2017届高三数学(文科)测试题集合、简易逻辑、函数、导数(含详细答案)

合集下载

新课标2017年普通高等学校招生全国统一考试(文科数学)及答案

新课标2017年普通高等学校招生全国统一考试(文科数学)及答案

新课标2017年普通高等学校招生全国统一考试(文科数学)及答案一、单选题:本题共12小题,每小题5分,共60分。

1.()i 23i +=( ) A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图象大致为( )4.已知向量a ,b 满足1=a ,1⋅=-a b ,则()2⋅-=a a b ( ) A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6B .0.5C .0.4D .0.36.双曲线()222210,0x y a b a b-=>>)A.y =B.y =C.y =D.y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB =( )A.BCD.8.为计算11111123499100S=-+-++-,设计了右侧的程序框图,则在空白框中应填入( )A .i i 1=+B .i i 2=+C .i i 3=+D .i i 4=+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE与CD 所成角的正切值为( ) ABCD 10.若()cos sin f x x x =-在[]0,a 是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( ) A.1 B.2-CD 112.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =, 则()()()()12350f f f f ++++=( ) A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2017年高考真题全国新课标三卷文科数学(解析版)

2017年高考真题全国新课标三卷文科数学(解析版)

2017年高考真题全国新课标三卷文科数学(解析版)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为 A .1B .2C .3D .4【答案】B【解析】由题意可得: .本题选择B 选项.2.复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意: .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加⋂{}2,4A B =12z i =--C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A 错误;本题选择A 选项.4.已知,则= A .B .C .D .【答案】A【解析】 .本题选择A 选项.5.设x ,y 满足约束条件,则z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点处取得最小值 . 在点 处取得最大值 .本题选择B 选项.4sin cos 3αα-=sin 2α79-29-2979()2sin cos 17sin 22sin cos 19ααααα--===--326000x y x y +-≤⎧⎪≥⎨⎪≥⎩()0,3A 033z =-=-()2,0B 202z =-=6.函数f (x )=sin(x +)+cos(x −)的最大值为A .B .1C .D .【答案】A【解析】由诱导公式可得: , 则: ,函数的最大值为 .本题选择A 选项.153π6π653515cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭657.函数y =1+x +的部分图像大致为 A . B .C .D .【答案】D【解析】当时,,故排除A,C,当时,,故排除B,满足条件的只有D,故选D.8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D2sin xx 1x =()111sin12sin12f =++=+>x →+∞1y x →+【解析】若,第一次进入循环,成立,,成立,第二次进入循环,此时,不成立,所以输出成立,所以输入的正整数的最小值是2,故选D.9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .B .C .D .【解析】如果,画出圆柱的轴截面,所以,那么圆柱的体积是,故选B.10.在正方体中,E 为棱CD 的中点,则A .B .C .D .2N =12≤100100,1010S M ==-=-2i =2≤101001090,110S M -=-==-=3i =2≤9091S =<N π3π4π2π411,2AC AB ==r BC ==223124V r h πππ⎛==⨯⨯= ⎝⎭1111ABCD A B C D -11A E DC ⊥1A E BD ⊥11A E BC ⊥1A E AC ⊥【答案】C11.已知椭圆C :,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线相切,则C 的离心率为ABCD .【答案】A【解析】以线段为直径的圆是,直线与圆相切,所以圆心到直线的距离,整理为,即,即 ,,故选A.12.已知函数有唯一零点,则a=A .B .C .D .1【答案】C22221x y a b+=20bx ay ab -+=1312A A 222x y a +=20bx ay ab -+=d a ==223a b =()22222323a a c a c =-⇒=2223c a =c e a ==211()2()x x f x x x a ee --+=-++12-1312二、填空题:本题共4小题,每小题5分,共20分。

2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)

2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)

2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。

2017高考全国3卷文科数学试题及标准答案

2017高考全国3卷文科数学试题及标准答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1ﻩﻩﻩﻩB.2ﻩﻩﻩC.3 ﻩﻩﻩD.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限ﻩB.第二象限ﻩﻩC.第三象限ﻩD.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A.79-ﻩﻩﻩ B.29-ﻩﻩﻩC.29ﻩﻩD.795.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值范围是A.[–3,0]ﻩﻩﻩB.[–3,2]ﻩﻩ C.[0,2] D.[0,3]6.函数f(x)=15sin(x+3π)+cos(x−6π)的最大值为A.65ﻩﻩB.1 ﻩﻩC.35ﻩﻩﻩD.157.函数y=1+x+2sin xx的部分图像大致为A.ﻩB.C.ﻩﻩD.8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 ﻩﻩﻩB.4ﻩﻩﻩ C.3ﻩﻩD.2。

2017年全国高考数学(文科)真题汇总(6套)附答案

2017年全国高考数学(文科)真题汇总(6套)附答案

第 1页(共 15页)
A.60 B.30 C.20 D.10 7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.(5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇 宙中普通物质的原子总数 N 约为 1080,则下列各数中与 最接近的是( )
当 k=2 时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当 k=3 时,不满足进行循环的条件, 故输出结果为: ,
故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采 用模拟循环的方法解答.
4.(5 分)若 x,y 满足
,则 x+2y 的最大值为( )
A.1 B.3 C.5 D.9 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即 可.
该三棱锥的体积=
=10.
故选:D.
【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能 力,属于基础题.
7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件
第 6页(共 15页)
C.充分必要条件 D.既不充分也不必要条件 【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相 反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而
19.(14 分)已知椭圆 C 的两个顶点分别为 A(﹣2,0),B(2,0),焦点在 x 轴上,离心率为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M,N,过 D 作 AM 的垂线交 BN 于点 E.求证:△BDE 与△BDN 的面积之比为 4:5. 20.(13 分)已知函数 f(x)=excosx﹣x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间[0, ]上的最大值和最小值.

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。

2017年高考新课标3卷文科数学试题(解析版)

2017年高考新课标3卷文科数学试题(解析版)

2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川)第Ⅰ卷(选择题共60分)一、选择题(本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合A={1 ,2,3,4} ,B={2 ,4,6,8} ,则A∩B 中元素的个数为( )A .1 B.2 C.3 D.4[解析] 由题意可得A∩B={2 ,4} ,故选B.答案:B2.复平面内表示复数z=i(–2+i)的点位于( )A .第一象限B.第二象限C.第三象限D.第四象限[解析] 由题意z=-1-2i,故选B.答案:B3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年 1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳[解析] 由折线图,7 月份后月接待游客量减少, A 错误,故选A.答案:A- 1 -4,则s in2α=( ) 4.已知sinα-cosα=3A .-79B.-2929C.D.792-1(sinα-cosα)[解析] sin2α=2sinαcosα==-1 79,故选A.答案:A3x+2y-6≤0x≥0,则z=x-y 的取值范围是( )5.设x,y 满足约束条件y≥0A .[–3,0] B.[–3,2] C.[0,2] D.[0,3][解析] 绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0,3) 处取得最小值z =0-3=-3.在点B(2,0) 处取得最大值z=2-0=2,故选A.答案:B6.函数 f (x)=sin x+π+cos x-3π的最大值为()665 A .35B.1 C.15D.[解析] 由诱导公式可得cos x-π=cos6ππ-x+2 3π=sin x+,31π则f(x)=sin x+5 3 +sin x+π 66 π=sin x+,函数的最大值为,故选A.3 5 3 5答案:A7.函数y=1+x+s in x2 的部分图像大致为( ) x[解析] 当x=1 时,f(1)=1+1+sin1=2+sin1>2,故排除A,C,当x→+∞时,y→1+x,故排除B,D.D,故选满足条件的只有答案:D- 2 -8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N的最小值为( ) A .5 B.4 C.3 D.2[解析] 若N=2,第一次进入循环,1≤2成立,S=100,M =-10010=-10,i=2≤2成立;第二次进入循环,此时S=100-10=90,M=--10=1,i=3≤2不成立,∴输出S=90<91 成立,∴输入的正整数N 10的最小值是2,故选D.答案:D9.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为( )3πA .πB.4πC.2πD.4[解析] 如果,画出圆柱的轴截面12,∴r=BC=AC=1,AB=3 32h=π×,那么圆柱的体积是V=πr2 22×1=3π,故选B.4答案:B10.在正方体ABCD -A1B1C1D1 中,E 为棱C D 的中点,则( )A .A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC[解析] 根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线.- 3 -对于C,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C 时,也能推出BC1⊥A1E,∴C 成立,对于D,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.答案:C11.已知椭圆C:2 2x y2+2=1( a>b>0)的左、右顶点分别为A1、A2,且以线段A1A2 为直径的圆与直线bx a b-ay+2ab=0 相切,则 C 的离心率为( )A .63B.33C.23D.132+y2=a2,直线bx-ay+2ab=0 与圆相切,∴圆心到直线的距离 d[解析] 以线段A1A2 为直径的圆是x=2ab=a,整理为a2=3b2,即a2=3(a2-c2) 2a2=3c2,即2=3b2,即a2=3(a2-c2) 2a2=3c2,即2+b2a2c 2 c,e==2=a 3 a6,故选 A .3答案:A2-2x+a(e x-1+e-x+112.已知函数f(x)=x )有唯一零点,则a=( )A .-12 B.1 13 C.2 D.12-2x+a(e x-1+e-x+1[解析] 方法一:由条件,f(x)=x ),得:2-2(2-x)+a(e2-x-1+ e-(2-x)+1f(2-x)=(2-x) )2 1-x x-1=x -4x+4-4+2x+a(e +e)=x2-2x+a(e x -x+1)-1+e∴f(2-x)=f(x),即x=1为f(x)的对称轴,由题意,f(x)有唯一零点,∴f(x)的零点只能为x=1,1即f(1) =12-2·1+a(e1-1+e-1+1)=0,解得a=.22 x-1 -x+1 x-1 -x+1 x-1 -x+1 x-1方法二:x -2x=-a(e +e +e ,g′x()=e -e =e),设g(x)=e -2(x-1)-11 ex-1=x-1 ,e e当g′x()=0时,x=1,当x<1时,g′x()<0,函数单调递减,当x>1时,g′x()>0,函数单调递增,当x=1时,函数取得最小值g(1)=2,设h(x)=x2-2x,当x=1时,函数取得最小值-1;若-a>0,函数h( x)和ag(x)没有1交点,当-a<0时,-ag(1)=h(1)时,此时函数h(x)和ag(x)有一个交点,即-a×2=-1 a=,故选C.2 答案:C第Ⅱ卷(非选择题共90 分)本试卷包括必考题和选考题两部分.第13 题~第21 题为必考题,每个试题考生都必须作答.第22 题~第24 题为选考题,考生根据要求作答.- 4 -二、填空题(本大题共 4 小题,每小题 5 分,共20 分.)→13.已知向量 a→→=(-2,3),b =(3,m),且 a→⊥b ,则m=.[解析] 由题意可得-2×3+3m=0,∴m=2.答案:214.双曲线2x2-a2y 3=1(a>0)的一条渐近线方程为y=9 5x,则a=.3[解析] 由双曲线的标准方程可得渐近线方程为y=±x,结合题意可得a=5.a答案:515.△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=.[解析] 由题意b=sinBc bsinC,即sinB==sinC c36×2=32,结合b<c 可得B=45°,则A=180°-B-C2=75°.答案:75°16.设函数f(x)=x+1,x≤0则满足f(x)+f(x-x,x>0212)>1 的x 的取值范围是.[解析] 方法一:∵f(x)=x+1,x≤0 1,f(x)+f x-x,x>02 212>1,即f x->1-f(x),由图象变换可画出y=f x-12与y=1-f(x)的图象如下:y1y f(x)21 1( , )4 41 1 x2 2y 1 f (x)12 由图可知,满足f x->1-f(x)的解为(-14,+∞).11 1 x+x-11方法二:由题意得,当x> 时,2 ;当0< x≤时,2 +1>1 恒成立,即x+2x-2>1 恒成立,即x>2 2 2 20< x≤12;当x≤0时x+1+x-12+1>1 x>-14,即-1 14< x≤0;综上x的取值范围是(-4,+∞).1答案:(-,+∞)4三、解答题(本大题共 6 小题,共70 分,解答应写出文字说明、证明过程或演算步骤.)第17~21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.- 5 -(一)必考题:共60分.17.(本小题满分12 分)设数列{ a n} 满足a1+3a2+⋯+(2n-1)a n=2n.(1)求{ a n}的通项公式;(2)求数列a n2n+1的前n 项和.[解析] (1)∵a1+3a2+⋯+(2n-1)a n=2n,①∴n≥2时,a1+3a2+⋯+(2n-1)a n-1=2(n-1),②2①-②得,(2n-1)a n=2,a n=2n-1,又n=1 时,a1=2 适合上式,2∴a n=; 2n-1(2)由(1)a n=2n+12=(2n-1)(2n+1)1 1-,2n-1 2n+1a1 a2 a n 1 1 ∴S n=++⋯+=(1-)+( -3 5 2n+1 3 3 15)+⋯+(1 1 1-)=1-=2n-1 2n+1 2n+12n.2n+118.(本小题满分12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500 瓶;如果最高气温位于区间[20,25),需求量为300 瓶;如果最高气温低于20,需求量为200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300 瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450 瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)需求量不超过300 瓶,即最高气温不高于25℃,从表中可知有54 天,∴所求概率为P=54 3=.90 5(2)Y 的可能值列表如下:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) Y -100 -100 300 900 900 900 低于20℃:y=200×6+250×2-450×4=-100;[20,25):y=300×6+150×2-450×4=300;不低于25℃:y=450×(6-4)=900,2 16 ∴Y 大于0 的概率为P=+=90 90 15.- 6 -19.(本小题满分 12 分)如图,四面体 ABCD 中,△ ABC 是正三角形, AD = CD .(1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD .若 E 为棱B D 上与 D 不重合的点, 且 AE ⊥EC ,求四面体 ABCE 与四面体 ACDE 的体积比.[解析 ] (1)证明:取A C 中点 O ,连O D ,OB , ∵AD =CD ,O 为 AC 中点,∴ AC ⊥OD , 又∵△ ABC 是等边三角形,∴ AC ⊥ OB ,又∵ OB ∩OD =O ,∴ AC ⊥平面 OBD ,BD 平面 OBD , ∴AC ⊥BD ;(2)设A D =CD =2,∴ AC = 2 2,AB =CD =2 2,又∵ AB =BD ,∴ BD =2 2,∴△ ABD ≌ △ CBD ,∴ AE =EC , 又∵ AE ⊥EC ,AC =2 2,∴ AE =EC =2, 在△ ABD 中,设D E =x ,根据余弦定理cos ∠ ADB = AD 2+BD 2-AB 2 2AD ·BDAD=2+DE 2-AE 2 2AD ·DE= 2+(2 2)2-(2 2)22+x 2-22 2 2 = , 2×2×x 2×2×2 2解得 x = 2,∴点 E 是 BD 的中点,则V D -ACE =V B -ACE ,∴V D -ACE=1. V B -ACE-ACE2+mx –2 与 x 轴交于A ,B 两点,点 C 的坐标 20.(本小题满分 12 分)在直角坐标系x Oy 中,曲线 y =x为(0,1).当 m 变化时,解答下列问题:(1)能否出现A C ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在 y 轴上截得的弦长为定值.2+mx -2=0 的根, [解析 ] (1)设A (x1,0),B(x 2,0),则x 1,x 2 是方程 x∴x 1+x 2=- m ,x 1x 2=- 2,→ →则A C ·BC= (-x 1,1) ·(-x 2,1)=x 1x 2+1=- 2+1=- 1≠0, ∴不会能否出现A C ⊥BC 的情况.(2)解法一:过A ,B ,C 三点的圆的圆心必在线段A B 垂直平分线上,设圆心E(x 0, y 0),- 7 -x1+x2则x0==-2 m,由|EA |=|EC|得2x1+x2-x1 2+y02=2x1+x222+(y0-1)2,1+x1x2化简得y0==-2 1 2 ,∴圆E 的方程为x+m22+y+122=-m22+-1-1-122,令x=0 得y1=1,y2=-2,∴过A,B,C 三点的圆在y 轴上截得的弦长为1-(-2)=3,∴过A,B,C 三点的圆在y 轴上截得的弦长为定值解法二:设过A,B,C 三点的圆与y 轴的另一个交点为D,由x1x2=-2 可知原点O 在圆内,由相交弦定理可得|OD ||OC |=|OA||OB|=|x1||x2|=2,又|OC |=1,∴|OD |=2,∴过A,B,C 三点的圆在y 轴上截得的弦长为|OC |+|OD |=3,为定值.2+(2a+1) x. 21.(本小题满分12 分)已知函数 f (x)=ln x+ax3-2. (1)讨论f( x)的单调性;(2)当a<0 时,证明f(x) ≤-4a[解析] (1) f′x()=2+(2a+1)x+12ax (2 ax+1)( x+1)=(x>0),x x当a≥0 时,f′x()≥,0则f(x )在(0,+∞)单调递增,当a<0 时,则f(x)在(0,- 1)单调递增,在(-1,+∞)单调递减. 2a 2a(2)由(1) 知,当a<0 时,f( x)max=f(-12a),1f(-)-(-2a 3+2)=ln(-4a1)+2a1+1,令y=ln t+1-t(t=-2a1>0),2a则y′=1t-1=0,解得t=1,∴y 在(0,1)单调递增,在(1,+∞)单调递减,3∴y max=y(1)=0,∴y≤0,即f (x)max≤-( +2),∴f( x) ≤-4a 3-2.4a(二)选考题:共10分.请考生在第22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10 分)选修4―4坐标系与参数方程:在直角坐标系xOy 中,直线l1 的参数方程为x=2+ty=kt(t 为参数),直线l2 的参数方程为x=-2+mmky=(ml1 与l2 的交点为P,当k 变化时,P 的轨迹为曲线C.为参数).设(1)写出 C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-2=0,M 为l3 与C 的- 8 -交点,求M 的极径.[解析] (1)将参数方程转化为普通方程1l1:y=k(x-2)⋯⋯①;l2:y=(x+2)⋯⋯②k由①②消去k可得:x2-y2=4,即P的轨迹方程为x2-y2=4;(2)将参数方程转化为一般方程l3:x+y-2=0⋯⋯③联立l3和曲线C得x+y-2=0,解得2-y2=4x3 22x=,由2y=-2x=ρcosθ,解得ρ=5,y=ρsinθ即M的极半径是5.23.(本小题满分10 分)选修4— 5 不等式选讲:已知函数f( x)=|x+1|–|x–2|.(1)求不等式f(x) ≥1的解集;2(2)若不等式f(x) ≥x –x+m 的解集非空,求m 的取值范围.-3,x≤-12x-1,-1<x<2.由f (x) ≥1可得:[解析] (1) f( x)=|x+1|–|x–2|可等价为f(x)=3,x≥2①当x≤-1时显然不满足题意;②当-1< x<2时,2x-1≥1,解得x≥1;③当x≥2时,f(x)=3≥1恒成立.综上,f( x) ≥的1解集为{ x|x≥1}.2-x+m等价为f(x)-x2+x≥m,(2)不等式f(x) ≥x令g(x)=f( x)-x2+x,则g( x) ≥m解集非空只需要[g(x)] max≥m.-x2+x-3,x≤-1而g(x)=-x2+3x-1,-1<x<2.-x2+x+3,x≥2①当x≤-1时,[ g(x)]max=g(-1)=-3-1-1=-5;3②当-1< x<2时,[g(x)]max=g(2)=-322+3·3-1=-1=5;2 4③当x≥2时,[ g(x)] max=g(2)=-22+2+3=1.综上,[g( x)]max=5 5 ,故m≤.4 45∴m 的取值范围为(-∞,].4- 9 -。

2017年全国新课标1卷高考文科数学真题及答案解析

2017年全国新课标1卷高考文科数学真题及答案解析



1 在点(1,2)处的切线方程为______________. x
【 解 析 】 设 y = f ( x) , 则 f ′( x = ) 2x −
1 , 所 以 f ′(1) = 2 − 1 = 1 . 所 以 在 (1, 2) 处 的 切 线 方 程 为 x2
y − 2 =1 ⋅ ( x − 1) ,即 y= x + 1 .
A S 0 C B
OA ⊥ SC , OB ⊥ SC .因为平面 SAC ⊥ 平面 SBC ,所以 OA ⊥ 平面 SBC .
设 OA = R, VA− SBC =
1 1 1 1 × S ∆SBC × OA = × × 2 R × R × R = R 3 = 9, 所以 R = 3 .所 3 3 2 3
y2 =1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是(1,3).则△APF 3
C.
2 3
D.
3 2
【答案】D 【解析】由 c = a + b = 4 得 c = 2 ,所以 F (2, 0) ,将 x = 2 代入 x −
2 2 2 2
y2 1 ,得 y = ±3 ,所以 PF = 3 , = 3
1 4
B.
π 8
C.
1 2
D.
π 4
【答案】B
1 2 π 【解析】不妨设正方形边长为 1,则 S圆 =π ( ) = ,黑色部分的面积为圆的一半.由几何概型公式可知, 2 4
1 π ⋅ π 选 B. 2 P= 2 4 = . 1 8
5.已知 F 是双曲线 C:x2的面积为 A.
1 3 1 B. 2
2 2
2
B.x1,x2,…,xn 的标准差 D.x1,x2,…,xn 的中位数

(完整版)2017年高考山东文科数学试题及答案(word解析版),推荐文档

(完整版)2017年高考山东文科数学试题及答案(word解析版),推荐文档

2017年普通高等学校招生全国统一考试(山东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年山东,文1,5分】设集合{}{}11x 2M x x N x =-<=<,,则M N =I ( )(A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2 【答案】C【解析】:02M x <<,2N x <:,所以(0,2)M N =I ,故选C . (2)【2017年山东,文2,5分】已知i 是虚数单位,若复数z 满足i 1i z =+,则²z =( )(A )2i - (B )2i (C )2- (D )2 【答案】A【解析】1i1i iz +==-,所以22(1i)2i z =-=-,故选A .(3)【2017年山东,文3,5分】已知x y 、满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值是( ) (A )3- (B )1- (C )1 (D )3 【答案】D【解析】可行域如图,在点()1,2A -z 取最大值:max 3z =,故选D .(4)【2017年山东,文4,5分】已知cos 34x =,则cos2x =( ) (A )14- (B )14 (C )18- (D )18【答案】D【解析】2231cos22cos 12()148x x =-=⨯-=,故选D .(5)【2017年山东,文5,5分】已知命题p :x R ∃∈,210x x -+≥;命题q :若22a b <,则a b <。

下列命题为真命题的是( )(A )p q ∧ (B )p q ⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧ 【答案】B【解析】22131()024x x x -+=-+>,p 真;22a b a b <⇔<,q 假,故命题p q ∧,p q ⌝∧,p q ⌝⌝∧均为假命题;命题p q ⌝∧为真命题,故选B . (6)【2017年山东,文6,5分】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,则空白判断框中的条件可能为( )(A )3x > (B )4x > (C )4x ≤ (D )5x ≤ 【答案】B【解析】解法一:当4x =,输出2y =,则由2log y x =输出,需要4x >,故选B .解法二:若空白判断框中的条件3x >,输入4x =,满足43>,输出426y =+=,不满足,故A 错误,若空白判断框中的条件4x >,输入4x =,满足44=,不满足3x >,输 出2log 42y ==,故B 正确;若空白判断框中的条件4x ≤,输入4x =,满足44=, 满足4x ≤,输出426y =+=,不满足,故C 错误,若空白判断框中的条件5x ≤, 输入4x =,满足45<,满足5x ≤,输出426y =+=,不满足,故D 错误,故选B .(7)【2017年山东,文7,5分】函数3sin 2cos 2y x x =+最小正周期为( )(A )2π (B )23π (C )π (D )2π【答案】C【解析】3sin 2cos22sin(2)6y x x x π=+=+,所以22, T πωπω===,故选C .(8)【2017年山东,文8,5分】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)。

集合与简易逻辑、函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题1.若集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U)B 等于( )A.{}5 B . {}7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,12.函数()2()log 6f x x =-的定义域是( )A .{}|6x x >B .{}|36x x -<<C .{}|3x x >-D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( )A .p 或q 为真,非q 为假B . p 或q 为真,非p 为真C .p 且q 为假,非p 为假D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .21y x = 5.对命题”“042,0200≤+-∈∃x x R x 的否定正确的是 ( ) A .042,0200>+-∈∃x x R x B .042,2≤+-∈∀x x R x C .042,2>+-∈∀x x R x D .042,2≥+-∈∀x x R x6.为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是A .在区间(-2,1)上)(x f 是增函数B .在(1,3)上)(x f 是减函数C .在(4,5)上)(x f 是增函数 8. 若函数))(12()(a x x xx f -+=为奇函数,则a 的值为 ( )A .21B .32C .43D .19.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( )A .f (2)>f (3)B .f (3)>f (6)C .f (3)>f (5)D . f (2)>f (5) 10.已知a >0且a ≠1,若函数f (x )= log a (ax 2 –x )在[3,4]是增函数,则a 的取值范围是( )A .(1,+∞)B .11[,)(1,)64+∞C .11[,)(1,)84+∞D .11[,)6411. 用},,min{c b a 表示c b a ,,三个数中的最小值,}102,2min{)(x x x f x -+=,, (x ≥0) , 则)(x f 的最大值为 ( )A .4B .5C .6D .712. 若函数f (x )=⎩⎨⎧>+≤0)( 1)ln(0)( x x x x ,若f (2-x 2)>f (x ),则实数x 的取值范围是A .(-∞,-1)∪(2,+∞)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)13.设全集U 是实数集R ,{}24M x |x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是___________。

2017年高考真题全国2卷文科数学(附答案解析)

2017年高考真题全国2卷文科数学(附答案解析)

uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.

2017年高考新课标3卷文科数学试题(解析版)

2017年高考新课标3卷文科数学试题(解析版)

2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川)第Ⅰ卷(选择题共60分)一、选择题(本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合A={1 ,2,3,4} ,B={2 ,4,6,8} ,则A∩B 中元素的个数为( )A .1 B.2 C.3 D.4[解析] 由题意可得A∩B={2 ,4} ,故选B.答案:B2.复平面内表示复数z=i(–2+i)的点位于( )A .第一象限B.第二象限C.第三象限D.第四象限[解析] 由题意z=-1-2i,故选B.答案:B3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年 1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳[解析] 由折线图,7 月份后月接待游客量减少, A 错误,故选A.答案:A- 1 -4,则s in2α=( ) 4.已知sinα-cosα=3A .-79B.-2929C.D.792-1(sinα-cosα)[解析] sin2α=2sinαcosα==-1 79,故选A.答案:A3x+2y-6≤0x≥0,则z=x-y 的取值范围是( )5.设x,y 满足约束条件y≥0A .[–3,0] B.[–3,2] C.[0,2] D.[0,3][解析] 绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0,3) 处取得最小值z =0-3=-3.在点B(2,0) 处取得最大值z=2-0=2,故选A.答案:B6.函数 f (x)=sin x+π+cos x-3π的最大值为()665 A .35B.1 C.15D.[解析] 由诱导公式可得cos x-π=cos6ππ-x+2 3π=sin x+,31π则f(x)=sin x+5 3 +sin x+π 66 π=sin x+,函数的最大值为,故选A.3 5 3 5答案:A7.函数y=1+x+s in x2 的部分图像大致为( ) x[解析] 当x=1 时,f(1)=1+1+sin1=2+sin1>2,故排除A,C,当x→+∞时,y→1+x,故排除B,D.D,故选满足条件的只有答案:D- 2 -8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N的最小值为( ) A .5 B.4 C.3 D.2[解析] 若N=2,第一次进入循环,1≤2成立,S=100,M =-10010=-10,i=2≤2成立;第二次进入循环,此时S=100-10=90,M=--10=1,i=3≤2不成立,∴输出S=90<91 成立,∴输入的正整数N 10的最小值是2,故选D.答案:D9.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为( )3πA .πB.4πC.2πD.4[解析] 如果,画出圆柱的轴截面12,∴r=BC=AC=1,AB=3 32h=π×,那么圆柱的体积是V=πr2 22×1=3π,故选B.4答案:B10.在正方体ABCD -A1B1C1D1 中,E 为棱C D 的中点,则( )A .A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC[解析] 根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线.- 3 -对于C,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C 时,也能推出BC1⊥A1E,∴C 成立,对于D,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.答案:C11.已知椭圆C:2 2x y2+2=1( a>b>0)的左、右顶点分别为A1、A2,且以线段A1A2 为直径的圆与直线bx a b-ay+2ab=0 相切,则 C 的离心率为( )A .63B.33C.23D.132+y2=a2,直线bx-ay+2ab=0 与圆相切,∴圆心到直线的距离 d[解析] 以线段A1A2 为直径的圆是x=2ab=a,整理为a2=3b2,即a2=3(a2-c2) 2a2=3c2,即2=3b2,即a2=3(a2-c2) 2a2=3c2,即2+b2a2c 2 c,e==2=a 3 a6,故选 A .3答案:A2-2x+a(e x-1+e-x+112.已知函数f(x)=x )有唯一零点,则a=( )A .-12 B.1 13 C.2 D.12-2x+a(e x-1+e-x+1[解析] 方法一:由条件,f(x)=x ),得:2-2(2-x)+a(e2-x-1+ e-(2-x)+1f(2-x)=(2-x) )2 1-x x-1=x -4x+4-4+2x+a(e +e)=x2-2x+a(e x -x+1)-1+e∴f(2-x)=f(x),即x=1为f(x)的对称轴,由题意,f(x)有唯一零点,∴f(x)的零点只能为x=1,1即f(1) =12-2·1+a(e1-1+e-1+1)=0,解得a=.22 x-1 -x+1 x-1 -x+1 x-1 -x+1 x-1方法二:x -2x=-a(e +e +e ,g′x()=e -e =e),设g(x)=e -2(x-1)-11 ex-1=x-1 ,e e当g′x()=0时,x=1,当x<1时,g′x()<0,函数单调递减,当x>1时,g′x()>0,函数单调递增,当x=1时,函数取得最小值g(1)=2,设h(x)=x2-2x,当x=1时,函数取得最小值-1;若-a>0,函数h( x)和ag(x)没有1交点,当-a<0时,-ag(1)=h(1)时,此时函数h(x)和ag(x)有一个交点,即-a×2=-1 a=,故选C.2 答案:C第Ⅱ卷(非选择题共90 分)本试卷包括必考题和选考题两部分.第13 题~第21 题为必考题,每个试题考生都必须作答.第22 题~第24 题为选考题,考生根据要求作答.- 4 -二、填空题(本大题共 4 小题,每小题 5 分,共20 分.)→13.已知向量 a→→=(-2,3),b =(3,m),且 a→⊥b ,则m=.[解析] 由题意可得-2×3+3m=0,∴m=2.答案:214.双曲线2x2-a2y 3=1(a>0)的一条渐近线方程为y=9 5x,则a=.3[解析] 由双曲线的标准方程可得渐近线方程为y=±x,结合题意可得a=5.a答案:515.△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=.[解析] 由题意b=sinBc bsinC,即sinB==sinC c36×2=32,结合b<c 可得B=45°,则A=180°-B-C2=75°.答案:75°16.设函数f(x)=x+1,x≤0则满足f(x)+f(x-x,x>0212)>1 的x 的取值范围是.[解析] 方法一:∵f(x)=x+1,x≤0 1,f(x)+f x-x,x>02 212>1,即f x->1-f(x),由图象变换可画出y=f x-12与y=1-f(x)的图象如下:y1y f(x)21 1( , )4 41 1 x2 2y 1 f (x)12 由图可知,满足f x->1-f(x)的解为(-14,+∞).11 1 x+x-11方法二:由题意得,当x> 时,2 ;当0< x≤时,2 +1>1 恒成立,即x+2x-2>1 恒成立,即x>2 2 2 20< x≤12;当x≤0时x+1+x-12+1>1 x>-14,即-1 14< x≤0;综上x的取值范围是(-4,+∞).1答案:(-,+∞)4三、解答题(本大题共 6 小题,共70 分,解答应写出文字说明、证明过程或演算步骤.)第17~21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.- 5 -(一)必考题:共60分.17.(本小题满分12 分)设数列{ a n} 满足a1+3a2+⋯+(2n-1)a n=2n.(1)求{ a n}的通项公式;(2)求数列a n2n+1的前n 项和.[解析] (1)∵a1+3a2+⋯+(2n-1)a n=2n,①∴n≥2时,a1+3a2+⋯+(2n-1)a n-1=2(n-1),②2①-②得,(2n-1)a n=2,a n=2n-1,又n=1 时,a1=2 适合上式,2∴a n=; 2n-1(2)由(1)a n=2n+12=(2n-1)(2n+1)1 1-,2n-1 2n+1a1 a2 a n 1 1 ∴S n=++⋯+=(1-)+( -3 5 2n+1 3 3 15)+⋯+(1 1 1-)=1-=2n-1 2n+1 2n+12n.2n+118.(本小题满分12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500 瓶;如果最高气温位于区间[20,25),需求量为300 瓶;如果最高气温低于20,需求量为200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300 瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450 瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)需求量不超过300 瓶,即最高气温不高于25℃,从表中可知有54 天,∴所求概率为P=54 3=.90 5(2)Y 的可能值列表如下:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) Y -100 -100 300 900 900 900 低于20℃:y=200×6+250×2-450×4=-100;[20,25):y=300×6+150×2-450×4=300;不低于25℃:y=450×(6-4)=900,2 16 ∴Y 大于0 的概率为P=+=90 90 15.- 6 -19.(本小题满分 12 分)如图,四面体 ABCD 中,△ ABC 是正三角形, AD = CD .(1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD .若 E 为棱B D 上与 D 不重合的点, 且 AE ⊥EC ,求四面体 ABCE 与四面体 ACDE 的体积比.[解析 ] (1)证明:取A C 中点 O ,连O D ,OB , ∵AD =CD ,O 为 AC 中点,∴ AC ⊥OD , 又∵△ ABC 是等边三角形,∴ AC ⊥ OB ,又∵ OB ∩OD =O ,∴ AC ⊥平面 OBD ,BD 平面 OBD , ∴AC ⊥BD ;(2)设A D =CD =2,∴ AC = 2 2,AB =CD =2 2,又∵ AB =BD ,∴ BD =2 2,∴△ ABD ≌ △ CBD ,∴ AE =EC , 又∵ AE ⊥EC ,AC =2 2,∴ AE =EC =2, 在△ ABD 中,设D E =x ,根据余弦定理cos ∠ ADB = AD 2+BD 2-AB 2 2AD ·BDAD=2+DE 2-AE 2 2AD ·DE= 2+(2 2)2-(2 2)22+x 2-22 2 2 = , 2×2×x 2×2×2 2解得 x = 2,∴点 E 是 BD 的中点,则V D -ACE =V B -ACE ,∴V D -ACE=1. V B -ACE-ACE2+mx –2 与 x 轴交于A ,B 两点,点 C 的坐标 20.(本小题满分 12 分)在直角坐标系x Oy 中,曲线 y =x为(0,1).当 m 变化时,解答下列问题:(1)能否出现A C ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在 y 轴上截得的弦长为定值.2+mx -2=0 的根, [解析 ] (1)设A (x1,0),B(x 2,0),则x 1,x 2 是方程 x∴x 1+x 2=- m ,x 1x 2=- 2,→ →则A C ·BC= (-x 1,1) ·(-x 2,1)=x 1x 2+1=- 2+1=- 1≠0, ∴不会能否出现A C ⊥BC 的情况.(2)解法一:过A ,B ,C 三点的圆的圆心必在线段A B 垂直平分线上,设圆心E(x 0, y 0),- 7 -x1+x2则x0==-2 m,由|EA |=|EC|得2x1+x2-x1 2+y02=2x1+x222+(y0-1)2,1+x1x2化简得y0==-2 1 2 ,∴圆E 的方程为x+m22+y+122=-m22+-1-1-122,令x=0 得y1=1,y2=-2,∴过A,B,C 三点的圆在y 轴上截得的弦长为1-(-2)=3,∴过A,B,C 三点的圆在y 轴上截得的弦长为定值解法二:设过A,B,C 三点的圆与y 轴的另一个交点为D,由x1x2=-2 可知原点O 在圆内,由相交弦定理可得|OD ||OC |=|OA||OB|=|x1||x2|=2,又|OC |=1,∴|OD |=2,∴过A,B,C 三点的圆在y 轴上截得的弦长为|OC |+|OD |=3,为定值.2+(2a+1) x. 21.(本小题满分12 分)已知函数 f (x)=ln x+ax3-2. (1)讨论f( x)的单调性;(2)当a<0 时,证明f(x) ≤-4a[解析] (1) f′x()=2+(2a+1)x+12ax (2 ax+1)( x+1)=(x>0),x x当a≥0 时,f′x()≥,0则f(x )在(0,+∞)单调递增,当a<0 时,则f(x)在(0,- 1)单调递增,在(-1,+∞)单调递减. 2a 2a(2)由(1) 知,当a<0 时,f( x)max=f(-12a),1f(-)-(-2a 3+2)=ln(-4a1)+2a1+1,令y=ln t+1-t(t=-2a1>0),2a则y′=1t-1=0,解得t=1,∴y 在(0,1)单调递增,在(1,+∞)单调递减,3∴y max=y(1)=0,∴y≤0,即f (x)max≤-( +2),∴f( x) ≤-4a 3-2.4a(二)选考题:共10分.请考生在第22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10 分)选修4―4坐标系与参数方程:在直角坐标系xOy 中,直线l1 的参数方程为x=2+ty=kt(t 为参数),直线l2 的参数方程为x=-2+mmky=(ml1 与l2 的交点为P,当k 变化时,P 的轨迹为曲线C.为参数).设(1)写出 C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-2=0,M 为l3 与C 的- 8 -交点,求M 的极径.[解析] (1)将参数方程转化为普通方程1l1:y=k(x-2)⋯⋯①;l2:y=(x+2)⋯⋯②k由①②消去k可得:x2-y2=4,即P的轨迹方程为x2-y2=4;(2)将参数方程转化为一般方程l3:x+y-2=0⋯⋯③联立l3和曲线C得x+y-2=0,解得2-y2=4x3 22x=,由2y=-2x=ρcosθ,解得ρ=5,y=ρsinθ即M的极半径是5.23.(本小题满分10 分)选修4— 5 不等式选讲:已知函数f( x)=|x+1|–|x–2|.(1)求不等式f(x) ≥1的解集;2(2)若不等式f(x) ≥x –x+m 的解集非空,求m 的取值范围.-3,x≤-12x-1,-1<x<2.由f (x) ≥1可得:[解析] (1) f( x)=|x+1|–|x–2|可等价为f(x)=3,x≥2①当x≤-1时显然不满足题意;②当-1< x<2时,2x-1≥1,解得x≥1;③当x≥2时,f(x)=3≥1恒成立.综上,f( x) ≥的1解集为{ x|x≥1}.2-x+m等价为f(x)-x2+x≥m,(2)不等式f(x) ≥x令g(x)=f( x)-x2+x,则g( x) ≥m解集非空只需要[g(x)] max≥m.-x2+x-3,x≤-1而g(x)=-x2+3x-1,-1<x<2.-x2+x+3,x≥2①当x≤-1时,[ g(x)]max=g(-1)=-3-1-1=-5;3②当-1< x<2时,[g(x)]max=g(2)=-322+3·3-1=-1=5;2 4③当x≥2时,[ g(x)] max=g(2)=-22+2+3=1.综上,[g( x)]max=5 5 ,故m≤.4 45∴m 的取值范围为(-∞,].4- 9 -。

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析)  精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。

2017年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)

A. —6
5
5
3
B. 1
6
C. —3
5
D
1 _5
7. Cs 分)函数 y=l+x+兰坚-的部分图象大致为(
X2
C.
D.
8. Cs 分)执行如图的程序框图,为使输出 S 的值小千 91, 则输入的正整数 N 的最小值为(
A. 5
B. 4
C. 3
D. 2
9. cs 分)已知圆柱的高为 1, 它的两个底曲的圆周在直径为 2 的同一个球的球血上,则该圆柱的休
={ (5 分)设函数 f 16.
(x) x+l , x<o ,则满足 f (x) +f (x- 上) >1 的 x 的取值范围是
.
产, x >o
2
19. (12 分)如图四面体 ABCD 中,^ ABC 是正二伯形, AD=CD.
(1) 证明: AC 上 BD: (2) 已知^ ACD 是直伯二川形, AB=BD, 若 E 为棱 BD 上与 D 个重合的点,且 AE 上 EC, 求四面体 ABCE
7.【解答】解:函数y=l+x+兰坚一, 可知:f(x) =x+王坚-是奇函数, 所以函数的图象关千原点对称, 则函数y=l+x+主皿-的图象关千(O, 1) 对称, 当x➔o', f Cx) >o, 排除A、c, 当x=rr时,y=l顷, 排除B. 第4页(共9页)
故选:D. 【点评】本题考查函数 的图象的 判断,函数的奇偶性以及特殊点是常用方 法.
A
y
x 【点评】本题考查线线垂直的 判断,是中档题,斛题时要认真审题,注意向量法的合理运用.
【点评】本题考查曲圆柱 的体积的 求法,考查圆柱、球等基础知识,考查推理论证能力、运算求 解能 力、空间想象 能力,考查化归与转化思想,是中档题.

2017年高考数学全国卷3文(附参考答案及详解)

2017年高考数学全国卷3文(附参考答案及详解)

!#'$1;#
在直角坐标系 #6) 中#直 线:! 的 参 数 方 程 为 )'?;# $;为 参
,#' )$13#数%ຫໍສະໝຸດ 直线:$的参



为+ -)'
3 ?
#
$3 为 参 数 %!设:! 与:$
的交点为 *#当? 变化时#* 的轨迹为曲线&!
$!%写出 & 的普通方程*
$$%以坐标原点为极点## 轴正半轴为极轴建立极坐标 系#设:(&
!"
"#!$年普通高等学校招生全国统一考试全国卷*
!!)!解析5 $&!!#"#'#/"#"&!"#/#4#0"#6 $%"&!"#/"!
6 $%" 中元素的个数为"!
故选 )!
"!*!解析5 .&+%(",+&&(!("+#6 复 数.& (!("+所 对 应 的复平面内的点为 I%(!#("&#位于第三象限!
!!
年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 数 学
!!请 考 生 在 第 $$$$( 题 中 任 选 一 题 作 答如 果 多 做则 按 所 做
的 第 一 题 计 分 !作 答 时 请 写 清 题 号 !
$$!$本 小 题 满 分 !# 分 %选 修 252&坐 标 系 与 参 数 方 程




%#*!
故选 .!
0!.!解析假设 -&"#程序执行过程如下'

2017年全国卷3文科数学高考真题 试题及答案解析

2017年全国卷3文科数学高考真题 试题及答案解析

an 2n
1
的前 n 项和.
18.(12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每
瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,
每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于 25,需求量为 500 瓶;
2
V r 2h
3 2
2 1
3 4
,故选
B.
10.【答案】C 【解析】由三垂线定理逆定理,平面内的一条直线垂直于平面的斜线,则这条直线也垂
直于斜线在平面内的射影。
A 项中,若 A1E DC1 ,那么 D1E DC1 ,显然不成立; B 项中,若 A1E BD 那么 BD AE 也显然不成立; C 项 中 , 若 A1E BC1 , 那 么 BC1 B1C 成 立 , 反 之 BC1 B1C 成 立 也 必 有 BC1 A1E ,故 C 项正确。 D 项中,若 A1E AC ,则 AE AC 不成立。
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题, 每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:60 分.
17.(12 分)设数列an 满足 a1 3a2 (2n 1)a n 2n .
(1)求
an
的通项公式;(2)求数列
2.【答案】B
【解析】由题意: z 1 2i .本题选择 B 选项.
3.【答案】A
【解析】由折线图,7 月份后月接待游客量减少,A 错误;本题选择 A 选项.
4.【答案】A
【解析】 sin 2 2sin cos sin cos 2 1 7 .本题选择 A 选项.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学(文科)测试题(一)(集合、简易逻辑、函数、导数)一、选择题(本大题共10小题,每小题5分,共50分。

) 1.设集合∈<≤=x x x A 且30{N }的真子集...的个数是 ( ) A .15B .8C .7D .32.“p 或q 是假命题”是“非p 为真命题”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.下列函数中,既是偶函数又在(0)+∞,上单调递增的是 ( )A .3y x =B .y cos x =C .21y x=D .y ln x = 4.函数()x f =2008x ,则12007'12008f ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦=( ) A .0 B .1 C .2006 D .20075.已知函数2)(xx e e x f --=,则下列判断中正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数6.函数a x y -=2log 图象的对称轴为2=x ,则a 的值为( )A .21 B .21- C .2 D .2- 7.为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度8.如图,是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是A .在区间(-2,1)上)(x f 是增函数B .在(1,3)上)(x f 是减函数C .在(4,5)上)(x f 是增函数D .当4=x 时,)(x f 取极大值9.设函数3y x =与22x y -=的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),10.定义新运算⊕:当a b ≥时,a b a ⊕=;当a b <时, 2a b b ⊕=,则函数()(1)(2)f x x x x =⊕-⊕,[]2,2x ∈-的最大值等于( )A .-1B .1C .6D .12 二、填空题(本大题共4小题,每小题5分,满分20分)11.设全集U 是实数集R ,{}24M x|x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是___________。

12.已知函数1(),2()2(1),2xx f x f x x ⎧≥⎪=⎨⎪+<⎩,则函数2(log 3)f 的值为___________。

13.若函数m y x +=+-12的图象不经过第一象限,则m 的取值范围是___________。

14.若方程012)2(2=-+-+k x k x 的两根中,一根在0和1之间,另一根在1和2之间,则k的取值范围___________。

三、解答题:(本大题满分80分,解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分12分)已知实数{}21,1,a a ∈-,求函数2()(1)2f x x a x =---的零点。

16.(本题满分12分)已知函数121()log [()1]2x f x =-,(Ⅰ)求()f x 的定义域;(Ⅱ)证明:函数()f x 在定义域内单调递增。

17.(本题满分14分)某商品每件成本9元,售价为30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比.已知商品单价降低2元时,一星期多卖出24件,(Ⅰ)将一个星期的商品销售利润表示成x 的函数; (Ⅱ)如何定价才能使一个星期的商品销售利润最大?18.(本题满分14分)若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围。

19.(本题满分14分)两个二次函数2()f x x bx c =++与2()2g x x x d =-++的图象有唯一的公共点(1,2)P -, (Ⅰ)求,,b c d 的值;(Ⅱ)设()(())()F x f x m g x '=+⋅,若()F x 在R 上是单调函数,求m 的范围,并指出是单调递增函数,还是单调递减函数。

20.(本题满分14分)设函数y=)(x f 是定义在R 上的函数,并且满足下面三个条件: ①对任意正数x 、y ,都有)()()(y f x f xy f +=; ②当x >1时,)(x f <0; ③ 1)3(-=f 。

(Ⅰ)求)91()1(f f 、的值;(Ⅱ)证明+R x f 在)(上是减函数;(Ⅲ)如果不等式2)2()(<-+x f x f 成立,求x 的取值范围。

参考答案 CADBA CDCBC11、{}|12x x <≤ 12、16 13、2m ≤- 14、3221<<k三、解答题15.(本题满分12分)()0f x =得函数()f x 的零点为1-和2。

16.(本题满分12分)(1)由1()102x ->,解得0x <∴()f x 的定义域为(,0)-∞17.(本题满分14分)解:(1)设商品降价x 元,则每个星期多卖的商品数为2kx ,若记商品在一个星期的获利为()f x ,则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+, ……………………4 分又由已知条件,2242k=·,于是有6k =, ………………………6 分 所以32()61264329072[030]f x x x x x =-+-+∈,,. ……………………7 分 (2)根据(1),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.…………9分 当x 变化时,()f x '与()f x 的变化如下表:……………11 分故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大. …………………14 分 18. (本题满分14分)解: f '(x )=x 2-ax +a -1=0得x =1或x =a -1, ……………………3分当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意. …6分 当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数. …………………9分依题意,当x ∈(1,4)时,f '(x )<0,当x ∈(6,+∞)时,f '(x )>0, ∴4≤a -1≤6. …………………13分 ∴a 的取值范围为[5,7]. …………………14分 19.(本小题满分14分)解:(1)由已知得 12122b c d ++=-⎧⎨-++=-⎩化简得 33b c d +=-⎧⎨=-⎩…………………………2分且222x bx c x x d ++=-++即22(2)0x b x c d +-+-=有唯一解 …………………………3分 所以2(2)8()0b c d =---=即 248200b b c ---= …………………………5分 消去c 得 2440b b ++=,解得2,1,3b c d =-=-=- …………………………7分 (2)2()(21)(22)F x x x m x =--+⋅-+3226(22)22x x m x m =-+-++- …………………………9分 2()61222F x x x m '=-+-- …………………………10分若()F x 在R 上为单调函数,则()F x '在R 上恒有()0F x '≤或()0F x '≥成立。

因为()F x '的图象是开口向下的抛物线,所以()0F x '≤时()F x 在R 上为减函数, …………………………12分 所以21224(22)0m =+--≤,解得 2m ≥即2m ≥时,()F x 在R 上为减函数。

…………………………14分20.解:(Ⅰ)令x =y=1易得0)1(=f .而211)3()3()9(-=--=+=f f f ,且.2)91(0)1()91()9(===+f f f f ,得 ……………………4 分(Ⅱ)0)(10121211<⇒>⇒<<x xf x x x x ∴)()()()()(11121122x f x f x xf x x x f x f <+=⋅= ∴)(x f 在R +上为减函数。

……………………8分(Ⅲ)由条件(1)及(Ⅰ)的结果得:,20)91()]2([<<<-x f x x f ,其中由(Ⅱ)得:⎪⎩⎪⎨⎧<<>-20,91)2(x x x解得x 的范围是3221,3221(+-) …………………14 分。

相关文档
最新文档