人教版八年级全一册数学定理及公式

合集下载

数学八年级上册知识点第一章

数学八年级上册知识点第一章

数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

人教版八年级数学知识点总结

人教版八年级数学知识点总结

八年级数学上册知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

最新人教版数学八年级下册第十七章 -勾股定理

最新人教版数学八年级下册第十七章 -勾股定理

第十七章—勾股定理一、勾股定理1. 概念:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a2+b 2=c 2.2. 公式变形: ①:a2=c 2-b 2,b 2=c 2-a 2②:c=22b a + ,a=22b c - ,b=22a c -勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题.b acbac cabcab a bccbaED CBA5.勾股定理的常见类型:(1)勾股定理在实际问题中的应用一般情况下,遇到高度、长度、距离、面积等实际问题时,可以构造直角三角形、运用勾股定理求解。

新人教版八年级数学全册知识点总结

新人教版八年级数学全册知识点总结

新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

八年级上册数学公式定理

八年级上册数学公式定理

八年级上册数学公式定理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN八年级上册数学公式定理1.全等形定义:能够完全重合的两个图形叫做全等形。

2.把两个全等的图形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

3.全等三角形的性质:(1)全等三角形的对应边相等。

(2)全等三角形的对应角相等。

4.三角形全等的判定:(1)三边对应相等的两个三角形全等。

(可以简写成“边边边”或“SSS”)(2)两边和它们的夹角对应相等的两个三角形全等。

(可以简写成“边角边”或“SAS”)(3)两角和它们的夹边对应相等的两个三角形全等。

(可以简写成“角边角”或“ASA”)(4)两个角和其中一个角的对边对应相等的两个三角形全等。

(可以简写成“角角边”或“AAS”)5.直角三角形全等的判定:斜边和一条直角边对应相等的两个三角形全等。

(可以简写成“斜边直角边”或“HL”)6.角平分线的性质:角的平分线上的点到角的两边的距离相等。

7.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

8.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

9.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

10.垂直平分线的定义:经过线段中点而且垂直于这条线段的直线,叫做这条线段的垂直平分线。

11.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

12.线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

13.点(x,y)关于x轴对称的点的坐标为(x,-y)。

点(x.y)关于y轴对称的点的坐标为(-x,y)。

14.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”)。

初中数学公式定理大全八年级(下册)

初中数学公式定理大全八年级(下册)

初中数学公式定理大全:八年级(下册)第十六章 分式16.1.1 从分数到分式一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式(fraction )。

16.1.2 分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

不改变分式的值,使xx x 22-化为21-x ,这样的分式变形叫做分式的约分(reduction of a fraction )。

经过约分后的分式21-x ,其分子与分母没有公因式,像这样的分子与分母没有公因式的分式,叫做最简分式(fraction in lowest terms )。

我们利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把ab b a +和22ab a -化成分母相同的分式,这样的分式变形叫做分式的通分(reduction of fractions to a common denominator )。

16.2.1 分式的乘除分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方要把分子、分母分别乘方。

16.2.2 分式的加减分式加减法则:同分母分式相加减,分母不变,把分子相加减。

异分母分式相加减,先通分,变为同分母的分式,再加减。

16.3 分式方程vv -=+206020100,像这样分母中含未知数的方程叫做分式方程(fractional equation )。

将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

第十七章 反比例函数17.1.1 反比例函数的意义一般地,形如xk y =(k 为常数,k ≠0)的函数称为反比例函数(inverse proportional function ),其中x 是自变量,y 是函数。

完整版)八年级数学公式及概念

完整版)八年级数学公式及概念

完整版)八年级数学公式及概念八年级数学公式及概念第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。

3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8/3等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60°等。

二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)。

从数轴上看,互为相反数的两个数所对应的点关于原点对称。

如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数。

若|a|=a,则a≥0;若|a|=-a,则a≤0.3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1.零没有倒数。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算。

三、平方根、算数平方根和立方根21、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。

人教版初中数学公式大全

人教版初中数学公式大全

人教版初中数学公式大全初中数学公式一:勾股定理1勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^22勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形初中数学公式二:四边形基本性质3定理四边形的内角和等于360° 49四边形的外角和等于360°4多边形内角和定理n边形的内角的和等于(n-2)×180°5推论任意多边的外角和等于360°初中数学公式三:平行四边形6平行四边形性质定理1 平行四边形的对角相等7平行四边形性质定理2 平行四边形的对边相等8推论夹在两条平行线间的平行线段相等9平行四边形性质定理3 平行四边形的对角线互相平分10平行四边形判定定理1 两组对角分别相等的四边形是平行四边形11平行四边形判定定理2 两组对边分别相等的四边形是平行四边形12平行四边形判定定理3 对角线互相平分的四边形是平行四边形13平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中数学公式四:矩形14矩形性质定理1 矩形的四个角都是直角15矩形性质定理2 矩形的对角线相等16矩形判定定理1 有三个角是直角的四边形是矩形17矩形判定定理2 对角线相等的平行四边形是矩形初中数学公式五:菱形18菱形性质定理1 菱形的四条边都相等19菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角20菱形面积=对角线乘积的一半,即S=(a×b)÷221菱形判定定理1 四边都相等的四边形是菱形22菱形判定定理2 对角线互相垂直的平行四边形是菱形初中数学公式六:正方形23正方形性质定理1 正方形的四个角都是直角,四条边都相等24正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角初中数学公式七:梯形25定理1 关于中心对称的两个图形是全等的26定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分27逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称28等腰梯形性质定理等腰梯形在同一底上的两个角相等29等腰梯形的两条对角线相等30等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形31对角线相等的梯形是等腰梯形32平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等33推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰34推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边35 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半36 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h这是一部分初中数学公式的总结归纳,还会有继续的归纳,大家可以继续关注更新。

人教版八年级数学上册知识点归纳

人教版八年级数学上册知识点归纳

精心整理第十一章全等三角形11.1全等三角形(1)形状、大小相同的图形能够完全重合;(2)全等形:能够完全重合的两个图形叫做全等形;(3)全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)平移、翻折、旋转前后的图形全等;(5)对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)对应角:全等三角形中相互重合的角叫做对应角;(7)对应边:全等三角形中相互重合的边叫做对应边;(8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;11.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①三边对应相等的两个三角形全等;(“边边边”或“SS”S)②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3)证明三角形全等:判断两个三角形全等的推理过程;(4)经常利用证明三角形全等来证明三角形的边或角相等;(5)三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)11.3角的平分线的性质(1)角的平分线的作法:课本第19页;(2)角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)证明一个几何中的命题,一般步骤:①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程;(4)性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5)三角形的三条角平分线相交于一点,该点为内心;第十二章轴对称12.1轴对称(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(3)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

八年级人教版数学上册几何定理

八年级人教版数学上册几何定理

八年级人教版数学上册几何定理
《八年级上册数学》几何定理汇总:
一、直角三角形定理:
角平分线定理:在任意一个直角三角形中,若将直角边分成两部分,则分成的两条边中间会等距地经过直角顶点。

等腰三角形定理:等腰三角形的顶点肯定在直角边的中点上。

垂直边定理:任何一条垂直边分成两部分,分开的两部分所连接的边相等。

二、平行线定理:
对角线定理:如果一个四边形中,以对角线两侧两条边平行,则该四边形是平行四边形。

侧边定理:两个平行四边形的侧边相等。

重点定理:如果一个四边形中,以其对角线,将四边形一分为二,其中两个子四边形的邻边相等,则该四边形两个对角线相等。

三、全等三角形定理:
角平分线定理:如果两个三角形的角都是平分的,则它们是全等的;有关边定理:如果两个三角形的有关边相等,则它们是全等的;
有关角定理:如果两个三角形的有关角相等,则它们是全等的。

四、梯形的定理:
圆形定理:在一个梯形中,经过八点,有四条边形成一个圆形;
对角线定理:在一个梯形中,经过对角线,有两条边形成一个圆形;重点定理:如果两个梯形的对角线和其中一条边相等,则它们是全等的。

人教版八年级上册数学公式概念定理归纳

人教版八年级上册数学公式概念定理归纳

八年级上册数学概念、定义、公式归纳1.2.全等三角形的对应边相等, 对应角相等。

3.全等三角形对应边上的中线、对应角的平分线、对应边上的高相等。

4.作图: 作一个角等于已知角(课本P8)、作已知角的平分线(课本P19)、作线段的垂直平分线(课本P35)、作轴对称图形(课本P40)。

5.全等三角形的判定方法:三边对应相等的两个三角形全等。

(简写成SSS)两边和它们的夹角对应相等的两个三角形全等。

(简写成SAS)两角和它们的夹边对应相等的两个三角形全等。

(简写成ASA)两个角和其中一个角的对边对应相等的两个三角形全等。

(简写成AAS)斜边和一条直角边对应相等的两个直角三角形全等。

(简写成HL)6.7.8.9.10.成轴对称的两个图形全等。

11.12.13.14.15.“最短问题”解题方法: 课本P4216.17.18.19.20.21.22.负数没有算术平方根。

任何非负数的算术平方根只有一个。

23.24.25.1²=.2²=.3²=.4²=1.5²=2.6²=3.7²=4.8²=6.9²=8.10²=10.11²=12.12²=14.13²=16.14²=19.15²=22.16²=25.17²=28.18²=32.19²=36.20²=40.1³=.2³=.3³=2.4³=6.5³=12.6³=21.7³=34.8³=51.9³=72926.27.28.29.30.3132.33.在一个变化过程中, 我们称数值发生变化的量为变量, 数值始终不变的量叫常量。

34.35.36.37.38.39.40.41.42.4344.45.整式乘除法公式和方法:46.因式分解定义:47.因式分解方法:(1)提公因式法(2)公式法(将平方差公式、完全平方公式逆用)。

八年级下册数学公式

八年级下册数学公式

八年级下册数学公式1、直角三角形斜边上的中线等于斜边上的一半。

2、定理:四边形的内角和等于360°。

3、四边形的外角和等于360°。

4、多边形内角和定理:n边形的内角的和等于(n-2)×180°。

5、多边形外角和定理:任意多边的外角和等于360°。

6、平行四边形性质定理1:平行四边形的对角相等。

7、平行四边形性质定理2:平行四边形的对边相等。

8、推论:夹在两条平行线间的平行线段相等。

9、平行四边形性质定理3:平行四边形的对角线互相平分。

10、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形。

11、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

12、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

13、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形。

14、矩形性质定理1:矩形的四个角都是直角。

15、矩形性质定理2:矩形的对角线相等。

16、矩形判定定理1:有三个角是直角的四边形是矩形。

17、矩形判定定理2:对角线相等的平行四边形是矩形。

18、菱形性质定理1:菱形的四条边都相等。

19、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

20、菱形面积=对角线乘积的一半,即S=(对角线的乘积)÷2。

21、菱形判定定理1:四边都相等的四边形是菱形。

22、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

23、正方形性质定理1:正方形的四个角都是直角,四条边都相等。

24、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

25、定理1:关于中心对称的两个图形是全等的。

26、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

27、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

28、等腰梯形性质定理:等腰梯形在同一底上的两个角相等。

2023年人教版八年级上册数学必背公式(含解析)

2023年人教版八年级上册数学必背公式(含解析)

2023年人教版八年级上册数学必背公式(含解析)1. 平方公式- 两个相同数的平方差公式:$a^2 - b^2 = (a + b)(a - b)$2. 乘法公式- 平方差求积公式:$(a+b)(a-b) = a^2 - b^2$- 二次完全平方公式:$a^2 + 2ab + b^2 = (a + b)^2$- 二次不完全平方公式:$a^2 - 2ab + b^2 = (a - b)^2$3. 分式运算- 分式相乘公式:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$- 分式相除公式:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b}\times \frac{d}{c} = \frac{a \times d}{b \times c}$4. 代数运算- 求和公式:$a + b + c = c + b + a$- 求差公式:$a - b \neq b - a$- 求积公式:$a \times b = b \times a$- 求商公式:$\frac{a}{b} \neq \frac{b}{a}$5. 几何公式- 直角三角形斜边长度公式(勾股定理):$c^2 = a^2 + b^2$- 三角形内角和公式:$a + b + c = 180^\circ$- 相似三角形边长比例公式:$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$- 三角形周长公式:$P = a + b + c$6. 统计与概率公式- 平均数计算公式:$\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$- 可能性计算公式:$P(A) = \frac{\text{有利事件的个数}}{\text{总事件的个数}}$以上是2023年人教版八年级上册数学必背公式的完整版及相应解析。

八年级上册数学公式定理知识点

八年级上册数学公式定理知识点

八年级上册数学公式定理知识点数学公式定理知识点数学是一门基础性学科,它是各个领域中必备的基础知识。

数学公式和定理是数学学习的重要内容,正确使用它们可以有效提升数学学习和应用的能力。

在本文中,我们将带领大家探讨八年级上册数学公式定理知识点。

一、点、线、面的关系1.点、线、面的概念:点是没有长度、宽度和高度的,只有位置的事物;线没有宽度,只有长度的事物;面是有长、宽的在平面上被限定的空间。

2.点、线、面的分类:根据点的位置关系,点可分为相交、重合、异面、非异面;线可分为平行、垂直、夹角、角平分线;面可分为相交、平行、垂直、三角形。

3.点、线、面的运用:在几何问题中,点、线、面的位置关系非常重要。

可以通过绘制图形,找出关键点、线、面,并进行综合运用,解决各种几何问题。

二、平行线及其性质1.平行线的定义:在同一平面内,不相交的两条直线,它们的方向相同,永不相交,被称为平行线。

2.平行线的判定:可以通过角度、重心、斜率、向量等多种方法进行判定。

3.平行线的性质:(1)平行线截向之间相等。

(2)平行线内角和为180°。

(3)平行线与横线或竖线所截的角相等。

(4)在平行线上,同旁内角相等,同旁外角互补。

三、等腰三角形及其性质1.等腰三角形的定义:两边相等的三角形称为等腰三角形。

2.等腰三角形的性质:(1)等腰三角形的底角相等。

(2)等腰三角形的底边中点与顶点连线为高线,高线也是中线和角平分线。

(3)等腰三角形的高线、中线和角平分线互相重合。

四、相似三角形及其性质1.相似三角形的定义:如果两个三角形的相应角度相等,那么这两个三角形就是相似三角形。

2.相似三角形的性质:(1)相似三角形的相应边比相等。

(2)相似三角形的对应角度相等。

(3)如果两个三角形相似,那么它们的高、中线、角平分线比相等。

五、勾股定理及其应用1.勾股定理的定义:如果一个三角形中,直角的两条直角边的长度分别为a、b,斜边的长度为c,则有a² + b² = c²。

八年级数学公式总结大全

八年级数学公式总结大全

八年级数学公式总结大全八年级上册数学公式法总结二次函数抛物线顶点式&顶点坐标顶点式:y=a(x-h) +k(a≠0,k为常数,x≠h)顶点坐标公式顶点坐标:(-b/2a),(4ac-b )/4a)二次函数y=ax2;,y=a(x-h)2;,y=a(x-h)2;+k,y=ax2;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式y=ax2y=a(x-h)2y=a(x-h)2+ky=ax2+bx+c顶点坐标[0,0][h,0][h,k][-b/2a,(4ac-b2)/4a]对称轴x=0x=hx=hx=-b/2a当h>0时,y=a(x-h)2的图象可由抛物线y=ax2;向右平行移动h个单位得到,当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k 的图象;当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h0时,开口向上”当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1|=.当△=0.图象与x轴只有一个交点;当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c’__h正棱锥侧面积 S=1/2c__h’正棱台侧面积 S=1/2(c+c’)h’圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi__r2圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r 锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长柱体体积公式 V=s__h 圆柱体 V=pi__r2h初中八年级数学所有公式1、点线之间的关系①过一点有且只有一条直线和已知直线垂直②直线外一点与直线上各点连接的所有线段中,垂线段最短2、平行定理与公理①经过直线外一点,有且只有一条直线与这条直线平行②如果两条直线都和第三条直线平行,这两条直线也互相平行③同位角相等,两直线平行④内错角相等,两直线平行⑤同旁内角互补,两直线平行3、三角形内角和定理与四边形内角和定理三角形三个内角的和等于180°,四边形的外角和等于360°4、平行四边形、矩形、菱形、正方形和等腰梯形的判定定理与性质定理①平行四边形判定定理1两组对角分别相等的四边形是平行四边形②平行四边形判定定理2两组对边分别相等的四边形是平行四边形③平行四边形判定定理3对角线互相平分的四边形是平行四边形④平行四边形判定定理4一组对边平行相等的四边形是平行四边形⑤矩形性质定理1矩形的四个角都是直角⑥矩形性质定理2矩形的对角线相等⑦矩形判定定理1有三个角是直角的四边形是矩形⑧矩形判定定理2对角线相等的平行四边形是矩形⑨菱形性质定理1菱形的四条边都相等⑩菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角……5、圆的一些定理与推论①圆的两条平行弦所夹的弧相等②在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等③在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等④一条弧所对的圆周角等于它所对的圆心角的一半⑤同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等⑥半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径⑦如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形⑧圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角6、直线与圆的位置关系①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r7、两圆之间的位置关系①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)。

人教版初中数学公式大全

人教版初中数学公式大全

人教版初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级全册背记内容
第十一章:三角形
1、两边之和大于第三边;两边之差小于第三边。

三角形的三条中线相交于一点;三角形三条中线的交点叫做三角形的重心。

2、三角形的三个内角和为180
3、直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形。

4、三角形的外角等于于它不相邻的两个内角的和。

5、在平面内,由一些曲线首尾顺次相接的封闭图形叫多边形。

6、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

7、n边形内角和等于()
-
n
180
2⨯
8、多边形的外角和等于360
背诵时间:年月日签字
第十二章:全等三角形
1、能够完全重合的两个图形叫全等形;能够完全重合的两个三角形叫做全等三角形。

2、把两个全等三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边;重合的角叫做对应角。

3、全等三角形的对应边相等,全等三角形的对应角相等。

4、三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”);两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”);两角和它们的夹角分别相等的两个三角形全等(可以简写成“角边角”或“ASA”);两角分别相等且其中一组对边相等的两个三角形全等(可以简写成“角角边”或“AAS”);斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。

5、角平分线上的点到角两边的距离相等;角的内部到角两边的距离相等的点在角的平分线上。

背诵时间:年月日签字
第十三章:对称轴
【理解】1、如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做它们的对称轴。

2、把一个图形沿一条直线折叠,如果它能够与另一个图形重合,那就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠好后重合的点就是对应点,叫做对称点。

3、经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线。

4、对称轴图形的性质:①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

②轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

【记忆】5、线段垂直平分线上的点与这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6、等腰三角形的两个底角相等(简写成“等角对等边”)。

7、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)。

8、如果一个三角形有两个角相等,那么这两个角所对的边也相等。

9、等边三角形的三个角都相等,并且每一个角都等于60 ;三个角都相等的三角形是等边三角形;有一个角是60 的等腰三角形是等边三角形。

10、在直角三角形中,如果一个锐角等于30 ,那么它所对的直角边等于斜边的一半。

背诵时间: 年 月 日 签字
第十四章:整式的乘法与因式分解
【理解】1、同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方等于把积的每一个因式分别乘方,并把所得的幂相乘。

2、单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

3、单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

4、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式里的每一项,再把所得的积相乘。

5、同底数幂相除,底数不变,指数相减;任何不等于0的数的0次幂都等于1。

6、单项式相除,把系数与同底数幂分别相除最为商的因式,对于只在被除数里含有的字母,则连同它的指数,作为商的一个因式。

7、多项式除以多项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

8、两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做乘法的平方差公式。

9、两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍,这两个公式叫做(乘法的)完全平方公式。

10、添括号时,如果括号前面是正号,则到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都能改变符号。

【记忆】1、n m n m a a a +=⨯
2、()m n n
m a a =
3、()n n n
b a ab = 4、n n a
a 1=- 5、()()bq bp aq ap q p
b a +++=++
6、n m n m a a a -=÷
7、10=a
8、()()()
22b a b a b a -=-+ 9、()()2222
2222b
ab a b a b ab a b a +-=-++=+ 10、()()c b a c b a c
b a
c b a --=+-++=++
11、()()()q x p x pq x q p x ++=+++2
背诵时间: 年 月 日 签字
第十五章:分式
1、分式的分子与分母乘(或除)同一个不等于0的整式,分式的值不变。

2、分式乘分式,用分子的积做积的分子,分母的积做积的分母。

3、分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

4、分式乘方要把分子分母分别乘方。

5、将整式方程的解带入最简公分母,如果最简公分母的值不为0,则方程的解是原方程的解;否则,这个解不是原方程的解。

6、C
B C A B A C B C A B A ÷÷=∙∙=, 7、n n n
b a b a =⎪⎭
⎫ ⎝⎛ 背诵时间: 年 月 日 签字 第十六章:二次根式
1、一般地,我们把形如()0≥a a 的式子叫做二次根式,“”称为二次根号。

2、都是运用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式。

3、如果满足以下条件的式子叫做最简二次根式:①被开方数不含字母;②被开
方数中不含能开得尽方的因数或因式。

4、一般地,二次根式加减时,可以先将二次根式转换成最简二次根式,再将被开方数相同的二次根式进行合并。

背诵时间: 年 月 日 签字:
第十七章:勾股定理
1、勾股定律:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么222c b a =+
2、勾股定律逆定律:如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形。

背诵时间: 年 月 日 签字:
第十八章:平行四边形
1、两组对边分别平行的四边形叫做平行四边形。

2、【平行四边形的性质】平行四边形的对边平行且相等;平行四边形的对角相等且邻角互补;平行四边形的对角线互相平分。

3、【平行四边形的判定】两组对边分别相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。

4、连接三角形两边中点的线段是中位线。

5、三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

6、有一个角是直角的平行四边形是矩形。

7、矩形的性质:①矩形的四个角都是直角;②矩形的对角线相等。

8、直角三角形斜边上的中线等于斜边的一半。

9、矩形的判定:①对角线相等的平行四边形是矩形;②有三个角是直角的平行四边形是矩形。

10、有一组邻边相等的平行四边形是菱形。

11、菱形的四条边都相等;菱形的两条对角线互相垂直,并且没一条对角线平分一组对角。

12、四条边相等,四个角是直角的四边形是正方形。

13、正方形还有以下性质:既有矩形的性质,又有菱形的性质。

背诵时间: 年 月 日 签字:。

相关文档
最新文档