2)当t=4﹣或t=3或t=2时,△DNE是等腰三角形;(3)当t=时,S取得最大值【分析】(1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=﹣AM=﹣t,据此可得;(2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;(3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用配方求解可得.【解答】(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=故答案为:(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE=,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.8.【题文】(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O 作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.(1)①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD 时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【答案】(1)①详见解答;②60°.(2)IH=FH;(3)EG2=AG2+CE2【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.9.【答题】下列各式中,最简二次根式是()A. B. C. D.【答案】C【分析】最简二次根式:①被开方数不含有分母(小数);②被开方数中不含有可以开方开得出的因数或因式;【解答】A.,被开方数是分数,不是最简二次根式;B.,被开方数是小数,不是最简二次根式;C.,符合条件,是最简二次根式;D.,被开方数可以开方,不是最简二次根式.故选C.10.【答题】已知一次函数y=(k﹣1)x+2,若y随x的增大而增大,则k的取值范围是()A.k>1B.k<1C.k<0D.k>0【答案】A【分析】根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.【解答】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,选A.11.【答题】如图,菱形的对角线,,则该菱形的面积为()A.50B.25C.D.12.5【答案】B【分析】根据:菱形面积=对角线乘积的一半,即s=(a×b)÷2.【解答】S=AC×BD÷2=5×10=25.故选B.12.【答题】甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环) 9.2 9.2 9.2 9.2方差(环2) 0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁【答案】B【分析】本题考查了方差。
人教版(五四制)八年级数学下册期末综合复习能力达标测试题2(附答案详解)
人教版(五四制)八年级数学下册期末综合复习能力达标测试2(附答案详解)1.如图,在ABC V 中,90ABC ∠=o ,8AB cm =,6BC cm =.动点P ,Q 分别从点A ,B 同时开始移动,点P 的速度为1/cm 秒,点Q 的速度为2/cm 秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使PBQ V 的面积为215cm 的是( )A .2秒钟B .3秒钟C .4秒钟D .5秒钟2.2018年3月8日,某校组织女老师到永川区五间圣水湖看桃花.早上,大客车从学校出发,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后大客车加快速度行驶,按时到达永川五间圣水湖桃花岛.参观结束后,大客车匀速返回.其中,x 表示客车从学校出发后所用时间,y 表示客车离学校的距离.下面能反映y 与x 的函数关系的大致图象是( ) A . B .C .D .3.若关于x 的二次方程22kx 4x 10-+=有实数根,则k 的取值范围是( ) A .k<2 B .k≤2 C .k≤2且k≠0 D .k≥2且k≠0 4.矩形ABCD 中,对角线AC ,BD 相交于点O ,60AOB ∠=o ,6AB cm =,则BD 的长( )A .6cmB .8cmC .10cmD .12cm5.若关于x 的方程(k+1)x 22k -14=0有实数根,则k 的取值范围是( ) A .k≤2且k≠﹣1 B .k≤12且k≠﹣1 C .k≤12 D .k≥126.平面直角坐标系中,将直线l 向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是( )A .y=3x+2B .y=2x+4C .y=2x+1D .y=2x+37.如图,在平面直角坐标系xOy 中,O 为坐标系原点,A(3,0),B(3,1),C(0,1),将△OAB 沿直线OB 折叠,使得点A 落在点D 处,OD 与BC 交于点E,则OD 所在直线的解析式为( )A .54y x =B .45y x =C .43y x =D .34y x = 8.方程2210x x --=的两个解为1x 和2x ,则12x x +的值为( )A .2B .2-C .1D .1-9.若函数3(4)2k y k x -=--是一次函数,则函数解析式是____________.10.我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形拼成如图所示的正方形,并用它证明了勾股定理,这个图被称为“弦图”.若直角三角形的斜边长为c ,两直角边长分别为a 、b ,当a=3,c=5时,图中小正方形(空白部分)面积为_____.11.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D 表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD 段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是_________. (填写序号)12.如图,在□ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB= _________cm.13.将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为_____.14.在□ABCD中,若∠A=40°,则∠C=_______°.15.如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,BE ,则△CDF的面积是点B恰好与对角线AC上的点F重合,连接DF,若1___.16.如图,已知OA=OB,BC=1,则数轴上的点A所表示的数是___.17.如图,在△ABC中,AB=6,D、E分别是AB、AC的中点,点F在DE上,且DF =3FE,当AF⊥BF时,BC的长是_____.18.一个四边形的边长依次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是______,依据是________.19.如图,四边形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.20.某商城以16元/件的进价购进一批衬衫,如果以20元/件的价格销售,每月可售出200件,而这种衬衫的售价每上涨1元就少卖10件,现在商场经理希望月利润为1350元,若经理希望用于购进这种衬衫的资金不多于1500元,问这种衬衫该如何定价?此时应进货多少?21.在△ABC中,D为BC边上的点,AB=13,AD=12,AC=15;CD=9.求BD的长.22.把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若BC=.AB=,5cm3cm求(1)DF的长.V的面积.(2)重叠部分DEF23.如图,在四边形ABCD中,AD=BC,AC平分∠DAB,作CE垂直对角线AC交AB 的延长线于点E,若AB=BE,求证:四边形ABCD是菱形.24.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?25.据茂名市某移动公司统计,该公司2006年底手机用户的数量为50万部,2008年底手机用户的数量达72万部.请你解答下列问题:(1)求2006年底至2008年底手机用户数量的年平均增长率;(2)由于该公司扩大业务,要求到2010年底手机用户的数量不少于103.98万部,据调查,估计从2008年底起,手机用户每年减少的数量是上年底总数量的5%,那么该公司每年新增手机用户的数量至少要多少万部?(假定每年新增手机用户的数量相同)26.如图1,等边△ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE.(1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;(2)如图2,在点D从点B开始移动至点C的过程中,以等边△ADE的边AD、DE为边作▱ADEF.①▱ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;②若点M、N、P分别为AE、AD、DE上动点,直接写出MN+MP的最小值.27.如图,矩形空地的长为13米,宽为8米,计划在其中修建两块相同的矩形绿地,它们的面积之和为28平方米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?28.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.()1根据题意,将下面的表格补充完整:白纸张数x(张) 1 2 3 4 5 ⋯y cm20 ______ 54 71 ______ ⋯纸条长度()()2直接写出用x表示y的关系式:______ ;()3要使粘合后的总长度为1006cm,需用多少张这样的白纸?参考答案1.B【解析】【分析】设出动点P ,Q 运动t 秒,能使△PBQ 的面积为15cm 2,用t 分别表示出BP 和BQ 的长,利用三角形的面积计算公式即可解答.【详解】设动点P ,Q 运动t 秒后,能使△PBQ 的面积为15cm 2,则BP 为(8-t )cm ,BQ 为2tcm ,由三角形的面积计算公式列方程得,12×(8-t )×2t=15, 解得t 1=3,t 2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P ,Q 运动3秒时,能使△PBQ 的面积为15cm 2.故选B .【点睛】此题考查借助三角形的面积计算公式来研究图形中的动点问题.2.A【解析】由题意得:离学校的距离越来越远,直线呈上升趋势,根据途中堵车,可得路程不变,时间加长,直线呈水平状态,后来加速行驶,可得路程变化快,直线上升快,参观时,路程不变,时间加长,直线呈水平状态,再匀速返回学校,离学校距离越来越近,直线呈下降趋势,故选A .【点睛】本题考查了函数图象,观察路程随时间的变化是解题关键.3.C【解析】【分析】已知关于x 的二次方程22kx 4x 10-+=有实数根,即可得△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0.【详解】解:∵关于x 的二次方程22kx 4x 10-+=有实数根,∴根的判别式△=b 2-4ac=16-8k≥0,且2k≠0,解得k≤2且k≠0,故选C .【点睛】本题考查了一元二次方程根的判别式的应用,解题时一定不要忽略一元二次方程二次项系数不为零这一条件.4.D【解析】【分析】由矩形的性质得出OA OB =,再由已知条件得出AOB V 是等边三角形,得出6OB AB cm ==,即可得出BD 的长.【详解】如图所示:∵四边形ABCD 是矩形,∴11,22OA OC AC OB OD BD AC BD =====,, ∴OA =OB ,∵60AOB ∠=o ,∴△AOB 是等边三角形,∴OB =AB =6cm ,∴212cm BD OB ==;故选:D.【点睛】考查矩形的性质,矩形的对角线相等且互相平分.5.C【解析】【分析】由二次根式的性质可知k≤2,然后分两种情况:①k+1≠0时为一元二次方程,△=(()21414k -⨯+≥0,结合k≤2进行求解即可;②k+1=0时为一元一次方程,方程有一根.【详解】由题意:2-k≥0,解得:k≤2,分两种情况:①k+1≠0时,即k≤2且k≠-1时,∵关于x 的方程(k+1)x 214=0有实数根,∴△=(()21414k -⨯+≥0, 解得k≤12, ∴k 的取值范围为k≤12且k≠-1; ②当k+1=0时为一元一次方程,方程有一根, 综上所述,k 的取值范围为k≤12, 故选C.【点睛】本题考查了根的判别式,方程的根的情况,对于类似此题这样题目中没有明确是一元一次方程还是一元二次方程一般要分情况进行讨论.6.B【解析】在直线上取一点(-1,0),向左平移一个单位后坐标为(-2,0),设平移前的直线解析式为:y=2x+b ,把(-2,0)带入,得b=4,所以y=2x+4,故选:B.点睛:此题考查了图形的平移与函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上点的平移相同.关键是要搞清楚平移前后的解析式有什么关系.7.D【解析】【分析】延长CD 、AB 交于点F,由折叠的性质可得出OB 平分∠AOF,根据角平分线的性质结合勾股定理即可求出BF 的长度,进而可得出点F 的坐标,再根据点F 的坐标利用待定系数法,即可求出OD 所在直线的解析式.【详解】延长CD 、AB 交于点F,如图所示。
2023年人教版八年级数学(下册)期末测试及答案
2023年人教版八年级数学(下册)期末测试及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的算术平方根为( )A .2±B .2C .2±D .2 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 5.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF10.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是________.2.比较大小:23________13.3.分解因式:2a 3﹣8a=________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=_________.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.解不等式组3(2)2513212x x x x +≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、A6、C7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、<3、2a(a+2)(a﹣2)4、45.5、40°6、40°三、解答题(本大题共6小题,共72分)1、原方程无解2、1 23、–1≤x<34、E(4,8) D(0,5)5、(1)略(2)菱形6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
人教版八年级下学期期末考试数学试卷及答案额二
人教版八年级下学期期末考试数学试卷及答案一、选择题:共48分,在每小题给出的四个选项中,只有一项是正确的,请选出正确选项,每小题选对得4分,选错、不选或多选均记零分.1.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数x(cm)375350375350方差s212.513.5 2.4 5.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁2.函数y=√x+1x−1中,自变量x的取值范围是()A.x>﹣1B.x≥﹣1C.x>﹣1且x≠1D.x≥﹣1且x≠13.如图,点E为菱形ABCD边上的一个动点,并沿A→B→C→D的路径移动,设点E经过的路径长为x,△ADE 的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.4.一元二次方程y2−y−34=0配方后可化为()A.(y+12)2=1B.(y−12)2=1C.(y+12)2=34D.(y−12)2=345.下表是某校12名男子足球队队员的年龄分布:年龄(岁)13141516频数1254该校男子足球队队员的平均年龄为()岁A.13B.14C.15D.166.一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2−2的值是()A.10B.9C.8D.77.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.2√2C.√10D.48.下面说法正确的是()A.√14是最简二次根式B.√2与√20是同类二次根式C.形如√a的式子是二次根式D.若√a2=a,则a>09.将直线y=x﹣1向上平移2个单位长度得到直线y=kx+b,下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.611.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠ABC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形12.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按如图所示的方式放置,点A 1,A 2,A 3…和点C 1C 2C 3…,分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B 的坐标是( )A .(2n ﹣1,2n ﹣1)B .2n ﹣1+12n ﹣1C .2n ﹣12n ﹣1D .(2n ﹣1,n )二、填空题:共24分,只要求填写最后结果,每小题填对得4分 13.−√(−π)2= .14.如图,根据函数图象回答问题:方程组{y =kx +3y =ax +b的解为 .15.如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为 .16.如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比2:3,如果要使彩条所占面积是图案面积的925,则每个横彩条的宽度是cm.17.如图,在等腰三角形纸片ABC中,AB=AC=5,BC=6,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则能够拼出的平行四边形对角线长度最大值为.18.如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形:⑤S ADE=S BE;⑥AF=CE,这些结论中不正确的是.(填序号)三、解答题:共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.解下列方程:(1)3(2x﹣1)2﹣27=0(2)(x﹣3)2﹣4x(3﹣x)=0计算:(3)(√24+√0.5)−(√18−√6)(4)(3+√5)(3−√5)−(√3−1)220.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=.(2)该调查统计数据的中位数是,众数是.(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.21.已知关于x的方程x2﹣(m+1)x+(2m﹣1)=0,(1)求证:无论m取何值时,方程总有实数根.(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.22.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?23.某市居民用水实行以户为单位的三级阶梯收费办法:第一级:居民每户每月用水18吨以内含18吨,每吨收水费a元第二级:居民每户每月用水超过18吨但不超过25吨,未超过18的部分按照第一级标准收费,超过部分每吨收水费b元;第三级:居民每户每月用水超过25吨,未超过25吨的部分按照第一、二级标准收费,超过部分每吨收水费c 元;设一户居民月用水x吨,应缴水费y元,y与x之间的函数关系如图所示,(1)根据图象直接作答:a=;b=.(2)求当x≥25时,y与x之间的函数关系式.(3)把上述水费阶梯收费办法称为方案①;假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费.请你根据居民每户月用水量的大小,设计出对居民缴费最实惠的方案.24.如图,矩形ABCD中,AB=4,BC=8,点E、F分别是边BC、AD上的点,且BE=DF,连接AE、CF和AC.(1)求证:四边形AECF是平行四边形;(2)如果四边形AECF是菱形,求该菱形的边长;(3)在(2)的基础上,点P是对角线AC上的一个动点,请在图中用直尺在AC上作出点P,使得PB+PE的值最小,并求出这个最小值.25.如图,在平面直角坐标系中,直线l1:y=−12x+6分别与x轴、y轴交于点B、C,且与直线l2y=12x交于点A.(1)求出点A的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.八年级数学参考答案一、选择题:共48分CDDBC DCACD DC二、填空题:共24分13.-π 14.{x =−1y =215.5216.2 17.√7318. ③三、解答题:共78分.19.(本题满分12分,每题3分)(1) 2,-1(2)3,35 (3)3√6+√24(4)2√3 20.(本题满分10分)(1)17、20;----每空2分,共4分 (2)2次、2次;----每空2分,共8分(3)估计该校学生在一周内借阅图书“4次及以上”的人数为3200012050⨯=人.-----10分 21.(本题满分10分)(1)证明:∵∵=[﹣(m+1)]2﹣4×2(m ﹣1)=m 2﹣6m+9=(m ﹣3)2, ∵(m ﹣3)2≥0∵∵≥0∵无论m 取何值,这个方程总有实数根;-----4分 (2)等腰三角形的腰长为4,将x=4代入原方程,得: 16﹣4(m+1)+2(m ﹣1)=0, 解得:m=5,-----6分 ∵原方程为x 2﹣6x+8=0, 解得:x 1=2,x 2=4.组成三角形的三边长度为2、4、4; 所以三角形另外两边长度为4和2.-----8分22.(本题满分12分) (1)300AC km =,400BC km =,500AB km =,3002+4002=5002222AC BC AB ∴+=,ABC ∆∴是直角三角形,∵∵ACB=90°;-----3分 (2)海港C 受台风影响, 过点C 作CD AB ⊥,-----4分ABC ∆是直角三角形,AC BC CD AB ∴⨯=⨯, 300400500CD ∴⨯=⨯, 240()CD km ∴=,----------7分240<250∴以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响.----------8分(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km ==,-----10分 140EF km ∴=,台风的速度为20千米/小时,140207∴÷=(小时)答:台风影响该海港持续的时间为7小时.-----12分23. (本题满分12分)解:(1)a=54÷18=3, b=(82-54)÷(25-18)=4. 故答案为:3,,4;-----4分(2)设当x≥25时,y 与x 之间的函数关系式为y=mx+n (m≠0),将(25,82),(35,142)代入y=mx+n ,得:25m n 8235m n 142+=⎧⎨+=⎩,解得:m 6n 68=⎧⎨=-⎩,∵当x 25≥时,y 与x 之间的函数关系式为y 6x 68=-.----------8分(3)选择缴费方案②需交水费y (元)与用水量x (吨)之间的函数关系式为y 4x =. 当6x 684x -<时,x 34<; 当6x 684x -=时,x 34=; 当6x 684x ->,x 34>.∵当0≤x <34时,选择缴费方案①更实惠;当x 34=时,选择两种缴费方案费用相同;当x 34>时,选择缴费方案②更实惠.----------12分 (方法不唯一,可以利用图像解决)24. (本题满分10分)(1)证明:∵四边形ABCD 为矩形,BE=DF , ∵AD∵BC ,AD=BC ,∵AF∵EC ,AD -DF=BC -BE ,即AF=EC , ∵四边形AECF 为平行四边形.---------3分 (2)解:设菱形AECF 的边长为x , ∵四边形AECF 为菱形,AB=4,BC=8, ∵AE=EC=x ,BE=8-x ,在Rt∵ABE 中,AE 2=AB 2+BE 2即x 2=42+(8-x )2, 解得x=5,∵菱形AECF 的边长为5.---------6分 (3)∵四边形AECF 为菱形∵E 、F 关于直线AC 对称 连接BF ,交直线AC 于点P, 点P 即为所求,图略---------8分 在Rt∆ABF 中 BF=√AB 2+AF 2=√41所以PB+PE 的最小值为√41---------10分25.(本题满分14分)(1)解方程组16212y xy x⎧=+⎪⎪⎨⎪=⎪⎩,得63xy=⎧⎨=⎩,∵A(6,3);-----4分(2)设D(x,12 x),∵∵COD的面积为12,∵12×6×x=12,解得:x=4,∵D(4,2),-----6分在直线l1:y=﹣12x+6中,当x=0时,y=6,∵C(0,6)设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:624bk b=⎧⎨=+⎩,解得:16kb=-⎧⎨=⎩,∵直线CD解析式为y=﹣x+6;-----8分(3)存在点P,使以O、C、P、Q为顶点的四边形是菱形,坐标为(6,0)或(3,3)或(-).---每种情况2分,共计6分。
人教版初中数学八年级下册期末测试题、参考答案
人教版初中数学八年级下册期末测试卷一、选择题(本大题共个小题,每小题分,共分。
在每小题给出的四个选项中,只有一项是符合题目要求的).(分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积.(分)若二次根式有意义,则x的值不可以是()A.B.C.D..(分)下列各组数中,能够作为直角三角形的三边长的一组是()A.,,B.,,C.,,D.,,.(分)如图,A D,C E是△A B C的高,过点A作A F∥B C,则下列线段的长可表示图中两条平行线之间的距离的是()A.A B B.A D C.C E D.A C.(分)下列二次根式是最简二次根式的是()A.B.C.D..(分)一组数据:,,,,若添加一个数据,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数.(分)实数不可以写成的形式是()A.B.﹣C.D.(﹣).(分)如图,在△A B C中,∠A C B=°,D是A B的中点,则下列结论不一定正确的是()A.C D=B D B.∠A=∠D C AC.B D=A C D.∠B∠A C D=°.(分)对于n(n>)个数据,平均数为,则去掉最小数据和最大数据后得到一组新数据的平均数()A.大于B.小于C.等于D.无法确定.(分)若点P(m,n)在直角坐标系的第二象限,则一次函数y=m x n的大致图象是()A.B.C.D..(分)如图,在平面直角坐标系中,已知点A(﹣,),B(,),以点A为圆心,A B长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.和之间B.和之间C.和之间D.和之间.(分)某速度滑冰队从甲、乙、丙、丁四位选手中选取一名参加省冰雪运动会,对他们进行了十次测试,结果他们的平均成绩均相同,方差如下表:选手甲乙丙丁方差(秒)a若决定发挥最稳定的丁参加省运会,则a的值可以是()A.B.C.D..(分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段O P的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D..(分)勾股定理是人类最伟大的科学发现之一,在我国古算术《周髀算经》中早有记载.以直角三角形纸片的各边分别向外作正方形纸片,再把较小的两张正方形纸片按如图的方式放置在最大正方形纸片内.若已知图中阴影部分的面积,则可知()A.直角三角形纸片的面积B.最大正方形纸片的面积C.最大正方形与直角三角形的纸片面积和D.较小两个正方形纸片重叠部分的面积二、填空题(本小题共个小题,每个空分,共分).(分)计算的结果为..(分)如图,E F是△A B C的中位线,B D平分∠A B C交E F于D,B E=,D F=,则B C的长度为..(分)在四边形A B C D中,∠B=∠B A D,∠D=°,B C=,A C=,延长B C到E,若C D平分∠A C E,则A D=;点D到B C的距离是.三、解答题(本大题共个小题,满分分,解答题应写出必要的解题步骤或文字说明).(分)已知x=﹣,y=﹣,求(x y)..(分)如图,车高m(A C=m),货车卸货时后面挡板A B弯折落在地面A处,经过测量A C=m,求B C的长..(分)某公司销售部有营业员人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这人某月的销售量,如下表所示:月销售量件数人数()直接写出这名营业员该月销售量数据的平均数、中位数、众数;()如果想让一半左右的营业员都能达到月销售目标,你认为()中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由..(分)已知矩形A B C D,A E平分∠D A B交D C的延长线于点E,过点E作E F⊥A B,垂足F在边A B的延长线上,求证:四边形A D E F是正方形..(分)如图,直角坐标系x O y中,过点A(,)的直线l与直线l:y=k x﹣相交于点C(,),直线l与x轴交于点B.()求k的值及l的函数表达式;的值;()求S△A B C()直线y=a与直线l和直线l分别交于点M,N.直接写出点M,N都在y轴右侧时a的取值范围..(分)如图,菱形A B C D中,E,F分别为A D,A B上的点,且A E=A F,连接并延长E F,与C B的延长线交于点G,连接B D.()求证:四边形E G B D是平行四边形;()连接A G,若∠F G B=°,G B=A E=,求A G的长..(分)A城有肥料t,B城有肥料t.现要把这些肥料全部运往C、D两乡,C 乡需要肥料t,D乡需要肥料t,其运往C、D两乡的运费如下表:两城两乡C(元t)D(元t)AB设从A城运往C乡的肥料为x t,从A城运往两乡的总运费为y元,从B城运往两乡的总运费为y元()分别写出y、y与x之间的函数关系式(不要求写自变量的取值范围).()试比较A、B两城总运费的大小.()若B城的总运费不得超过元,怎样调运使两城总费用的和最少?并求出最小值.参考答案.B A D B D.C B C C B.B D A D...;.解:由题意可得:x y=(﹣)(﹣)=﹣﹣=﹣,∴(x y)=(﹣)=﹣()=﹣=﹣..解:由题意得,A B=A B,∠B C A=°,设B C=x m,则A B=A B=(﹣x)m,在R t△A B C中,A C B C=A B,即:x=(﹣x),解得:x=.答:B C的长为米.解:()这名营业员该月销售量数据的平均数==(件),中位数为件,∵出现了次,出现的次数最多,∴众数是件;()如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为件,月销售量大于和等于的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标..解:∵四边形A B C D是矩形,∴∠D=∠D A B=°,∵A E平分∠D A B,∴∠E A F=°,∵E F⊥A B,∴∠D=∠D A F=∠F=°,∴四边形A F E D是矩形,∵∠E A F=°,∴∠A E F=°,∴∠E A F=∠A F E,∴A F=E F,∴矩形A D E F是正方形..解:()将C(,)代入y=k x﹣,得:=k﹣,解得:k=;设直线l的函数表达式为y=m x n(m≠),将A(,),C(,)代入y=m x n,得:,解得:,∴直线l的函数表达式为y=﹣x;()当y=时,x﹣=,解得:x=,∴点B的坐标为(,),∴A B=﹣=,∴S=A B•y C=××=;△A B C()当x=时,y=x﹣=﹣,y=﹣x=,∴M,N都在y轴右侧时a的取值范围为﹣<a<..证明:()连接A C,如图:∵四边形A B C D是菱形,∴A C平分∠D A B,且A C⊥B D,∵A F=A E,∴A C⊥E F,∴E G∥B D.又∵菱形A B C D中,E D∥B G,∴四边形E G B D是平行四边形.()过点A作A H⊥B C于H.∵∠F G B=°,∴∠D B C=°,∴∠A B H=∠D B C=°,∵G B=A E=,∴A B=A D=,在R t△A B H中,∠A H B=°,∴A H=,B H=.∴G H=,∴A G===..解:()根据题意得:y=x(﹣x)=﹣x,y=(﹣x)(﹣x)=x.()若y=y,则﹣x=x,解得x=,A、B两城总费用一样;若y<y,则﹣x<x,解得x>,A城总费用比B城总费用小;若y>y,则﹣x>x,解得<x<,B城总费用比A城总费用小.()依题意得:y=x≤,解得x≤,设两城总费用为y,则y=y y=﹣x,∵﹣<,∴y随x的增大而减小,∴当x=时,y有最小值.答:当从A城调往C乡肥料t,调往D乡肥料t,从B城调往C乡肥料t,调往D乡肥料t,两城总费用的和最少,最小值为元。
八年级数学下册 期末综合测试(1、2、3) 新人教版
湖南省凤凰县第一民族中学2012-2013学年八年级数学下册 综合测试(1、2、3) 新人教版一、填空题(本题共8个小题,每小题3分,共24分,请把答案填在题中的横线上.)1、函数y =的自变量x 的取值范围为 . 2、下列给出的一串数:2,5,10,17,26,?,50.仔细观察后回答:缺少的数?是 . 3、2008年北京奥运会开幕式8月8日在被喻为“鸟巢”(如图1)的国家体育场举行.国家体育场建筑面积为25.8万㎡,这个数用科学记数法表示为 ㎡.图14、如图2,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为_________________________.5、 一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为 元.6、如图3,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .ACB7、在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则n = . 8、东东和爸爸到广场散步,爸爸的身高是176cm ,东东的身高是156cm ,在同一时刻爸爸的影长是88cm ,那么东东的影长是 cm.二、选择题(本大题共有8个小题,每小题3分,满分24分.)9、要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本 10、在实数23-,0,π ) A .1个B .2个C .3个D .4个11、如图4,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠等于( ) A .35B .75C .70D .80 图4 12、若不等式组530x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .53m ≤B .53m <C .53m >D .53m ≥13、如图5,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( )A.5:3B.3:5C.4:3D.3:414、关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A 、1B 、-1C 、1或-1D 、21图515、如图6,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )A. 0B. -1C. 1D. 216、如图7-1,小明从半径为5cm 的圆形纸片中剪下 40%圆周的一个扇形,然后利用剪下的扇形制作成一个 圆锥形玩具纸帽(接缝处不重叠)如图7-2,那么这 个圆锥的高为( )A.3cmB.4cmC.21cmD.62cm三、解答题(本大题共9个小题,满分72分.) 17、(本题满分5分)计算:20)21(8)21(3--+-+-18、(本题满分5分)先化简,再求值:a a a -+-21422,其中21=a .19、(本题满分6分)A、B两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料? 20、(本题满分6分)如图8,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:(1)这个函数的解析式;(2)tan∠BAO.40%5=R图7-1 图7-260%图821、(本小题满分6分)在一个不透明的布袋中有4个完全相同的乒乓球,把它们分别标号为1,2,3,4,随机地摸出一个乒乓球然后放回,再随机地摸出一个乒乓球.求下列事件的概率: (1)两次摸出的乒乓球的标号相同;(2)两次摸出的乒乓球的标号的和等于5. 22、(本小题满分6分)如图9,B C E ,,是同一直线上的三个点,四边形ABCD 与四边形CEFG 都是正方形.连接BG DE ,.(1)观察猜想BG 与DE 之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.23.(本题满分8分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(4分)(2)当22120x x -=时,求m 的值.(6分)(提示:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠两根,则有12bx x a+=-,12c x x a=) 24、(本题满分10分)如图10,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC PQ ⊥于C ,交⊙于(1)求证:AT 平分BAC ∠;(5分)(2)若2AD =,TC =O 的半径.(5分)25、(本题满分20分)如图11,在Rt△ABC 中,AB =AC ,P 是边AB (含端点)上的动点.过P 作BC 的垂线PR ,R为垂足,∠PRB 的平分线与AB 相交于点S ,在线段RS 上存在一点T ,若以线段PT 为一边作正方形PTEF ,其顶点E ,F 恰好分别在边BC ,AC 上. (1)△ABC 与△SBR 是否相似,说明理由; (2)请你探索线段TS 与PA 的长度之间的关系;(3)设边AB =1,当P 在边AB (含端点)上运动时,请你探索正方形PTEF 的面积y 的最小值和最大值.图10 图11 T P S R E A BC F初中数学综合测试(二)(时量:120分钟,满分:120分)一、填空题(本题共8个小题,每小题3分,共24分,请把答案填在题中的横线上.)1、分解因式:22mb ma -= .2、如图1,直线a 、b 被直线 所截,如果a ∥b ,∠1=120°,那么∠2= 度.3、图2是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 .4、某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行试验,得到这两个品种甜玉米每公顷产量的两组数据(如图3所示).根据图3中的信息,可知在试验田中, 种甜玉米的产量比较稳定. 5、方程04142=----xxx 的解是 6、如图4,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是 米.7、如图5,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm. 8、如图6,根据下面的运算程序,若输入1x =y = .12图1 ab实验田序号产量(吨)图3 图2 红红 红 白 白 蓝 AD 图5 图4A二、选择题(本大题共有8个小题,每小题3分,满分24分) 9、计算2(2)2--的结果是( )A .6-B .2C .2-D .610、不等式042≥-x 的解集在数轴上表示正确的是( )A B C D11、数据2,1,0,3,4的平均数是( )A 、0B 、1C 、2D 、312、如图7,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( )A 、30° B、45° C、60° D、90°13、如图8,是由4个大小相同的正方体搭成的几何体,其主视图是( )14、函数1-=x y 中,自变量x 的取值范围是A. 1≥xB. 1->xC. 0>xD. 1≠x 15、下列各点中,在函数xy 2=图象上的点是A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)16、已知二次函数2y ax bx c =++(0a ≠)的图象如图9所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->有( )A .1个B .2个C .3个D .4个图62-220正面图8图7三、解答题(本大题共9个小题,满分72分)17、(本题满分5分)计算:201()2sin 3032--+︒+-18、(本题满分5分)化简2111x x x x⎛⎫-÷ ⎪--⎝⎭,并选择你最喜欢的数代入求值.19、(本题满分6分)作图题:如图10,先将ΔABC 向下平移4个单位得到111A B C ∆,再以直线l 为对称轴将111A B C ∆作轴反射得到222A B C ∆,请在所给的方格纸中依次作出111A B C ∆和222A B C ∆.lC BA图1020、(本题满分6分) 如图11,已知反比例函数y =xm的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. (1)试确定这两个函数的表达式; (2)求点B 的坐标.图11 21、(本题满分6分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率. 22、(本题满分6分)如图12,⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E 为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ;(3)若EF =2,FO =1,求KE 的长.图12 P ED K H G CAB F O23.(本题满分8分)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点.从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)(2) 设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;(3) 经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案. 24、(本题满分10分)如图(1),在平面直角坐标系中,点A 的坐标为 (1,-2),点B 的坐标为(3,-1),二次函数2y x=-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.yx图(1) yox图(2)l 1 l 225、(本题满分20分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2) 求正方形边长及顶点C的坐标;(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.(第24题图①) 图②初中数学综合测试(三)一、填空题(本题8小题,每小题3分,共24分)1、3的相反数是_________,-2的绝对值是___________.2、据中新社报道:2010年我国粮食产量将达到540 000 000 000千克,这个粮食产量用科学记数法可表示为______________________千克.3、如图,已知a ∥b ,∠1=40︒,则∠2=_________︒.4、一n 边形的内角和等于1080︒,那么这个正n 边形的边数n =_________.5、为发展农业经济,致富奔小康,养鸡专业户王大伯2004年养了2000只鸡. 上市前,他随机抽取了10根据统计知识,估计王大伯这批鸡的总重量约为_____________千克.6、如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm.7、有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120︒,则该零件另一腰AB 的长是___________cm.8、两个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm , 把它们叠放在一起组成一个新的长方体,在这些长方体中,表面积最大是__________cm 2.二、选择题(本题8小题,每小题3分,共24分)9、如图,a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论正确的是 ( )A.ab <0B. a -b >0C. abc <0D. c (a -b )<010 )A C 11、下列各式中,与分式x y x--的值相等的是( )A .x x y+ B .x x y-- C .x x y-+ D .x x y-12、已知一次函数y =kx +b的图像如图所示,则当x <0时,y 的取值范围是( )A. y>0 B. y <0 C. -2<y <0 D. y <-213、下面的平面图形中,是正方体的平面展开图的是( )A B CD (第7题) B A C(第9题)(第6题)14、下列图形中,既是轴对称,又是中心对称图形的是()15、下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对栽人航天器“神州五号”零部件的检查,采用抽样调查的方式16、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.14 B.15C.16D.320三、解答题(本题9小题,共72分)17、(本题5分)计算:(-2)3+12(20040cos60 .18、(本题5分)解不等式: 12(x-2)<3-x.19、(本题6分)解方程组:{4,2 5.x y x y -=+=20、(本题6分)在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC . 现先把ΔABC 分别向右、向上平移8个单位和3个单位得到ΔA 1B 1C 1;再以点O 为旋转中心把ΔA 1B 1C 1按顺时针方向旋转90º得到ΔA 2B 2C 2. 请在所给的方格形纸中作出ΔA 1B 1C 1和 ΔA 2B 2C 2.21、(本题6分)如图,给出四个等式:①AE =AD ;②AB =A C ;③OB =OC ;④∠B =∠C . 现选取其中的三个,以两个作为已知条件,另一个作为结论.(1)请你写出一个正确的命题,并加以证明; (2)请你至少写出三个这样的正确命题.A BC D EO22、(本题满分6分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销量y (件)之 间的关系如下表:若日销量(件)是销售价(元)的一次函数.(1)求出日销量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定位多少元?此时每日的销售利润是多少?23(本题满分8分))作为点的坐标,尝试在下面所给的坐标系中画出y 关于x 的函数图像;②根据所填表中数据呈现的规律,猜想出用表示y 的二次函数关系式:___________; (3)当水面宽度为36m 时,一艘吃水深度(船底部到水面的距离)为1.8m 的货船能 否在这个河段安全通过?为什么?24、(本题满分10分)如图,在平面直角坐标系中,一颗棋子从点P 处开始依次关于点A B C ,,作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.(1)在图中画出点M N ,,并写出点M N ,的坐标: ;(2)求经过第2008次跳动之后,棋子落点与点P 的距离.25、(本题20分)如图,在平面直角坐标系中,直线l 的解析式为y,关于x 的一元二次方程 2x 2-2(m +2)x +2m +5=0(m >0)有两个相等的实数根.(1)试求出m 的值,并求出经过点A (0,-m )和点D (m ,0)的直线解析式; (2)在线段AD 上顺次取两B 、C ,使AB =CD-1,试判断ΔOBC 的形状;(3)设直线l 与直线AD 交于点P ,图中是否存在与ΔOAB 相似的三角形?如果存在,请直接写出来;如果不存在,请说明理由.。
2022—2023年人教版八年级数学下册期末测试卷(参考答案)
2022—2023年人教版八年级数学下册期末测试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π 4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在一次测绘活动中,某同学站在点A 的位置观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向900米处,船C 在点A 南偏东15°方向1200米处,则船B 与船C 之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、B7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-y -2、-2 -33、204、31-5、96、1500三、解答题(本大题共6小题,共72分)1、2x =2、3.3、(1)102b -≤≤;(2)2 4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1)2元;(2)至少购进玫瑰200枝.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011学年山东聊城高唐第二学期八年级期末学业水平检测
数学试卷
(时间:90分钟,满分:120分)
一、选择题。
(每小题3分,共36分)
1.已知最简二次根式a 26-与2是同类二次根式,则a 的值是( )。
A .-2
B .2
C .4
D .-4
2.若代数式
b
a
11+
-有意义,则直角坐标系中点P (a ,b )的位置在( )。
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.在直角△ABC 中,∠C=90°,AB=5,AC=2,则cosA 的值是( )。
A .
5
21
B .
52 C .5
22 D .
2
5
4.下列说法正确的是( )。
(1)所有的等腰三角形都相似
(2)所有的等腰直角三角形都相似 (3)有一个角相等的两个等腰三角形相似 (4)顶角相等的两个等腰三角形相似
A .(1)(2)
B .(2)(4)
C .(1)(3)
D .(3)(4)
5.根式2
)5(-的值是( )。
A .-5
B .5或-5
C .5
D .9
6.已知甲、乙两组数据的平均数分别是甲x =80,乙x =90,方差分别是2甲s =10,2
乙s =5,比较
这两组数据,下列说法正确的是( )。
A .甲组数据较好。
B .乙组数据较好。
C .甲组数据的极差较大。
D .乙组数据的波动较小
7.下列二次根式中是最简二次根式的是( )。
A .b a a 2
2
+
B .x 33
C .5
5a
D .x 18
8.八(1)班体育委员记录了每一小组七位同学定点投篮(每人投10个)的情况,投进篮筐的个数为:6,10,5,3,4,8,4。
这组数据的中位数和极差分别是( )。
A .4,7
B .7,5
C .5,7
D .3,7
9.若3tan (a+10°)=1,则锐角a 的读数为( )
A .20°
B .30°
C .40°
D .50°
10.在离地面高度5米处拉线固定电线杆,拉线和地面成30°角,则拉线长为( )
A .
3
3
10米 B .35米 C .
3
3
5米 D .10米
11.如图,在等边△ABC 中,D 为BC 边上的一点,E 为AC 边上的一点,且∠ADE=60°BD=3,CE=2,则△ABC 的边长为( )
A .9
B .12
C .15
D .18
12.如图,正方形ABCD 中,对角线AC,BD 交于点O ,点M 、N 分别是OB 、OC 的中点,则cos ∠OMN 的值为( )。
A .
2
1
B .
2
2
C .
2
3
D .1
二、填空题(本题共5个小题,每小题3分,共15分。
) 13.化简:=+
-3
4
1227 。
14.如图,在△ABC 中,∠C=90°,AB=10cm ,sinA=
5
4
,则BC 的长为 。
15.某坡面的坡度为1∶3,则坡角是 。
16.两个相似五边形一组对应边的长分别为4cm 和6cm ,若他们的面积和为260cm 2
,则较大五边形的面积是 。
17.如图,方格纸上小正方形的边长都是1,则△ABC 与△DEF (填全等、相似或不相似)。
∠DFE 的大小为 。
三、解答题(本题共6个小题,共64分,解答题应写出文字说明,证明过程或推演步骤)。
18.(本题共8分,每小题4分)
(1)计算:0)23(82
2
12-⨯+-
(2)计算:6tan 2
30°- 3sin60°-2sin45°
19.(本题共10分)
如图,△ABC 是等边三角形,AD 是高,且AB 恰好是DE 的垂直平分线。
判断△ADE 的形状,并说明理由。
20.(本题共12分)
将两块大小相同的含30°角的直角三角板(∠BAC=∠C A B '''=30°)如图方式放置。
AB 与C A ''交于点E ,AC 与B A ''交于点F ,AB 与B A ''交于点O 。
(1)说明△BCE ≌△B 'CF
(2)当∠CA A '=30°时,AB 与B A ''垂直吗?说明理由。
21.(本题共12分)
被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑。
如图,已知测角仪AC 高为1.6米,CD 的长为6米,在C 点测的塔顶E 的仰角为45°,在D 点测的塔顶E 的仰角为60°,CD 所在的水平线CG ⊥EF 于G,求铁塔EF 的高。
(结果精确到0.1米)
22.(本题共12分)
如图,四边形ABCD 中,∠A+∠BCD=180°,延长AD 、BC 交于一点P 那么 ①△PAB 与△PCD 相似吗?说明理由。
②若DC=6,AB=12, △PAB 的面积为28。
求四边形ABCD 的面积。
23.(本题共10分)
张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下:
利用表格中提供的数据,解答下列问题: (1)填写完成下表:
(2)张老师从测验成绩记录表中求得王军10次测验成绩的方差2王s =33.2请你帮助张老师计算张成10次测验成绩的方差2张s 。
(3)请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由。
2010-2011学年山东聊城高唐第二学期八年级期末学业水平检测
数学试卷参考答案
一、选择题(每小题3分,共36分)
1.B 2.B 3.B 4.B 5.C 6.D 7.B 8.C 9.A 10.D 11.A 12.B 二、填空题(本题共5个小题,每小题4分,共20分。
) 13.
33
5
14.8cm 15.30° 16.585cm 2 17.相似 135°
三、解答题(本题共6个小题,共64分,解答题应写出文字说明,证明过程或推演步骤)。
18.(本题共8分,每小题4分) (1)22332+
(2)22
1
- 19.(本题共10分) 解:△ADE 是等边三角形。
在等边三角形△ABC 中,AD 是高 ∴AD 也是角平分线 ∴∠BAD=30°
∵AB 是DE 的垂直平分线 ∴AE=AD
∴△ADE 为等腰三角形 ∵∠DAE=2∠BAD=60° ∴△ADE 为等边三角形 20.(本题共12分)
(1)∵在△BCE 和△B 'CF 中,
∠B=∠B '=60°,BC=B 'C , ∠BCE=90°-∠C A 'A=∠CF B '. ∴△BCE ≌△B 'CF (ASA ) (2)AB ⊥B A ''
∵∠CA A '=30°,
∴∠CF B '=90°-30°=60°,
∴∠FC B '=180°-∠CF B '-∠B '=180°-60°-60°=60°, ∴∠AFO=∠FC B '=60°, ∵∠A=30°,
∴∠AOF=180°-∠A-∠AFO=180°-30°-60°=90°, ∴AB ⊥B A ''。
21.(本题共12分) 解:设EG=x 米
在RT △CEG 中,∵∠ECG=45°,∴∠CEG=45°,
∴∠ECG=∠CEG ,∴CG=EG=x 米。
在RT △DEG 中, ∠EDG=60°,tan ∠EDG=DG
EG ,
∴DG=
3
60tan x
x =
︒ ∵CG-DG=CD=6, ∴x-
3
x =6,
解得x=9+33
∴EF=EG+GF=9+33+1.6≈15.8 所以铁塔的高约为15.8米。
22.(本题共12分) (1)解:△PAB ∽△PCD
∵∠A+∠BCD=180°, ∠PCD+∠BCD=180°, ∴∠A=∠PCD 在△PAB 与△PCD 中 ∠P=∠P ∠A=∠PCD ∴△PAB ∽△PCD . (2)∵△PAB ∽△PCD
∴
4
1)126(2==∆∆PAB PCD S S ∴PCD S ∆=7
∴四边形ABCD 的面积为28-7=21 23.(本题共10分) (1)中位数80,众数78
(2)2
张S =13.0
(3)略。