2016-17北师版初一数学第二学期期中试卷

合集下载

北师大版七年级下册数学《期中》试卷(带答案)

北师大版七年级下册数学《期中》试卷(带答案)

北师大版七年级下册数学《期中》试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x yx y+=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x++-=2.解不等式组并求出它所有的非负整数解.3.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、D5、A6、C7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、(4,2)或(﹣2,2).5、16、2或-8三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、0,1,2.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)30;(2)①补图见解析;②120;③70人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

北师大版七年级下册数学期中考试试卷附答案

北师大版七年级下册数学期中考试试卷附答案

北师大版七年级下册数学期中考试试题一、单选题1.下列计算正确的是A .326a a a ⋅=B .5510x x x +=C .78y y y ⋅=D .222(3)6pq p q -=- 2.(1)(23)x x -+的计算结果是A .223x x +-B .223x x --C .223x x -+D .223x x -- 3.某植物的花朵质量为0.00 000 0076 克,用科学记数法表示是A .7.6×108克B .7.6×10-7克C .7.6×10-8克D .7.6×10-9克4.如果()219x a x --+是一个完全平方式,则a 的值为A .7B .-4C .7或-5D .7或-4 5.如图,与∠B 是同旁内角的角有( )A .1个B .2个C .3个D .4个 6.下列能用平方差公式计算的是( )A .()()a b a b -+-B .()()22x x ++C .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ D .()()21x x -+ 7.给出下列说法:(1)过平面内一点有且只有一条直线与已知直线平行;(2)相等的两个角是对顶角;(3)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(4)不相交的两条直线叫做平行线;(5)垂直于同一条直线的两条直线平行.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 8.如图,在下列结论给出的条件中,不能判定AB DF ∥的是( )A .2180A ∠+∠=︒B .3A ∠=∠C .14∠=∠D .1A ∠=∠9.若n 满足关系式22(2020)(2021)3n n -+-=,则代数式()()20202021n n --=( ) A .-1 B .0 C .12 D .110.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 二、填空题11.计算:()2322xy z -=__________. 12.已知:a+b=1.5,ab=﹣1,则(a ﹣2)(b ﹣2)=_______.13.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .14.ABC 中,若80A ∠=︒,O 为三条内角角平分线的交点,则BOC ∠=__________度. 15.已知2310x x --=,则多项式3275x x x --+的值为_____.16.已知227a ab b ++=,225a ab b -+=,则a b -=__________.17.已知1∠的两边分别平行于2∠的两边,250∠=︒,则1∠的度数为__________. 18.已知ABC 中,30cm AC =,中线AD 把ABC 分成两个三角形,这两个三角形的周长差是12cm ,则AB 的长是__________.三、解答题19.计算:(1)()3235311932a b a b a b ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭(2)2020********( 3.14)4(0.25)1433π-⎛⎫-+⨯---÷⨯- ⎪⎝⎭ 20.阅读下列推理过程,在括号中填写理由:已知:如图,12∠=∠.求证:34180∠+∠=︒.证明:∠12∠=∠(已知)∠a b ∥(____________________)∠35180∠+∠=(____________________)又∠45∠=∠(____________________)∠34180∠+∠=︒(____________________)21.先化简,再求值: 已知26910x x y -+++=,求()2222(2)(2)(2)4(2)x y x y x y x y x y +---++的值.22.已知()()322x mx n x x +++-展开式中不含3x 和2x 项,求代数式()22()m n m mn n -++的值.23.如图,已知BC GE ∥,AF DE ∥,150∠=︒.(1)求AFG ∠的度数;(2)若AQ 平分FAC ∠,交BC 于点Q ,且15Q ∠=︒,求ACB ∠的度数.24.若我们规定三角“”表示为:abc ;方框“ ”表示为:()m n x y +.例如:()411193233=⨯⨯÷+=.请根据这个规定解答下列问题:(1)计算:=__________;(2)代数式为完全平方式,则k =__________;(3)当x 为何值时,代数式有最小值,最小值是多少?25.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)轿车出发多长时间追上货车;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.26.如图,已知直线//AB 射线CD ,0100CEB ∠=.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连结CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点,,P F G 都在点E 的右侧.∠求PCG ∠的度数;∠若040EGC ECG ∠-∠=,求CPQ ∠的度数.(2)在点P 的运动过程中,是否存在这样的情形,使32EGC EFC ∠=∠,若存在,求出CPQ ∠的度数;若不存在,请说明理由.参考答案1.C【详解】A. 325a a a ⋅=,故A 错B .5552x x x +=,故B 错C. 78y y y ⋅=,故C 对D. 222(3)6pq p q -=,故D 错故选C2.A【详解】原式22232323x x x x x =+--=+-故选A.3.C【详解】解:对于绝对值小于1的数,用科学记数法表示为a×10n 形式,其中1≤a <10,n 是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容得:0.00 000 0076克=7.6×10-8克,故选C .4.C【分析】完全平方公式:a 2±2ab+b 2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∠()219x a x --+=()2213x a x -+-,∠()123a x x -=±⨯,∠a -1=±6,∠a=7或-5.故选C .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a 2±2ab+b 2是解答本题的关键. 5.C【解析】【分析】根据同旁内角的定义求解即可得.【详解】解:与∠B 是同旁内角的角有∠C ,∠BAC ,∠BAE 共3个,故选C .【点睛】题目主要考查相交线中的同旁内角的定义,理解同旁内角的定义是解题关键.6.C【解析】【分析】根据平方差的结构特点()()a b a b -+判断即可.【详解】解:A 、()()()()a b a b a b a b -+-=---,不符合平方差结构特点,不符合题意;B 、(x +2)(2+x ),不符合平方差结构特点,不符合题意;C 、1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭,符合平方差结构特点,符合题意; D 、(x ﹣2)(x +1),不符合平方差结构特点,不符合题意;故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.A【解析】【分析】根据平行线的定义、平行公理、对顶角的概念以及点到直线的距离的概念进行判断即可.【详解】解:(1)过已知直线外一点有且只有一条直线与已知直线平行,说法(1)错误;(2)相等的两个角不一定是对顶角,对顶角是在两直线相交的前提条件下形成的,故说法(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)同一平面内,不相交的两条直线叫做平行线,故说法(4)错误;(5)同一平面内,垂直于同一条直线的两条直线平行,故说法(5)错误.故说法正确的有0个.故选:A .【点睛】本题主要考查了相交线与平行线的一些基本概念,解题时注意:对顶角是相对于两个角而言,是指两个角的一种位置关系;点到直线的距离只能量出或求出,而不能说画出;平行公理中要准确理解“有且只有”的含义.8.D【解析】【分析】利用平行线的判定定理,逐一判断.【详解】解:A、∠∠2+∠A=180°,∠AB∠DF(同旁内角互补,两直线平行);B、∠∠A=∠3,∠AB∠DF(同位角相等,两直线平行);C、∠∠1=∠4,∠AB∠DF(内错角相等,两直线平行).D、∠1A∠=∠,∠//AC ED(同位角相等,两直线平行);故选:D.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.A【解析】【分析】利用完全平方公式和整体代入,用多项式乘多项式法则求解即可.【详解】解:令n-2020=a,2021-n=b,根据题意得:a2+b2=3,a+b=1,∠原式=ab=()222 ()2a b a b +-+=13 2 -=-1.故选:A.这道题考查的是完全平方公式和多项式乘多项式,熟记完全平方公式和多项式乘多项式法则是解题的基础.10.D【解析】【详解】解:A .由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B .∠乙先出发,0.5小时,两车相距(100﹣70)km ,∠乙车的速度为:60km/h ,故乙行驶全程所用时间为:10060=213(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h ),故B 选项正确,不合题意; C .由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,40+60=100,故两车相遇,故C 选项正确,不合题意;D .由以上所求可得,乙到A 地比甲到B 地早:1.75﹣211312=,(小时),故此选项错误,符合题意.故选:D .11.6424x y z【解析】【分析】根据积的乘方的运算性质计算即可.【详解】解:()2322xy z -=223222264()()(2)4x y z x y z ⋅⋅⋅-=, 故答案为:6424x y z【点睛】此题考查了积的乘方的运算性质:积的乘方,就是把积中的每一个因式分别乘方,再把所得的积相乘.掌握此运算性质是解答此题的关键.12.0【解析】∠a+b=1.5,ab=﹣1,∠(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=-1-3+4=0.故答案为:013.125【解析】【分析】首先过点E作EM∠AB,过点F作FN∠AB,由AB∠CD,即可得EM∠AB∠CD∠FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF 平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∠AB,过点F作FN∠AB,∠AB∠CD,∠EM∠AB∠CD∠FN,∠∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∠∠ABE+∠BED+∠CDE=360°,∠∠BED=110°,∠∠ABE+∠CDE=250°,∠BF平分∠ABE,DF平分∠CDE,∠∠ABF=12∠ABE,∠CDF=12∠CDE,∠∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∠∠DFN=∠CDF ,∠BFN=∠ABF ,∠∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.14.130【解析】【分析】根据三角形的内角和是180︒,得:18080100ABC ACB ∠+∠=︒-︒=︒;又O 为三条角平分线的交点,得:11110050222∠+∠=∠+∠=⨯︒=︒OBC OCB ABC ACB ;再根据三角形的内角和定理,得:130BOC ∠=︒.【详解】解:如图:在ABC ∆中,80BAC ∠=︒,18080100ABC ACB ∴∠+∠=︒-︒=︒.又O 为三条角平分线的交点11110050222OBC OCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒. 在三角形OBC 中,180()130BOC OBC OCB ∠=︒-∠+∠=︒,故答案为:130.【点睛】 本题考查了角平分线的概念以及掌握三角形的内角和定理,解题的关键是注意公式的总结:1902BOC A ∠=+∠︒. 15.7【分析】首先将已知2310x x --=转化为x 2-3x=1,再将x 3-x 2-7x+5通过提取公因式转化为含有因式x 2-3x 的形式,将x 2-3x 做为一个整体逐步代入,即实现了降次,又得到了所求值.【详解】∠2310x x --=∠x 2-3x=1x 3-x 2-7x+5=x (x 2-3x )+2x 2-7x+5=2x 2-6x+5=2(x 2-3x )+5=2+5=7故答案为7.【点睛】本题考查因式分解的应用.解决本题的关键是将2310x x --=转化为x 2-3x=1,再将x 2-3x 做为一个整体逐步代入x 3-x 2-7x+5的变形.16.±2【解析】【分析】已知两等式相加减求出a 2+b 2与ab 的值,利用完全平方公式求解即可.【详解】解:∠a 2+ab+b 2=7∠,a 2-ab+b 2=5∠,∠∠+∠得:2(a 2+b 2)=12,即a 2+b 2=6,∠-∠得:2ab=2,即ab=1,∠()22224a b a ab b -=-+=,∠2a b -=±故答案为:±2【点睛】此题考查了完全平方公式的变形求值,熟练掌握完全平方公式是解本题的关键. 17.50°或130°##130°或50°【解析】【分析】作出图形,根据两边互相平行的两个角相等或互补解答.解:如图1,∠∠1与∠2的两边分别平行,∠2=50°,∠∠1=∠2=∠3=50°,如图2,∠∠1与∠2的两边分别平行,∠2=50°,∠∠3=∠2=50°,∠1=180°−∠3=180°−50°=130°,综上所述,∠2的度数等于50°或130°.故答案为:50°或130°【点睛】本题考查的是平行线的性质,即两直线平行,同位角相等;同旁内角互补,掌握平行线的性质,分类讨论是解题的关键.18.42cm或18cm【解析】【分析】先根据三角形中线的定义可得BD=CD,再求出AD把∠ABC周长分为的两部分的差等于|AB -AC|,然后分AB >AC ,AB <AC 两种情况分别列式计算即可得解.【详解】∠AD 是∠ABC 中线,∠BD=CD .∠AD 是两个三角形的公共边,两个三角形的周长差是12cm ,∠如果AB >AC ,那么AB -AC=12cm ,即AB -30=12cm∠AB=42cm ;如果AB <AC ,那么AC -AB=12cm ,即30-AB=12cmAB=18cm .综上所述:AB 的长为42cm 或18cm .故答案为:42cm 或18cm .【点睛】考查了三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 19.(1)6b (2)3794-【解析】【分析】(1)根据单项式的乘除混合运算进行求解即可,(2)根据零次幂、负整数指数幂,有理数的乘方,有理数的混合运算进行计算即可.(1)()3235311932a b a b a b ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭3251331923a b +-+-=⨯⨯=6b(2)2020********( 3.14)4(0.25)1433π-⎛⎫-+⨯---÷⨯- ⎪⎝⎭ ()2019140.250.25339=+⨯⨯-⨯⨯11814=+- 3794=- 【点睛】本题考查了单项式的乘除,零次幂、负整数指数幂,有理数的乘方,有理数的混合运算,正确的计算是解题的关键.20.同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;等量代换.【解析】【分析】先判定a∠b ,即可得出∠3+∠5=180°,再根据对顶角相等,即可得到∠4=∠5,进而得出∠3+∠4=180°.【详解】证明:∠∠1=∠2(已知)∠a∠b (同位角相等,两直线平行)∠∠3+∠5=180° (两直线平行,同旁内角互补)又∠∠4=∠5(对顶角相等)∠∠3+∠4=180°(等量代换)故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;等量代换.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.224832x y y -+,-36【解析】【分析】 先由26910x x y -+++=推出()2310x y -++=即可求出3x =,1y =-,然后利用分解因式的方法化简,最后代值计算即可.【详解】解:∠26910x x y -+++=,∠()2310x y -++=,∠()230x -≥,10y +≥,∠30x -=,10y +=,∠3x =,1y =-,()2222(2)(2)(2)4(2)x y x y x y x y x y +---++()()()()()2222224x y x y x y x y x y ⎡⎤=+-+--+⎣⎦ ()()222222444x y x y x y =----()22248x y y =--⋅224832x y y =-+, 当3x =,1y =-时,原式()()24283132136=-⨯⨯-+⨯-=-.【点睛】本题主要考查了非负数的性质,整式的混合计算和代数式求值,熟知整式的混合计算法则是解题的关键.22.16【解析】【分析】根据整式的运算法则进行化简,使得3x 项和2x 项的系数为0即可求出,m n 的值,进而代入的算式求解即可【详解】解:()()322x mx n x x +++- 543322222x x x mx mx mx nx nx n =+-+-+++-()()5432222x x m x m n x mx nx n ++=+-+-+-由于展开式中不含3x 项和2x 项,20,0m m n ∴-=+=解得2,2m n ==-∴()22()m n m mn n -++()()22222222⎡⎤=--⨯-⨯+-⎡⎤⎣⎦⎣⎦16=【点睛】本题考查了整式的乘法运算,代数式求值,掌握整式的运算法则是解题的关键. 23.(1)AFG ∠=50°(2)∠ACB =80°【解析】【分析】(1)先根据BC∠EG 得出∠E =∠1=50°,再由AF∠DE 可知∠AFG =∠E =50°; (2)作AM∠BC ,由平行线的传递性可知AM∠EG ,故∠FAM =∠AFG ,再根据AM∠BC 可知∠QAM =∠Q ,故∠FAQ =∠FAM +∠QAM ,再根据AQ 平分∠FAC 可知∠MAC =∠QAC +∠QAM =80°,根据AM∠BC 即可得出结论.(1)∠BC∠EG ,∠∠E =∠1=50°.∠AF∠DE ,∠∠AFG =∠E =50°;(2)作AM∠BC ,∠BC∠EG ,∠AM∠EG ,∠∠FAM =∠AFG =50°.∠AM∠BC ,∠∠QAM =∠Q =15°,∠∠FAQ =∠FAM +∠QAM =65°.∠AQ 平分∠FAC ,∠∠QAC =∠FAQ =65°,∠∠MAC =∠QAC +∠QAM =80°.∠AM∠BC ,∠∠ACB =∠MAC =80°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.熟记平行线的各种性质是解题的关键.24.(1)32- (2)3±(3)当13x =时,题中代数式有最小值329- 【解析】【分析】(1)理解题意,根据题意的运算对式子进行求解即可;(2)理解题意,根据题意的运算对式子进行化简,再根据完全平方公式即可求解; (3)理解题意,根据题意的运算对式子进行化简,利用平方的非负性求解即可.(1)解:由题意得()()41323113642⎡⎤=⨯-⨯÷-+=-÷=-⎣⎦, 故答案为:32-; (2)解:由题意得()2232x y kxy =++, ∠()2232x y kxy ++是一个完全平方式,∠223kxy y x =±⨯⋅,∠3k =±,故答案为:3±;(3) 解:由题意得()()()()2323212323x x x x ⎡⎤=-+⋅-+-+⎣⎦ ()229436249x x x x =--+--+2294345x x x =----2649x x =--221269393x x ⎛⎫=-+-- ⎪⎝⎭ 2129633x ⎛⎫=-- ⎪⎝⎭, ∠2103x ⎛⎫-≥ ⎪⎝⎭, ∠2129296333x ⎛⎫--≥- ⎪⎝⎭, ∠当13x =时,代数式 的最小值为329-. 【点睛】本题主要考查了完全平方式,含乘方的有理数混合计算,整式的混合计算,熟知完全平方公式是解题的关键.25.(1)轿车到达乙地时,货车与甲地的距离为270千米(2)轿车出发2.4追上货车(3)在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米【解析】【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD和线段OA对应的函数表达式,根据相遇时路程相等列方程即可;(3)根据题意和函数图象中的数据,可以判断两车相距15千米时,在CD段,则|60x−(110x−195)|=15,解方程即可.(1)解:根据图象可知,货车的速度为:300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是:60×4.5=270(千米),答:轿车到达乙地时,货车与甲地的距离为270千米(2)设线段CD对应的函数表达式是y=kx+b,∠点C(2.5,80),点D(4.5,300),∠2.580 4.5300k bk b+=⎧⎨+=⎩,解得:110195kb=⎧⎨=-⎩,∠线段CD对应的函数表达式是y=110x−195,由图象可得:线段OA对应的函数表达式是y=60x,则60x=110x−195,解得:x=3.9.3.9−1.5=2.4,答:轿车出发2.4追上货车(3)当轿车行驶到点C 时,两车相距60×2.5−80=150−80=70(千米),∠两车相距15千米时,在CD 段,则|60x−(110x−195)|=15,解得x =3.6或x =4.2,∠轿车比货车晚出发1.5小时,∠3.6−1.5=2.1(小时),4.2−1.5=2.7(小时),答:在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)∠40°;∠60°;(2)60°或15°.【解析】【分析】(1)∠根据平行线的性质可知080ECQ ∠=,再结合角平分线的性质可求得1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠,进而求解即可. ∠根据平行线性质可得QCG EGC ∠=∠,结合已知条件040EGC ECG ∠-∠=且QCG ECG ECQ ∠+∠=∠可求得020EGC GCF FCP ∠=∠=∠=,根据平行线性质进而可求得060CPQ ECP EGC GCF FCP ∠=∠=∠+∠+∠=.(2)根据已知条件设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,分∠当点G F 、在点E 的右侧时∠当点G F 、在点E 的左侧时两种情况,结合已知条件进行求解即可.【详解】(1)∠∠0100CEB ∠=,//AB CD ,∠080ECQ ∠=,∠PCF PCQ ∠=∠,CG 平分ECF ∠, ∠1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠ 01402ECQ =∠=∠∠//AB CD∠QCG EGC ∠=∠,080QCG ECG ECQ ∠+∠=∠=,∠080EGC ECG ∠+∠=又∠040EGC ECG ∠-∠=,∠0060,20EGC ECG ∠=∠=∠020ECG GCF ∠=∠=()00018040202PCF PCQ ∠=∠=-=∠//PQ CE∠060CPQ ECP ∠=∠=(2)设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,∠当点G F 、在点E 的右侧时,则ECG PCF PCD x ∠=∠=∠=,∠080ECD ∠=,∠0480x =,解得020x =,∠0360CPQ x ∠==∠当点G F 、在点E 的左侧时,则ECG GCF x ∠=∠=,∠01803CGF x ∠=-,080GCQ x ∠=+,∠00180380x x -=+,解得025x =,∠0005080130FCQ ECF ECQ ∠=∠+∠=+= ∠01652PCQ FCQ ∠=∠= ∠000655015CPQ ECP ∠=∠=-=【点睛】此题主要考查平行线的性质和角平分线的性质,解题在于熟练掌握平行线和角平分线的性质运用以及分情况讨论问题.。

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。

北师大版七年级数学第二学期期中试卷(附答案)

北师大版七年级数学第二学期期中试卷(附答案)

北师大版七年级数学第二学期期中试卷一、 选择题: 1、下列运算正确..的是(的是( ) A .1055a a a =+ B .2446a a a =´ C .a a a =¸-10 D .044a a a =- 2、下列说法错误的是(下列说法错误的是( ) A .两直线平行,内错角相等.两直线平行,内错角相等B .两直线平行,同旁内角相等.两直线平行,同旁内角相等C .同位角相等,两直线平行.同位角相等,两直线平行D .平行于同一条直线的两直线平行.平行于同一条直线的两直线平行3、下列关系式中,正确..的是(的是( )) A . ()222b 2ab a b a +-=+ B. ()222b a b a -=- C . ()222b a b a +=+ D. ()()22b a b a b a -=-+4、等腰三角形的两边长分别为4和9,则它的周长,则它的周长 ( ) ( ) A 、17 B 、22 C 、17或22 D 、215、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( ) (A )带①去)带①去 (B )带②去)带②去 (C )带③去)带③去 (D )带①和②去)带①和②去6、如图,AB ∥ED ,则∠A +∠C +∠D =(=( )A .180°B .270°C .360°D .540°7、下列各式中不能用平方差公式计算的是( ))A 、))((y x y x +--B B、、))((y x y x --+-C C、、))((y x y x ---D D、、))((y x y x +-+ 8、23,24m n ==,则322m n -等于(等于()) A A、、1 B 1 B、、98 C C、、278 D D、、27169、如果一个角的补角是150150°,那么这个角的余角的度数是(°,那么这个角的余角的度数是(°,那么这个角的余角的度数是( )) A 、3030°°B B、、6060°°C 、9090°°D 、120120°°10、不能判定两个三角形全等的条件是不能判定两个三角形全等的条件是 ( ) ( )A B CDE第5题第6题= 那么 a =a = 。

北师大版七年级下学期数学期中考试试题 含答案 精

北师大版七年级下学期数学期中考试试题 含答案 精

2016-2017学年度第二学期 七年级数学期中考试试题一、精心选一选,请把唯一正确的答案填在下面表格内。

(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案A 、160°B 、150°C 、70°D 、60° 2、计算2x 2·(-3x 2)的结果是( )A 、-6x 5B 、6x 5C 、-2x 5D 、2x 6 3、下列各式计算正确的是( ) A. (xy 2)3=xy 6 B.(3ab)2=6a 2b 2C.(-2x 2)2=-4x 4D.(a 2b 3)m =a 2m b 3m4、当一个圆锥的底面半径变为原来的2倍,高变为原来的时,它的体积变为原来的( ) A . B . C . D .5、如图:不能推出a ‖b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D ∠2+∠3=180° 1 a A D 24 3 bB C E 图1 图2 6、如图2,已知B 、C 、E 在同一直线上,且CD ‖AB ,若∠A =105°,∠B=40°,则∠ACE =( )A 、145°B 、105°C 、40°D 、35° 7、下列说法错误的共有( )个。

①内错角相等,两直线平行。

②两直线平行,同旁内角互补。

③相等的角是对顶角。

④两条直线被第三条直线所截,同位角相等。

⑤等角的补角相等。

A 、0 B 、1 C 、2 D 、3 8、下列能用平方差公式计算的是( )姓名: 班别: 考号: 学校:A、(a+1)(1+a)B、(a+b)(b -a)C、(-x+y)(x-y)D、(x2-y)(x+y2)9、小明家有一本200页的故事书,已知他每小时能看50页,星期天上午小明先看了故事书的一半后又做了一个小时的作业,然后他才继续看完这本书.下列能体现这本书剩下的页数y(页)与时间t(时)之间关系的是()A .B.C.D.10、对于任意正整数n,按下列程序计算下去,得到的结果是()A、随n的变化而变化B、不变,总是0C、不变,定值为1D、不变,定值为2二、细心填一填。

北师大版七年级下册数学期中考试试题含答案

北师大版七年级下册数学期中考试试题含答案

北师大版七年级下册数学期中考试试卷一、单选题1.计算a 4•a 2的结果是( )A .a 8B .a 6C .a 4D .a 22.下列运算正确的是( )A .2a 2﹣a 2=2B .a•a 3=a 4C .(a 3)2=a 5D .a 6÷a 3=a 2 3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为( ) A .8×10﹣8 B .8×10﹣7 C .80×10﹣9 D .0.8×10﹣7 4.下列各式中,不能够用平方差公式计算的是( )A .(y+2x)(2x ﹣y)B .(﹣x ﹣3y)(x+3y)C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a+b ﹣c)(4a ﹣b ﹣c)5.如果x 2+mx+4是一个完全平方公式,那么m 的值是( )A .4B .-4C .±4D .±8 6.若2x y +=-,2210x y +=,则xy =( )A .3-B .3C .4-D .47.若a =(23)﹣2,b =2﹣1,c =(﹣32)0,则a 、b 、c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >b D .b >c >a 8.若∠A 与∠B 互为余角,∠A=30°,则∠B 的补角是( )A .60°B .120°C .30°D .150°9.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 210.如图,直线a ,b 被直线c 所截,a∠b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°11.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m12.已知:222450x y x y +-++=,则x+y 的值( )A .1B .-1C .3D .-3二、填空题13.计算:﹣2x 2y 3 •3xy 2结果是____________14.已知:2a =3,2b =2,22a ﹣3b 的值为________________15.已知:化简()()2221x a x x --+的结果中不含x 2项,则常数a 的值是________16.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是_______17.如图,点E 在AD 的延长线上,下列四个条件:∠12∠=∠;∠180C ABC ∠+∠=︒;∠C CDE ∠=∠;∠34∠=∠,能判断//AB CD 的是________________(填序号)18.已知直线a∠b,一块直角三角板如图所示放置,若∠2=54°,则∠1=_____.19.某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.则当卖出苹果数量为10千克时,售价y为_______元.20.杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)7的展开式中从左起第四项为_______________三、解答题)-2-(π-5)0-|-3|21.计算:-22+(-1222.化简:(4ab3﹣8a2b2)÷4ab+2a(b+2)23.化简:22+-+--÷[(2)()(3)5]2x y x y x y y x24.先化简,再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(3x﹣2y)]÷x,其中x=2,y=﹣1.625.如图,直线AB CD,MN CE⊥于M点,若60∠的度数.MNC︒∠=,求EMB26.已知:如图,AB∠CD,∠1=∠2.求证:BE∠CF.证明:∠AB∠CD,∠∠ABC=.()∠∠1=∠2,∠∠ABC﹣∠1=﹣,()即=.∠BE∠CF.()27.已知(am)n=a6,(am)2÷an=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.28.阅读下文,回答问题:已知:(1-x)(1+x)=1-x2.(1-x)(1+x+x2)=_______;(1-x)(1+x+x2+x3)=_______;(1)计算上式并填空;(2)猜想:(1-x)(1+x+x2+…+xn)=;(3)你能计算399+398+397…+32+3+1的结果吗?请写出计算过程(结果用含有3幂的式子表示).29.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)1l和2l中,__________描述小凡的运过程.(2)___________谁先出发,先出发了___________分钟.(3)___________先到达图书馆,先到了____________分钟.(4)当t _________分钟时,小凡与小光在去图书馆的路上相遇.(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案1.B【分析】根据同底数幂的乘法法则计算即可.【详解】解:a 4•a 2=a 4+2=a 6.故选:B2.B【分析】各项计算得到结果,即可作出判断.【详解】解:A 、原式=a 2,不符合题意;B 、原式=a 4,符合题意;C 、原式=a 6,不符合题意;D 、原式=a 3,不符合题意,故选:B .3.A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000008=8×10﹣8.故选:A .4.B【解析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.5.C【解析】【分析】利用完全平方公式,即可求解【详解】解:∠x 2+mx+4是一个完全平方公式,∠x 2+mx+4=(x±2)2,∠m=±4,故选:C【点睛】本题主要考查了完全平方式,熟练掌握完全平方式的特征是解题的关键.6.A【解析】【分析】根据完全平方公式的变形解答即可.【详解】∠2x y +=-,2210x y +=,∠()2222x y x y xy +=++即4=10+2xyxy=-3故选:A【点睛】本题考查的是完全平方公式,掌握完全平方公式的各种变形是关键.7.B【解析】【分析】根据负指数幂、零指数幂的性质进行化简,再比较,即可得出结论.【详解】∠22934a-⎛⎫==⎪⎝⎭),1122b-==,312c⎛⎫=-=⎪⎝⎭,∠94>1>12,∠a>c>b.故选:B.【点睛】此题主要考查了负指数幂、零指数幂的运算性质及有理数大小比较,熟知负指数幂、零指数幂的运算性质是解题的关键.8.B【解析】【分析】根据余角的定义即可求出∠B,然后根据补角的定义即可求出结论.【详解】解:∠∠A与∠B互为余角,∠A=30°,∠∠B=90°-∠A=60°,∠∠B的补角为180°-60°=120°.故选B.【点睛】此题考查的是求一个角的余角和补角,掌握余角的定义和补角的定义是解决此题的关键.9.C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∠大正方形的面积﹣小正方形的面积=4个矩形的面积,∠(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.10.C【解析】【分析】根据两直线平行,同位角相等可得∠3=∠2,再根据邻补角的定义解答.【详解】如图,∠a∠b,∠2=45°,∠∠3=∠2=45°,∠∠1=180°−∠3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.11.C【解析】【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离林茂家2.5km ,体育场离文具店的距离是:2.5 1.51km 1000m -==,所用时间是()453015-=min ,林茂从文具店回到家所用时间为90-65=25min ,文具店距家的距离为1.5km , ∠体育场出发到文具店的平均速度1000200m /min 153==, 林茂从文具店回家的平均速度是15002560m /min ÷=,所以选项A 、B 、D 不符合题意,选项C 符合题意,故选C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.12.B【解析】【分析】先把式子222450x y x y +-++=化成22(1)(2)0x y -++=的形式,再根据非负数的性质求出x 、y 的值,代入求解即可得到答案【详解】解:化简222450x y x y +-++=即:22(1)(2)0x y -++=∠10x -=,20y +=解得:x 1,y 2==-∠1(2)1x y +=+-=-故选:B .【点睛】本题主要考查非负数的性质,几个非负数的和为0时,则这几个非负数都为0,学会把原式化成22(1)(2)0x y -++=的形式是解题的关键.13.356x y -【解析】根据单项式乘以单项式的计算法则进行计算即可得到答案.【详解】﹣2x 2y 3 •3xy 2=356x y -.【点睛】本题考查单项式乘以单项式,解题的关键是掌握单项式乘以单项式的计算.14.98【解析】【分析】直接利用同底数幂的除法运算法则将原式变形得出答案.【详解】∠22a ﹣3b =()()2323932822a b ÷=÷=. 故答案为98.【点睛】本题考查同底数幂的除法运算,以及幂的乘方运算,解题关键是熟练掌握运算法则. 15.-1【解析】【分析】原式利用多项式乘以多项式法则计算,根据结果不含x 的二次项,求出m 的值即可.【详解】()2()221x a x x --+=()()3222222x x x ax ax a -+--+=3222222x x x ax a ax -+-+-=322(22)2x a x x ax a -+++-,由结果中不含x 的二次项,得到22a +=0,解得:a =−1,故答案为−1.【点睛】本题考查多项式与多项式相乘,要使其结果不含某一项,只需要令其系数为0即可.16.垂线段最短【解析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【详解】解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短,故答案为:垂线段最短.【点睛】本题主要考查了垂线的性质在实际生活中的运用,解决本题的关键是要熟练掌握垂线段的性质:垂线段最短.17.∠∠【解析】【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∠12∠=∠,∠//AB CD ,∠∠符合题意,∠180C ABC ∠+∠=︒,∠//AB CD ,∠∠符合题意,∠C CDE ∠=∠,∠//BC AD ,∠∠不符合题意,∠34∠=∠,∠//BC AD ,∠∠不符合题意,故答案是:∠∠.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理,是解题的关键.18.36°【分析】由平行线的性质得∠1=∠3,平行公理的推论证明直线b∠c,其性质得∠2=∠4,根据角的和差和等量代换求得∠1=36°.【详解】过点A作c∠a如图所示:∠c∠a,∠∠1=∠3,又∠a∠b,∠b∠c,∠∠2=∠4,又∠∠2=54°,∠∠4=54°,又∠∠3+∠4=90°,∠∠3=36°,∠∠1=36°故答案为36°.【点睛】本题考查平行线的性质、平行公理的推论,解题的关键是掌握平行线的性质.19.31【解析】【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【详解】由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.【点睛】本题考查函数关系式,能够得出正确的数据变化规律是解题关键.20.4335a b【解析】【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)7=a7+7a6b+21a5b2+35a4b3+35a4b3+21a5b2+7a6b+a7,即可得到答案.【详解】观察图形,可知:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a4b3+21a5b2+7a6b+a7故答案为:4335a b.【点睛】本题考查完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.21.-4【解析】【分析】根据负整数指数幂,零次幂、有理数的乘方以及绝对值的代数意义进行化简后,再进行回头运算即可.【详解】)-2-(π-5)0-|-3|-22+(-12=-4+4-1-3=-4.【点睛】此题主要考查了有理数的混合运算,熟练掌握各知识点的运算法则是解此题的关键. 22.24b a【解析】【分析】原式利用多项式除以单项式,以及单项式乘以多项式法则计算即可得到结果.【详解】原式2224b ab ab a =-++=24b a +【点睛】本题考查多项式除以单项式、单项式乘以多项式法则,熟练掌握运算法则是解本题的关键.23.-x+y【解析】【分析】根据整式的混合运算法则计算即可.【详解】解:原式()22222[44335]2x xy y x xy xy y y x =++--+--÷()22222443352x xy y x xy xy y y x +=++--+-÷()22=22x x x y +-÷x y =-+.【点睛】本题考查了整式的混合运算,熟练掌握运算法则及乘法公式是解题关键.24.6x-4y ,18.4【解析】【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】解:原式=[9x 2-4y 2-3x 2+2xy-6xy+4y 2]÷x=[6x 2-4xy]÷x=6x-4y ,当x=2,y=-1.6时,原式=12+6.4=18.4.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.25.30°【解析】【分析】根据平行线的性质,即可得到∠NMB 的度数,再根据垂线的定义,即可得出∠EMB 的度数.【详解】解:∠AB∠CD ,∠∠NMB=∠MNC=60°,又∠MN∠CE ,∠∠EMN=90°,∠∠EMB=90°-∠NMB=90°-60°=30°.故答案为:30°【点睛】本题主要考查了平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.26.见解析【解析】【分析】先利用两直线平行,内错角相等求得ABC BCD ∠=∠,再依据12∠=∠,可求得EBC BCF ∠=∠,然后根据平行线的判定即可证得.【详解】∠//AB CD ,(已知)∠ABC BCD ∠=∠,(两直线平行,内错角相等)∠12∠=∠,(已知)∠12ABC BCD ∠-∠=∠-∠ ,(等式性质)即EBC BCF ∠=∠∠//BE CF .(内错角相等,两直线平行)故答案为:(已知);BCD ∠;两直线平行,内错角相等;(已知);BCD ∠;2∠;等式性质;EBC ∠;FCB ∠;内错角相等,两直线平行.【点睛】本题考查了平行线的判定与性质等知识点,熟记判定与性质是解题关键.27.(1)mn =6、2m ﹣n =3;(2)33.【解析】【分析】(1)由已知等式利用幂的运算法则得出a mn =a 6、a 2m-n =a 3,据此可得答案; (2)将mn 、2m-n 的值代入4m 2+n 2=(2m-n )2+4mn 计算可得.【详解】解:(1)∠(a m )n =a 6,(a m )2÷a n =a 3,∠a mn =a 6、a 2m ﹣n =a 3,则mn =6、2m ﹣n =3;(2)当mn =6、2m ﹣n =3时,4m 2+n 2=(2m ﹣n )2+4mn =32+4×6=9+24=33.【点睛】本题主要考查幂的运算,解题的关键是掌握幂的乘方与同底数幂的除法的运算法则.28.(1)31x - 41x -(2)11n x +-(3)100312-【解析】【分析】(1)根据多项式乘以多项式的法则进行计算即可;(2)观察式子特点可得规律(1-x )(1+x+x 2+…+xn )=11n x +-;(3)根据(2)中的规律先计算(1-3)(399+398+397…+32+3+1)的值,即可求得结果.【详解】解:(1)(1-x )(1+x+x 2)=1+x+x 2- x-x 2- x 3=31x-;(1-x)(1+x+x2+x3)=41x-;(2)猜想:(1-x)(1+x+x2+…+xn)=11n x+-;(3)∠(1-3)(399+398+397…+32+3+1)= 10013-∠399+398+397…+32+3+1=100 31 2-【点睛】本题考查了有特定规律的整式乘法,按法则进行计算并观察得到规律是解题的关键.29.(1)1l;(2)小凡,10;(3)小光,10;(4)34;(5)小凡从学校到图书馆的平均速度是10千米/小时,小光从学校到图书馆的平均速度是7.5千米/小时.【解析】【分析】(1)根据小凡在中途停留一段时间,结合函数图象即可得出答案;(2)观察函数图象的时间轴,根据出发时间不同即可得出答案;(3)观察函数图象的时间轴,根据到达时间不同即可得出答案;(4)先求出小光的速度,再求路程为3千米时小光所用的时间,再加上小凡先出发的10分钟,即可得出答案;(5)根据公式“平均速度=总路程÷总时间”计算即可得出答案.【详解】解:(1)由图可得:l1和l2中,l1描述小凡的运动过程.故答案为:l1;(2)由图可得:小凡先出发,先出发了10分钟.故答案为:小凡,10;(3)由图可得:小光先到达图书馆,先到了60﹣50=10(分钟).故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)18=千米/分钟,小光所走的路程为3千米时,用的时间为:318÷=24(分钟),∠当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇.故答案为:34;(5)小凡的速度为:()520605060=+-10(千米/小时), 小光的速度为:5501060=-7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.【点睛】本题考查的是函数的图象问题,认真观察图象、找出数量关系是解决本题的关键.。

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

第二学期期中达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列图形中,∠1与∠2是同旁内角的是()2.下列计算正确的是()A.(a3)4=a12B.a3·a5=a15C.(x2y)3=x6y D.a6÷a3=a23.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2是() A.50°B.100°C.130°D.150°(第3题) (第4题)(第5题)(第7题)4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2 D.∠3=∠45.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒6.已知(a+b)2=40,(a-b)2=60,则a2+b2的值为()A.40 B.50 C.60 D.1007.甲骑自行车从A地到B地,乙骑电动车从B地到A地,两人同时出发,匀速行驶,各自到达终点后停止运动.设甲、乙两人间的距离为s(单位:m),甲行驶的时间为t(单位:min),s与t之间的关系如图所示,则下列结论中不正确的是()A.出发30 min时,甲、乙同时到达终点B.出发15 min时,乙比甲多行驶了3 000 mC.出发10 min时,甲、乙在途中相遇D.乙的速度是甲的速度的两倍8.如图,有两个正方形A,B.现将B放在A的内部得图①,将A,B并列放置后,构造新的正方形得图②.图①和图②中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B如图③摆放,则图③中阴影部分的面积为()(第8题)A.28 B.29 C.30 D.31二、填空题(共5小题,每小题3分,计15分)9.近来,中国芯片技术获得重大突破,7 nm芯片已经量产,已知7 nm=0.000 000 7cm,则0.000 000 7用科学记数法表示为____________.10.已知某地的地面气温是20 ℃,如果每升高1 000 m气温下降6 ℃,则气温t(℃)与高度h(m)的函数关系式为________________.11.已知2x+y-4=0,则4x·2y的值是__________.12.如图,一块含有30°角的直角三角板,两个顶点分别在直尺的一对平行边上,∠α=110°,则∠β=________°.(第12题)(第13题)13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设两正3 方形的面积分别为S 1,S 2.若AB =9,两正方形的面积和为51,则图中阴影部分的面积为__________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)化简:(1)(-x 2)3÷(-2x 3)·x 3; (2)(-2a 2)(4ab -ab 2+1).15.(5分)计算: (1)-12 024+2 0242-2 025×2 023;(2)(2 023-π)0-|-4|+⎝ ⎛⎭⎪⎫-12-3.16.(5分)先化简,再求值:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x ,其中x =1,y =-2.17.(5分)已知x+y=6,xy=4,求下列各式的值:(1)(x-3)(y-3);(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3).18.(5分)如图,已知∠α.请你用直尺和圆规画一个∠BAC,使得∠BAC=∠α.(要求:保留作图痕迹,不写作法)(第18题)19.(5分)一种大豆的总售价y(元)与所售质量x(千克)之间的关系如下表所示:所售质量x(千克)00.51 1.5总售价y(元)012 3(1)按表中给出的信息,写出y与x的关系式;(2)当售出大豆的质量为20千克时,总售价是多少?20.(5分)如图,已知直线EF⊥MN,垂足为F,且∠1=138°,若AB∥CD,求∠2的度数.(第20题)21.(6分)如图,已知AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥DA,且EF交AB于点G.试说明∠AGF=∠F.5(第21题)22.(7分)如图,直线MN分别与直线AC,DG交于点B,F,且∠1=∠2.∠ABF 的平分线BE交直线DG于点E,∠BFG的平分线FC交直线AC于点C.(第22题)(1)试说明BE∥CF;(2)若∠C=35°,求∠BED的度数.23.(7分)如图,直线AB,CD相交于点O,OM⊥AB.(第23题)(1)若∠1=30°,求∠BOD的度数;(2)如果∠1=∠2,那么ON与CD互相垂直吗?请说明理由.24.(8分)如图表示的是李军从家到超市的时间与他离家的距离之间的关系.观察图象并回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)李军到达超市用了多少时间?(3)李军出发的第20 min到第30 min内可能在做什么?(4)李军从家到超市的平均速度是多少?返回时的平均速度是什么?(第24题)725.(8分)已知动点P从点A出发沿图①的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的三角形AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图②,若AH=2 cm,根据图象信息回答下列问题:(第25题)(1)图①中AB=________cm;(2)图②中n=________;(3)求三角形AHP面积的最大值.26.(10分)如图①,已知直线CD∥EF,点A,B分别在直线CD,直线EF上,P 为两平行线间的一点.(第26题)(1)猜想∠DAP,∠FBP,∠APB之间有什么数量关系?并说明理由;(2)利用(1)的结论解答:①如图②,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠P与∠P1的数量关系,不需要说明理由;②如图③,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=α,求∠AP2B的大小(用含α的代数式表示).9答案一、1.B 2.A 3.A 4.A 5.D 6.B 7.A8.B 点拨:设正方形A ,B 的边长各为a ,b (a >b ),得图①中阴影部分的面积为(a -b )2=a 2-2ab +b 2=1,解得a -b =1或a -b =-1(舍去),图②中阴影部分的面积为(a +b )2-(a 2+b 2)=2ab =12.所以(a +b )2=a 2+2ab +b 2=a 2-2ab +b 2+4ab =(a -b )2+4ab =1+2×12=25,解得a +b =5或a +b =-5(舍去),所以图③中阴影部分的面积为(2a +b )2-(3a 2+2b 2)=a 2+4ab -b 2=(a +b )·(a -b )+2×2ab =5×1+2×12=5+24=29,故选B. 二、9.7×10-7 10.t =-0.006h +20 11.16 12.5013.152 点拨:设AC =m ,CF =n ,因为AB =9,所以m +n =9,又因为S 1+S 2=51,所以m 2+n 2=51,由完全平方公式可得,(m +n )2=m 2+2mn +n 2,所以92=51+2mn ,所以mn =15,所以S 阴影部分=12mn =152,即阴影部分的面积为152. 三、14.解:(1)原式=-x 6÷(-2x 3)·x 3=12x 6-3+3 =12x 6.(2)原式=-2a 2·4ab +2a 2·ab 2-2a 2·1 =-8a 3b +2a 3b 2-2a 2.15.解:(1)原式=-1+2 0242-(2 024+1)(2 024-1)=-1+2 0242-(2 0242-1) =-1+2 0242-2 0242+1 =0.(2)原式=1-4-8 =-11.16.解:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x=(3x 2+3xy -xy -y 2-x 2-4xy -4y 2+5y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x=1,y=-2时,原式=1-(-2)=3.17.解:(1)(x-3)(y-3)=xy-3x-3y+9=xy-3(x+y)+9=4-3×6+9=-5.(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3)=(2x-y)[(2x-y)-(2x+y)]÷(-2y)-xy+3y=(2x-y)(-2y)÷(-2y)-xy+3y=2x-y-xy+3y=2(x+y)-xy=2×6-4=8.18.解:如图所示,∠BAC即为所求.(第18题)19.解:(1)表格中反映的是大豆所售质量x(千克)与总售价y(元)之间的关系,大豆所售质量x(千克)是自变量,总售价y(元)是因变量,y与x之间的关系式为y=2x.(2)由关系式可知,当售出大豆的质量为20千克时,y=2×20=40,所以当售出大豆的质量为20千克时,总售价是40元.20.解:若AB∥CD,则∠BFG=∠DGN,由题知∠1=138°,∠1+∠DGN=180°,所以∠DGN=42°.所以∠BFG=∠DGN=42°.因为EF⊥MN,所以∠2+∠BFG=90°,11所以∠2=90°-∠BFG=90°-42°=48°. 21.解:因为AD是∠BAC的平分线,所以∠BAD=∠CAD,因为EF∥DA,所以∠AGF=∠BAD,∠F=∠CAD,所以∠AGF=∠F.22.解:(1)因为∠1=∠2,∠2=∠BFG,所以∠1=∠BFG,所以AC∥DG,所以∠ABF=∠BFG.因为BE,FC分别为∠ABF,∠BFG的平分线,所以∠EBF=12∠ABF,∠CFB=12∠BFG,所以∠EBF=∠CFB,所以BE∥CF.(2)由题意知,AC∥DG,∠C=35°,所以∠C=∠CFG=35°,又因为BE∥CF,所以∠BEG=∠CFG=35°,故∠BED=180°-∠BEG=145°.23.解:(1)因为OM⊥AB,所以∠AOM=90°,又因为∠1=30°,所以∠AOC=∠AOM-∠1=90°-30°=60°,因为∠BOD=∠AOC,所以∠BOD=60°.(2)ON⊥CD.理由:因为∠1+∠AOC=90°,∠1=∠2,所以∠2+∠AOC=90°,即∠CON=90°,所以ON⊥CD.24.解:(1)图象表示的是李军从家到超市的时间与他离家的距离两个变量之间的关系,时间为自变量,离家的距离为因变量.(2)由图象可知,李军到达超市用了20 min.(3)可能在超市选购商品.(答案不唯一).(4)李军从家到超市的平均速度是90020=45(m/min),返回时的平均速度是90045-30=60(m/min).25.解:(1)3(2)26(3)由图象可得,当0<x≤3时,点P在AB上运动;当3<x≤5时,点P在BC上运动;当5<x≤11时,点P在CD上运动;当11<x≤17时,点P在DE上运动;当17<x≤30时,点P在EF上运动.所以点P在DE上运动时,三角形AHP的面积最大,即12×2×(11-2)=9(cm2).所以△AHP面积的最大值为9 cm2.26.解:(1)∠APB=∠DAP+∠FBP,理由如下:过点P作MP∥CD,如图,(第26题) 所以∠APM=∠DAP,因为CD∥EF,所以MP∥EF,所以∠MPB=∠FBP,所以∠APM+∠MPB=∠DAP+∠FBP.即∠APB=∠DAP+∠FBP.(2)①∠P=2∠P1.②由(1)得∠APB=∠DAP+∠FBP,13同理可得∠AP 2B =∠CAP 2+∠EBP 2, 因为AP 2,BP 2分别平分∠CAP ,∠EBP ,所以∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP , 所以∠AP 2B =12∠CAP +12∠EBP=12(180°-∠DAP )+12(180°-∠FBP )=180°-12(∠DAP +∠FBP ) =180°-12∠APB =180°-12α.。

北师大版七年级数学下册期中检测试卷及参考答案【优质】

北师大版七年级数学下册期中检测试卷及参考答案【优质】

(北师大版)七年级数学下册期中检测试卷及答案说明:本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟 一、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选 项1. 结果为a 2的式子是(▲) B. a ?a C. (a --1) 2 D. a 4-aJa 22. 如图,AB // CD,DB 丄BC, /仁40°则/ 2的度数是(▲)3.已知三角形的两边长分别为 4和9,则下列长度的四条线段中能作为第三边的是(▲)A.13B.6C.5D.44. 如果(x —5)(2 x+m )的积中不含x 的一次项,则m 的值是(▲) 2 25.若 m+n =3,则 2m +4mn+2n -6 的值为( A.40 B.50C.60D.140A. a 6-a 3A.5B.-10C.-5D.10A.12B.6C.3D.06.如图,过/ AOB 边OB 上一点C 作OA 的平行线,以C 为顶点 的角与/ AOB 的关系是(▲)A.相等B.互补C.相等或互补D.不能确定二、填空题(本大题共 8个小题,每小题3分,共24分)7. 已知/的余角的3倍等于它的补角,则/=_28. 计算:(1)2013 (3)01=2 ;29. 如果多项式x +mx+9是一个完全平方式,则m = 10.把一块含30°角的直角三角板放在两平行直线上1+ /2=11.三角形的三边长为 3、a 、7,且三角形的周长能被 12.如图,AB 与CD 相交于点 O, OA=OC,还需增加一个条件: 可得△ AOD ◎△ COB(AAS);13. AD 是厶ABC 的边BC 上的中线,AB=12, AC=8,那么中线 AD 的取值范围 14.观察烟花燃放图形,找规律,如图,则/ 5整除,则 a =■# *去*★ ** ** ★****尊2几岳季依此规律,第9个图形中共有个^C、F 在BE 上,/ A= / D, AB// DE , BF=EC.AB=DE.四、(本大题共2小题,每小题8分,共16 分)19・先化简,再求值:2x y 2 y y , 4x 8xy 2x其中x 2, y2.三、解答题(本大题共4小题,每小题6分,共24 分)15.计算: a23a4 a216.计算:(2y 3)(2y 3) (4y 1)(y 5)17. 如图,/ ABC= / BCD, /仁/ 2,请问图中有几对平行线?并说明理由18.如图,求证:解:解:20. 如图,直线CD与直线AB相交于点C,根据下列语句画图(注:可利用三角尺画图, 要保持图形清晰)(1) 过点P作PQ // AB,交CD于点Q;过点P作PR丄CD,垂足为R;(2) 若/ DCB=120°则/ QPR是多少度?并说明理由.解:五、(本大题共2小题,每小题9分,共18 分)21. 如图,已知AB=AE,BC=ED, / B= / E, AF 丄CD, F 为垂足,求证:⑴AC=AD ;(2) CF=DF.解:22. 如图,在边长为1的方格纸中,△ PQR的三个顶点及A、B、C、D、E五个点都在小方格的格点上,现以A、B、C、D、E中的三个点为顶点画三角形.(1) 请在图1中画出与厶PQR 全等的三角形;⑵ 请在图2中画出与厶PQR 面积相等但不全等的三角形;(3) 顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积六、(本大题共2个小题,每小题10分,共20分)23. 如图①是一个长为2a,宽为2b 的长方形纸片,其长方形的面积显然为 4ab,现将此长方 形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形•(1) 图②中阴影正方形 EFGH 的边长为: ____________________ ; (2) 观察图②,代数式(a -b)2表示哪个图形的面积?代数式 (a+b)2呢? (3) 用两种不同方法表示图②中的阴影正方形EFGH 的面积,并写出关于代数式2 2(a+b)、(a - b)和4ab 之间的等量关系;(4)根据⑶ 题中的等量关系,解决如下问题:若a+b=7, ab=5,求:(a - b)2的值. 解:24. 如图(1)线段AB 、CD 相交于点O,连接AD 、CB .如图(2),在图(1)的条件下,/ DAB 和/ BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于 M 、N . 试解答下列问题::HGT解:图2(1) 在图(1)中,请直接写出/ A、/ B、/ C、/ D之间的等量关系;(2) 在图(2)中,若/ D=40° , / B=30°试求/ P的度数;(写出解答过程)(3) 如果图⑵ 中,/ D和/ B为任意角,其他条件不变,试写出/ P与/ D、/ B之间数量关系.(直接写出结论即可)解:参考答案一、选择题匚本大题共6小题,每小謳書分,共诒分〉1-6 BRBDAC二、填空题C本大题共&个小题:每;、题3分奚24井;7. 45s 8.-5 氏土5 W.150" 11. 6 12. / J=Z5 : 不唯一)13.2<AD<10 14.20三、解答题口:大题拄斗小题,每小遜3分,共2d分)L乩解;原式=(/士解* 4/-g-i4y+20rr1工解:有两对』分别是=ABZ/CD^EB/^餌〔’乙ABO乙BCD, Z.AB//CD■-■Z1-Z2, /. ZABC- Z1=ZBCD— Z\ :jZEBO7^CB a/.EB//CF18.S¥: JAB//DE/- Z^-ZZ :匕£C 二BF-FJEC+FC即BOET「£▲亠ZD在AJ5C和△口£尸中■/;ZB=二E /.AxfiC^AZ?^ (AAS)r\AB=DE.BC = ir四、(本大题共2个小题,每小题各8分,共16分)I ” , 2 2 2 219.解:原式=[4 x +4xy+y - y -4 xy-8 xy]十2x=[4 x -8 xy]= 2x-4 y 当x=2, y=-2 时,原式=4+8= 1220.解:⑴见图(2) / QPR=30°五、(本大题共2小题,每小题9分,共18分)21.解:(1) •/ AB=AE, BC=ED,/ B=Z E•••△ABC ◎△ AED ••• AC=AD(2)由<1)可知:△貝O是等腰三用把'.■ F是CD的中点,即刘是等臃厶4G的中线,/■ -4FJ J (三戋合一)22.解:(1)、(刃图略』(注:;以上均有两种情况丿⑶封酣團形的面^-15 -(方眩多种牡、这里7—一给出」2天、{本大題共2吓小題,毎小謳怕井「\ 20 5>)(1)a-b⑵(我®';表示正.方形仙3的面积也-卵V;示正方形EFW的面积(阴影部分)⑶ 方法1:正方形咬昭円的面积=(ir矿方袪2:正方形£尸前的面积=正方JbABCD的面帶L长方形的面积=(丈孩)‘-4曲…等章关尹;3-白)卞f丈创J奴占⑷;富坟二(矿也)"=广-4呻=知24.解:(1)/ A+Z D= / B+Z C (2)由(1)可知,/ 1 + Z D= / 3+Z P, / 2+ / P=Z 4+ / B •••/ 1 —Z 3=Z P—Z D, Z 2 —Z 4=Z B—Z P 又T AP、CP 分别平分Z DAB 和Z BCD• Z 1 = Z 2, Z 3= Z 4 •••/ P—Z D= Z B — Z P 即2Z P=Z B+ Z D •/P= (40°30°-2=35°.(3) 2Z P=Z B+ Z D .。

北师大七年级下册期中数学试卷(有答案)

北师大七年级下册期中数学试卷(有答案)

七年级(下)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一项符合题目要求.1.计算2﹣2的结果是()A.4B.﹣4C.D.﹣2.下列说法正确的是()A.同旁内角互补B.在同一平面内,若a⊥b,b⊥c,则a⊥cC.对顶角相等D.一个角的补角一定是钝角3.下列运算正确的是()A.a﹣3÷a﹣5=a2B.(3a2)3=9a5C.(x﹣1)(1﹣x)=x2﹣1D.(a+b)2=a2+b24.如图,直线a、b被直线c所截,下列条件:(1)∠1=∠3;(2)∠3=∠4;(3)∠1=∠4;(4)∠2+∠4=180°,其中能判定a∥b的有()A.1个B.2个C.3个D.4个5.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为()A.3.5×10﹣6米B.3.5×10﹣5米C.35×1013米D.3.5×1013米6.出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(克)与月龄x(月)间的关系可以用y =a+700x来表示,其中a是婴儿出生时的体重,一个要儿出生时的体重是3000克,这个婴儿第4个月的体重为()A.6000克B.5800克C.5000克D.5100克7.如图,点O在直线AB上,OC⊥AB,∠DOE=90°,则∠AOD的余角是()A.∠COD B.∠COE C.∠COE和∠COD D.∠COD和∠BOE8.按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为()A.y=6x B.y=4x﹣2C.y=5x﹣1D.y=4x+29.小明看到了一首诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,读完后,他想用图象描述这首诗的内容,如果用纵轴表示父亲与儿子行进中离家的距离,横轴表示父亲离家的时间,那么下列图象中大致符合这首诗含义的是()A.B.C.D.10.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a二、填空题(本大题共5个小题,每小题3分,共15分)把答案写在题中横线上11.计算(﹣x3)2的结果是.12.如图,AB∥CD,射线AE交CD于点F,若∠1=116°,则∠2的度数等于.13.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:x/km1234Y/℃5590125160根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为km.14.如图中阴影部分的面积等于.15.南宋数学家杨辉在研究(a+b)n展开式各项的系数时,采用了特殊到一般的方法,他将(a+b)0,(a+b)1,(a+b)2,(a+b)3,…,展开后各项的系数画成如图所示的三角阵,在数学上称之为杨辉三角.已知(a+b)0=1,(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3.按杨辉三角写出(a+b)5的展开式是.三、解答题(本大题共8个小题,共55分)解答应写出必要的文字说明、演算步骤或推理过程16.(10分)计算(1)(﹣3x2y)2•(6xy3)÷(9x3y4)(2)(x﹣y)(x+y)﹣4y(x﹣y)17.(5分)先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.18.(4分)如图,填空并填写理由:(1)因为∠1=∠2所以AD∥BC(2)因为∠A+∠ABC=180°,所以AD∥BC(3)因为∥所以∠C+∠ABC=180°°(两直线平行,同旁内角互补)(4)因为∥所以∠3=∠C(两直线平行,同位角相等)19.(4分)如图,已知点M在射线ON上,∠α,∠β.从A、B两题中任选一题完成尺规作图:A.求作∠POM,使得∠POM=∠α+∠βB.求作点P,使得∠POM=∠α,∠PMO=∠β要求:不写作法,保留作图痕迹,标明字母.20.(6分)根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a+b)(a+b)=2a2+3ab+b2可以用图(1)表示(1)根据图(2),写出一个多项式乘以多项式的等式;(2)从A,B两题中任选一题作答:A.请画出一个几何图形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上图标明相应的字母;B.请画出一个几何图形,表示(x﹣p)(x﹣q)=x2﹣(p+q)x+pq,并仿照上图标明相应的字母.21.(6分)如图,AD⊥BC于点D,EF⊥BC于点F,∠BDG=∠C.试说明∠1=∠2.22.(10分)小明骑自行车上学,某天他从家出发骑行了一段路程,想起要买一本书,于是折回到他刚经过的某书店,买到书后继续去学校.以下是他在本次上学离家的距离与所用的时间的关系示意图,根据图中提供的信息解答下列问题:(1)小明家与学校的距离是米.(2)小明在书店停留了多少分钟?(3)从A,B两题中任选一题作答:A.小明骑行过程中哪个时间段的速度最快,最快的速度是多少?B.小明在这次上学过程中的平均速度是多少?23.(10分)问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG等于(用含α的式子表示).七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一项符合题目要求.1.计算2﹣2的结果是()A.4B.﹣4C.D.﹣【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式==.故选:C.【点评】幂的负整数指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.2.下列说法正确的是()A.同旁内角互补B.在同一平面内,若a⊥b,b⊥c,则a⊥cC.对顶角相等D.一个角的补角一定是钝角【分析】根据平行线的判定和性质判断即可.【解答】解:A、两直线平行,同旁内角互补,错误;B、在同一平面内,若a⊥b,b⊥c,则a∥c,错误;C、对顶角相等,正确;D、一个角的补角不一定是钝角,如钝角的补角是锐角,错误;故选:C.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.3.下列运算正确的是()A.a﹣3÷a﹣5=a2B.(3a2)3=9a5C.(x﹣1)(1﹣x)=x2﹣1D.(a+b)2=a2+b2【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、a﹣3÷a﹣5=a2,故此选项正确;B、(3a2)3=27a6,故此选项错误;C、(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:A.【点评】此题主要考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题关键.4.如图,直线a、b被直线c所截,下列条件:(1)∠1=∠3;(2)∠3=∠4;(3)∠1=∠4;(4)∠2+∠4=180°,其中能判定a∥b的有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定方法,对选项一一分析,排除错误答案.【解答】解:(1)∵∠1=∠3,∴a∥b(同位角相等,两直线平行);(3)∠3与∠4是对顶角,无法判断两直线平行;(2)∵∠3=∠4(对顶角相等),又∵∠1=∠4,∴∠1=∠3,∴a∥b(同位角相等,两直线平行);(4)∵∠2+∠4=180°,∠1+∠2=180°,∠3=∠4,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故选:C.【点评】考查了平行线的判定,在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.5.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为()A.3.5×10﹣6米B.3.5×10﹣5米C.35×1013米D.3.5×1013米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(克)与月龄x(月)间的关系可以用y =a+700x来表示,其中a是婴儿出生时的体重,一个要儿出生时的体重是3000克,这个婴儿第4个月的体重为()A.6000克B.5800克C.5000克D.5100克【分析】直接利用函数关系式,把a,x的值代入进而得出答案.【解答】解:由题意可得:y=3000+700x,当x=4时,y=3000+2800=5800(克).故选:B.【点评】此题主要考查了函数值,正确得出a,x的值是解题关键.7.如图,点O在直线AB上,OC⊥AB,∠DOE=90°,则∠AOD的余角是()A.∠COD B.∠COE C.∠COE和∠COD D.∠COD和∠BOE【分析】根据余角的意义求解即可.【解答】解:∵OC⊥AB,∠AOC=90°,∠AOD+∠COD=90°,∠AOD+∠BOE=90°,∴∠AOD的余角是∠COD或∠BOE.故选:D.【点评】本题考查了垂线,利用余角的意义求解是解题关键.8.按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为()A.y=6x B.y=4x﹣2C.y=5x﹣1D.y=4x+2【分析】第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x张餐桌共有6+4(x﹣1)=4x+2.【解答】解:有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x张餐桌共有y=6+4(x﹣1)=4x+2.故选:D.【点评】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律解决问题.9.小明看到了一首诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,读完后,他想用图象描述这首诗的内容,如果用纵轴表示父亲与儿子行进中离家的距离,横轴表示父亲离家的时间,那么下列图象中大致符合这首诗含义的是()A.B.C.D.【分析】由题意得,父亲先到车站到,那么距离家的距离将不再变化,说明父亲行走的函数图象肯定先与x轴平行.【解答】解:根据父亲离家的距离在这个过程中分为3段,先远后不变最后到家,儿子离家的路程也分为3段.故选:C.【点评】此题考查函数图象问题,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.10.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a【分析】先把81,27,9转化为底数为3的幂,再根据幂的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.【解答】解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选:A.【点评】变形为同底数幂的形式,再比较大小,可使计算简便.二、填空题(本大题共5个小题,每小题3分,共15分)把答案写在题中横线上11.计算(﹣x3)2的结果是x6.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(﹣x3)2=x6.故答案为:x6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.12.如图,AB∥CD,射线AE交CD于点F,若∠1=116°,则∠2的度数等于64°.【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.【解答】解:∵AB∥CD,∴∠1+∠AFD=180°,∵∠1=116°,∴∠AFD=64°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=64°,故答案为:64°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.13.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:x/km1234Y/℃5590125160根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为6km.【分析】直接利用根据题意得出函数解析式,进而得出x的值.【解答】解:设Y=kx+b,则把(1,55),(2,90)代入得:,解得:,故Y=35k+20,则当Y=230时,230=35x+20,解得:x=6,故答案为:6.【点评】此题主要考查了函数的表示方法,正确得出函数解析式是解题关键.14.如图中阴影部分的面积等于4a2+2ab+3b2.【分析】直接利用整体面积减去空白面积进而得出答案.【解答】解:由题意可得,阴影部分的面积=(a+a+3b)×(2a+b)﹣2a×3b=4a2+2ab+3b2.故答案为:4a2+2ab+3b2.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15.南宋数学家杨辉在研究(a+b)n展开式各项的系数时,采用了特殊到一般的方法,他将(a+b)0,(a+b)1,(a+b)2,(a+b)3,…,展开后各项的系数画成如图所示的三角阵,在数学上称之为杨辉三角.已知(a+b)0=1,(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3.按杨辉三角写出(a+b)5的展开式是a5+5a4b+10a3b2+10a2b3+5ab4+b5.【分析】根据杨辉三角确定出展开项系数,写出展开式即可.【解答】解:根据题意得:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共8个小题,共55分)解答应写出必要的文字说明、演算步骤或推理过程16.(10分)计算(1)(﹣3x2y)2•(6xy3)÷(9x3y4)(2)(x﹣y)(x+y)﹣4y(x﹣y)【分析】(1)先计算乘方,再计算乘法,最后计算除法即可;(2)先计算多项式乘多项式、单项式乘多项式,再合并同类项即可得.【解答】解:(1)原式=9x4y2•(6xy3)÷(9x3y4)=54x5y5•÷(9x3y4)=6x2y;(2)原式=x2﹣y2﹣4xy+4y2=x2+3y2﹣4xy.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.17.(5分)先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.【分析】根据完全平方公式、单项式乘多项式的法则把原式进行化简,代入已知数据计算即可.【解答】解:原式=x2﹣4xy+4y2﹣x2﹣3xy)﹣4y2=﹣7xy,当x=﹣4,y=时,原式=﹣7×(﹣4)×=14.【点评】本题考查的是单项式乘多项式,掌握完全平方公式、单项式乘多项式的法则是解题的关键.18.(4分)如图,填空并填写理由:(1)因为∠1=∠2所以AD∥BC内错角相等,两直线平行(2)因为∠A+∠ABC=180°,所以AD∥BC同旁内角互补,两直线平行(3)因为DC∥AB所以∠C+∠ABC=180°°(两直线平行,同旁内角互补)(4)因为AD∥BC所以∠3=∠C(两直线平行,同位角相等)【分析】利用平行线的性质和判定解答即可.【解答】解:(1)因为∠1=∠2所以AD∥BC(内错角相等,两直线平行)(2)因为∠A+∠ABC=180°,所以AD∥BC(同旁内角互补,两直线平行)(3)因为DC∥AB,所以∠C+∠ABC=180°°(两直线平行,同旁内角互补)(4)因为AD∥BC所以∠3=∠C(两直线平行,同位角相等)故答案为:内错角相等,两直线平行;同旁内角互补,两直线平行;DC;AB;AD;BC.【点评】考查的是平行线的性质及判定,熟记定理是正确解题的关键.19.(4分)如图,已知点M在射线ON上,∠α,∠β.从A、B两题中任选一题完成尺规作图:A.求作∠POM,使得∠POM=∠α+∠βB.求作点P,使得∠POM=∠α,∠PMO=∠β要求:不写作法,保留作图痕迹,标明字母.【分析】A:如图作∠NOQ=α,∠QOP=β即可;B:如图在直线OM上方,作∠POM=∠α,∠PMO=∠β即可;【解答】解:A、∠POM如图所示:B、点P如图所示:【点评】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.20.(6分)根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a+b)(a+b)=2a2+3ab+b2可以用图(1)表示(1)根据图(2),写出一个多项式乘以多项式的等式;(2)从A,B两题中任选一题作答:A.请画出一个几何图形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上图标明相应的字母;B.请画出一个几何图形,表示(x﹣p)(x﹣q)=x2﹣(p+q)x+pq,并仿照上图标明相应的字母.【分析】(1)利用长方形的面积公式列式,根据多项式法则进行计算;(2)仿照图(2)画图确定长方形的边长.【解答】解:(1)由图2可得等式:(a+2b)(2a+b)=2a2+5ab+2b2;(1)A、画出的图形如下:B、【点评】本题考查了多项式乘多项式、长方形的面积,正确利用图形结合面积求出是解题关键.21.(6分)如图,AD⊥BC于点D,EF⊥BC于点F,∠BDG=∠C.试说明∠1=∠2.【分析】根据垂直的定义及互余的性质解答即可.【解答】解:∵AD⊥BC于点D,EF⊥BC于点F,∴∠ADB=∠FEC=90°,∵∠BDG=∠C,∵∠2+∠BDG=90°,∠1+∠C=90°,∴∠1=∠2.【点评】本题主要考查垂直的定义及互余的性质,利用垂直的定义得到∠ADB=∠FEC=90°是解题的关键22.(10分)小明骑自行车上学,某天他从家出发骑行了一段路程,想起要买一本书,于是折回到他刚经过的某书店,买到书后继续去学校.以下是他在本次上学离家的距离与所用的时间的关系示意图,根据图中提供的信息解答下列问题:(1)小明家与学校的距离是1500米.(2)小明在书店停留了多少分钟?(3)从A,B两题中任选一题作答:A.小明骑行过程中哪个时间段的速度最快,最快的速度是多少?B.小明在这次上学过程中的平均速度是多少?【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以解答本题;(3)根据题意可以分别对选择A和B进行作答.【解答】解:(1)由图可得,小明家与学校的距离是1500米,故答案为:1500;(2)由图可得,小明在书店停留了12﹣8=4(分钟),即小明在书店停留了4分钟;(3)选A:设小明骑行的时间为t,路程为S,当0<t≤1200时,速度为:1200÷6=200米/分钟,当6<t≤8时,速度为:(1200﹣600)÷(8﹣6)=300米/分钟,当12≤t≤14时,速度为:(1500﹣600)÷(14﹣12)=450米/分钟,∴小明骑行过程中在12﹣14分钟这个时间段内速度最快,最快速度是450米/分钟;选B:小明在这次上学过程中的平均速度是:1500÷14=米/分钟,即小明在这次上学过程中的平均速度是米/分钟.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(10分)问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG等于60°﹣α(用含α的式子表示).【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD=(180°﹣60°)=40°,进而得到∠1=40°;(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;(3)依据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【解答】解:(1)如图1,∵AB∥CD,∴∠1=∠EGD,又∵∠2=2∠1,∴∠2=2∠EGD,又∵∠FGE=60°,∴∠EGD=(180°﹣60°)=40°,∴∠1=40°;(2)如图2,∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°,又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3,∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°,又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.。

初一下学期期中考试数学试卷含答案(北师大版)

初一下学期期中考试数学试卷含答案(北师大版)

初一第二学期数学期中考试试题考试时间:120分钟一、选择题(3分*10=30分)1. 下列图形不能够折叠成正方体的是( )A B C D2. 下列式子:,,,,,0中,整式有( )A. 6个B. 5个C. 4个D. 3个3. 若|m|=4,|n|=2,且m>n,则的值为( )A. 16B. 16或-16C. 8或-8D. 84. 某商品进价为元/件,商店的售价比进价高30%,在销售旺季过后,商店又以8折(即售价的80%)优惠开展促销活动,这时一件商品的售价为 ( ).A. 元B. 元C. 元D. 元5. 学校小卖部货架上摆放着某品牌方便面,从三个方向看到的形状图如图,则货架上的方便面至少有( )A. 7盒B. 8盒C. 9盒D. 10盒6. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 43B. 45C. 51D. 537. 两个角的大小之比是7∶3,它们的差是72°,则这两个角的关系是( )A. 相等B. 互余C. 互补D. 无法确定8. 下列说法中正确的有( )①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=AC,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个9. 如图,把一条绳子折成3折,用剪刀从中间剪断,得到的绳子条数是( )A. 3B. 4C. 5D. 610. 时钟10时15分时,时针与分针所成的角是( )A. 112°30'B. 127°30'C. 127°50'D. 142°30'二、填空题(3分*8=24分)11. “x的2倍与5的和”用代数式表示为.12. 一个圆锥的底面直径为6m,高为10cm,则这个圆锥的体积是.(结果保留π)13. 如果x=1时,代数式2ax3+3bx+4的值是5,那么x=-1时,代数式2ax3+3bx+4的值是________.14. 平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b= ________.15. 已知点A,B,C三个点在同一条直线上,若线AB=8,BC=5,则线段AC= .16. 如图,将一副三角尺的直角顶点O重合,摆放在桌面上,若∠AOD=156°,则∠BOC= .17. 若∠AOB=45°,∠BOC=30°,则∠AOC= .18. 乘火车从A站出发,沿途经过3个车站方可到达B站,如果任意两站间的票价都不同,那么在A,B两站之间需要安排不同的车票种.三、解答题19. 化简求值(4分*2=8分)(1)ab 3+a 2b 3+2-2ab+3ab 3-a 2b 3+2ab-1,a=1,b=-1. (2)2,21),5238()5333(3122222=-=+-+-+-y x y xy x y xy x x 其中20. 已知一个长方体的长为4 cm,宽为3 cm,高为5 cm,请求出:(6分)(1)长方体所有棱长的和;(2)长方体的表面积.21. 若,求的值.(5分)22. 一个角的补角比它的余角的4倍还多15°,求这个角的大小.(5分)23. 关于x,y 的多项式不含二次项,求3a-5b 的值. (6分)24. 如图,试化简|c|-|c+b|+|c-a|-|b+a|.(6分)25. 如图,点C是线段AB的一个三等分点,点D在CB上,CD∶DB=17∶2,且CD-AC=3cm,求线段AB的长.(6分)26. 如图,由点O引出六条射线OA,OB,OC,OD,OE,OF,且AO⊥OB,OF平分∠BOC,OE 平分∠AOD,若∠EOF=170°,求∠COD的度数.(6分)27. 如图所示,OM是∠AOC的平分线,ON是∠BOC的平分线.(9分)(1)如果∠AOC=28°,∠MON=35°,求∠AOB的度数;(2)如果∠MON=n°(n>0),求∠AOB的度数;(3)如果∠MON的大小改变,∠AOB的度数是否随之改变?它们之间有怎样的关系?请写出来.28. 某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(9分)(1)若该客户按方案①购买,需付款多少元(用含x的代数式表示)?若该客户按方案②购买,需付款多少元(用含x的代数式表示)?(2)若x=30,通过计算说明此时按哪种方案购买较为合算?参考答案1. D2. C3. A4. D5. A6. C7. C8. B9. B 10. D11. 2x +5, 12. 30π cm3, 13. 3, 14. 4, 15. 13或3, 16. 24°17. 15°或75°,18. 2019. (1)原式=4ab3+1 当a=1,b=-1时,4×1×(-1)3+1=-3.(2)原式=-4xy+y2 ,原式=820.(1) 长方体所有棱长的和为(4+3+5)×4=48(cm).(2) 长方体的表面积为(4×5+3×5+3×4)×2=94(cm2).21. 因为,,又,所以,,解得,,所以.22. 设这个角为x,则它的补角为(180°-x),余角为(90°-x),由题意得:180°-x=4(90°-x)+15°,解得:x=65°,即这个角的度数为65°.23. 多项式不含有二次项,也就是二次项的系数为0.即3a +2=0,9a +10b=0,所以,所以3a-5b=-2-3=-5.24. 由题图可知c<b<0<a,且|c|>|a|>|b|,所以c+b<0,c-a<0,b+a>0,所以原式=-c+c+b-(c-a)-(b+a)=-c+c+b-c+a-b-a=-c.25. 设AC=x cm,因为点C是线段AB的三等分点,所以AB=3x cm, BC=2x cm,因为CD∶DB=17∶2,所以CD=BC=×2x=(cm),又因为CD-AC=3 cm,所以-x=3,解得x=,因此AB=3×=(cm).答:线段AB的长为cm.26. 因为OF平分∠BOC,OE平分∠AOD,所以∠EOF=∠COF+∠COD+∠EOD=∠BOC+∠AOD+∠COD,又因为AO⊥OB,所以∠AOB=90°,所以∠EOF=(∠BOC+∠AOD)+∠COD=(360°-90°-∠COD)+∠COD=170°,所以∠COD=70°.27.(1) 因为OM是∠AOC的平分线,∠AOC=28°,所以∠COM=∠AOC=14°.因为∠MON=35°,所以∠CON=∠MON-∠COM=35°-14°=21°.因为ON是∠BOC的平分线,所以∠BOC=2∠CON=2×21°=42°,所以∠AOB=∠AOC+∠BOC=28°+42°=70°.(2) 因为OM是∠AOC的平分线,ON是∠BOC的平分线,所以∠COM=∠AOC,∠CON=∠BOC,所以∠MON=∠COM+∠CON=∠AOC+∠BOC=(∠AOC+∠BOC)= ∠AOB.因为∠MON=n°,所以∠AOB=2∠MON=2n°.(3) 根据第2问的推导,如果∠MON的大小改变,∠AOB随之改变,∠AOB=2∠MON.28.(1) 若按方案①购买需付款:200×20+40(x-20)=(40x+3 200)(元);若按方案②购买需付款:(200×20+40x)×90%=(36x+3 600)(元).(2) 当x=30时,方案①:40x+3 200=40×30+3 200=4 400(元);方案②:36x+3 600=36×30+3 600=4 680(元).因为4 680元>4 400元,所以方案①较为合算.。

北师大版七年级数学第二学期期中试卷(含答案)

北师大版七年级数学第二学期期中试卷(含答案)

北师大版七年级数学第二学期期中试卷(考生注意:本卷满分100分,考试时间为100分钟)一.认真选一选(本大题共10个小题,每小题3分,共30分): 1.下列运算正确的是( ) A .a 3•a 2=a 6 B .(a 2)3=a 6 C .(ab )3=ab 3 D .a 8÷a 2=a 4 2.下列关系式中,正确..的是( ) A. ()222b 2ab a b a +-=+ B. ()222b a b a -=-C. ()()22b a b a b a -=-+D. ()222b a b a +=+ 3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行驶时间t (时)的关系用图象表示应为图中的( ) 4.若∠1与∠2是同旁内角,∠1=500,则∠2的度数是( ) (A )50° (B )130° (C )50°或130° (D )不能确定 5.在同一平面内,两直线的位置关系必是 ( ) A .相交 B .平行 C .相交或平行 D .垂直 6.已知粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,现从中任取一支粉笔,则取出白色粉笔的概率是( )A .B .C .D .7.下列事件中,属于必然事件的是( ) A .随意抛掷一枚骰子,掷得偶数点 B .从一副扑克牌抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生8.如图,下列条件中,能判定DE ∥AC 的是 ( )A .∠EDC=∠EFCB .∠AFE=∠ACDC .∠1=∠2D .∠3=∠49.把一块直尺与一块三角板如图放置,若∠1=40°,则 ∠2的度数为( )A .125°B .130°C .140°D .150°10.已知=+=--=22a ,6,5ab b b a 则( )A. 13B. 19C. 26D. 37二、仔细填一填:(每小题3分,共24分)11.一个角的补角是它的余角的4倍,则这个角是_________。

北师大版七年级下册数学《期中检测卷》含答案

北师大版七年级下册数学《期中检测卷》含答案
15.若x2+2ax+16是一个完全平方式,则a=____________.
16.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=________.
17.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=________.
18.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是___(只填序号)
三.解答题(本大题共7个小题,共66分,)
19.计算下列各题:
(1)(﹣1)2018+3﹣2﹣(π﹣3 14)0
(2)(x+3)2﹣x2
(3)(x+2)(3x﹣y)﹣3x(x+y)
8.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()
A. 线段PC的长是点C到直线PA的距离
B. 线段AC的长是点A到直线PC的距离
C.PA、PB、PC三条线段中,PB最短
D. 线段PB的长是点P到直线a的距离
[答案]B
[解析]
[分析]
利用点到直线的距离的定义、垂线段最短分析.
(4)(2x+y+1)(2x+y﹣1)
20.已知6x﹣5y=﹣10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.
21.在括号内填写理由.
已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB
证明:∵DG⊥BC,AC⊥BC

北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷及答案

北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷及答案

北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷第Ⅰ卷一、选择题(每小题3分,共30分)1.9的平方根是( ).A .B. C .3 D .±32.用不等式表示:x 的2倍与4的差是负数( ).A .042>-xB .042<-xC .0)4(2<-xD .024<-x3.已知a b <,则下列不等式中不正确的是( ).A .44a b <B .44a b +<+C .44a b -<-D .44a b -<-4.下列四个数中,无理数是( ).A .0.14B .117C. D .5.要调查下面几个问题,你认为不应做抽样调查的是( ).A .调查某电视剧的收视率;B .调查“神舟七号”飞船重要零部件的产品质量;C .调查一批炮弹的杀伤力;D .调查一片森林的树木有多少棵.6.下列命题正确的是( ).A .同位角相等;B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c ;C .相等的角是对顶角;D .在同一平面内,如果a //b ,b //c ,则a //c .7.如图所示,下列推理不正确的是( ).A .若1C ∠=∠,则//AE CDB .若2BAE ∠=∠,则//AB DEC .若180B BAD ∠+∠=︒,则//AD BCD .若180C ADC ∠+∠=︒,则//AE CD8.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向。

表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( ).A .景仁宫(4,2)B .养心殿(-2,3)C .保和殿(1,0)D .武英殿(-3.5,-4)9.如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG ,②为折线段AIG ,③为折线段AJHG .三条路的长依次为a 、b 、c ,则( ).A .a >b >cB .a =b >cC .a >c >bD .a =b <c10.对某校七年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( ).A .2.25B .2.5C .2.95D .3二、填空题:(每小题2分,共20分)11.27-的立方根是 .12.12-的相反数是 .13.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .14.若a 、b 为实数,且满足|a -2|0,则b -a 的值为 .15.已知点(38,1)P a a --,若点P 在y 轴上,则点P 的坐标为 .16.如图,a //b ,AC 分别交直线a 、b 于点B 、C ,AC ⊥CD ,若∠1=25°,则∠2= 度.17.若关于x 的方程7x +6-2a =5x 的解是负数,则a 的取值范围是 .18.若不等式组3x x a>⎧⎨>⎩的解集是3x >,则a 的取值范围是 .b a(第13题图)19.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间1~2分钟表示大于或等于1分钟而小于2分钟,其余类似),这个时间段内顾客等待时间低于3分钟的有 人.20.在平面直角坐标系中,点A 的坐标为(3,3),点B 在坐标轴上,6=∆AOB S , 则B 点的坐标为 .第Ⅱ卷三、解答题(共50分)21.(本题4分) 计算:+-22.(本题共8分) 解不等式(组) . (1) 求不等式5(1)2163x x -+-<的正整数解. (2)326532x x x x -≤+⎧⎪⎨+>⎪⎩. 23.(本题4分)作图题.(1)作线段BE ∥AD 交DC 于E ;(2)连接AC ,作直线BF ∥AC 交DC 的延长线于F ;(3)作线段AG ⊥DC 于G .24.(本题6分)如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2, ∠C =∠D ,求证:DF//AC .证明:∵∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),∴∠3=∠4(等量代换).∴________//________( ).∴∠C =∠ABD ( ).∵∠C =∠D ( ),∴∠D =________( ).∴AC//DF ( ).25.(本题6分)某商场去年前五个月销售额共计600万元.下表表示该商场去年前五个月的月销售额(统计信息不全).图①表示该商场服装部...各月销售额占.商场..当月销售额的百分比情况统计图. 商场月销售额统计表图① 图②(1)商场5月份的销售额是 万元;(2)服装部5月份的销售额是 万元;小明同学观察图①后认为,服装部5月份的销售额比服装部4月份的销售额减少了,你同意他的看法吗?请说明理由;单位:万元 服装部各月销售额占商场 当月销售额的百分比统计图 50%40% 30% 20% 1月 2月 3月 4月 月份 5月份服装部各卖区销售额 占5月份服装部销售额的百分比统计图答: .(3)在该商场服装部,下设A 、B 、C 、D 、E 五个卖区,图②表示在5月份,服装部各卖区销售额......占5月份服装部销售额的百分比情况统计图.则 卖区的销售额最高,销售额最高的卖区占5月份商场销售额的百分比是 .26.(本题5分)已知:ABC ∆的三个顶点坐标A (-2, 0),B (5,0),C (4,3),在平面直角坐标系中画出ABC ∆,并求ABC ∆的面积.27.(本题5分)列不等式解应用题:在一次奥运知识竞赛中,共有25道选择题,每道题的四个选项中,有且只有一个答案正确,选对得4分,不选或错选扣2分,如果得分不低于60分才能得奖,那么要得奖至少应答对多少道题?28.(本小题6分)已知:如图,EF ⊥BC ,AB // DG ,∠1=∠2. 求证:AD ⊥BC .29.(本小题6分)在平面直角坐标系中,△ABC 的三个顶点位置如图所示,点A '的坐标是(-2,2),现将△ABC 平移,使点A 移动到点A ',且点B ',C '分别是B ,C 的对应点.(1)请画出平移后的A B C '''∆(不写画法).并直接写出点B ',C '的坐标:B '( ),C '( ).(2)若三角形内部有一点P (a ,b ),则P 的对应点P '的坐标是P '( ).(3)如果坐标平面内有一点D ,使得以A B C D ,,,为顶点的四边形为平行四边形,请直接写出点D 的坐标.答: .四.附加题(本大题共20分,第30小题6分,第31、32小题各7分)30.如图,在平面直角坐标系中,一动点 从原点 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点 ,,,,则点9A 的坐标为 ,点 2018A 的坐标为 ,点 43n A +( 是自然数)的坐标为 .31. 作图题(不写作法)(1) 如图 1,一个牧童从 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线是一条河,,是两个村庄,欲在上的某处修建一个水泵站,向,两地供水,要使所需管道的长度最短,在图中标出点.(保留作图过程)(3)如图3,在一条河的两岸有,两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段表示.试问:桥建在何处,才能使到的路程最短呢?请在图中画出桥的位置.(保留作图过程)32. 某工厂有甲种原料千克,乙种原料千克,现计划用这两种原料生产A,B 两种型号的产品共件.已知每件 A 型号产品需要甲种原料千克,乙种原料千克;每件 B 型号产品需要甲种原料千克,乙种原料千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若件 A 型号产品获利元,件B 型号产品获利元,(1)中哪种方案获利最大?最大利润是多少?。

北师大版七年级数学下册期中测试卷附答案

北师大版七年级数学下册期中测试卷附答案

第二学期期中测试卷一、选择题(每题3分,共30分)1.计算x3·x3的结果是()A.2x3B.2x6C.x6D.x92.下图中,∠1与∠2互为余角的是()3.下列运算正确的是()A.x3÷x2=x B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x24.若(x-5)(x+20)=x2+mx+n,则m,n的值分别为()A.-15,-100 B.25,-100C.25,100 D.15,-1005.在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(min)和温度T(℃)的数据:t(min)024********…T(℃)3044587286100100100…在水烧开之前(即t<10),温度T与时间t的关系式及因变量分别为() A.T=7t+30,T B.T=14t+30,tC.T=14t-16,t D.T=30t-14,T6.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∠EOD=23,则∠AOE等于()A.162°B.152°C.142°D.132°7.如图,在下列给出的条件中,不能判定AB∥EF的是() A.∠B+∠2=180°B.∠1=∠4C.∠B=∠3 D.∠1=∠B8.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() A.5个B.4个C.3个D.2个9.一列火车从贵阳出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站,乘客上、下车后,火车开始加速,一段时间后再次开始匀速行驶,下面的哪一幅图可以近似地刻画出火车在这段时间内的速度变化情况()10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑自行车时间t(h)之间的关系如图所示,给出下列说法:①他们都骑行了20 km;②乙在途中停留了0.5 h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,已知DE∥BC,∠ABC=40°,则∠ADE=________.12.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m .将0.000 073用科学记数法表示为________________________________________________. 13.如图,某小区A 自来水供水路线为AB ,现进行改造,沿路线AO 铺设管道,并与主管道BO 连接(AO ⊥BO ),这样路线AO 最短,工程造价最低,根据是______________.14.如图,某人记录了某地一月份某天一段时间的温度随时间变化的情况.根据图象可知,在这段时间内温度最高是________℃,________________的温度是0 ℃.15.若32x -1=1,则x =________.16.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v (km/h)与时间t (h)的关系是v =1 000+50t ,若导弹发出0.5 h 即将击中目标,则此时该导弹的速度应为________km/h. 17.若a +b =7,ab =12,则a 2+b 2=________.18.如图,已知∠1=∠2,则________∥________,理由是________________________________________________________________________;若∠3=100°,则∠4=________,理由是________________________________________________________________________.19.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数S 与天数t 之间的关系图象如图所示,那么乙参与收割的天数是________天.20.如图,已知A 1B ∥A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).三、解答题(21,24,25题每题8分,22题5分,23题7分,其余每题12分,共60分) 21.计算:(1)4a 2x 2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2; (2)704×696;(3)(x -3)(2x +1)-3(2x -1)2;(4)(-5)0×(-2)-3+(-3)-1÷⎝ ⎛⎭⎪⎫13-1×32-|-5|.22.先化简,再求值:[(a -b )2+(2a +b )(1-b )-b ]÷⎝ ⎛⎭⎪⎫-12a ,其中a ,b 满足|a +1| +(2b -1)2=0.23.完成下列填空:如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.试说明:DG ∥B A. 解:因为AD ⊥BC ,EF ⊥BC (已知), 所以∠EFB =∠ADB =90°(______________).所以________∥________(______________________________). 所以∠1=∠BAD (______________________________).又因为∠1=∠2(已知),所以____________(等量代换).所以DG∥BA(____________________________).24.如图,AD∥BC,E,F分别在DC,AB的延长线上,∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)试说明:DC∥AB;(2)求∠AFE的度数.25.下表是橘子的销售额随橘子卖出质量的变化表:质量/kg123456789…销售额/元24681012141618…(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?26.如图是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一直线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?27.如图,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且满足∠FOB=∠FBO,OE平分∠COF.(1)求∠EOB的度数.(2)若向右平行移动AB,其他条件不变,那么∠OBC∠OFC的值是否发生变化?若变化,找出其中规律;若不变,求出这个比值.(3)在向右平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,请直接写出∠OBA的度数;若不存在,请说明理由.答案一、1.C 2.C 3.A 4.D 5.A 6.B 7.D 8.B 9.C 10.B 二、11.40° 12.7.3×10-5 13.垂线段最短 14.2;12时和18时15.12 16.1 025 17.2518.a ;b ;同位角相等,两直线平行;100°;两直线平行,内错角相等 19.4 点拨:甲、乙合作的收割速度为(350-200)÷(3-2)=150(亩/天),乙收割机参与收割的天数为(800-200)÷150=4(天).20.(n -1)·180° 点拨:如图,过点A 2作A 2D ∥A 1B ,过点A 3作A 3E ∥A 1B ……因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C .所以∠A 1+∠A 1A 2D =180°,∠DA 2A 3+∠A 2A 3E =180°…… 所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°. 三、21.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y ; (2)原式=(700+4)×(700-4)=7002-42=489 984;(3)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6;(4)原式=1×⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-13÷3×9-5=-18-1-5=-618.22.解:原式=(a 2-2ab +b 2+2a -2ab +b -b 2-b )÷⎝ ⎛⎭⎪⎫-12a =(a 2-4ab +2a )÷⎝ ⎛⎭⎪⎫-12a =-2a +8b -4. 由|a +1|+(2b -1)2=0, 得a =-1,b =12.代入上式,得原式=-2×(-1)+8×12-4=2.23.垂直的定义;EF ;AD ;同位角相等,两直线平行;两直线平行,同位角相等;∠2=∠BAD ;内错角相等,两直线平行24.解:(1)因为AD∥BC,所以∠DAB=∠CBF.又因为∠DCB=∠DAB,所以∠CBF=∠DCB.所以DC∥AB.(2)因为AE⊥EF,所以∠AEF=90°.因为DC∥AB,所以∠DEF+∠AFE=180°.所以∠AFE=180°-∠DEF=180°-30°-90°=60°.25.解:(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量.(2)10(3)y=2x(4)当y=100时,x=50.答:此时共卖出50 kg橘子.26.解:(1)A地距C地近,近20 km.(2)甲出发时间早,早2 h.(3)甲:(80-20)÷6=10(km/h),乙:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h.27.解:(1)因为CB∥OA,∠C=∠OAB=120°,所以∠COA=180°-∠C=180°-120°=60°.因为CB∥OA,所以∠FBO=∠AOB.又因为∠FOB=∠FBO,所以∠AOB=∠FOB.因为OE平分∠COF,所以∠COE=∠FOE.所以∠EOB=∠EOF+∠FOB=12∠COA=30°.(2)不变.因为CB∥OA,所以∠OBC=∠BOA,∠OFC=∠FOA.所以∠OBC∠OFC=∠AOB∠FOA.又因为∠FOA=∠FOB+∠AOB=2∠AOB,所以∠OBC∠OFC=∠AOB∠FOA=∠AOB2∠AOB=1 2.(3)存在.∠OBA=∠OEC=45°.。

北师大版七年级数学下册期中达标测试卷附答案

北师大版七年级数学下册期中达标测试卷附答案

北师大版七年级数学下册期中达标测试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.计算x3·x3的结果是()A.2x3B.2x6C.x6D.x92.下图中,∠1与∠2互为余角的是()3.计算(-4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式B.运用单项式乘多项式法则D.运用完全平方公式4.若(x-5)(x+20)=x2+mx+n,则m,n的值分别为()A.-15,-100 B.25,-100C.25,100 D.15,-1005.在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(min)和温度T(℃)的数据.t(min) 0 2 4 6 8 10 12 14 …T(℃) 30 44 58 72 86 100 100 100 …在水烧开之前(即t<10),温度T与时间t的关系式及因变量分别为()A.T=7t+30,T B.T=14t+30,tC.T=14t-16,t D.T=30t-14,T6.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∠EOD=23,则∠AOE等于()A.162°B.152°C.142°D.132°7.如图,在下列给出的条件中,不能..判定AB∥EF的是()A.∠B+∠2=180°B.∠1=∠4C.∠B=∠3 D.∠1=∠B(第7题)(第8题)8.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() A.5个B.4个C.3个D.2个9.下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是()(第9题)A.③④①②B.②①③④C.①④②③D.③①④②10.将两张面积分别为64和36的正方形卡片按两种方式放置在长方形ABCD中,如图①,图②.AB=m,AD=n,条形波纹表示两正方形的重叠部分,L形阴影表示未被两张正方形纸片覆盖的部分,图①,图②中L形阴影部分的面积分别为S1,S2,下列结论:①BF=m-8;②S1=mn-6m-16;③S2=mn-6n-16;④若m-n=2,则S2-S1=12.其中正确的个数是()A .1B .2C .3D .4二、填空题(本题共6小题,每小题4分,共24分)11.如图,已知DE ∥BC ,∠ABC =40°,则∠ADE =________.(第11题) (第13题) (第16题)12.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m .将0.000 073用科学记数法表示为_______________________________________.13.如图,某小区A 自来水供水路线为AB ,现进行改造,沿路线AO 铺设管道,并与主管道BO 连接(AO ⊥BO ),这样路线AO 最短,工程造价最低,依据是__________________________.14.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v (km/h)与时间t (h )的关系是v =1 000+50t .若导弹发出0.5 h 即将击中目标,则此时该导弹的速度应为________km /h. 15.若a +b =7,ab =12,则a 2+b 2=________.16.如图,已知A 1B ∥A n C ,则∠A 1+∠A 2+…+∠A n 等于______________(用含n的式子表示).三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(8分)计算:(1)4a 2x 2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2;(2)704×696;18.(8分)计算:(1)(x -3)(2x +1)-3(2x -1)2;(2)(-2 022)0×(-2)-3+(-3)-1÷⎝ ⎛⎭⎪⎫13-1×32-|-5|.19.(8分)先化简,再求值:[(a -b )2+(2a +b )(1-b )-b ]÷⎝ ⎛⎭⎪⎫-12a ,其中a ,b 满足|a +1|+(2b -1)2=0.20.(8分)尺规作图(在原图上作图,不写作法,保留作图痕迹).在下列图形中,补充作图:(第20题)(1)在AB的左侧作∠APD=∠BAC;(2)根据上面所作的图形,你认为PD和AC一定平行吗?答:_______________________________________________________________.你的理由是:___________________________________________________________________ __________________________________________________________________. 21.(8分)完成下列填空:如图,已知AD⊥BC,EF⊥BC,∠1=∠2.试说明:DG∥BA.(第21题)解:因为AD⊥BC,EF⊥BC(已知),所以∠EFB=∠ADB=90°(______________).所以________∥________(__________________________________).所以∠1=∠BAD(__________________________________).又因为∠1=∠2(已知),所以____________(等量代换).所以DG∥BA(________________________________).22.(10分)如图,AD∥BC,E,F分别在DC,AB的延长线上,∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(第22题)(1)试说明:DC∥AB;(2)求∠AFE的度数.23.(10分)下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元;(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________;(4)当橘子的销售额是100元时,共卖出多少千克橘子?24.(12分)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)请利用图①所得的恒等式,解决如下问题:若(a+b)2=5,a-b=1,求ab的值;(2)两个正方形ABCD,AEFG如图②摆放,边长分别为x,y.若x2+y2=34,BE=2,请直接写出图中阴影部分的面积;(3)类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.图③是由一些正方体或长方体拼成的一个大正方体,请写出一个恒等式;(4)已知a+b=3,ab=1,利用以上恒等式求a3+b32的值.(第24题)25.(14分)如图,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠AEF+∠CHF=73∠EFH.(1)直接写出∠EFH的度数为________;(2)如图②,HM平分∠CHF,交FE的延长线于点M,试说明∠FHD-2∠FMH=36°.(第25题)答案一、1.C 2.C 3.B 4.D 5.A 6.B 7.D 8.B 9.A 10.D 二、11.40° 12.7.3×10-513.直线外一点与直线上各点连接的所有线段中,垂线段最短 14.1 025 15.2516.(n -1)·180° 点拨:如图,过点A 2作A 2D ∥A 1B ,过点A 3作A 3E ∥A 1B ……(第16题) 因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C . 所以∠A 1+∠A 1A 2D =180°, ∠DA 2A 3+∠A 2A 3E =180°……所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°. 三、17.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y . (2)原式=(700+4)×(700-4)=7002-42=489 984.18.解:(1)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6.(2)原式=1×⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-13÷3×9-5=-18-1-5=-618. 19.解:原式=(a 2-2ab +b 2+2a -2ab +b -b 2-b )÷⎝ ⎛⎭⎪⎫-12a =(a 2-4ab +2a )÷⎝ ⎛⎭⎪⎫-12a =-2a +8b -4. 由|a +1|+(2b -1)2=0, 得a =-1,b =12.代入上式,得原式=-2×(-1)+8×12-4=2.20.解:(1)如图所示,∠APD为所求作的角.(第20题)(2)一定平行;内错角相等,两直线平行21.解:垂直的定义;EF;AD;同位角相等,两直线平行;两直线平行,同位角相等;∠2=∠BAD;内错角相等,两直线平行22.解:(1)因为AD∥BC,所以∠DAB=∠CBF.又因为∠DCB=∠DAB,所以∠CBF=∠DCB.所以DC∥AB.(2)因为AE⊥EF,所以∠AEF=90°.因为DC∥AB,所以∠DEF+∠AFE=180°.所以∠AFE=180°-∠DEF=180°-30°-90°=60°.23.解:(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量.(2)10(3)y=2x(4)当y=100时,x=50.答:此时共卖出50 kg橘子.24.解:(1)ab=(a+b)2-(a-b)24=5-14=1.(2)因为BE=2,所以x-y=2. 所以(x-y)2=4,所以x2-2xy+y2=4.因为x2+y2=34,所以2xy =30.所以(x +y )2=x 2+2xy +y 2=64.所以x +y =8.所以S 阴影=(x +y )(x -y )2=8. (3)(a +b )3=a 3+b 3+3a 2b +3ab 2.(4)因为a +b =3,ab =1,所以ab (a +b )=a 2b +ab 2=3.由(3)得a 3+b 3=(a +b )3-3a 2b -3ab 2=(a +b )3-3(a 2b +ab 2)=33-3×3=18,所以a 3+b 32=9.25.解:(1)108°(2)如图,过点F 作FG ∥AB ,过点M 作MN ∥AB ,(第25题)因为AB ∥CD ,FG ∥AB ,MN ∥AB ,所以∠1=∠NMH ,∠2=∠FMN ,∠GFH =∠FHD ,∠GFH +∠CHF =180°,所以∠FMH =∠NMH -∠FMN =∠1-∠2,所以∠FHD -2∠FMH =∠GFH -2(∠1-∠2)=∠GFH -2∠1+2∠2=(∠GFH +∠2)+∠2-2∠1=∠EFH +∠EFH -∠GFH -2∠1=2∠EFH -∠GFH -2∠1.因为HM 平分∠CHF ,所以∠CHF =2∠1,所以∠FHD -2∠FMH =2∠EFH -∠GFH -∠CHF =2∠EFH -(∠GFH +∠CHF ).因为∠EFH =108°,∠GFH+∠CHF=180°,所以∠FHD-2∠FMH=36°.。

【北师大版】七年级数学下册期中考试试题卷汇总.doc

【北师大版】七年级数学下册期中考试试题卷汇总.doc

北师大版七年级第二学期数学期中试题一、慧眼识金:(每小题2分,共15小题,30分)1在代数式22221,5,,3,1,35xx x x x x +--+π中是整式的有( )个 A 、3 B 、4 C 、5 D 62、下列说法错误的是 ( )A、内错角相等,两直线平行. B、两直线平行,同旁内角互补. C、同角的补角相等. D、相等的角是对顶角.3、下列计算正确的是 ( )A 、 623a a a =⋅B 、 a a a =-23C 、 32)()(a a a -=-⋅-D 、326a a a =÷4、如图,已知:∠1=∠2,那么下列结论正确的是______A .∠C=∠DB .AD ∥BCC .AB ∥CD D .∠3=∠45、下列各题中的数据,哪个是精确值?______A .客车在公路上的速度是60km/hB .我们学校大约有1000名学生C .小明家离学校距离是3kmD .从学校到火车站共有10个红灯路口6、如图,1∠与2∠是对顶角的是 ( )A. B. C. D.7、下列各式中不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+8、下列说法正确的是 ( )A 、相等的角是对顶角B 、两条直线相交所成的角是对顶角C 、对顶角相等D 、有公共顶点且又相等的角是对顶角9、如果一个角的补角是150°,那么这个角的余角的度数是( )A 、30°B 、60°C 、90°D 、12010、下列说法正确的是………………………………..( )A 、31012.3⨯精确到百分位。

B 、312000精确到千位。

C 、3.12万精确到百位。

D 、0.010230有四个有效数字。

11、一只口袋里共有3只红球,2只黑球,1只黄球,现在小明任意摸出一个球,则摸出一只黑球的概率是( )A 、41B 、61C 、21 D 、31 12、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 、152 13、当老师讲到“肥皂泡的厚度为0.00000007m 时,小明立刻举手说‘老师,我可以用科学记数法表示它的厚度。

北师大版七年级下册数学期中测试测试卷及答案

北师大版七年级下册数学期中测试测试卷及答案

期中测试一、选择题(每小题3分,共30分)1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( )A.25°B.20°C.45°D.30°2.计算()342(2)x x x -+÷的结果正确的是( ) A.221x -+ B.221x + C.321x -+ D.482x x -+3.下列各图中,∠1与∠2是对顶角的是( )A.B.C.D.4.下列等式成立的是( ) A.22(1)(1)x x --=- B.22(1)(1)x x --=+ C.22(1)(1)x x -+=+ D.22(1)(1)x x +=-5.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为( )A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°6.(2020湖北武汉任家路中学月考)从一个货站向一条高速公路修一条最短的路,其中运用的数学原理是( )A.在同一平面内,过一点有且只有一条直线垂直于已知直线B.两点之间线段最短C.连接直线外一点与直线上各点的所有线段中,垂线段最短D.两点确定一条直线7.如图,下列条件中,不能判定直线a ∥b 的是( )A.∠1+∠3=180°B.∠2=∠3C.∠4=∠5D.∠4=∠68.(2020独家原创试题)已知2211616,42x y x y -=+=,则x-4y 的值为( ) A.32 B.6 C.3D.129.小亮从家步行到公交车站台等公交车去学校.图中的折线表示小亮的行程s (km )与所花时间t (min )之间的关系.下列说法错误的是( )A.他离家8km 时共用了30minB.他等公交车的时间为6minC.他步行的速度是100m/minD.公交车的速度是350m/min10.(2020福建龙岩期中)如图.已知∠1=60°,∠2=60°,∠3=68°,则∠4等于( )A.68°B.60°C.102°D.112°二、填空题(每小题3分,共15分)11.如图,直线AB 与CD 相交于点O ,且1260︒∠+∠=,则AOD ∠的度数为_________.12.计算20192020133⎛⎫⨯ ⎪⎝⎭的结果为____________.13.若12180,13180︒︒∠+∠=∠+∠=,则2∠与3∠的关系是__________.14.长方形的周长为24cm ,其中一边为cm x ,面积为2cm y ,则长方形的面积y 与边长x 之间的关系式为___________.15.已知,,a b c 是三个连续的正整数,且a b c >>.若以b 为边长的正方形面积为1S ,以,a c 为长和宽的长方形面积为2S 则12S S -的值为__________. 三、解答题(共75分) 16.(16分)计算 (1)()32322x y x y ÷;(2)(2)(3)(3)(3)a a a a +-++-; (3)(5)(5)x y x y -+--;(4)8999011⨯+.(用乘法公式进行计算)17. (6分)先化简,再求值:2(2)(4)82x y y y x xy x ⎡⎤+-+-÷⎣⎦,其中2,1x y ==-.18.(6分)已知:,αβ∠∠.求作:AOB ∠,使得AOB αβ∠=∠+∠.(要求:用尺规作图,不写作法,保留作图痕迹)19.(8分)如图,已知直线//AB CD ,直线EF 分别与,AB CD 相交于点,O M ,射线OP 在AOE ∠的内部,且OP EF ⊥,垂足为O .若30AOP ︒∠=,求EMD ∠的度数.20.(8分)如图1,AD 是三角形ABC 的边BC 上的高,且8cm,9cm AD BC ==.点E 从点B 出发,沿线段BC 向终点C 运动,其速度与时间的关系如图2所示.设点E 运动时间为()x s ,三角形ABE 的面积为()2cm y .(1)在点E 沿BC 向点C 运动的过程中,它的速度是_____cm /s ,用含x 的代数式表示线段BE 的长是_________cm ,变量y 与x 之间的关系式为___________; (2)当2x =时,y 的值为__________;当时间每增加1s 时,y 的变化情况是:______.21.(10分)如图,某校有一块长为(3)+的长方形空地,中a b m+,宽为(2)a b m间是边长为()+的正方形草坪,其余为活动场地,学校计划将活动场地(阴a b m影部分)进行硬化.(1)用含,a b的代数式表示需要硬化的面积并化简;(2)当5,2a b==时,求需要硬化的面积.22.(10分)学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.(1)如图1是由边长分别为,a b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1,可得等式:(2)()a b a b++=____________;(2)①如图2是由几个小正方形和小长方形拼成的一个边长为a b c++的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为__________;②已知11,38++=++=,利用①中所得到的等式,求代数式a b c ab bc ac222++的值.a b c23.(11分)如图是明明设计的智力拼图玩具的一部分,现在明明遇到了两个问题,请你帮助解决:问题1:32,60D ACD ︒︒∠=∠=,为保证//AB DE ,则A ∠等于多少度? 问题2:,,G GFH H ∠∠∠之间有什么样的关系时,//?GP HQ参考答案 1.答案:A解析:如图,由题意得∠3=∠1,因为∠1=20°,所以∠3=20°,又由题意知∠2+∠3=45°,所以∠2=45°-∠3=25°.2.答案:A解析:()342(2)x x x -+÷ =()34(2)2(2)x x x x -÷+÷ =221x -+. 故选A. 3.答案:C解析:由对顶角的定义可知,C 选项符合题意.故选C. 4.答案:B解析:A. 22(1)(1)x x --=+,故本选项不合题意; B. 22(1)(1)x x --=+,故本选项符合题意; C. 22(1)(1)x x -+=-,故本选项不合题意; D. 22(1)(1)x x +=+,故本选项不合题意. 故选B. 5.答案:D解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明拐弯前后的路线是平行的.如图,如果第一次向右拐,那么第二次应左拐,且∠EBC=∠DCF.故选D.6.答案:C解析:从一个货站向一条高速公路修一条最短的路,其中运用的数学原理是连接直线外一点与直线上各点的所有线段中,垂线段最短.故选C. 7.答案:C见解析:A.∵∠1+∠3=180°,∠1+∠2=180°,∴∠2=∠3,∴a ∥b ; B.∵∠2=∠3,∴a ∥b ;C.由∠4=∠5不能判定直线a ∥b ;D.∵∠4=∠6,∴a ∥b. 故选C. 8.答案:A解析:因为222211616,4,(4)(4)162x y x y x y x y x y -=+=+-=-,所以1(4)162x y -=,所以x-4y=32, 故选A. 9.答案:D解析:由题图知他离家8km 时共用了30min ,故A 中说法正确;他在第l0min 时开始等公交车,第16min 时结束,故他等公交车的时间为6min ,故B 中说法正确;他步行10min 走了1000m ,故他步行的速度为100m/min ,故C 中说法正确;公交车用(30-16)min 走了(8-1)km ,故公交车的速度为7000÷14=500(m/min ),故D 中说法错误. 10.答案:D解析:如图,∵∠1=60°,∠2=60°, ∴∠1=∠2, ∴a ∥b ,∴∠5=∠3=68°, ∴∠4=180°-∠5=112°. 故选D.11.150 12.313.相等 14.212y x x =-+ 15.116.解:(1)原式38x y =.(2)原式2215a a =--.(3)原式22225x xy y =-+-.(4)原式=810000.17.解:原式()()222244482482x xy y y xy xy x x xy x =++---÷=-÷=24x y -. 当2,1x y ==-时,原式224(1)448=⨯-⨯-=+=.18.解:如图所示,AOB ∠即为所求.19.解:因为OP EF ⊥,所以90POE ︒∠=.又因为EOB POE AOP ∠+∠+∠180︒=,所以180EOB AOP POE ︒∠=-∠-∠.因为30AOP ︒∠=,所以180309060EOB ︒︒︒︒∠=--=.因为//AB CD ,所以60EMD EOB ∠=∠=.11 / 1120.(1)3 3x 12y x =(2)24 y 增加212cm21.解:(1)需要硬化的面积为22(3)(2)()m a b a b a b ++-+.(3a+b )(2a+ ()22222222(3)(2)()632265a b a b a b a ab ab b a ab b a ab b a ++-+=+++-++=++- 22253ab b a ab --=+.(2)当5,2a b ==时,()2253525352155m a ab +=⨯+⨯⨯=.答:需要硬化的面积为2155m .22.解:(1)2232a ab b ++(2)①2222()222a b c a b c ab bc ac ++=+++++②由①得,2222()2()a b c a b c ab bc ac ++=+++++.因为11,38a b c ab bc ac ++=++=,所以222211238a b c =+++⨯.所以22245a b c ++=.23.解:问题1:过点C 作//CM AB .因为//CM AB ,所以ACM A ∠=∠.因为//AB DE ,所以 / / CM DE .所以DCM D ∠=∠.又因为60ACD ︒∠=,所以60ACM DCM ︒∠+∠=.所以6060603228ACM DCM D ︒︒︒︒︒∠=-∠=-∠=-=.所以28A ︒∠=时,//AB DE .问题2:过点F 作//FN GP .因为//FN GP ,所以180G GFN ︒∠+∠=.因为//GP HQ ,所以//FN HQ .所以180H NFH ︒∠+∠=.所以180180360G GFH H G GFN H NFH ︒︒︒∠+∠+∠=∠+∠+∠+∠=+=.所以360G GFH H ︒∠+∠+∠=时,//GP HQ .。

北师大版数学七年级下册期中考试试卷及答案

北师大版数学七年级下册期中考试试卷及答案

北师大版数学七年级下册期中考试试题一、单选题(共14题;共56分)1.下列图案中,不是轴对称图形的是()A. B. C. D.2.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 163.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A. 2;SASB. 4;ASAC. 2;AASD. 4;SAS4如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,则△AB C中,AC边上的高为()A. ADB. GAC. BED. CF5如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A. SSSB. SASC. ASAD. AAS6李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS7如图,△AB C中,AB的垂直平分线DE交AB于E,交BC于D,若AC=6,BC=10,则△ACD 的周长为()A. 16B. 14C. 12D. 108如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A. 4个B. 3个C. 2个D. 1个9如图,在△AB C中,∠ABC=50°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A. 125°B. 105°C. 115°D. 1 00°10如图,已知∠CAB=∠DBA,添加一个条件使△CAB≌△DBA,以下错误的是()A. ∠CBA=∠DABB. ∠C=∠DC. AC=BDD. CB=DA11有下列命题说法:其中正确的有()①锐角三角形中任何两个角的和大于90°;②等腰三角形的高、中线、角平分线互相重合③角的对称轴是角平分线;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.6)等腰三角形一定是锐角三角形;7)三角形的内角平分线、中线、高都是线段;8)三角形的三条高一定都在三角形的内部12如图,在△AB C中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.2个B.3个C.4个D.5个A. 40°B. 36°C. 30°D. 25°13已知,如图,点P关于OA、OB的对称点分别是P1,P2,分别交OA、OB于C,D,P1P2=6cm,则△PCD的周长为()A. 3cmB. 6cmC. 12cmD. 无法确定13题图14题图14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A. 90°B. 120°C. 135°D. 150°二、填空题(共6题;共24分)15一个等腰三角形的边长分别是和,则它的周长是cm.16如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的_______ _ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DA FEGC北师版初一数学第二学期期中试卷班级_____姓名_____学号_____分层班级_____成绩_____ 注意:时间100分钟,满分120分;一、选择题(每题3分,共30分) 1.2 ( )2B.2-C.2 22. 下列图形中,不能..通过其中一个四边形平移得到的是 ( )3. 若a <b ,则下列结论正确的是( )A. -a <-bB.a 2>b 2C. 1-a <1-bD.a +3>b +34. 在平面直角坐标系xoy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的5P 的坐标为( )A . (1,5- )B . (1,5-)C . (1,5-)D . (5,1-)5. 如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .1个B .2个C .3个D .4个6. 在坐标平面上两点A (-a +2,-b +1)、B (3a , b ),若点A 向右移动2个单位长度后,再向下移动3个单位长度后与点B 重合,则点B 所在的象限为( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限(A )(C )(D )(B )A . B . C . D .第5题图7. 下列命题中,是真命题的个数是( )①两条直线被第三条直线所截,同位角相等 ②过一点有且只有一条直线与已知直线垂直 ③两个无理数的积一定是无理数④8327-A .1个B .2个C .3个D .4个8.如图,∠ACB=90º,CD ⊥AB 于D ,则下面的结论中,正确的是( ) ①AC 与BC 互相垂直 ②CD 和BC 互相垂直③点B 到AC 的垂线段是线段CA④点C 到AB 的距离是线段CD ⑤线段AC 的长度是点A 到BC 的距离.A .①⑤B .①④C .③⑤D .④⑤9. 车库的电动门栏杆如图所示,BA 垂直于地面AE 于A , CD 平行于地面AE ,则∠ABC+∠BCD 的大小是( ) A .150° B .180° C .270° D .360°10. 对于不等式组 ⎩⎨⎧<>b x a x (a 、b 是常数),下列说法正确的是( )A.当a <b 时无解B.当a ≥b 时无解C.当a ≥b 时有解D.当b a =时有解二、填空题(每题2分,共20分) 11. 在下列各数0.51525354、0、0.2、3π、227391311127 无理数有 .12. 若一个数的算术平方根与它的立方根相同,则这个数是 .13. 当x _________32x -14. 如图所示,直线AB 与直线CD 相交于点O ,EO ⊥AB , ∠EOD =25°,则∠AOC =__________,∠BOC =__________A BCO第14题图第8题图B AC第9题图E15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为__________16. 把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:17. 已知点M (3a -8, a -1).(1) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为 _________________; (2) 若N 点坐标为 (3, -6), 并且直线MN ∥x 轴, 则点M 的坐标为 ___________ .18. 如图,一条公路修到湖边时,需拐弯绕湖而过; 如果第一次拐角∠A 是120°,第二次拐角∠B 是150°,第三次拐角是∠C ,这时的道路恰好和 第一次拐弯之前的道路平行,则∠C 是__________19. 如图,点A (1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是______________.20.如图a , ABCD 是长方形纸带(AD ∥BC ), ∠DEF =19°, 将纸带沿EF 折叠成图b , 再沿BF 折叠成图c , 则图c 中的∠CFE 的度数是_____________;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是_____________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)21. 计算:34927122514()-. 22.解方程:3(1)64x -=第18题图BA图a图b 图c ABCD EFGAAEEDFB BGCD F第19题图23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来.24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种型A 型B 型价格(万元/台)a b 处理污水量(吨/月) 240 200A 型设备比购买3台B 型设备少6万元. (1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.7. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B ;AD FEHBC(2)过点A 画OB 的垂线段AC ,垂足为点C ; (3)过点C 画直线CD ∥OA ,交直线AB 于点D ; (4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H , 求证:CD ⊥AB .证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(____________________________) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(____________________________) ∴∠CDB=∠FHB. (____________________________) 又∵FH ⊥AB,∴∠FHB=90°(____________________________) ∴∠CDB=________°.∴CD ⊥AB. (____________________________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3).AO(1)画出△ABC ,则△ABC 的面积为___________ (2)在△ABC 中,点C 经过平移后的对应点为 C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’ 画出平移后的△A ’B ’C ’,写出点A ’,B ’的坐标为 A ’ (_______,_____),B ’ (_______,______); (3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q (n ,-3),则m = ,n = .30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。

定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是 .四、解答题(每题7分,共21分)31. 已知:如图, AE ⊥BC , FG ⊥BC , ∠1=∠2, ∠D =∠3+60︒, ∠CBD =70︒. (1)求证:AB ∥CD ; (2)求∠C 的度数.32. 已知非负数x 、y 、z 满足123234x y z ---==,设345x y z ω=++, 求ω的最大值与最小值.33. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时321FGA E CB将点A ,B 向上平移2个单位,再向右平移1个单位,得到点A ,B 的对应点分别是C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDCS 四边形.(2)在y 轴上是否存在点P ,连接P A ,PB ,使PABS ∆=ABDCS 四边形,若存在这样的点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP CPOBOP ∠+∠∠的值不变 ②DCP BOP CPO ∠+∠∠的值不变 ③CPD OPB S S ∆∆+的值可以等于52 ④CPD OPB S S ∆∆+的值可以等于134以上结论中正确的是:______________OyxDCBAO yxDC B AxyODCBAP第18题图初一数学参考答案及评分标准一、选择题(每题3分,共30分) BDCAD DAACB二、填空题(每题2分,共20分) 11. 无理数有0.51525354、3π392712. 若一个数的算术平方根与它的立方根相同,则这个数是 0和1 .13. 当32x ≤32x -14. 如图所示,直线AB 与直线CD 相交于点O ,EO ⊥AB , ∠EOD =25°,则∠AOC =____65°___,∠BOC =___115°____15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为___-2_____16. “在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行” 17. 已知点M (3a -8, a -1). (1)点M _(-2,1)__; (2)点M ___(-23,-6)_ . 18. 如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A 是120°,第二次拐角∠B 是150°,第三次拐角是∠C ,这时 的道路恰好和第一次拐弯之前的道路平行,则∠C 是__150°_19. 如图,点A (1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是(51,50)20.图c 中的∠CFE 的度数是___123°____;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是 __ 9________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)图a图b图cABC D EFGAAEEDFBBGCDFDOE第14题图BA21. 计算:3492712+2)451(- .解:原式1214+=1324……………………4分22.解方程:3(1)64x -=解:3641=-x -----1分41=-x ------2分 5=x ------4分23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.…………………………………1分 合并,得36x -≤. …………………………………………2分 系数化为1,得2x -≥…………………………………………3分 不等式的解集在数轴上表示如下:…………………………………………4分24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.解:由不等式212+-≤-x x ,得1≤x ;………………1分由不等式32121xx +<-得: x >-5;………………2分 画出数轴: ………………3分所以该不等式组的解集为:-5<x≤1,………………4分所以该不等式组的整数解是-4,-3,-2,-1,0,1.………………5分 25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.解:∵A (4,0),点C 在x 轴上,AC=5,所以点C 的坐标是(-1,0)或(9,0). ……………2分②S △ABC=152y ⨯=10 解得y=4或-4………………………4分所以点B 坐标是B (3,-4)或(3,4)………………………5分26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种型号的设备,A 型B 型 价格(万元/台) ab处理污水量(吨/月)240200经调查:3台B 型设备少6万元.(1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案. 解:(1)由题意得,⎩⎨⎧-==-6322b a b a ,解得 ⎩⎨⎧==1012b a .………………2分(2)设买x 台A 型,则买 (10-x)台B 型,有105)10(1012≤-+x x 解得:25≤x ………………3分 答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型. ………………4分 (3) 设买x 台A 型,则由题意可得200(10)2040240x x +-≥………………5分 解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元) 当x=2时,花费 104810212=⨯+⨯ (万元)答:买1台A 型,9台B 型设备时最省钱.27. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B ; (2)过点A 画OB 的垂线段AC ,垂足为点C ;(3)过点C 画直线CD ∥OA ,交直线AB 于点D ;(4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .AOAD FEHBC解:(1)如图; ……………………………1分(2)如图; ………………… ………2分(3)如图; ………………… ………3分 (4)90; ………………………………4分(5)4.8. …………………………………6分28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H ,求证:CD ⊥AB .证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(__两直线平行,内错角相等__) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(__同位角相等,两直线平行__)∴∠CDB=∠FHB. (_____两直线平行,同位角相等___) 又∵FH ⊥AB,∴∠FHB=90°(___垂直定义_______) ∴∠CDB=__90_°.∴CD ⊥AB. (____垂直定义_________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3). (1)画出△ABC ,则△ABC 的面积为___________;(2)在△ABC 中,点C 经过平移后的对应点为C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’,画出平移后的△A ’B ’C ’,并写出点A ’,B ’的坐标;(3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q (n ,-3),则m = ,n = .解:(1)如图,过A 作AH ⊥x 轴于点H .ABC AHB OBC AHOC S S S S ∆∆∆=--梯1()2AH OC HO =+⋅1122AH BH OB OC -⋅-⋅111(73)67333222=⨯+⨯-⨯⨯-⨯⨯15=. (1)分(2)画图△A ’B ’C ’,(18)A '-,,(2)B ',1; ·· 4分 (3)m =3,n =1. ……6分ABCB ′A ′HDC AB O30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。

相关文档
最新文档