一次函数与方程和不等式讲义(经典)

合集下载

7-2-5 一次函数与方程、不等式综合.讲义学生版

7-2-5 一次函数与方程、不等式综合.讲义学生版

板块 考试要求 A 级要求B 级要求C 级要求一次 函数 理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题一、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

求直线y bkx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k-,bk -就是直线y b kx =+与x 轴交点的横坐标。

二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

三、一次函数与二元一次方程(组)的关系一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。

一、一次函数与一元一次方程综合【例1】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.0例题精讲中考要求知识点睛一次函数与方程、不等式综合【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.二、一次函数与一元一次不等式综合【例3】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例4】 当自变量x 满足什么条件时,函数23y x =-+的图象在:(1)x 轴下方; (2)y 轴左侧; (3)第一象限.【巩固】当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方;(2)y 轴左侧; (3)第一象限.【例5】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <【巩固】一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【例6】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值; (2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.【巩固】已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?【例7】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <【巩固】如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【巩固】直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.l 2l 13-1O yx三、一次函数与二元一次方程(组)综合【例9】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( ) A.无解 B.有唯一解 C.有无数个解 D.以上都有可能【例10】 已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.【巩固】如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y+=⎧⎨+=⎩的解关于原点对称的点的坐标是________.【例11】 已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为________.【巩固】已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是________.【例12】 阅读:我们知道,在数轴上,1x =表示一个点,而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图①.观察图①可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩;在直角坐标系中,1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图②;21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1y xO P (1,3)Ox yx=1(2)O xy y=2x+1(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;O xy O x y2O x yy 1=2x+1(4)⑵在上面的直角坐标系中,用阴影表示2220x y x y ≥-⎧⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为: .课后作业1. 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.2. 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.3.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A .20y -<< B .40y -<< C .2y <- D .4y <-4.已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x < C .6x <- D .6x >-5.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .36. b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?7.已知一次函数6y kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.。

第9讲一次函数与方程不等式综合

第9讲一次函数与方程不等式综合

一次函数与方程、不等式综合一、知识要点(一)一次函数与一元一次方程的关系1.从函数的观点来看一元一次方程b 0(0)kx k +=≠,可以认为:当自变量取什么值时,一次函数y b k 0kx =+≠()的函数值为值0。

所以,直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

2.求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x bk=-,直线y b kx =+交x 轴于(,0)bk -,b k -就是直线y b kx =+与x 轴交点的横坐标。

(二)一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

(三)一次函数与二元一次方程(组)的关系1.一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。

2.求一个二元一次方程组的解就是求构成这个方程组的两个二元一次方程对应的一次函数图象的交点的坐标。

二、例题精讲(一)一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. 【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.(二)一次函数与一元一次不等式综合【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方;(2)y 轴左侧;(3)第一象限.【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x <C .6x <-D .6x >-【例7】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?【例8】 直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.【例9】 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.【例10】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【例11】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求: (1)当2x =时,y 的值;(2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围;(4)当21y -<<时,x 的值范围.(三)一次函数与二元一次方程(组)综合 【例12】已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.【例13】已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为______.【例14】 已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y = 和y =的交点是________.【例15】 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0B .1C .2D .3【例16】 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A(2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.【例17】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.0【例18】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <【例19】 当自变量x 满足什么条件时,函数23y x =-+的图象在:(1)x 轴下方;(2)y 轴左侧; (3)第一象限.【例20】 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【例21】 已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-【例22】 如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y +=⎧⎨+=⎩的解关于原点对称的点的坐标是________.【例23】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( ) A .2x >-B .0x >C .2x <-D .0x <【例24】 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.【例25】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( ) A.无解B.有唯一解C.有无数个解D.以上都有可能【例26】 b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?三、小试牛刀1. (2010湖北孝感,7,3分)一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为s (千米),则s 与t 的函数图象大致是( )2. (2011广东广州市,9,3分)当实数x 的取值使得x -2有意义时,函数y=4x+1中y 的取值范围是( ). A .y ≥-7B .y ≥9C .y >9D .y ≤93. (2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比y=kx+b2-2Oy x-1B A 2O y x2乙甲乙甲815105 1.510.5O时y/千米乙先到达终点;④两人都跑了20千米.其中正确的说法有( ) A. 1 个 B. 2 个 C.3 个 D. 4个4. (2011浙江杭州,7,3)一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是5.(2011浙江衢州,9,3分)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为123v v v 、、,且123v v v <<,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图像可能是( )6. (2011山东枣庄,10,3分)如图所示,函数x y =1和34312+=xy 的图象 相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( ) A .x <-1 B .—1<x <2 C .x >2 D . x <-1或x >27. (2011江苏盐城,8,3分)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是( ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min8.某产品的生产流水线每小时可生产100件产品,生产前没有产品积压, 生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量为y , •生产时间为t ,那么y 与t 的大致图象只能是( )9.如图,向高为H 的圆柱形空水杯里注水,表示注水量y 与水深x 的关系的图象是( )10.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,•过了一段时间,汽车到了下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,则图中近似地刻画出汽车在这段时间内的速度变化情学校小亮家stststts(-1,1y(2,2) 2yxyO(第7题图)况的是()11.星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(•米)与散步所用的时间t(分)之间的函数关系,依据图象,下面描述符合小红散步情景的是().A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,一直散步(没有停),然后回家了C.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了D.从家出发,散了一会儿步,就找同学去了, 18分钟后才开始返回12.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,•那么可以知道:①这是一次___ _ _米赛路;②甲、乙两人先到达终点的是______ ___;•③在这次赛跑中甲的速度为___ _____,乙的速度为____ __.13.如图所示,表示的是某航空公司托运行李的费用y(元)与托运行李的质量x(千克)的关系,由图中可知行李的质量只要不超过_________千克,•就可以免费托运.14.俊宇某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况如图所示:①图象表示了哪两个变量的关系?②10•时和13时,他分别离家有多远?③他可能在什么时间内休息,并吃午餐?。

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

04 综合练习与提高
综合练习题一
总结词
理解一次函数与方程、不等式之间的 关系
详细描述
通过解决一系列的练习题,理解一次 函数与方程、不等式之间的关系,掌 握将实际问题转化为数学模型的方法 。
综合练习题二
总结词
掌握一次函数的图像和性质
详细描述
通过绘制一次函数的图像,理解函数的增减性、截距等性质,掌握利用图像解决实际问题的技巧。
一次函数与不等式的实际应用
一次函数与不等式在实际生活中有着 广泛的应用。例如,在购物时,我们 可以通过比较商品的价格和折扣率来 选择最划算的购买方案,这需要用到 一元一次不等式的知识。
另外,在生产活动中,我们可以通过 控制生产成本和产量之间的关系来制 定最优的生产计划,这也需要用到一 元一次不等式R。
02 一次函数与方程
一次函数与一元一次方程的关系
一次函数是形如$y = kx + b$的函数,其中$k$和$b$是常数, 且$k neq 0$。一元一次方程是只含有一个变量的方程,其形式 为$ax + b = 0$,其中$a$和$b$是常数,且$a neq 0$。
一次函数与方程、不等式(共15张 ppt)
目录
• 一次函数的基本概念 • 一次函数与方程 • 一次函数与不等式 • 综合练习与提高 • 总结与回顾
01 一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,b为截 距,k为斜率。
线性函数
特殊的一次函数,形式为y=kx+b (k≠0,b=0)。
一次函数在实际问题中的应用
一次函数可以用于解决实际问题,如路程、速度和时间问题、价格和销售问题等。

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

一次函数与方程不等式讲解

一次函数与方程不等式讲解

一次函数与方程不等式讲解一次函数与方程不等式是数学中非常重要的概念,它们在日常生活中也有广泛应用。

本文从定义、性质、求解方法等方面进行讲解,希望能够帮助读者更好地掌握这些知识。

一、一次函数的定义与性质一次函数是指形如y=kx+b的函数,其中k和b是常数,x是自变量,y是因变量。

它的图像通常是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。

一次函数的性质包括:1.斜率相同的两条直线平行,斜率相反的两条直线相交于一点。

2.直线的截距可以通过函数的图像或方程求解。

3.直线的图像在x轴和y轴上的截距分别为(-b/k,0)和(0,b)。

二、一次方程的定义与性质一次方程是指形如ax+b=c的方程,其中a、b、c是已知数,x是未知数。

它的求解方法可以用解方程、平衡法、加减混合法等。

一次方程的性质包括:1.方程的解可以唯一确定未知数的取值。

2.方程的解可以用代数方法求解,也可以利用图像方法求解。

3.方程的解可以分为有理数解和无理数解。

三、一次不等式的定义与性质一次不等式是指形如ax+b<0或ax+b>0的不等式,其中a、b是已知数,x是未知数。

它的求解方法与一次方程相似,只需要将等式改为不等式,并分析不等式的性质即可。

一次不等式的性质包括:1.不等式的解可以是一个区间,也可以是整个实数集。

2.不等式的解可以用代数方法求解,也可以利用图像方法求解。

3.不等式的解可以分为正数解和负数解。

综上所述,一次函数、方程、不等式是数学中非常重要的概念,它们的应用十分广泛。

在学习和应用过程中,我们需要了解其定义、性质和求解方法,有助于更好地掌握这些知识,并解决相关问题。

希望本文能够对读者有所启发,促进学习和实践的提高。

第1讲-用一次函数看方程、不等式

第1讲-用一次函数看方程、不等式

y2 1 1 O -2 -1x第1讲-用一次函数看方程、不等式序号知识点典型练习1从函数的角度看解一元一次方程:以x 为未知数的一元一次方程可以变形为ax +b =0(a ≠0)的形式,解一元一次方程相当于在一次函数y =ax +b 的函数值为0时,求自变量x 的值.1.若关于x 的方程kx +b =0的解是x =2,则一次函数y =kx +b 与x 轴的交点坐标是 .2从函数的角度看解一元一次不等式:以x 为未知数的一元一次不等式可以变形为ax +b >0或ax +b <0(a ≠0)的形式,解一元一次不等式相当于在一次函数y =ax+b 的值大于0或小于0时,求自变量x 的取值范围.一般地,已知函数值范围求自变量x 的范围或者已知自变量范围求函数值范围时,可以通过观察图象得到(数形结合). 2.如图,一次函数y =kx +b 的图象与x 轴交于点A (-1,0)则关于x 的不等式kx +b >0的解集是 .3从函数的角度看解二元一次方程组: 由含有未知数x 和y 的两个二元一次方程组成的二元一次方程组对应两个一次函数,也对应两条直线.从“数”的角度看,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,相当于确定两条相应的直线的交点坐标. 3.已知直线y =k 1x +b 1与y =k 2x +b 2的交点坐标为(1,4),则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为 .4.(1)直线y =x +3与x 轴的交点坐标 ,所以相应的方程x +3=0的解是 .(2)如图,直线y =kx +b :①关于x 的方程kx +b =0的解是 , ②关于x 的不等式kx +b <0的解集是 ; ③当x <0时,函数值y 的取值范围是 .5.若关于x 的方程kx +b =0的解是x =-4,则一次函数y =kx +b 的图象与x 轴的交点坐标为 .-21O yx-3Oxy -6 y 1=kx yy 2=ax+bx -2O -4 P6.已知一次函数y =kx +b 的图象,如图所示,当x <0时,y 的取值范围是( ).A .y >0B .y <0C .-2<y <0D .y <-27.如图,已知一次函数图象y =-2x -6,利用图象回答: (1)不等式-2x -6>0解集是 ,不等式-2x -6<0解集是 ;(2)函数图象与坐标轴围成的三角形的面积为 ; (3)当y =-4时,则x = ,当y =2时,则x = ;(4)如果y 的取值范围-4<y ≤2,则x 的取值范围 ;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是 ,最小值是 ; (6)若直线y =3x +4和直线y =-2x -6交于点A ,则点A 的坐标 .8.如图所示,已知直线y 2=ax +b 和直线y 1=kx 的图象交于点P ,利用图象回答:(1)关于二元一次方程组⎩⎨⎧y =ax+b ,y =kx的解是 ,则两直线的交点坐标是 ;(2)当y 2<y 1时,则x 的取值范围是 ; (3)当ax +b ≥kx 时,则x 的取值范围是 ; (4)当ax ≤kx -b 时,则x 的取值范围是 .9.(15海珠期末)直线y =x +1与直线y =-2x +a 的交点在第一象限,则a 的取值可以是( ). A .2B .1C .0D .-110.(15一中期末)如图,已知函数y1=3x+b和y2=ax-3的图象交于点P(-2,-5),则不等式3x+b>ax-3的解集为.11.(13太原期末改编)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b),直线y2与x轴交于点A(4,0).(1)求b的值并直接写出关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)求直线l2的表达式;(3)判断直线l3:y3=nx+m是否也经过点P?请说明理由.(4)若y3>y2>0,则x的取值范围是________________.12.已知一次函数y =kx+b的图象,如图所示,当y<0时,x的取值范围是().A.x>0B.x<0C.0<x<1D.x<113.(11广州)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9 C.y>9D.y≤9 14.(15海珠期末)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是().A.B.C.D.15.如图,1l反映了某公司的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量().A.小于3t B.大于3t C.小于4t D.大于4t第14题第15题16.(16天河期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确的结论的个是().A.4个B.3个C.2个D.1个-2yO1x17.(16南充)小朱和爸爸从家步行去公园,爸爸先出发一直匀速前行,小朱后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小朱所走路程s与时间t的函数关系式;(2)小朱出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小朱希望比爸爸早20min到达公园,则小朱在步行过程中停留的时间需作怎样的调整?18.(15衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,小卓卓和小越越相约到杭州市的某游乐园游玩,小卓卓乘私家车从衢州出发1小时后,小越越乘坐高铁从衢州出发,先到杭州火车站,然后再转出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当小越越达到杭州火车东站时,小卓卓距离游乐园还有多少千米?(3)若小卓卓要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?y (千米)游乐园t(小时)19.(14海珠期末)今年龙舟赛甲乙两队同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在出发2.5小时到达终点.(假设乙队速度不变)(1)写出比赛全程多少千米?谁先到达终点?乙队花多少时间到达终点? (2)求乙队何时追上甲队?(3)求在比赛过程中,甲乙两队何时相距最远?20.(1)(12恩施州)如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b<13x 的解集为 .(1) (2)(2)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式组12x >kx +b >-2的解集为 .21.(15广雅期末)若直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是( ). A .m >-1 B .m <1C .-1<m <1D .-1≤m ≤1yA 2 1 xB 0 -1 -2 -3 -2-1 1 2 322.依照题意,解答下列问题:(1)如图①,已知直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,请在图①中画出直线y =-12x +4,并探究两函数的图象与x 轴围成的三角形的特点;(2)如图②,已知点M 和点N 的坐标分别为(3,4)和(-2,-1),问在y 轴上是否存在一点P ,使△MNP 是以点M 或点N 为直角顶点的直角三角形?若存在,请求出P 的坐标;若不存在,请说明理由.y xB AO(图①))yx MN O(图②))第一讲-参考答案1.(2,0) 2.x >-13.⎩⎨⎧x =1,y =44.(1)(-3,0),x =-3; (2)①x =-2;②x <-2;③y <1. 5.(-4,0)6.D 7.(1)x <-3,x >-3; (2)9;(3)-1,-4; (4)-4≤x <-1;(5)0,-12;(6)(-2,-2).8.(1)⎩⎨⎧x =-4,y =-2,(-4,-2);(2)x >-4;(3)x ≤-4;(4)x ≥-4.9.A10.x >-211.(1)b =2,12x y =⎧⎨=⎩; (2)2833y x =-+;(3)由(2)可知m =23-,n =83,∴ y =83x -23,当x =1时,y =2.∴直线l 3:y =nx +m 也经过点P . (4)1<x <4.12.D 13.B 14.A 15.D 16.D17.解:(1)s =50(020)1000(2030)50500(3060)t t t t t ⎧⎪⎨⎪-⎩≤≤<≤<≤;(2)设小朱的爸爸所走的路程s 与步行时间t 的函数关系式为:s =kt +b ,则251000250k b b +=⎧⎨=⎩,解得30250k b =⎧⎨=⎩,则小朱的爸爸所走的路程与步行时间的关系式为:s =30t +250, 当50t -500=30t +250,即t =37.5min 时,小朱与爸爸第三次相遇; (3)30t +250=2500,解得,t =75,则小朱的爸爸到达公园需要75min , ∵小朱到达公园需要的时间是60min ,∴小朱希望比爸爸早20min 到达公园,则小朱在步行过程中停留的时间需减少5min .18.解:(1)v =2402-1=240(km/h ).答:高铁的平均速度是每小时240千米; (2)设乘坐高铁时路程与时间的关系式为y =kt +b ,当t =1时,y =0,当t =2时,y =240,得:⎩⎨⎧0=k +b 240=2k +b ,解得:⎩⎨⎧k =240b =-240,故把t =1.5代入y =240t -240,得y =120, 设乘坐私家车时路程与时间的关系式为y =at , 当t =1.5,y =120,得a =80,∴y =80t , 当t =2,y =160,216-160=56(千米), ∴小卓卓距离游乐园还有56千米; (3)把y =216代入y =80t ,得t =2.7,2.7-1860=2.4(小时),216 2.4=90(千米/时).∴小卓卓要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.19.解:(1)35千米;乙;3516小时; (2)对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b ,把x =1,y =20和x =2.5,y =35代入,得⎩⎨⎧20=k +b35=2.5k +b,则y =10x +10.联立方程组,⎩⎨⎧y =16x y =10x +10,得x =53,即:出发1小时40分钟后,乙队追上甲队; (3)1小时之内,两队相距最远距离是4千米,即当x =3516时,y 甲=10×3516+10=31.875,y 乙=35,y 甲-y 乙=35-31.875=3.125; 当x =1时,y 甲-y 乙=20-16=4;∵3.125<4,所以比赛过程中,甲、乙两队在出发后1小时相距最远.20.(1)3<x <6;(2)-1<x <2. 21.C22.(1)图略;用勾股定理的逆定理可以证明两函数与x 轴围成的三角形是一个直角三角形; (2)设P (0,y ),①当PM为斜边时,PN2+MN2=PM2,即(-2)2+(-1-y)2+25+25=32+(4-y)2,解得:y=-3,即P为(0,-3);②当PN为斜边时,PM2+MN2=PN2,即32+(4-y)2+25+25=(-2)2+(-1-y)2,解得:y=7,即P为(0,7);综上所述,在y轴上存在一点P,使△MNP是直角三角形,P为(0,-3)或(0,7).。

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。

2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x 轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。

评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:- 1 -(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;- 2 -由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).- 3 -- 4 -∴02,20,k b b =-+⎧⎨=+⎩ 解得1,2,k b =⎧⎨=⎩ ∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。

最新一次函数与方程不等式的关系讲课讲稿

最新一次函数与方程不等式的关系讲课讲稿

一次函数与方程、不等式的关系一次函数与一元一次方程的关系:一般的一元一次方程0kx b +=的解就是一次函数y kx b =+的图象与x 轴交点的横坐标。

直线与坐标轴的交点坐标的求法:(1)直线y kx b =+与y 轴交点的横坐标是0,当x=0时,一次函数y kx b =+的函数值y b =,b 就是交点的纵坐标,即直线y kx b =+与y 轴的交点为(0,b ); (2)直线y kx b =+与x 轴交点的纵坐标是0,故令y=0,得到方程0kx b +=,解方程得bx k =-,b k -就是直线y kx b =+与x 轴交点的横坐标,即直线y kx b =+与x 轴的交点为(,0)bk-.一次函数与一元一次不等式的关系:(1)一般的,一元一次不等式0(0)kx b kx b +>+<或的解集,就是使一次函数y=kx+b 的函数值大于0(或小于0)时自变量x 的取值范围。

(2)从图象上看,一元一次不等式0kx b +>的解集是直线y=kx+b 位于x 轴上方的部分所对应的自变量x 的取值范围;一元一次不等式0kx b +<的解集是直线y=kx+b 位于x 轴下方的部分所对应的自变量x 的取值范围; 一次函数与二元一次方程的关系:(1)一次函数y=kx+b 图象上任意一点的坐标都是二元一次方程kx y b -=-的一组解; (2)以二元一次方程kx y b -=-的解为坐标的点都在一次函数y kx b =+的图象上 (3)对于同一个数学模型()y=kx+b k 0≠,若将其中的x 、y 看做变量,则它表示一个一次函数;若将x 、y 看做未知数,则它就是一个二元一次方程,二者本质相同 一次函数与二元一次方程组的关系:两条直线1l :11y k x b =+ ()10k ≠,2l :22y k x b =+()20k ≠的交点坐标就是关于x 、y的方程组1122y k x b y k x b =+⎧⎨=+⎩的解用图象法解方程组:画出二元一次方程组中的两个一次函数的图象,找出他们的交点,该交点坐标就是二元一次方程组的解。

一次函数与方程不等式知识点

一次函数与方程不等式知识点

一次函数与方程、不等式综合一、一次函数与一元一次方程的关系直线y =也+ b (k工0)与x轴交点的横坐标就是一元一次方程fcv + b = 0伙h 0)的解。

求直线y =恋+ b 与•丫轴交点时,可令y = 0,得到方程d + b = 0 ,解方程得x=—£,直线y = M + b交人轴于(--.0),-- k k k 就是直线y =恋+ b与x轴交点的横坐标。

二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为iu+b>0或a + bcOS b为常数,“工0)的形式,所以解一元次不等式可以看作:当一次函数值大(小)于0时,求自变星相应的取值范围。

三、一次函数与二元一次方程(组)的关系一次函数的解析式y = b・ + b (kHO)本身就是一个二元一次方程,直线y = M + b (kHO)上有无数个点■每个点的横纵坐标都满足二元一次方程y = d + b (k = 0),因此二元一次方程的解也就有无数个。

一、一次函数与一元一次方程综合【例1】若直线y =伽-2)—6与x轴交于点(6,0),则加的值为( )A.3B.2 Cl D.0【例2】已知直线y = (3〃】 + 2)x + 2和y = -3x + 6交于x轴上冋一点,加的值为(A. -2 B・ 2 C・一1 D・ 0【巩固】已知一次函数y = -A+t/与y = x +〃的图象相交于点(/n>8),则“ + b = _______二、一次函数与一元一次不等式综合【例3】已知一次函数y = -2x + 5.(1)画出它的图象:(2)求出当x =-时,y的值:(3)求岀当时,x的值:(4)观察图象,求出当x为何值时,y>0, y = 0, y<0【例4】当自变量兀满足什么条件时,函数y = -2x + 3的图象在:(1)x轴下方:(2) y轴左侧;(3)第一象限.【巩固】当自变量x满足什么条件时,函数y = Yx + l的图象在:(1) .V轴上方:(2) y轴左側:(3)第一象限.【例5】如图,直线y = lcx + b与x轴交于点(-4,0),贝lJy>0时,x的取值范围是()A.x>-4 B・ x>0 C.x<-4 D・ x<0【巩固】一次函数y = ^ + /7的图象如图所示,当)Y0时,x的取值范围是()A. x>0 B・ x<0 C・x>2D・x<2【例6】已知一次函数经过点(1,・2)和点(-1, 3),求这个一次函数的解析式,并求: (1)当x = 2时,y的值;(2)x为何值时,yvO?(3)当-2<A <1时,y的值范围;(4)当-2<y<l时,x的值范用.【巩固】已知一次函数y = -2x + 3(1)当x取何值时,函数y的值在-1与2之间变化?(2)当x从-2到3变化时,函数y的最小值和最大值各是多少?【例7】一次函数y = kx + b g b是常数,20)的图象如图所示,则不等式kx + h>0的解集是()A. x>-2 B・ x>0 C・ x<-2 D・ x<0【巩固】如图,一次函数y^ca + b的图象经过A、B两点,则关于x的不等式ax + b<0的解集是_______ ・【例8】如图,直线y = kx + b经过A(2,l), 5(-1,-2)两点,则不等式L x>kx + h>_2的解集为 __________【巩固】直线/t:y = V + b与直线•在同一平而直角坐标系中的图象如图所示,则关于x的不等式k2x>k{x + h的解集为__________________ ・• •三、一次函数与二元一次方程(组)综合【例9】把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组()A •无解B •有唯一解C •有无数个解 D.以上都有可能【例⑹已知直线3与>7 + 2的交点为5 4则方程组仁十二。

第19讲 一次函数与方程、不等式(解析版)

第19讲 一次函数与方程、不等式(解析版)

第19讲 一次函数与方程、不等式一、一次函数与一元一次方程的关系一次函数(≠0,为常数).当函数=0时,就得到了一元一次方程,此时自变量的值就是方程=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值. 从图象上看,这相当于已知直线(≠0,为常数),确定它与轴交点的横坐标的值.二、一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 要点: 1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数与图象的交点为(3,-2),则就是二元一次方程组的解. 2.当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组无解,则一次函数与的图象就平行,反之也成立. 3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.三、方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解的情况:根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.四、一次函数与一元一次不等式 由于任何一个一元一次不等式都可以转化为>0或<0或≥0或≤0(、为常数,≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点:求关于的一元一次不等式>0(≠0)的解集,从“数”的角度看,就是为何值时,y kx b =+k b y 0kx b +=x kx b +y kx b =+k b x 24y x =-+31322y x =-2431322y x y x =-+ìïí=-ïî35y x =-31y x =+ax b +ax b +ax b +ax b +a b a y ax b =+x ax b +a x函数的值大于0?从“形”的角度看,确定直线在轴(即直线=0)上方部分的所有点的横坐标的范围.五、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.六、如何确定两个不等式的大小关系(≠,且)的解集的函数值大于的函数值时的自变量取值范围直线在直线的上方对应的点的横坐标范围.A .13x y =ìí=îB 2.如图,直线153l x y -=:A .12x y =ìí=îB .3.直线2y ax =+与直线A .3a =y axb =+y ax b =+x y ax b cx d +>+ac 0ac ¹Ûy ax b =+y cxd =+x Ûy ax b =+y cx d =+A .12x =题型2:一次函数与一元一次方程6.若关于x 的方程2x A .()1,0-. .. ..已知方程0ax b +=的解为,则一次函数y ax b =+的图象与A .1x =B .2x =C .3x =D .4x =10.如图,直线5y x =+和直线y ax b =+相交于点(2025)P ,,则方程5x ax b +=+的解是( )A .25x =B .20x =C .15x =D .5x =题型3:一次函数与一元一次不等式(组)11.如图,直线()0y ax b a =+¹过点()0,3A ,()4,0B ,则不等式0ax b +>的解集是( )A .4x >B .4x <C .3x >D .3x <12.如图,已知一次函数y kx b =+的图像经过点()2,1,则不等式10kx b +->的解集为( )A .2x <B .2x >C .1x >D .1x <13.直线y kx b =+经过点()1,2--A 和点()2,0B -,则不等式20x kx b <+<的解集为( )A .<2x -B .2<<1x --C .20x -<<D .10x -<<14.如图,已知直线1y x m =+与21y kx =-相交于点()1,1P -,关于x 的不等式1x m kx +>-的解集是()A .1x >-B .1x ³-C .1x £-D .1x <-15.如图,在平面直角坐标系中,若直线1y x a =-+与直线24y bx =-相交于点P ,则下列结论错误的是( )A .方程4x a bx -+=-的解是1x =B .不等式3x a -+<-和不等式43bx ->-的解集相同C .不等式组40bx x a -<-+<的解集是2<<1x -D .方程组4y x a y bx +=ìí-=î,的解是13x y =ìí=-î16.一次函数1y ax b =+与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b =+来说,y 随x 的增大而减小;②函数y ax d =+的图象不经过第一象限;③不等式ax b cx d +>+的解集是3x >;④()23a b a c -=-.其中正确的有( )A .①②B .②③④C .①②④D .②③一、单选题1.如图,若一次函数y kx b =+的图象经过点()0,1A -,()1,1B ,则不等式1kx b +>的解集为( )A .1x >B .1x <C .0x >D .0x <【答案】A【分析】利用图象得出答案即可.【解析】解:如图:不等式1kx b +>的解集为:1x >.故选:A .【点睛】此题主要考查用函数的观点看方程(组)或不等式,利用数形结合思想解题是关键.2.如图,一次函数y mx n =+和y kx =的图象交于点P ,则关于x ,y 的方程组0y mx ny kx =+ìí-=î的解是( )A .23x y =ìí=îB .23x y =-ìí=-îC .32x y =-ìí=-îD .32x y =-ìí=î【答案】C【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标进行求解即可.【解析】解:由函数图象可知,一次函数y mx n =+和y kx =的图象交于点()32P --,,∴关于x ,y 的方程组0y mx n y kx =+ìí-=î的解是32x y =-ìí=-î.故选C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.如图,一次函数()0y kx b k =+¹的图像经过点()1,2--A 和点()2,0B -,一次函数2y x =的图像过点A ,则不等式2x kx b £+的解集为( )A .1x £-B .2x £-C .1x ³D .21x -£<-【答案】A【分析】根据图像知正比例函数2y x =和一次函数()0y kx b k =+¹的图像的交点,即可得出不等式2x kx b £+的解集.【解析】解:∵由图像可知:正比例函数2y x =和一次函数()0y kx b k =+¹的图像的交点是()1,2--A ,∴不等式2x kx b £+的解集是1x £-,故选:A .【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.4.已知方程组1122y k x b y k x b =+ìí=+î的解为35x y =ìí=-î,则直线11y k x b =+与直线22y k x b =+的交点坐标为( )A .(3,5)B .(3,5)-C .(3,-5)-D .(3,5)-【答案】D【分析】由二元一次方程组的解对应两个方程所表示的一次函数的交点坐标,从而可得答案.【解析】解:Q 方程组1122y k x b y k x b =+ìí=+î的解为35x y =ìí=-î,\直线11y k x b =+与直线22y k x b =+的交点坐标为(3,5)-,故选:D .【点睛】本题考查的是二元一次方程组的解与两个一次函数的交点坐标之间的联系,掌握“二元一次方程组的解是这两个方程对应的一次函数的交点坐标”是解题的关键.5.在直角坐标平面内,一次函数y ax b =+的图像如图所示,那么下列说法正确的是( )A .当0x <时,20y -<<B .方程 0ax b +=的解是2x =-C .当2y >-时,0x >D .不等式 0ax b +<的解集是0x <【答案】C【分析】根据函数的图象直接进行解答即可.【解析】解:由函数y ax b =+的图象可知,当0x <时,2y <-,A 选项错误,不符合题意;方程 0ax b +=的解是1x =,B 选项错误,不符合题意;当2y >-时,0x >,故C 正确,符合题意;不等式 0ax b +<的解集是1x <,故D 错误,不符合题意.故选:C .【点睛】本题考查的是一次函数的图象,利用数形结合求解是解答此题的关键.6.如图所示,已知一次函数y 1=kx +b 的图象经过A (1,2)、B (-1,0)两点,y 2=mx +n 的图象经过A 、C (3,0)两点,则不等式组0<kx +b <mx +n 的解集是( )A .01x <<B .13x -<<C .11x -<<D .13x <<【答案】C【分析】由函数图象可知,当-1<x <1时一次函数y 1=kx +b 的图象在x 轴的上方且在一次函数y 2=mx +n 的图象的下方,故可得出结论.【解析】解:∵当-1<x <1时一次函数y 1=kx +b 的图象在x 轴的上方且在一次函数y 2=mx +n 的图象的下方,∴不等式组0<kx +b <mx +n 的解集是-1<x <1.故选:C .【点睛】本题考查的是一次函数与一元一次不等式组,能利用数形结合求出不等式组的取值范围是解答此A .关于x 的方程mx kx b =+的解是1x =B .关于x 的不等式mx kx b ³+的解集是1x >C .当0x <时,函数y kx b =+的值比函数y mx =的值大D .关于,x y 的方程组 0y mx y kx b-=ìí-=î的解是 12x y =ìí=î【答案】B 【分析】根据条件结合图象对各选项进行判断即可.【解析】解:Q 一次函数,y kx b k b =+(是常数,0k ¹)与正比例函数y mx m =(是常数,0m ¹)的图象相交于点()1,2M ,\关于x 的方程mx kx b =+的解是1x =,选项A 判断正确,不符合题意;关于x 的不等式mx kx b ³+的解集是1x ³,选项B 判断错误,符合题意;当0x <时,函数y kx b =+的值比函数y mx =的值大,选项C 判断正确,不符合题意;关于,x y 的方程组0y mx y kx b-=ìí-=î的解是12x y =ìí=î,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程(组),一次函数与一元一次不等式,一次函数的性质,知道方程组的解就是两个相应的一次函数图象的交点坐标是解题的关键.9.一次函数y mx n =+与y ax b =+在同一平面直角坐标系中的图像如图所示.根据图像有下列五个结论:①0a >;②0n <;③方程0mx n +=的解是1x =;④不等式3ax b +>的解集是0x >;⑤不等式mx n ax b +£+的解集是2x £-.其中正确的结论个数是( )A .1B .2C .3D .4【答案】C 【分析】根据一次函数图像所经过的象限、一次函数图像与y 轴交点的位置以及函数与一元一次不等式的关系进行一一判断即可.二、填空题x>【答案】1【分析】观察图象,根据两函数图象的交点即可得出结论.=【解析】解:Q直线1y kx<\当1x>时,不等式y y∴当12y y >时,求x 的取值范围为x <-2或x >1,故答案为:x <-2或x >1.【点睛】本题考查了一次函数的图像,一次函数与不等式,解题的关键是画出图像,利用数形结合的方法解决问题.16.已知一次函数124y kx k =+-的图象不过第二象限.(1)k 的取值范围为 .(2)对于一次函数()10y ax a a =-+¹,若对任意实数x【答案】84m --≤≤【分析】解方程组求出交点C 的坐标,过点C 时,分别求出m 的值即可得到答案.【解析】解:∵直线24y x =-+与直线三、解答题19.如图,一次函数y kx b =+的图象经过点()1,3A -和点()2,3B -.(1)求出这个一次函数的解析式;(2)直接写出不等式0kx b +³的解集.【答案】(1)一次函数的解析式为:y =(2)12x £【分析】(1)根据直线y kx b =+的图象经过点解出k ,b ,即可;(2)由(1)得,函数的解析式:y =-(1)求直线AB 的表达式;(2)求点C 的坐标.【答案】(1)5y x =-+(2)()3,2C 【分析】(1)利用待定系数法即可求得函数的解析式;(2)解两个函数解析式组成方程组即可求解.【解析】(1)解:Q 直线y kx b =+经过点(5,0)(1,4),,A B 得504k b k b +=ìí+=î,解得:15k b =-ìí=î,直线AB 的表达式为5y x =-+;(2)解:联立245y x y x =-ìí=-+î,解得:32x y =ìí=î,故点C 的坐标为()3,2C .【点睛】本题考查了待定系数法求一次函数的解析式,及求两条直线的交点问题,本题的关键是求两条直线的交点,转化为解两个函数解析式组成方程组.21.如图,根据图中信息解答下列问题:(1)求关于x 的不等式1mx n +<的解集;(2)当12y y £时,求x 的取值范围;(3)当210y y <<时,求x 的取值范围.【答案】(1)0x <(2)当12y y £时, 2x £(3)当210y y <<时, 24x <<【分析】(1)利用直线y mx n =+与x 轴的交点为()0,1,然后利用函数图象可得到不等式1mx n +<的解集.(2)结合两条直线的交点坐标为()2,1.8来求得12y y £解集.(3)结合函数图象直接写出答案.【解析】(1)解:∵直线1y mx n =+与y 轴的交点是()01,,∴当0x <时,11y <,即不等式1mx n +<的解集是0x <;(2)解:由一次函数的图象知,两条直线的交点坐标是()2,1.8,当函数1y 的图象在2y 的下面时,有2x £.∴当12y y £时, 2x £;(3)解:由图可知,两条直线的交点坐标是()2,1.8,当函数1y 的图象在2y 的上面时21y y <,则2x >,又20y =Q 时,4x =,(1)直按写出关于x 的不等式组1122k x b k x b +>ìí+>î(2)若点C 坐标为()2,3,①关于x 的不等式1122k x b k x b +>+的解集是②求ABC V 的面积为______.【答案】(1)23x -<<(1)求一次函数表达式;(2)求D 点的坐标;(3)求COP V 的面积;(4)不解关于x y 、的方程组y y kx =-ìí=î(1)求点B的坐标及b的值;V的面积;(2)求AOB∴2AD =,3OB =,∴11233S AD OB =·=´´=∵3AOB S =△,1131S S ==´=(2)以自变量x 的值为横坐标,相应的函数值线;(3)根据表格及函数图象,探究函数性质:①该函数的最小值为__________;②当1x >-时,函数值y 随自变量x 的增大而③若关于x 的方程11x b +=-有两个不同的解,则【答案】(1)1k =,6m =(3)根据图象可得,①该函数的最小值为1;②当1x >-时,函数值y 随自变量x 的增大而增大;③∵关于x 的方程11x b +=-有两个不同的解,∴由图象可得,b 的取值范围为1b >.故答案为:1;增大;1b >.【点睛】本题主要考查了求一次函数的函数值和自变量,画一次函数图象,一次函数的性质等等,熟知一(1)求点A的坐标;V(2)若点C在第二象限,ACD①求点C的坐标;x+>②直接写出不等式组4V沿x轴平移,点③将CAD把0x =代入4y x =+得:y ∴点B 的坐标为()0,4,设直线BD 的解析式为y k =4b ¢=ìí,(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt V 90BPM Ð=°,直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段求出线段OQ 的长度;若变化,求线段OQ 的取值范围.【答案】(1)直线AB 的表达式为6y x =-+(2)04x <<∵90BPM Ð=°,∴90BPO MPN ÐÐ+=°.∵90BPO PBO ÐÐ+=°,∴MPN PBO ÐÐ=.∵90BOP PNM ÐÐ==°,PB =∴6OQ OA ==.【点睛】本题考查一次函数的综合应用,涉及待定系数法,一元一次不等式与一次函数的关系,等腰直角三角形判定与性质等知识,解题的关键是作辅助线,构造全等三角形解决问题.。

一次函数与方程、不等式 (课件)

一次函数与方程、不等式 (课件)

y
y=x+2
Y=x+2
y
2
o2
x
Yy==3-x3+6x+6
-3x+6=0的解 其解为X=2
-2
o

x
X+2=0的解
y
其解为X=-2
y=x-1
Y=x-1
o1
x
-1
X-1=0的解 其解为X=1
一元一次方程都可以转化为__k_x_+_b_=_0__ 的形式.
求方程kx+b=0的解
当一次函数y=kx+b的值为 0 时,求相应的_自__变__量__x
而这三个方程的解则分别对 应着此时自变量的值,即图 象上A,B,C三点的横坐 标.
分 析 从函数的角度看,解这三个方程
方程2x+1=3的解是: x=1 ; 方即程当 x=1时,函数y=2x+1的值为3,也就是 y=3 ;
方即程当2xx=+1- 12=时0的,解函是数:y=x2=x-+121;的值函为数0,也就是 y=0 ;
求直线y= ax+b 与 x 轴交点的横 坐标.
时间是一个常量,但对勤奋者来 说,却是一个“变量”,我们应当 在有限的时间内做出伟大的事业。
你的收获与平时的付出是成正比 的,一份耕耘,一份收获。相信自 己,只要付出,你一定会有收获!
的值.
求直线y=kx+b与 x轴 的交点的 横 坐标.
应用新知
例1 一个物体现在的速度是5米/秒,其速度每秒 增加2米,再过几秒它的速度为17米/秒? 解法1:设再过x秒物体的速度为17米/秒.
列出方程 2x+5=17 解得x=6.
应用新知

19.2.3一次函数与方程、不等式公开课ppt课件

19.2.3一次函数与方程、不等式公开课ppt课件

路庄中学
4
合作探究
一次函数与一元一次方程
三个方程可以看成函数 y=2x+1的函数值分别为3, 0,-1时,求自变量x的
值。
而这三个方程的解则分 别对应着此时自变量的值, 即图象上A,B,C三点 的横坐标.
5
路庄中学
归纳总结
一次函数与一元一次方程
一元一次方程都可以转化为__k_x_+_b_=_0__ 的形式.
请用解析式分别表示两个气 球所在位置的海拔 y(m)与气球 上升时间 x(min)的函数关球2 海拔高度:y =0.5x+15.
h2
二元一次方程与一次函数有 什么关系?
9
路庄中学
拓展问题
一次函数与二元一次方程组
什么时刻,1 号气球的高度赶上2 号气球的高度?大 家会从数和形两方面分别加以研究吗?
x
直线y=2x+20与x轴的交点 坐标为(-10,0)
路庄中学
7
自主探究
一次函数与一元一次不等式
你能通过观察函数图 象得出一元一次不 等式2x+6<0的解集 吗?
X<-3
路庄中学
8
合作探究
一次函数与二元一次方程组
1号探测气球从海拔5 m 处出发,以1 m/min 的速度 上升.与此同时,2 号探测气球从海拔15 m 处出发,以 0.5 m/min 的速度上升.
19.2.3 一次函数与方程、不等式
1、初步理解一次函数与一元一次方程、一元 一次不等式、二元一次方程 (组)的内在联系。 2.通过画函数图像、观察函数图像,体会数形 结合思想
路庄中学
3
合作探究
一次函数与一元一次方程
观察下面这几个方程:

一次函数与方程和不等式关系PPT课件

一次函数与方程和不等式关系PPT课件

生产计划
在生产计划中,一次函数、 方程和不等式可以一起使 用,优化生产流程和提高 生产效率。
数据分析
在数据分析中,一次函数、 方程和不等式可以一起使 用,处理数据、建立数学 模型并解释结果。
05
总结与展望
一次函数、方程和不等式的重要性和意义
一次函数、方程和不等式是数学中的基础概念,对 于培养学生的逻辑思维、问题解决能力和数学素养 具有重要意义。
一次函数与方程和不等式关系 ppt课件

CONTENCT

• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 实际应用中的一次函数、方程和不
等式 • 总结与展望
01
一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x是自变量,y是因变量,b是截 距,k是斜率。
随着数学与其他学科的交叉融 合,对于一次函数、方程和不 等式的研究也在不断深入,需 要加强与其他学科的合作与交 流,推动数学在各领域的应用 和发展。
随着信息技术的发展,数学教 育正面临着新的挑战和机遇, 需要加强信息技术与数学教育 的融合,利用信息技术手段提 高教学效果和学生的学习体验 。
THANK YOU
单调性
当k>0时,函数单调递增;当k<0时,函数单调递减 。
有界性
一次函数的值域为全体实数R。
02
一次函数与方程的关系
一次函数与一元一次方程
一次函数与一元一次方程具有密切的联系。一元一次方程可以看 作是y为常数的一次函数,其解即为函数的交点。通过对方程进行 求解,可以得到与一次函数交点的x坐标。
一次函数是代数函数中的基础,其图像为直线,通 过研究其性质可以帮助学生理解函数的增减性、单 调性等概念。

八年级数学一次函数与方程、不等式综合专题复习讲义

八年级数学一次函数与方程、不等式综合专题复习讲义

( 1) x 轴下方;
( 2) y 轴左侧;
( 3)第一象限.
【巩固】当自变量 x 满足什么条件时,函数 y 4 x 1 的图象在:
( 1) x 轴上方;
( 2) y 轴左侧;
( 3)第一象限.
【例 5】 如图,直线 y kx b 与 x 轴交于点 4 ,0 ,则 y 0 时, x 的取值范围是(
A. x 4
B. x 0
C. x 4
D. x 0

y
-4 O
x
【巩固】一次函数 y kx b 的图象如图所示,当 y 0 时, x 的取值范围是(
A. x 0
B. x 0
C. x 2
D. x 2

y 3
O
2
x
【例 6】 已知一次函数经过点( 1, -2)和点( -1, 3),求这个一次函数的解析式,并求: ( 1)当 x 2 时, y 的值; ( 2) x 为何值时, y 0 ? ( 3)当 2 x 1时, y 的值范围; ( 4)当 2 y 1 时, x 的值范围.
一次函数的解析式 y kx b( k 0)本身就是一个二元一次方程,直线 y kx b( k 0)上有无数个
点,每个点的横纵坐标都满足二元一次方程
y kx b( k 0),因此二元一次方程的解也就有无数个。
例题精讲
一、一次函数与一元一次方程综合
【例 1】 若直线 y (m 2) x 6 与 x 轴交于点 6 ,0 ,则 m 的值为(
回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组
y
y
y
O
x
y= 2x+ 1
(3)
x1
的解;

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

1
整理方程
通过移项和合并同类项,将一次方程转化为形如ax = b的方程。
2பைடு நூலகம்
用除法解方程
通过将方程两边都除以系数a,得到x = b/a的解。
3
检验解
将求得的解代入原方程,验证方程两边是否相等。
一次方程的应用
经济学
一次方程可用于计算成本、利润和收入等经济指标。
工程学
在工程学中,一次方程可用于计算电路中的电流、电压和电阻。
平行线
具有相同斜率但不同截距的一次 函数将得到平行线。它们在平面 上永远不会相交。
相交线
具有不同斜率的一次函数将交叉 并在某个点相交。这个点是两条 直线的唯一交点。
一次方程的定义
一次方程是一个等式,其中包含至多一个未知数的一次项和常数项。例如, 2x + 3 = 7是一个一次方程。
一次方程的解法
物理学
一次方程可用于描述速度、加速度和力等物理量的关系。
一次不等式的定义和解法
一次不等式是一个包含未知数的一次项和常数项的不等式。例如,3x + 2 > 5是一个一次不等式。
一次函数与方程、不等式
一次函数与方程、不等式是数学中基础而重要的概念之一。通过本次演讲, 我们将深入探讨一次函数、方程和不等式的定义、性质和应用,使您对这些 概念有更深入的理解。
一次函数的表达式
标准形式
一次函数的标准形式为y = ax + b,其中a和b为常数。它描述了 直线的斜率和截距。
斜率截距形式
一次函数的斜率截距形式为y = mx + c,其中m是斜率,c是y轴 截距。这种形式更容易理解直 线的特征。
点斜式
一次函数的点斜式为y − y₁ = m(x − x₁),其中(x₁, y₁)是直线上的已 知点,m是斜率。这种形式方 便从已知点和斜率直接获得函 数。

一次函数与方程不等式关系PPT课件

一次函数与方程不等式关系PPT课件
方程的解与函数的零点
对于形如y=kx+b的一次函数,其与x轴的交点即为方程 y=0的解,也就是函数的零点。通过对方程进行求解,可 以得到函数的零点,从而确定函数的图像与x轴的交点。
03
不等式的解集与函数的图像
一次函数图像在平面坐标系中的位置和形态可以通过不等 式来描述。对于形如y<kx+b或y>kx+b的不等式,其解集 对应于函数图像在坐标系中的位置和取值范围。通过解不 等式,可以得到函数图像在坐标系中的位置和形态。
一次函数与不等式的关系
01
不等式可以转化为函数形式
不等式可以看作是函数的特殊情况,如 (ax + b > c) 可以视为 (y = ax
+ b) 在 (y) 轴上的截距大于 (c) 的情况。
02
解不等式即找函数值的范围
解不等式的过程是找到满足条件的 (x) 值范围,即函数值的范围。
03
函数图像与不等式的解集关系
函数图像上方的区域对应不等式的解集,下方的区域对应不等式的非解
集。
一次函数在方程与不等式中的应用
利用一次函数解一元一次方程
通过将方程转化为函数形式,可以更直观地找到方程的解。
利用一次函数解一元一次不等式
将不等式转化为函数形式,可以更方便地找到满足条件的 (x) 值范围。
一次函数在解决实际问题中的应用
02
方程与不等式的基本概念
方程的概念
1 2
3
方程
表示数学关系的一种数学模型,由等号和等号右边的未知数 组成。
一元一次方程
只含有一个未知数,且未知数的次数为1的方程。
二元一次方程
含有两个未知数,且未知数的次数为1的方程。

一次函数与方程、不等式(市级优质课)

一次函数与方程、不等式(市级优质课)

当$k > 0$时,函数为增函数;当$k < 0$时,函数为减函数。
02 一次函数与方程
一次函数与一元一次方程
1 2
一次函数与一元一次方程的联立
通过联立一次函数和一元一次方程,可以求解出 未知数的值。
解法示例
以$y = x + 1$和$x + y = 2$为例,联立后得到 $x = 1, y = 0$。
应用场景
03
在实际问题中,如抛物线、球体等,可以通过一次函数和一元
二次方程来求解。
一次函数与分式方程
一次函数与分式方程的联立
通过联立一次函和分式方程,可以求解出未知数的值。
解法示例
以$y = x + 1$和$frac{x}{2} + frac{y}{3} = 1$为例,联立 后得到$x = frac{4}{5}, y = frac{9}{5}$。
题能力。
02
一次函数在数学建模中的应用
数学建模是数学竞赛中的重要部分,一次函数可以用来建立实际问题与
数学模型之间的关系。
03
一次函数在几何学中的应用
在几何学中,一次函数可以用来描述直线、平面等几何图形的关系。
一次函数在物理中的应用
一次函数在力学中的应用
在力学中,一次函数可以用来描述物体的运动状态,如速度、加 速度和位移之间的关系。
THANKS FOR WATCHING
感谢您的观看
应用场景
在实际问题中,如化学反应、工程问题等,可以通过一次 函数和分式方程来求解。
03 一次函数与不等式
一次函数与一元一次不等式
一次函数与一元一次不等式之间的关系
一次函数是线性函数的一种,而一元一次不等式是数学中常见的不等式类型。两者之间存 在密切的联系,可以通过函数的图像和性质来解不等式。

一次函数与方程、不等式 经典课件(最新)

一次函数与方程、不等式 经典课件(最新)

x
归纳总结
初中数学课件
一般地,任何一个二元一次方程都可以转化为一次函
数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一
次方程都对应一个一次函数,也对应一条直线.
方程组的解
对应两条直线交点的坐标.
初中数学课件
例2 如图,求直线l1与l2 的交点坐标. 分析:由函数图象可以求直线l1与l2
初中数学课件
三 一次函数与二元一次方程组
问题3 1号探测气球从海拔5 m 处出发,以1 m/min 的 速度上升.与此同时,2 号探测气球从海拔15 m 处出发, 以0.5 m/min 的速度上升.两个气球都上升了1 h.
(1)请用解析式分别表示两个气 球所在位置的海拔 y(m)与气球 上升时间 x(min)的函数关系.

初中数学课件
练一练
如图,一次函数y=ax+b与y=cx+d的图象交于点P,则方程


y y

ax cx

b,的解是多少? d
y
y=ax+b
解:此方程组的解是
2
1
y=cx+d
x 2,

y

1.
-3 -2
-1
O -1
-2
1 2 34x P
-3
-4
-5
-6
当堂练习
数值相等,并求出函数值.
气球1 海拔高度:y =x+5 气球2 海拔高度:y =0.5x+15
初中数学课件
从形的角度看,二元一次方程组与一次函数有什么
关系? 二元一次方程
y 30
组的解就是相应的 两个一次函数图象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与方程和不等式讲义函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

1、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

2、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

3、正比例函数及性质一般地,形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y =k x (k 不为零) ① k 不为零 ② x指数为1 ③ b 取零当k >0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y也增大;当k<0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx(k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x增大而减小 (5) 倾斜度:|k |越大,越接近y轴;|k |越小,越接近x轴 4、一次函数及性质一般地,形如y=kx +b (k ,b 是常数,k≠0),那么y 叫做x 的一次函数.当b =0时,y=kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x指数为1 ③ b取任意实数一次函数y =kx +b的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y =kx +b,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y=kx +b(k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0) (3)走向: k >0,图象经过第一、三象限;k<0,图象经过第二、四象限b >0,图象经过第一、二象限;b <0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.(5)倾斜度:|k | 越大,图象越接近于y轴;|k | 越小,图象越接近于x轴.(6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b个单位; (上加下减,左加右减) 当b <0时,将直线y=kx 的图象向下平移b 个单位.当b <0时,向下平移).5、直线y =k 1x +b 1与y=k 2x +b 2的位置关系(1)两直线平行:k 1=k2且b 1 ≠b 2 (2)两直线相交:k1≠k 2(3)两直线重合:k 1=k2且b1=b2 (4)两直线垂直:k 1·k2= –1 6、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式; (2)将x 、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 7、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b =0(a,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax +b 确定它与x轴的交点的横坐标的值. 8、一次函数与一元一次方程的关系:任何一元一次方程都可以转化为kx+b=0(k ,b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例,这就是说,在y=kx+b 中,当y=0时,即为一元一次方程. 9、一次函数与二元一次方程(组)的关系:(1)任何二元一次方程ax+by=c(a ,b,c为常数,且a≠0,b≠0)都可以化为y =-a bx+cb的形式,所以每个二元一次方程都对应着一个一次函数; (2)从“数”的角度看,解方程组相当考虑求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解方程组相当于确定两条相应直线的交点坐标.10、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y轴的交点(0,b),与x 轴的交点(kb -,0). 直线(b ≠0)与两坐标轴围成的三角形面积为s=kb b k b 2212=⨯⨯ 例题讲解:探究类型之一 一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2- ﻩB .2ﻩﻩC.1- ﻩD.0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.类似性问题1、把直线y=-x +3向上平移m 个单位后,与直线y =2x+4的交点在第一象限,则m 的取值范围是( )A.1<m<7 B.3<m<4 C .m>1 D.m<4 探究类型之二 一次函数与一元一次不等式【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; ﻩ(2)y 轴左侧;ﻩ (3)第一象限.(2)已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A.5x >ﻩﻩB .12x < ﻩC.6x <-ﻩ D .6x >- 【例6】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?类似性问题1、 如图,函数1y =|x |,2y =13x+43,当1y >2y 时,x 的取值范围是( ) A. x <-1 B. -1<x <2 C. x <-1或x >2 D. x>22、如图,直线y=kx+b交坐标轴于A(-3,0),B(0,5)两点,则不等式-kx-b<0的解集为()A. x>-3 B. x<-3C. x>3 D.x<33、如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是________.探究类型之三一次函数、方程(组)、不等式(组)与几何等知识的综合例3、已知一次函数y=kx+b的图象经过点(-1,-5),且与函数y=12x+1的图象相交于点A(83,a).(1)求a的值;(2)求不等式组0<kx+b<12x+1的正整数解;(3)若函数y=kx+b图象与x轴的交点是B,函数y=12x+1的图象与y轴的交点是C,求四边形ABOC的面积.例4、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求直线l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.类似性问题1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算?2.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x 之间的关系式是_________.(1)什么情况下到甲商场购买更优惠?(2)什么情况下到乙商场购买更优惠?(3)什么情况下两家商场的收费相同?探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算?2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L?3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少?能否超过小明?•至少几个月后小丽的存款数超过小明?4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y1,y2与x之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算?一次函数与方程和不等式课后练习1:一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=1-D.y=1-2:一次函数y=ax+b的图象如图所示,则不等式ax+b>0的解集是()A.x<-2 B.x>-2 C.x<1 D.x>13:已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x-1)-b>0的解集为( )A.x<-1B.x>-1C.x>1D.x<14:如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组y ax by kx=+=⎧⎨⎩的解是.5:如图,以两条直线l1,l2的交点坐标为解的方程组是()A.121x yx y-=-=⎧⎨⎩B.121x yx y-=--=-⎧⎨⎩C.121x yx y-=--=⎧⎨⎩D.121x yx y-=-=-⎧⎨⎩6:(1)已知关于x的方程mx+n=0的解是x=-2,那么,直线y=mx+n与x轴的交点坐标是 .(2)如图,在平面直角坐标系中,直线AB:y=kx+b与直线OA:y=mx相交于点A(-1,-2),则关于x的不等式kx+b<mx的解是.(3)如图,直线l1和l2的交点坐标为()A.(4,-2)ﻩB.(2,-4)C.(-4,2)D.(3,-1)7:(1)已知方程2x+1=-x+4的解是x=1,那么,直线y=2x+1与直线y=-x+4的交点坐标是__ __ .(2)在平面直角坐标系中,直线y=kx+1关于直线x=1对称的直线l刚好经过点(3,2),则不等式3x>kx+1的解集是____.(3)如图,直线l1、l2交于点A,试求点A的坐标.8:已知一次函数y1=kx+b和正比例函数y2=1-x的图象交于点A(-2,m),又一次函数2y1=kx+b的图象过点B(1,4).ﻫ(1)求一次函数的解析式;(2)根据图象写出y1>y2的取值范围.9:如图,已知一次函数的图象经过点A(-1,0)、B(0,2).ﻫ(1)求一次函数的关系式;ﻫ(2)设线段AB的垂直平分线交x轴于点C,求点C的坐标.10:如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1,0)的直线DE平行于OA,并与直线AB交于点E.(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.11:随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品牌电动摩托的进价品牌ﻫ价格A品牌电动摩托B品牌电动摩托进价(元/辆) 4000 3000售价(元/辆) 5000 3500设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;ﻫ(2)该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少。

相关文档
最新文档