数字电子技术仿真实验设计
数字电路仿真实训实验报告
课程设计(大作业)报告课程名称:数字电子技术课程设计设计题目:多功能数字时钟的设计、仿真院系:信息技术学院班级:二班设计者:张三学号:79523指导教师:张延设计时间:2011年12月19日至12月23日信息技术学院昆明学院课程设计(大作业)任务书一、设计目的为了熟悉数字电路课程,学习proteus软件的使用,能够熟练用它进行数字电路的仿真设计,以及锻炼我们平时独立思考、善于动手操作的能力,培养应对问题的实战能力,提高实验技能,熟悉复杂数字电路的安装、测试方法,掌握关于多功能数字时钟的工作原理,掌握基本逻辑们电路、译码器、数据分配器、数据选择器、数值比较器、触发器、计数器、锁存器、555定时器等方面已经学过的知识,并能够将这些熟练应用于实际问题中,我认真的动手学习了数字时钟的基本原理,从实际中再次熟悉了关于本学期数字电路课程中学习的知识,更重要的是熟练掌握了关于proteus软件的使用,收获颇多,增强了自己的工程实践能力。
另外,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。
而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
且由于数字钟包括组合逻辑电路和时叙电路。
通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。
二、设计要求和设计指标设计一个数字时钟,具有“秒”、“分”、“时”计时和显示功能。
小时以24小时计时制计时;具有校时功能,能够对“分”、“时”进行调整;能够进行整点报时,报时规则为:在59Min51s后隔秒发出500Hz的低音报时信号,在59min59s时发出1kHz的高音报时信号,声响持续1s。
模拟电子技术实验内容的设计要求及设计方法
模拟电子技术实验内容的设计要求及设计方法实验一单管放大电路一.实验目的1.熟悉放大电路的基本工作原理。
掌握静态工作点Q,电压放大倍数Au,输入电阻ri,输出电阻ro的测量方法。
2.熟悉电路参数变化对静态工作点的影响及放大电路的频率特性的测量方法。
3.学习各类仪器的使用方法。
实验时间4小时。
二.设计一个静态工作点稳固的单管放大电路设计要求:静态工作点Uce=6V Ic=2mA 电源电压Vc=12V1.选取Rb1,Rb2,Rc,Re,C1,C2,Ce2.电压放大倍数空载Au= =100~150倍有载Au= =50~75倍三.实验内容1.测静态工作点Uce Ic。
2.测动态参数:加输入信号电压Us=50-100mV f=1KHz正弦波。
用示波器观察输出波形Uo,在不失确实条件下用晶体管毫伏表测量:Us Ui Uo UolUo—不加负载Rl时输出电压Uol—加负载Rl时输出电压3. 计算:Au= Uo/ Ui (无载)Au’= Uol/ Ui (有载)ro=(Uo/Uol-1) Rl四.深入的内容1.信号源的频率1KHz,Us保持不变,定性观察Rb1.Rc.RL的变化对静态工作点的影响,对Au与波形失确实影响,条件分别如下:(a)Rb1变化时,Rc、RL保持原先的数值不变。
(b)Rc变化时,Rb1、RL保持原先的数值不变。
(c)RL变化时,Rb1、Rc保持原先的数值不变。
2.测量电路的幅频特性幅频特性是指输入信号的频率与输出电压的关系曲线。
保持信号源Us的幅度不变,改变信号源Us的频率f,用晶体管毫伏表测量输出电压Uol。
五.设计与实验方法1.在设计静态工作点稳固的放大电路参数时应保证满足I2≥10Ib,Vb≥(3-5)Ube条件。
2.在做实验之前做好准备工作:检查每一根导线是否导通;检查三极管的好坏;测量各电阻的阻值,检查可调电阻(100K的电位器)的阻值是否可调,注意测量电阻的阻值时不能在电路里测量电阻,更不能在电路通电的状态下测量电阻;检查电容的好坏,可用万用表电容挡测量各电容的电容值,大容量的电容(电解电容)可用万用表电阻挡测量其充放电的过程,有充放电的过程说明电容是好的;检查学习机上的电源是否是12V;用示波器检查信号发生器是否输出正弦信号。
数字电子技术 实验报告
实验一组合逻辑电路设计与分析1.实验目的(1)学会组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。
2.实验原理组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻输入信号的取值组合。
根据电路确定功能,是分析组合逻辑电路的过程,一般按图1-1所示步骤进行分析。
图1-1 组合逻辑电路的分析步骤根据要求求解电路,是设计组合逻辑电路的过程,一般按图1-2所示步骤进行设计。
图1-2 组合逻辑电路的设计步骤3.实验电路及步骤(1)利用逻辑转换仪对已知逻辑电路进行分析。
a.按图1-3所示连接电路。
b.在逻辑转换仪面板上单击由逻辑电路转换为真值表的按钮和由真值表导出简化表达式后,得到如图1-4所示结果。
观察真值表,我们发现:当四个输入变量A,B,C,D中1的个数为奇数时,输出为0,而当四个输入变量A,B,C,D 中1的个数为偶数时,输出为1。
因此这是一个四位输入信号的奇偶校验电路。
图1-4 经分析得到的真值表和表达式(2)根据要求利用逻辑转换仪进行逻辑电路的设计。
a.问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾探测器。
为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。
b.在逻辑转换仪面板上根据下列分析出真值表如图1-5所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高电平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。
因此,令A、B、C分别表示烟感、温感、紫外线三种探测器的探测输出信号,为报警控制电路的输入、令F 为报警控制电路的输出。
图1-5 经分析得到的真值表(3)在逻辑转换仪面板上单击由真值表到处简化表达式的按钮后得到最简化表达式AC+AB+BC。
4.实验心得通过本次实验的学习,我们复习了数电课本关于组合逻辑电路分析与设计的相关知识,掌握了逻辑转换仪的功能及其使用方法。
数字电子技术EWB仿真实验 实验02 集成逻辑门电路逻辑功能的测试 16页
实物接线图
2.测试74LS32的逻辑功能
将74LS32正确插入面包板,并注意识别第 1脚位置(集成块正面放置且缺口向左,则左 下角为第1脚)。按表一要求输入高、低电平 信号,测出相应的输出逻辑电平。
3.测试74LS04的逻辑功能
将74LS04正确插入面包板,并注意识别第 1脚位置(集成块正面放置且缺口向左,则左 下角为第1脚)。按表一要求输入高、低电平 信号,测出相应的输出逻辑电平。
4.测试74LS00的逻辑功能
将74LS00芯片正确插入面包板,并注意识 别第1脚位置(集成块正面放置且缺口向左, 则左下角为第1脚)。按表一要求输入高、低 电平信号,测出相应的输出逻辑电平。
实验二 集成逻辑门电路逻辑 功能的测试
一、实验目的
1. 认识数字电子技术实验的仪器、设备及使用 方法。
2. 逐步熟悉常用的集成电路芯片。
3. 了解逻辑代数的物理意义。
二、实验仪器及设备
1. 数字逻辑实验台
2. 元器件: 74LS08(二输入端四与门) 1片
1台
74LS32(二输入端四或门)
74LS04(六反相器) 74LS00(二输入端四与非门) 74LS02(二输入端四或非门)
5.测试74LS02的逻辑功能
将74LS02芯片正确插入面包板,并注意 识别第1脚位置(集成块正面放置且缺口向左, 则左下角为第1脚)。按表一要求输入高、低 电平信号,测出相应的输出逻辑电平。
6.测试74LS86的逻辑功能
将74LS86芯片正确插入面包板,并注意识 别第1脚位置(集成块正面放置且缺口向左, 则左下角为第1脚)。按表一要求输入高、低 电平信号,测出相应的输出逻辑电平。
数字电子技术实验报告2
实验成绩实验日期指导教师批阅日期实验名称编码译码与显示1、实验目的掌握编码器、译码器与显示器的工作原理、测试方法以及应用。
2、实验原理编码器、译码器是数字系统中常用的逻辑部件,而且是一种组合逻辑电路。
1.编码器把状态或指令等转换为与其对应的二进制代码叫编码,例如可以用四位二进制所组成的编码表示十进制数0~9,把十进制数的0编成二进制数码0000,把十进制数的5编成二进制数码0101等。
完成编码工作的电路.通称为编码器。
2.译码器译码是编码的逆过程。
译码器的作用是将输入代码的原意“翻译”出来。
译码器的种类较多,如:最小项译码器(3线/8线、4线/16线译码器等)b、七段字形译码器等。
七段字形译码器,其作用是将输入的四位BCD码D、C、B、A翻译成与其对应的七段字形输出信号,用于显示字形。
常用的七段字形译码器有TTL的:T338(OC输出),74LS48、74LS248(内部带有上拉电阻)CMOS的:CD4511、MC14543、MC14547等。
3.显示器(1)发光二极管(LED)。
把电能转换成可见光(光能)的一种特殊半导体器件,其构造与普通PN 结二极管相同。
(2)LED显示器。
用LED构成数字显示器件时,需将若干个LED按照数字显示的要求集成- -个图案,就构成LED显示器(俗称“数码管”)。
3、实验步骤(1)按图连线,按表顺序给8线/3线优先编码器CD4532的信号输入端送入相应电平,将结果填入表中,与CD4532的功能表相对照,检查是否符合优先顺序以及编码结果是否正确。
注意:输入由逻辑开关给定。
输出连接逻辑电平指示。
(2)根据CD4532和CD4511的管脚图和功能表,自行设计连线,将编码器CD4532的输出端接到译码器CD4511的数据输入端,将CD4511的输出接七段显示数码管。
检查编码器与数字显示是否一致,若不一致,分析原因,检查故障并排除之,将结果填表。
(3)将十进制计数器/脉冲分配器CD4017接成八进制,用单次脉冲或1Hz脉冲信号检查CD4017的逻辑功能是否正常。
数字电子技术实验-组合逻辑电路设计
学生在使用实验箱时,应注意遵守实验室规定,正确连接电源和信号线, 避免短路和过载等事故发生。
实验工具介绍
实验工具类型
数字电子技术实验中常用的实验工具包括万用表、示波器、信号 发生器和逻辑分析仪等。
实验工具功能
这些工具用于测量电路的各种参数,如电压、电流、波形等,以及 验证电路的功能和性能。
01
02
03
逻辑门
最基本的逻辑元件,如与 门、或门、非门等,用于 实现基本的逻辑运算。
触发器
用于存储一位二进制信息, 具有置位、复位和保持功 能。
寄存器
由多个触发器组成,用于 存储多位二进制信息。
组合逻辑电路的设计方法
列出真值表
根据逻辑功能,列出输入和输 出信号的所有可能取值情况。
写出表达式
根据真值表,列出输出信号的 逻辑表达式。
05 实验结果与分析
实验结果展示
实验结果一
根据给定的逻辑函数表达式,成 功设计了对应的组合逻辑电路, 实现了预期的逻辑功能。
实验结果二
通过仿真软件对所设计的组合逻 辑电路进行了仿真测试,验证了 电路的正确性和稳定性。
实验结果三
在实际硬件平台上搭建了所设计 的组合逻辑电路,经过测试,实 现了预期的逻辑功能,验证了电 路的可实现性。
路图。
确保电路图清晰易懂,标注必要 的说明和标注。
检查电路图的正确性,确保输入 与输出之间的逻辑关系正确无误。
连接电路并测试
根据逻辑电路图,正确连接各 逻辑门和输入输出端口。
检查连接无误后,进行功能测 试,验证电路是否满足设计要 求。
如果测试结果不符合预期,检 查电路连接和设计,并进行必 要的调整和修正。
数字电子技术实验-组合逻辑电路 设计
施密特、单稳态触发器仿真实验
上海大学本科生课程作业题目:数字电子技术课程实践项目二课程名称:数字电子技术学院:机电工程与自动化学院*名:**学号:********题目要求:用555定时器构成的单稳态触发器、多谐振荡器、施密特触发器进行设计和仿真 1.单稳态触发器:1.1 工作原理:单稳态电路的组成和波形下图所示。
当电源接通后,Vcc 通过电阻R 向电容C 充电,待电容上电压Vc 上升到2/3Vcc 时,RS 触发器置0,即输出Vo 为低电平,同时电容C 通过三极管T 放电。
当触发端2的外接输入信号电压Vi <1/3Vcc 时,RS 触发器置1,即输出Vo 为高电平,同时,三极管T 截止。
电源Vcc 再次通过R 向C 充电。
输出电压维持高电平的时间取决于RC 的充电时间,当t=t W 时,电容上的充电电压为;CC RC tCC C V e V v w 321=⎪⎪⎭⎫ ⎝⎛-=-,所以输出电压的脉宽 t W =RCln3≈1.1RC 。
一般R 取1k Ω~10M Ω,C >1000pF 。
值得注意的是:t 的重复周期必须大于t W ,才能保证放一个正倒置脉冲起作用。
由上式可知,单稳态电路的暂态时间与VCC 无关。
因此用555定时器组成的单稳电路可以作为精密定时器。
单稳态电路的电路图和波形图1.2 555单稳态触发器的设计:1.2.1 电路设计基本原理:单稳态触发器具有稳态和暂稳态两个不同的工作状态。
在外界触发脉冲作用下,它能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,在自动返回稳态;暂稳态维持时间的长短取决于电路本身的参数,与触发脉冲的宽度和幅度无关。
由于单稳态触发器具有这些特点,常用来产生具有固定宽度的脉冲信号。
按电路结构的不同,单稳态触发器可分为微分型和积分型两种,微分型单稳态触发器适用于窄脉冲触发,积分型适用于宽脉冲触发。
无论是哪种电路结构,其单稳态的产生都源于电容的充放电原理。
用555定时器构成的单稳态触发器是负脉冲触发的单稳态触发器,其暂稳态维持时间为T w=lnRC=1.1RC,仅与电路本身的参数R、C 有关。
数字电子技术仿真软件Multisim电路设计与仿真应用
第12章数字电子技术仿真软件Multisim 2001电路设计与仿真应用12.1 Multisim 2001软件介绍Multisim 2001是加拿大交互图像技术有限公司(IIT公司)推出的最新版本,其前身是EWB5.0(电子工作平台)。
目前我国用户所使用的Multisim2001以教育版为主。
Electronics Workbench 公司推出的以Windows为系统平台的板级仿真工具Multisim,适用于模拟/数字线路板的设计,该工具在一个程序包中汇总了框图输入、Spice仿真、HDL设计输入和仿真、可编程逻辑综合及其他设计能力。
可以协同仿真Spice、Verilog和VHDL,并能把RF设计模块添加到成套工具的一些版本中。
整套Multisim工具包括Personal Multisim、Professional Multisim、Multisim Power Professional等。
这种仿真实验是在计算机上虚拟出一个元器件种类齐备、先进的电子工作台,一方面可以克服实验室各种条件的限制,另一方面又可以针对不同目的(验证、测试、设计、纠错和创新等)进行训练,培养学生分析、应用和创新的能力。
与传统的实验方式相比,采用电子工作台进行电子线路的分析和设计,突出了实验教学以学生为中心的开放模式。
12.1.1 M ultisim 2001软件操作界面启动Multisim 2001软件后,首先进入用户界面如图12-1所示,Multisim 2001的界面基本上模拟了一个电子实验工作平台的环境。
下面分别介绍主操作界面各部分的功能及其操作方法。
图12-1 Multisim 2001的基本界面1. 系统工具条图12-2所示为Multisim 2001的系统工具条,可以看出,其风格与Windows软件是一致的。
系统工具条中各个按钮的名称及功能如下所示。
2.设计工具条Multisim 2001的设计工具条如图12-3所示,它是Multisim的核心工具。
0803数字电子技术实验指导书
目录基本实验实验一集成逻辑门的逻辑功能测试(第一次) (02)实验五触发器的逻辑功能与应用(第四次) (20)设计性实验实验二译码器应用设计(第二次) (05)实验三组合逻辑电路的设计(仿真,课后完成) (11)实验四数据选择器的设计(第三次) (14)实验六移位寄存器的设计(第五次) (27)实验七计数器应用设计(第六次) (33)实验九555时基电路及其应用(仿真,课后完成) (40)综合性实验实验八设计24时制数字电子钟(参考,仿真) (47)说明:实物实验按照上面黑体标注及顺序完成。
实验一集成逻辑门的逻辑功能测试一、实验目的1、掌握集成电路的逻辑功能测试方法2、掌握器件的使用规则3、进一步熟悉数字电路实验装置的结构,基本功能和使用方法二、实验设备与器件1、+5V直流电源2、逻辑电平开关3、逻辑电平显示器4、74LSXX×1、CD40XX×1三、实验原理本实验采用:(1)双-四输入门电路74LSXX,即在一块集成块内含有2个互相独立的逻辑门,每个逻辑门有四个输入端。
其引脚排列如图1-1(74LSXX)所示。
(2)四-二输入门电路CD40XX,即在一块集成块内含有4个互相独立的逻辑门,每个逻辑门有2个输入端。
其引脚排列如图1-1(CD40XX)所示。
图1-1 74LSXX及CD40XX的引脚排列1、74LSXX的逻辑功能74LSXX的逻辑功能是:输出端1Y对应输入端是1A、1B、1C、1D;输出端2Y对应输入端是2A、2B、2C、2D;NC端为空。
2、CD40XX的逻辑功能CD40XX的逻辑功能是:输出端O1对应输入端是I1、I2;输出端O2对应输入端是I3、I4;输出端O3对应输入端是I5、I6;输出端O4对应输入端是I7、I8。
四、实验内容1、在合适的位置选取一个14P插座,按定位标记插好74LSXX集成块。
参照图1-1(A)接线:VCC接+5V电源,GND接电源地,门的四个输入端接逻辑开关输出插口,以提供“0”与“1”电平信号,开关向上,输出逻辑“1”,向下为逻辑“0”。
Multisim数字电子技术仿真实验
多语言支持
软件支持多种语言界面, 方便不同国家和地区的用 户使用。
02
数字电子技术基础
逻辑门电路
总结词
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和 信号转换。
详细描述
逻辑门电路由输入和输出端组成 ,根据输入信号的组合,输出端 产生相应的信号。常见的逻辑门 电路有与门、或门、非门等。
交互性强
用户可以在软件中直接对 电路进行搭建、修改和测 试,实时观察电路的行为 和性能。
实验环境灵活
软件提供了多种实验模板 和电路图符号,方便用户 快速搭建各种数字电子技 术实验。
软件功能
元件库丰富
Multisim软件拥有庞大的元件库,包含了各种类型的电子元件和 集成电路,方便用户选择和使用。
电路分析工具
寄存器实验结果分析
总结词
寄存器实验结果分析主要关注寄存器是否能够正确存储和读取数据,以及寄存器的功能 是否正常实现。
详细描述
首先观察实验中使用的寄存器的数据存储和读取过程,记录下实际得到的数据存储和读 取结果。接着,将实际得到的数据存储和读取结果与理论预期的数据存储和读取结果进 行对比,检查是否存在差异。如果有差异,需要分析可能的原因,如电路连接错误、元
触发器
总结词
触发器是一种双稳态电路,能够在外 部信号的作用下实现状态的翻转。
详细描述
触发器有两个稳定状态,根据输入信 号的组合,触发器可以在两个状态之 间进行切换。常见的触发器有RS触发 器、D触发器据的基本单元,用于存储二进制数据。
详细描述
寄存器由多个触发器组成,可以存储一定数量的二进制数据 。寄存器在数字电路中用于存储数据和控制信号。
第7章数字电子技术MULTISIM仿真实验2.
第7章 数字电子技术Multisim仿真实验
(1) 设计要求:设计一个火灾报警控制电路。该报警系 统设有烟感、温感和紫外线感三种不同类型的火灾探测器。 为了防止误报警,只有当其中两种或两种以上的探测器发出 火灾探测信号时,报警系统才产生控制信号。
(2) 探测器发出的火灾探测信号有两种可能:一种是高 电平(1),表示有火灾报警;一种是低电平(0),表示无火灾 报警。设A、B、C分别表示烟感、温感和紫外线感三种探 测器的探测信号,为报警电路的输入信号;设Y为报警电路 的输出。在逻辑转换仪面板上根据设计要求列出真值表,如 图7-8所示。
第7章 数字电子技术Multisim仿真实验
2.实验原理 译码是编码的逆过程。译码器就是将输入的二进制代码 翻译成输出端的高、低电平信号。3线-8线译码器74LS138有 3个代码输入端和8个信号输出端。此外还有G1、G2A、G2B使 能控制端,只有当G1 = 1、G2A = 0、G2B = 0时,译码器才 能正常工作。 7段LED数码管俗称数码管,其工作原理是将要显示的十 进制数分成7段,每段为一个发光二极管,利用不同发光段 的组合来显示不同的数字。74LS48是显示译码器,可驱动共 阴极的7段LED数码管。
第7章 数字电子技术Multisim仿真实验
4.实验步骤 (1) 按图7-12连接电路。双击字信号发生器图标,打开 字信号发生器面板,按图7-14所示的内容设置字信号发生器 的各项内容。 (2) 打开仿真开关,不断单击字信号发生器面板上的单 步输出Step按钮,观察输出信号与输入代码的对应关系,并 记录下来。 (3) 按图7-13连接电路。双击字信号发生器图标,打开 字信号发生器面板,按图7-15所示的内容设置字信号发生器 的各项内容。
第7章 数字电子技术Multisim仿真实验
Multisim数字电子技术仿真实验
10.4 异或门与同或门
图10-19 逻辑分析仪面板屏幕显示的异或门时序波形
(3)逻辑电路测试同或门功能的仿真分析
10.4 异或门与同或门
1)搭建图10-17所示的逻辑电路测试同或门功能仿真电路。 2)单击仿真开关,激活电路。
表10-������ 6 同或门真值表
(4)虚拟仪器测试同或门输入/输出信号的仿真分析 1)搭建图10-18a所示的虚拟仪器测试同或门输入/输出信号仿真电 路,数字信号发生器按图10-18b设置。
2.元器件选取 1)电源:Place Source→POWER_SOURCES→DC_POWER,选取电 源并设置电压为5V。 2)接地:Place Source→POWER_SOURCES→GROUND,选取电 路中的接地。
图10-21
74LS148D仿真电路
10.5 编码器功能仿真实验
3)逻辑开关:Place Elector_Mechanical→SUPPLEMENTARY_CON TACTS,选取SPDT_SB开关。 4)编码器:Place TTL→74LS,选取74LS148D。
10.11 计数器仿真实验
第10章 数字电子技术仿真实验13 555多谐振荡器仿真实验 10.14 数-模转换器仿真实验 10.15 模-数转换器仿真实验
10.1 数字电子技术仿真概述
图10-1
Digital Simulation Settings对话框
1)进行数字电路仿真设置,即执行Simulate\\Digital Simulation Setti ngs...命令,打开Digital Simulation Settings对话框,
8)逻辑转换仪:从虚拟仪器工具栏调取XLC1。 9)数字信号发生器:从虚拟仪器工具栏调取XWG1。 10)逻辑分析仪:从虚拟仪器工具栏调取XLA1。
数字电子技术基础课程设计实验报告
数字电子技术课程设计(数字时钟逻辑电路的设计与实现)学院:信息学院班级:学号:姓名:刘柳指导教师:楚岩课设时间:2009年6月21日—2009年6月26日一摘要数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
诸如按时自动打铃,时间程序自动控制,定时启闭路灯,定时开关烘箱,通断动力设备,甚至各种定时电气的的自动启用等。
这些都是以数字时钟作为时钟源的。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
目前,数字钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。
经过了数字电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我们已经具备了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。
二主要技术指标1.设计一个有时、分、秒(23小时59分59秒)显示的电子钟2.该电子钟具有手动校时功能三方案论证与选择要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。
而脉冲源产生的脉冲信号的频率较高,因此,需要进行分频,使高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1HZ)。
经过分频器输出的秒脉冲信号到计数器中进行计数。
将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计时器,可实现对一天24小时的累计。
此时需要分别设计60进制,24进制计数器,各计数器输出信号经译码器到数字显示器,使“时”、“分”、“秒”得以数字显示出来。
值得注意的是:任何计时装置都有误差,因此应考虑校准时间电路。
数字电子技术实验指导书(B5)
第一章 数字电子技术基础实验1.1 实验设备认识及门电路功能测试一、实验目的1. 熟悉万用表及电子技术综合实验平台的使用方法;2. 掌握门电路逻辑功能测试方法;3. 了解TTL 器件和CMOS 器件的使用注意事项。
二、实验原理门电路的逻辑功能。
三、实验设备与器件1. 电子技术综合实验平台 一台2. 万用表 一块3. 器件(1) 74LS02 一片(四二输入或非门) (2) 74HC86 一片(四二输入异或门)(3) 74LS03 一片(四二输入与非门(OC)) (4) 74LS00 一片(四二输入与非门)四、实验内容和步骤1. 测试74LS02和74HC86的逻辑功能。
注意CMOS 电路的多余输入端不得悬空,应按需要接成相应的高低电平。
表中V O 为不加负载时的电压,即开路输出电压。
2.OC 门上拉电阻计算及逻辑功能测试 2.1 OC 门上拉电阻的计算OC 门输出端可以并联连接,即OC 门可以实现“线与”逻辑,但必须接一个合适的上拉电阻R L ,计算方法如下:式中:m — 负载门总输入端数 n — OC 门并联的个数 m ' — 负载门个数 I OH — OC 门输出管截止时的漏电流(对于74LS03按I OH =50μA 计算)I LM — OC 门输出管导通时允许的最大灌电流(按V OL ≤0.3V,I LM ≤7.8mA 估算)CC OHL(max)OH IHV V R nI mI -=+CC OL L(min)LM IL V V R I m I -='-I IH — 负载门每个输入端的高电平输入电流(对于74LS00按I IH =0.01 A) I IL — 每个负载门的低电平输入电流(对于74LS00按I IL =-0.25mA 估算) V CC — 电源电压(5V) V OH — 输出高电平(按3V 估算) V OL — 输出低电平(按0.3V 估算)图1.1-12.2 OC 门“线与”应用将各OC 门输入端A 、B 和C 分别接逻辑开关;Z 、Y 1和Y 2分别接LED 指示灯,连接电路图如图1.1-1所示。
数字仿真实验实施方案
数字仿真实验实施方案一、实验目的。
数字仿真实验是一种通过计算机模拟和分析系统、信号、电路等电子技术的实验方法。
其目的是通过对电子技术知识的理论学习和实际操作的结合,提高学生对电子技术的理解和应用能力,培养学生的创新意识和实践能力。
本实施方案旨在指导教师和学生进行数字仿真实验,确保实验的顺利进行和实验效果的达到。
二、实施步骤。
1. 确定实验内容和目标。
首先,教师应根据课程要求和学生的实际情况,确定本次数字仿真实验的内容和目标。
实验内容可以包括数字信号处理、数字电路设计、数字系统仿真等方面,目标可以是掌握数字仿真软件的操作技能,理解数字电子技术的原理和应用。
2. 准备实验环境和工具。
在确定实验内容和目标后,教师需要准备好实验所需的计算机、数字仿真软件、实验指导书等工具和资料。
同时,要确保实验环境的安全和稳定,保证实验设备的正常运行。
3. 学生实验操作。
在实验进行时,教师应指导学生按照实验指导书的要求,正确操作数字仿真软件,进行实验内容的模拟和分析。
学生应认真对待实验,按照要求完成实验报告和实验数据的记录。
4. 实验结果分析和总结。
实验结束后,教师应指导学生对实验结果进行分析和总结,讨论实验中遇到的问题和解决方法,总结实验中的经验和教训。
同时,学生应根据实验结果撰写实验报告,展示实验过程和实验成果。
三、实施要求。
1. 教师应具备扎实的电子技术知识和丰富的实践经验,能够熟练操作数字仿真软件,指导学生进行实验操作。
2. 学生应具备一定的电子技术基础知识,能够独立操作计算机和数字仿真软件,完成实验内容和实验报告。
3. 实验环境应具备良好的计算机设备和网络条件,确保实验的顺利进行和实验数据的准确记录。
4. 实验过程中应严格遵守实验室规章制度,保证实验环境的安全和整洁。
四、实施效果评估。
为了确保数字仿真实验的效果和质量,教师应对实验过程和实验结果进行评估和检查。
评估内容可以包括学生的实验操作技能、实验报告的撰写质量、实验成果的达成情况等方面,及时发现问题并进行改进。
在线教学模式下数字电子技术仿真实验案例设计
在线教学模式下数字电子技术仿真实验案例设计邓涛,朱明强(北京交通大学电子信息工程学院,北京100044)[摘要]面对在线教学模式下学习数字电子技术基础知识面临的许多挑战,教学中引入以Multisim为代表的EDA实验教学软件,围绕以设计各类型数字电路为核心内容,进行模块化实验单元教学和多样化考核验收形式,改变了以往网络教学中对于数字电子技术基础知识的单一讲授模式,在完成理论知识教学的同时可以较好的实时展现实验效果。
通过学生在线操作和实时答辩,较好解决了线上实验教学成效难以准确评估的问题。
[关键词]数字电子技术;网络在线教学;虚拟仿真;Multisim软件[基金项目]北京交通大学教改建设项目“‘数字电子技术基础’在线开放课程建设”(356275535);北京交通大学校实验室开放研究课题(163027525)[作者简介]朱明强(1984—),男,云南大理人,工学博士,北京交通大学电子信息工程学院工程师(通信作者),主要从事现代电子技术、工业互联网研究。
[中图分类号]G642[文献标识码]A[文章编号]1674-9324(2021)06-0169-04[收稿日期]2020-10-25一、引言数字电子技术是一门兼具理论性、工程性和实践性的专业基础课,而与之配套的数字电子技术实验课程,在电子信息类“新工科”建设过程中发挥着越来越重要的作用[1]。
目前在全国范围内数字电子技术理论课程在线教学已经如火如荼的展开,对应的实验课程更加注重培养学生实践能力和工程素质,当务之急是如何有效的开展线上实验教学新模式。
如果以此为行动契机,综合运用各种信息化手段开展实验教学探索,则对弱电类专业网络化课程建设是巨大的促进。
线下实验室现场教学是目前主要开展方式,也是各高校资金和人力投入较大的学科建设领域。
但近年来实践表明,实验室开展电子电路类实验常常受到空间、时间和器件材料有限等问题限制[2,3]。
尤其当线下实验教学无法正常开展时,将会大大限制学生学习相关学科知识的积极性和有效性,进而无法有效完成新时期高校规定的电子信息类专业培养要求[4,5]。
《数字电子技术》实验内容设计的探索
用. 还应 该包括 各 种现 代教 育 资源 的利 用 , : 如 视频 、 音
频 、 画等等 。现 在 网络上 有 许多 的教 育 资源 , 动 我们 可
『1郝 迎 英. 2 高职 高专 现代 教 育 技 术 公 共课 教 学存 在的 问题 及 对 策 U. 建 电脑 , 0 ( I. ] 福 2 9I) 0
以挑 选适 合 的教育 资 源来辅 助 我们 的教学 。 如 : 例 在讲 国 电化 教 育 , 1 ( 1 . 2 01) 0 到 “ 育媒 体 ” 一章 内容 时 . 校 相应 的实验 条 件 还 『1 雪 萍. 范专 科 学校 《 代 教 育 技 术 》 程 教 学 现 状 与 改 革 教 这 学 4张 师 现 课
三 。 例 子 中讲 解 . 在 从例 子 中 出来 。所 以要 让学 生在 例 里 . 者 仅从教 学方法 上提 出一 些见 解 . 它 的还有 待 笔 其 子 中掌 握其 中知识 点 的原理 .而不 仅仅 是学 会这 一个 其 它 的学 者继续 研究
例子。 3 多利用 现代 教 育资 源 . 4、
R S触 发器 的 电路结 构 。f) 握基本 R , 2掌 S 同步 R S触 发 对遇 到故 障不 能 自行 排 除的学 生 .教 师: 指导或 帮助他 器 的逻 辑功 能学 习触 发 器 的逻辑 功能 测试 方法 。f1 3了 们查 找故 障 . 直到实 现 电路 功能 。 3 考 核 内容与 方法: 、 解 触发 器 电路 的作 用 和功 能 实验 十三 J K触 发器 的功 能测 试 实 验 的考 核方 式 以平 时成 绩为 主 (7 % ) 期 末考 0 。 实验 目的 :1熟悉 J () K触 发器 的电路 结构 。() 2掌握 核为 辅 (3 % ) 期 末考 核 的形 式灵 活 ,有 口试 、 0 。 笔 J K触 发 器 的 逻辑 功 能进 一 步 熟 悉 触 发 器 的逻 辑 功能 试 、 障 排除 、 能 测试 等 多种 方 式 , 师 根据 情 况选 故 技 教 测试 方法 。(1 习用触 发器 来设 计 时序 电路 的方法 3学 择 其 中 的一 种或 两种 实验 十 四 数 字仿 真实 验 : 触发 器逻 辑功 能测试 通过 数 字 电子 技术 实验 课 学 习 .大多 数学 生都 能 实验 目的:1 触发 器 逻辑 功 能及表 示 方法 : 步控 掌 握本 学期 所教 授 的知识 .对 数字 电子 技术 有 了较深 () 异 器件 识别 、 器设 备操 仪 制信 号 的置 位 、 位功 能 。2所 用 中规模 集成 组件 的功 入 的认 识 基本 掌握识 图绘 图 、 复 f1 作、 获取 信 息 、 路分 析 与调 试 、 目综合 设 计 与制 作 电 项 能、 外部 引线排 列 及使 用方 法 。3不 同结 构触 发器 的动 (1
数字电子技术实验4.7 移位寄存器及其应用的Multisim仿真实验
7 SL 2 SR
9 S0 10 S1
1 ~CLR 11 CLK
74LS194D
S1 J1
Key = 1
S0 J2
Key = 0
图4-66 环形计数器仿真电路图
实验4.7 移位寄存器及其应用
五、实验室操作实验内容
1.测试74LS194的逻辑功能 2.环形计数器 3.移位寄存器的扩展
图4-67 扩展后的移位寄存器
实验4.7 移位寄存器及其应用
一、实验目的
1.掌握中规模4位双向移位寄存器逻辑功能的测试方法。 2.熟悉移位寄存器的应用——构成环形计数器及其测试方法。 3.了解移位寄存器的扩展及其测试方法。
实验4.7 移位寄存器及其应用
二、实验设备及材料
1.装有Multisim 14的计算机。 2.数字电路实验箱。 3.数字万用表。 4.74LS194×2。
实验4.7 移位寄存器及其应用
三、实验原理
功能 清除 送数 右移 左移
保持
表4-40 74LS194功能表
输
入
输出
S1 S0 CP SL
SR
D0 D1 D2 D3
Q0
Q1
Q2
Q3
0 ×× × × × ×××× 0
0
0
0
1 11 ↑×× ab cd
a
b
c
d
1
01
↑
×
DSR × × × × DSR
Q0
QA QB QC QD
XLA1
1
F
CQT
图4-63 字信号发生器控制面板图 图4-64 字信号发生器数据控制方式设置
图4-65 74LS194逻辑功能测试波形图
(Multisim数电仿真)DA转换器
实验3.13 D/A 转换器一、实验目的:1. 熟悉D /A 转换器数字输入与模拟输出之间的关系。
2. 学会设置D /A 转换器的输出范围。
3. 学会测量D /A 转换器的输出偏移电压。
4. 掌握测试D /A 转换器的分辩率的方法。
二、实验准备:1. D /A 转换:我们把从数字信号到模拟信号的转换称为数/模转换或D /A 转换,把实现D /A 转换的电路称D /A 转换器,简称DAC 。
D /A 转换的过程是,先把输入数字量的每一位代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,即可得到与该数字量成正比的模拟量,从而实现数字/模拟转换。
DAC 通常由译码网络、模拟开关、求和运算放大器和基准电压源等部分组成。
DAC 的满度输出电压,为全部有效数码1加到输入端时的DAC 的输出电压值。
满度输出电压决定了DAC 的输出范围。
DAC 的输出偏移电压,为全部有效数码0加到输入端时的DAC 的输出电压值。
在理想的DAC 中,输出偏移电压为0。
在实际的DAC 中,输出偏移电压不为0。
许多DAC 产品设有外部偏移电压调整端,可将输出偏移电压调为0。
DAC 的转换精度与它的分辩率有关。
分辩率是指DAC 对最小输出电压的分辩能力,可定义为输入数码只有最低有效位1时的输出电压与输入数码LSB U 为全1时的满度输出电压之比,即:m U 分辩率=........................................................3.13.1121-=nmLSB U U 当一定时,输入数字代码位数越多,则分辩率越小,分辩能力就越高。
m U n 图3.13.1为8位电压输出型DAC 电路,这个电路可加深我们对DAC 数字输入与模拟输出关系的理解。
DAC 满度输出电压的设定方法为,首先在DAC 数码输入端加全1(即11111111),然后调整2k 电位器使满度输出电压值达到输实验3.8 JK触发器出电压的要求。