4.1.1立体图形与平面图形(第1课时)1

合集下载

《立体图形和平面图形》(第1课时几何图形的认识)

《立体图形和平面图形》(第1课时几何图形的认识)

《立体图形和平面图形》(第1课时几何图形的认识)汇报人:2023-12-16•引言•立体图形的认识•平面图形的认识目录•立体图形和平面图形的联系与区别•几何图形的应用与实例分析•总结与展望01引言几何学是研究空间形式和数量关系的数学分支,而立体图形和平面图形是几何学中的基本概念。

课程背景通过本课时的学习,学生应能理解立体图形和平面图形的定义,掌握它们的基本特征,为后续的几何学习打下基础。

课程目标课程背景与目标三维空间中的图形,具有长度、宽度和高度三个维度。

例如:长方体、正方体、球体等。

二维空间中的图形,只具有长度和宽度两个维度。

例如:三角形、正方形、长方形等。

立体图形和平面图形的定义平面图形立体图形02立体图形的认识立方体是三维的,具有六个面、十二个棱,每个面都是一个正方形。

详细描述立方体是一种常见的三维图形,它具有六个面,每个面都是一个正方形。

每个正方形面都有一个相对的另一个正方形面。

立方体有十二条棱,每条棱都是两个正方形面的公共边。

立方体有三个相互垂直的轴,轴线穿过每个面的中心。

圆柱体是三维的,具有一个圆形底面和两个相等的圆形顶面,侧面是一个曲面。

详细描述圆柱体是一种常见的三维图形,它具有一个圆形底面和两个相等的圆形顶面。

侧面是一个曲面,它与底面和顶面垂直。

圆柱体的高与底面直径相等。

圆柱体的轴线是穿过底面圆心的直线,垂直于底面和顶面。

圆锥体是三维的,具有一个圆形底面和一个顶点,侧面是一个曲面。

总结词圆锥体是一种常见的三维图形,它具有一个圆形底面和一个顶点。

侧面是一个曲面,它从顶点开始向底面延伸。

圆锥体的轴线是从顶点到底面的垂直线,穿过底面的中心。

详细描述03平面图形的认识圆是平面上所有与给定点(圆心)距离等于给定正数(半径)的点的集合。

圆的概念圆具有对称性、圆心到圆上任意一点的距离相等、圆周角定理等。

圆的性质通过圆的半径可以计算出圆的面积和周长。

圆的面积和周长圆的认识与性质三角形的基本性质三角形具有稳定性、两边之和大于第三边、两边之差小于第三边等基本性质。

七年级数学教案认识几何图形

七年级数学教案认识几何图形

七年级数学科教案一、新课导入1.导入课题:观看图片,欣赏多姿多彩的图形世界.从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,都是美丽的图形,我们把从实物中抽象出的各种图形统称为几何图形.我们生活在一个图形世界里,这个图形世界中蕴含着大量的几何图形,从这一章开始,我们将探索几何图形的奥秘.2.三维目标:(1)知识与技能通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.(2)过程与方法能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.(3)情感态度从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.3.学习重、难点:重点:认识立体图形,从实物中抽象立体图形和平面图形.难点:平面图形、立体图形之间的联系.二、分层学习1.自学指导:(1)自学内容:教材第114页的内容.(2)自学时间:5分钟.(3)自学要求:认真看课本,重点的概念、结论做上记号;然后参考提纲进行自学.(4)自学参考提纲:①几何是研究图形的点、线和面的一门学科.②下列几何体中的长方体、圆柱、长方形、圆、线段、点等,都是从形形色色的物体外形中抽象出来的,它们都被称为几何图形.③相互交流你在现实生活中观察到的有哪些常见的几何图形.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对几何图形的认识情况,倾听他们交流学习中的问题.②差异指导:对各小组中在几何图形认识有偏差的学生进行指导.(2)生助生:生生之间相互帮助交流.4.强化:几何中研究的对象和几何图形的概念.1.自学指导:(1)自学内容:教材第115页至第116页内容.(2)自学时间:5分钟.(3)自学要求:认真观察课本中的物体形状并认真完成教材思考中提出来的问题.(4)自学参考提纲:①什么叫立体图形?答案:各部分不在同一平面内的几何图形.②什么叫平面图形?答案:各部分都在同一平面内的几何图形.③立体图形和平面图形是同一类图形吗?它们之间有什么联系?④相互列举一些立体图形和平面图形的例子.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入课堂了解学生在区别立体图形和平面图形时存在的难点和偏差,两类图形的特征是否抓住了.②差异指导:对在自学中存在的问题进行点拨指导.(2)生助生:学生相互交流解疑难.4.强化:(1)交流总结:①立体图形和平面图形的概念;②立体图形和平面图形的区别和联系.(2)练习:①完成第116页图4.1-5 中“思考”和第116页的“练习”.②你能给右图中的两个图形起个名吗?并说明它们由哪些平面图形构成?解:雪人.由三角形、圆和线段组成;三毛.由线段、圆、三角形、正方形组成.三、评价1.学生的自我评价(围绕三维目标):让学生代表交流自己本节课的学习表现、学习收获和不足.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、学习方法和学习成果进行总结,肯定优点,指出缺点.(2)纸笔评价:课堂评价检测.3.教师的自我评价一、基础巩固1.(20分)观察下列图形,在下面括号内填上相应名称.(正方体) (长方体) (圆柱) (圆锥)(五棱锥) (四棱柱) (圆台) (三棱台)2.(20分)下列物体与给出的哪个几何体相类似?用线连接.三棱锥六棱柱3.(10分)下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱,其中属于平面图形的是①②④(填序号).4.(10分)用一个平面去截一个几何体,得到的截面是四边形,这个几何体是(C)A.圆锥B.球体C.圆柱D.以上都有可能二、综合应用5.(20分)指出下面立体图形的面数.4面 6面 8面 12面三、拓展延伸6.(20分)用六根火柴棒,你能组成四个大小一样的三角形吗?若可能,简述你的做法;若不能,请简要说明理由.解:可能,如图,做成正三棱锥的图形.第1课时认识几何图形正方体长方体圆柱圆锥五棱锥四棱柱圆台三棱柱。

人教版七年级数学上册4.1.1第1课时《认识立体图形与平面图形》说课稿1

人教版七年级数学上册4.1.1第1课时《认识立体图形与平面图形》说课稿1

人教版七年级数学上册4.1.1 第1课时《认识立体图形与平面图形》说课稿1一. 教材分析《认识立体图形与平面图形》是人教版七年级数学上册4.1.1第1课时的内容。

本节课的主要内容是让学生认识立体图形和平面图形,了解它们的特点和区别。

教材通过生动的图片和实例,引导学生观察、思考和交流,从而培养学生的空间想象能力和抽象思维能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形和立体图形有一定的了解。

但学生在学习过程中容易混淆平面图形和立体图形,对它们的特点和区别认识不清晰。

因此,在教学过程中,教师需要注重引导学生观察、思考和交流,帮助学生建立清晰的空间观念。

三. 说教学目标1.知识与技能目标:让学生了解立体图形和平面图形的概念,掌握它们的特点和区别。

2.过程与方法目标:通过观察、思考和交流,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 说教学重难点1.教学重点:立体图形和平面图形的概念及其特点。

2.教学难点:立体图形和平面图形的区别,以及如何运用它们解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。

2.教学手段:利用多媒体课件、实物模型和黑板进行教学。

六. 说教学过程1.导入新课:通过展示生活中常见的立体图形和平面图形,引导学生关注它们,激发学生的学习兴趣。

2.探究新知:(1)教师提问:同学们,你们在生活中见到过哪些立体图形和平面图形?它们有什么特点?(2)学生回答,教师总结:立体图形是有长度、宽度和高度的图形,如正方体、长方体等;平面图形是有边和角的图形,如三角形、矩形等。

(3)教师展示立体图形和平面图形的图片,引导学生观察、思考和交流,从而掌握它们的特点和区别。

3.巩固新知:(1)教师发放实物模型,让学生触摸和观察,进一步加深对立体图形和平面图形的认识。

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

用活动一:创设情境导入新课【课堂引入】同学们,祝贺你们步入了一个新的学习起点,你们会越来越走近数学,感受它的多姿多彩!观察我们周围的世界,你会找到许许多多的图形,它们美化了我们生活的空间.欣赏下面的图片时,不妨用数学的眼光观察一下,你发现它们都是由哪些你熟悉的图形构成的?(教师同时用课件展示图片)图4-1-11接下来,我带领大家走进小明的简易书房,看一看哪些物体的形状与你在小学学过的立体图形类似?通过图片的展示使学生能够在丰富多彩的现实生活中辨认出特征鲜明的立体图形.活动二:实践探究交流新知【探究】1.常见的立体图形及其分类图4-1-12内容:在小明的书房中,哪些物知道立体图形的特征是我们认识不同立体图形、区别不同立体图形的金钥匙,鼓励学生用自己的语言进行表述与交流,在交流中发现棱柱面的个数、顶点个数、棱的条数的规律.实践探究交流新知看成由一些常见的立体图形组合而成,你能找出其中常见的立体图形吗?你还能举出其他组合图形的例子吗?图4-1-13处理方式:学生独立思考并进行回答,在学生回答的过程中引导学生分析复杂组合体的构成,并进行补充.6.平面图形教师举出一些几何图形的例子,如线段、角、三角形、长方形、圆,让学生观察这些几何图形有什么共同特点.处理方式:学生独立思考并进行回答,教师可以提示性地提问:这些几何图形的各部分都在同一平面内吗?总结:各部分都在同一平面内的几何图形是平面图形.平面图形和立体图形是有联系的:立体图形的某些部分是平面图形,例如长方体的侧面是长方形.基础训练1.学生完成课本115页思考题。

2.课本116页练习巩固本节课所学知识,加深对立体图形中相应平面图形的认识。

K小结归纳师生共同回顾本节课所学内容。

梳理内容,掌握本节课的核心。

J练习与检测绩优学案96页巩固训练97页达标测评选择题填空题板书设计4.1.1立体图形与平面图形立体图形(部分都不在同一平面内)几何图形平面图形(部分都在同一平面内)媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

人教版-数学-七年级上册-4.1.1 立体图形与平面图形教案

人教版-数学-七年级上册-4.1.1 立体图形与平面图形教案

《4.1.1立体图形与平面图形》教学任务分析教学目标:知识技能:1.了解直棱柱、圆锥等简单立体图形的侧面展开图.2.能根据展开图初步判断和制作立体图形.3.进一步认识立体图形与平面图形之间的关系.数学思考:1.在平面图形和立体图形互相转换的过程中,初步建立空间观念.2.通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维.解决问题:1.通过展开与折叠的活动,体会数学的应用价值.2.通过描述展开图,发展学生运用几何语言表述问题的能力.情感态度:1.通过学生之间的交流活动,培养主动与他人合作交流的意识.2.通过探讨现实生活中的实物制作,提高学生学习热情.重点:直棱柱的展开图.难点:根据展开图判断和制作立体模型.教学流程安排活动1复习导入活动内容和目的:在复习的过程中沟起学生对基本几何图形的想像.活动2观察实物、欣赏图片、观看包装制作的过程活动内容和目的:从学生生活经验出发,通过观察实物、欣赏图片和观看包装盒制作过程,感受立体图形与平面图形互相转换的必要性.活动3认识一些简单立体图形的平面展开图.活动内容和目的:动手操作完成圆锥、圆柱、直棱柱等简单立体图形的侧面展开图,发展学生的空间观念.活动4 根据展开图判断立体图形.活动内容和目的:根据展开图判断立体图形,发展学生的空间想象能力.进一步认识立体图形与平面图形的关系.活动5数学活动.活动内容和目的:制作火车厢的模型,加深对本节知识的理解,亲身体验数学发现的过程,增强动手能力.活动6小结与作业.活动内容和目的:回顾反思.课前准备教具:各种立体模型、投影仪、包装盒学具:纸质直棱柱、圆锥等立体图形,剪刀,卡纸,双面胶,教学过程设计问题:师生行为:出示立体图形,学生说出它们的名称.(圆柱三棱柱正方体四棱柱三棱锥圆锥五棱柱)设计意图:在复习立体图形的过程中沟起学生对认识的基本几何图形的想像,顺延导入.问题(1)观察实物、欣赏图片、观看包装盒制作的过程.师生行为:学生观察实物、欣赏图片、观看包装盒制作的过程(新手组装包装盒).(2)你认为设计制作一个立体图形需要了解什么?师生行为:①教师在学生观察的基础上提问.②各小组思考、讨论、交流(给学生充分的时间说出各种想法).③教师从以下几方面引导:①它的形状、大小;②它展开后的形状、大小;③材料、美术设计;等等,并总结出首先要根据要制作的包装盒展开后的图形来裁剪纸张的结论.④教师给出平面展开图的概念.设计意图:从学生生活经验出发,通过大量的直观事例丰富学生的思维,感受立体图形与平面图形互相转换的必要性.从而乐于接触生活中的数学信息,愿意参加数学活动,并在活动中发挥积极的作用.(1)出示实物学生分类.师生行为:学生根据实物立体图形的形状进行分类.(圆柱、圆锥、长方体)(2)你能展开圆柱、圆锥吗?师生行为:①教师动手演示展开过程.学生动手操作.②学生展示并用几何语言表述出圆柱、圆锥的“平面展开图”.设计意图:学生从已有的数学经验出发,建立新旧知识之间的联系,从而使学生更加明确立体图形和平面图形之间的联系.加深对“平面展开图”概念的理解.(3①得出正方体的平面展开图.②得出其它直棱柱的平面展开图.师生行为:(1)学生动手操作:首先要各自独立完成;再以小组为单位,组内相互交流展开图如何得到的;最后看看共到得几种展开图.教师指导(要指出展开图必须是一个完整的图形).(2)学生再以小组为单位,各组相互交流,尽可能地得到不同的展开图(以组为单位展示成果)教师(3)教师从学生结论中任选一种图形,要求按给定图形再次展开正方体.(4)学生互相合作、讲解,动手操作,并能简单描述展开的方法(学有余力的同学可了解其展开规律).(5)学生从其他直棱柱中任选一种,得出它的展开图,相互交流.(6)教师指导总结.设计意图:通过观察、推断、实际操作,获得数学猜想和数学经验,体会数学活动充满探索性和创造性.体会从立体图形到平面图形的过程,发展学生的空间想像能力.了解正方体的展开图有多种情况,尝试从不同角度寻求解决问题的方法,并尝试评价不同方法之间的差异.尊重学生的个体差异,满足多样化的学习需要.进一步发展学生的思维能力.尝试用语言或图形等清楚地表达解决问题的过程,并解释结果的合理性.让学生经历一个从一般到特殊再到一般的过程,发展学生的认知观念.问题你的平面展开图与刚才的包装盒的平面展开图有差别吗?差别在哪里?师生行为:学生观察讨论.设计意图:培养学生的观察能力,认学生知道数学来源于生活但又不同于生活.(1)判断下面一些平面图形是哪个立体图形的展开图?试着把它们围成相应的立体图形.师生行为:教师出示图形,提问.学生观察、思考、得出结论.学生动手操作,教师参与学生活动展示学生作品.设计意图:体会平面图形到立体图形的过程,在实践中再次认识立体图形与平面图形的关系.通过对问题的反思,获得解决问题的经验,培养学生良好的认知习惯.(2) 观察下图经过折叠能否围成一个正方体.师生行为:学生的观察、思考、动手操作验证猜想.教师总结,指出不是所有的平面图形都能围成立体图形.(3)练习:教科书习题4.1第5题.师生行为:学生独立完成.设计意图:了解学习效果,给学生以获得成功体验的空间,激发他们学习的积极性.(4)你的平面展开图与刚才的包装盒的平面展开图有差别吗?差别在哪里?师生行为:学生观察讨论.149页数学活动1).师生行为:教师提出活动内容并和学生一起分析:活动目的:制作火车车厢模型.活动步骤:①确定车厢形状(明确它有不同的形状,不同形状的车厢主要装载货物不同);②根据立体图形,选择适当比例,画出它的展开图;③利用展开图,折叠出火车模型;④添加图案,完成设计.学生动手操作,活动.设计意图:通过动手操作、主动思考、合作交流的“做数学”的过程,让学生亲身体验数学发现的过程,增强动手操作和合作交流能力,利用所学数学知识解决问题的能力,发展学生的空间观念.小结:说说立体图形与平面图形的关系.作业:教科书习题4.1第6,11,12题.师生行为:学生总结,教师完善.教师布置作业.学生课后完成.设计意图:加深对内容的理解.复习巩固本节知识.学会总结反思.板书:立体图形 平面图形1.圆柱、圆锥的平面展开图2.棱柱的平面展开图结束语:展开折叠我在你们中间,被你们集体的智慧深深感染了,你们对数学活动的喜爱使我们的课堂生机勃勃.我相信,同学们聪明的头脑,加上灵巧的双手,不但能制作出精美的几何图形,还能创造出绚丽多彩的明天!下课.。

人教版数学七年级上册第四章 几何图形初步

人教版数学七年级上册第四章  几何图形初步

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.阅读教材P114~116,思考下列问题.1.几何图形包括平面图形和立体图形.2.立体图形可以分成哪几类?知识探究1.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.自学反馈完成教材P115~116的两个思考题.活动1小组讨论例1生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.例2常见立体图形的归类,小组讨论归纳.活动2跟踪训练1.教材P121习题4.1第1、2、3题.2.教材P122习题4.1第8题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.活动3课堂小结1.常见的立体图形有哪些?常见的平面图形有哪些?2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.阅读教材P117~118,思考下列问题.1.从三个方向看立体图形包括哪三种?2.什么是立体图形的展开图?知识探究1.从三个方向看立体图形:从正面看,从左面看,从上面看.2.将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.自学反馈教材P118练习第1、2题.活动1小组讨论例1教材P117图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?小组合作学习,你摆我动手,画一画,并进行展示.例2教材P118探究,小组合作学习.活动2跟踪训练教材P121~122习题4.1第4、6、7题.活动3课堂小结1.立体图形从三个方向看到的图形.2.学会了简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会了动手实践,与同学合作.4.不是所有立体图形都有平面展开图.。

人教版七年级上册数学 第四章 几何图形初步 习题

人教版七年级上册数学 第四章 几何图形初步 习题

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形与平面图形基础题知识点1 认识立体图形1.(丽水中考)下列图形中,属于立体图形的是(C)A B C D2.下列物体中,最接近圆柱的是(C)3.下面几何体中,既不是柱体,又不是锥体的是(C)4.请写出图中的立体图形的名称.(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.5.如图,把下列物体和与其相似的立体图形连接起来.解:如图.知识点2 认识平面图形6.以下图形中,不是平面图形的是(C)A.线段B.角C.圆锥D.圆7.【关注社会生活】如图是交通禁止驶入标志,组成这个标志的几何图形有(A)A.圆、长方形B.圆、线段C.球、长方形D.球、线段8.如图所示的是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形9.如图是由平面图形正方形和半圆构成的.10.下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.易错点忽视柱体上、下底面“平行且相等”这一条件而致错11.如图所示的立体图形中,不是柱体的是(D)中档题12.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱,其中立体图形有m个,平面图形有n 个,则m-n的值为(D)A.3B.2C.1D.013.如图,用简单的平面图形画出三位携手同行的小人物,请你仔细观察,图中三角形有4个,圆有6个.14.在如图所示的图形中,柱体有①②③⑦,锥体有⑤⑥,球体有④.15.指出图中各物体是由哪些立体图形组成的.解:(1)由正方体、圆柱、圆锥组成.(2)由圆柱、长方体、三棱柱组成.(3)由五棱柱、球组成.16.如图,有7种图形,请你选用这7种图形中的若干种(不少于两种)构造一幅画,并用一句话说明你的构想是什么?举例:如图,左框中就是一个符合要求的图案,请你在右框中画出一个与这个不同的图案,并加以说明.一辆汽车解:答案不唯一,略.综合题17.【注重动手操作】动手剪拼:下边的三幅图都是不规则图形,你能把它们各剪一刀,分成两部分,然后拼成正方形吗?试试看. 解:如图.第2课时立体图形与平面图形的相互转化基础题知识点1 从不同的方向观察立体图形1.(绍兴中考)如图的几何体是由五个相同的小立方体搭成,它从正面看到的平面图形是(A)A B C D2.有一种圆柱体茶叶筒如图所示,从正面看得到的平面图形是(D)3.如图所示的几何体,从左面看得到的平面图形是(B)A B C D4.如图是小李书桌上放的一本书,从上往下看得到的平面图形是(A)A B C D5.图中的两个圆柱体底面半径相同而高度不同,关于从不同的方向看这两个圆柱体得到的平面图形,说法正确的是(B)A.从正面看得到的平面图形相同B.从上面看得到的平面图形相同C.从左面看得到的平面图形相同D.从各个方向看得到的平面图形都相同6.下列几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2 立体图形的展开图7.如图所示的立体图形,它的展开图是(C)A B C D8.(常州中考)下列图形中,是圆锥的侧面展开图的是(B)9.(陕西中考)如图是一个几何体的表面展开图,则该几何体是(C)A.正方体B.长方体C.三棱柱D.四棱锥10.(无锡中考)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)中档题11.(广安中考)如图所示的几何体,从上面看得到的平面图形是(D)12.(龙东中考)由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是(A)13.(绵阳中考)把图中的三棱柱展开,所得到的展开图是(B)14.(教材P123习题T10变式)(河南中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我15.(连云港中考)由6个大小相同的正方体搭成的几何体如图所示,比较它从三个不同方向看到的平面图形的面积,则(C)A.一样大B.从正面看到的平面图形的面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小16.如图是由一些相同的小正方体搭成的几何体从三个不同方向看到的图形,搭成这个几何体的小正方体的个数是4.17.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.综合题18.如图是一个长方体的展开图,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在长方体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.小专题(十一)正方体的展开与折叠——教材P122习题T7、P123习题T10的变式与应用类型1 判断正方体的展开图教材母题:(教材P122习题T7)如图,这些图形都是正方体的展开图吗?如果不能确定,折一折,试一试.你还能再画出一些正方体的展开图吗?解:第一排第3个图不能,其余都能折成正方体.正方体的展开图可总结为如下图所示“一四一”“二三一”“三三”“二二二”四种类型,共11种情况. 1.一四一型2.二三一型3.三三型4.二二二型若小正方形摆成的平面图形呈“”“”“”型,则不能折成正方体.若出现“”型,则另两面必须在两侧.1.(长春中考)下列图形中,可以是正方体表面展开图的是(D)A B C D2.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3B.3或4或5C.4或5或6D.1或2或6类型2 找正方体的相对面或相邻面3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利4.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7B.8C.9D.104.1.2 点、线、面、体基础题知识点1 点、线、面、体1.面与面相交,形成的是(B)A.点B.线C.面D.体2.下雨时汽车的雨刷把玻璃上的雨水刷干净,这属于的实际运用是(B)A.点动成线B.线动成面C.面动成体D.都不对3.下面现象能说明“面动成体”的是(A)A.旋转一扇门,门运动的痕迹B.扔一块小石子,小石子在空中飞行的路线C.天空划过一道流星D.时钟秒针旋转时扫过的痕迹4.长方体有6个面,12条棱,8个顶点;圆柱有3个面,其中有2个平面,1个曲面.5.如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.知识点2 由平面图形旋转而成的立体图形6.(长沙中考)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是(D)7.【易错】现有一个长为4 cm,宽为3 cm的长方形,绕它的一边旋转一周,得到的几何体的体积是36π cm3或48π cm3.中档题8.(教材P120练习T2变式)将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是(B)A B C D9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是(B)A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.下面图1是正方体木块,若用不同的方法,把它切去一块,可以得到如图2、图3、图4、图5不同形状的木块.图1 图2 图3 图4 图5(1)我们知道,图1的正方体木块有8个顶点,12条棱,6个面.请你观察,将图2、图3、图4、图5中木块的顶点数a、棱数b、面数c填入下表:图顶点数a 棱数b 面数c1 8 12 62 6 9 53 8 12 64 8 13 75 10 15 7(2)观察这张表,请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系,这种数量关系是:a+c -b=2(用含a,b,c的一个等式表示).4.2 直线、射线、线段第1课时直线、射线、线段基础题知识点1 直线1.下列可近似看作直线的是(D)A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列图示中,直线表示方法正确的有(D)A.①②③④B.①②C.②④D.①④3.如图,下列说法错误的是(D)A.点P为直线AB外一点B.直线AB不经过点PC.直线AB与直线BA是同一条直线D.点P在直线AB上4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明经过一点可以画无数条直线;用两个钉子把细木条钉在木板上,就能固定细木条,这说明两点确定一条直线.5.如图,完成下列填空:(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线 b上,在直线 a外;(3)点A既在直线a上,又在直线b上.知识点2 射线6.(教材P126练习T1变式)如图所示,A,B,C是同一直线上的三点,下面说法正确的是(C)A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线7.如图,能用O,A,B,C中的两个字母表示的不同射线有7条.知识点3 线段8.下列表示线段的方法中,正确的是(B)A.线段AB.线段ABC.线段abD.线段Ab9.按语句“画出线段PQ的延长线”,画图正确的是(A)10.(柳州中考)如图,在直线l上有A,B,C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条11.如图,直线有多少条?把它们分别表示出来;线段有多少条?把它们分别表示出来;射线有多少条?可以表示的射线有多少条?把它们表示出来.解:直线有3条,分别为直线AB,直线AC,直线BC;线段有6条,分别为线段AB,线段AC,线段AD,线段BD,线段CD,线段BC;射线有14条,可以表示的射线有8条,分别为射线AB,射线AC,射线BA,射线BC,射线CA,射线CB,射线DB,射线DC.易错点三个点的位置不确定,考虑不周全12.平面上有三个点,可以确定直线的条数是1条或3条.中档题13.如图,对于直线AB,线段CD,射线EF,其中能相交的是(B)14.下列关于作图的语句中,一定正确的是(D)A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm15.延长线段AB到点C,下列说法中正确的是(B)A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线AB的延长线上16.如图,下列叙述不正确的是(C)A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线17.(教材P126练习T2变式)如图,已知平面上四点A,B,C,D.(1)画直线AB,射线CD;(2)画射线AD,连接BC;(3)直线AB与射线CD相交于点E;(4)连接AC,BD相交于点F.解:如图所示.18.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的数的部分是什么图形?怎样表示?解:(1)是一条射线,表示为射线OB.(2)负数和零(非正数).(3)线段,表示为线段AB.19.【易错】往返于甲、乙两地的客车,中途有三个站(如图).其中每两站的票价不同.问:(1)有多少种不同的票价?(2)要准备多少种车票?解:根据线段的定义:可知图中的线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条. (1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票. 综合题 20.如图:(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n (n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的式子表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时 比较线段的长短基础题 知识点1 用尺规作一条线段等于已知线段 1.尺规作图的工具是 (D )A.刻度尺和圆规B.三角尺和圆规C.直尺和圆规D.没有刻度的直尺和圆规 2.已知:线段a ,b.求作:线段AB ,使得AB =a +2b. 小明给出了四个步骤: ①在射线AM 上画线段AP =a ; ②则线段AB =a +2b ;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为正确的顺序是(B)A.①②③④B.④①③②C.④③①②D.④②①③3.如图,已知线段a,b,作一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)解:如图,AC即为所求线段.知识点2 线段的长短比较及和差4.如图所示,比较线段a和线段b的长度,结果正确的是(B)A.a>bB.a<bC.a=bD.无法比较5.七年级(1)班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法(A)A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,在三角形ABC中,比较线段AC和AB长短的方法可行的有(C)①凭感觉估计;②用直尺度量出AB和AC的长度;③用圆规将线段AB叠放到线段AC上,观察点B的位置;④沿点A 折叠,使AB 和AC 重合,观察点B 的位置.A.1个B.2个C.3个D.4个知识点3 线段的中点及等分点7.如图,点B 在线段AC 上,下列式子中:①AB=12AC ;②AB=BC ;③AC=2AB ;④AB+BC =AC ,其中能表示点B 是线段AC 的中点的有(C )A.1个B.2个C.3个D.4个 8.如图,点O 是线段AB 的中点,点C 在线段OB 上,AC =6,CB =3,则OC 的长等于(C )A.0.5B.1C.1.5D.29.如图,点C 在线段AB 上,点D 是线段AC 的中点,点C 是线段BD 的四等分点.若CB =2,则线段AB 的长为(C )A.6B.10C.14D.18 10.如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.易错点 由于点的位置不确定而出现漏解11.已知A ,B ,C 是直线MN 上的点,若AC =8 cm ,BC =6 cm ,点D 是AC 的中点,则BD 的长等于10 cm 或2 cm. 中档题12.已知线段AB =2 cm ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使BD =2AB ,则线段DC 的长为(C ) A.4 cm B.5 cm C.6 cm D.2 cm13.【易错】已知点A ,B ,C 在同一条直线上,点M ,N 分别是AB ,AC 的中点.如果AB =10 cm ,AC =8 cm ,那么线段MN 的长度为(D )A.6 cmB.9 cmC.3 cm 或6 cmD.1 cm 或9 cm14.如图,C ,D 是线段AB 上的点,若AB =8,CD =2,则图中以A ,C ,D ,B 为端点的所有线段的长度之和等于(D )A.24B.22C.20D.2615.如图,点C ,D ,E 都在线段AB 上,已知AD =BC ,点E 是线段AB 的中点,则CE =DE.(填“>”“<”或“=”)16.如图,点M 是线段AB 的中点,点C 在线段AB 上,且AC =4 cm ,点N 是AC 的中点,MN =3 cm ,求线段CM 和AB 的长.解:因为点N 是AC 的中点,AC =4 cm , 所以NC =12AC =12×4=2(cm ).因为MN =3 cm ,所以CM =MN -NC =3-2=1(cm ). 所以AM =AC +CM =4+1=5(cm ). 因为点M 是AB 的中点, 所以AB =2AM =2×5=10(cm ).17.如图,已知线段AB =20 cm ,点M 是线段AB 的中点,点C 是AB 延长线上一点,AC =3BC ,点D 是线段BA 延长线上一点,AD =12AB.(1)求线段BC 的长; (2)求线段DC 的长;(3)点M 还是哪些线段的中点?解:(1)因为AC =AB +BC ,AC =3BC , 所以3BC =AB +BC ,即AB =2BC. 因为AB =20 cm , 所以BC =10 cm.(2)因为AD =12AB ,AB =20 cm ,所以AD =10 cm.所以DC =AD +AB +BC =10+20+10=40(cm ). (3)因为点M 是线段AB 的中点, 所以AM =MB =10 cm. 所以DM =20 cm ,MC =20 cm. 所以点M 还是线段DC 的中点. 综合题18.已知线段AB 上有两点P ,Q ,点P 将AB 分成两部分,AP∶PB=2∶3,点Q 将AB 也分成两部分,AQ∶QB=4∶1,且PQ =3 cm.求AP ,QB 的长. 解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.第3课时关于线段的基本事实及两点间的距离基础题知识点1 关于线段的基本事实1.(随州中考改编)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(A)A.两点之间,线段最短B.两点确定一条直线C.直线比曲线短D.经过一点有无数条直线2.【关注社会生活】下面现象,可以用两点之间线段最短来解释的是(D)A.平板弹墨线B.建筑工人砌墙C.会场把茶杯摆直D.弯河道改直3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.解:点P的位置如图所示.作法:连接AB交直线l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.知识点2 两点间的距离4.(滨州中考)若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为(B)A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-25.如图,线段AB=8 cm,延长AB到点C.若线段BC的长是AB长的一半,则A,C两点之间的距离为(D)A.4 cmB.6 cmC.8 cmD.12 cm中档题6.(新疆中考)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B7.已知A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A,C两点间的距离是(D)A.8 cmB.9 cmC.10 cmD.8 cm或10 cm8.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC,BD的交点即为P点的位置,如图.综合题9.(教材P130习题T11变式)如图所示,有一个圆柱形纸筒,一只虫子在点B处,一只蜘蛛在点A处,蜘蛛沿着纸筒表面准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?解:如图所示,蜘蛛沿线段AB爬行,能最快地捉住虫子.小专题(十二)线段的计算类型1 中点问题(整体思想)【例】 如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ;(2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b2cm ;(3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点, 所以MC =12AC ,CN =12BC.又因为MN =MC +CN ,所以MN =12(AC +BC )=12AB =m2 cm.(4)猜想:MN =12AB =n2cm.结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB.【变式1】 若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点, 所以CM =12AC.因为点N 是BC 的中点, 所以CN =12BC.所以MN =CM +CN =12(AC +BC )=12AB.所以AB =2MN =2k cm.【变式2】 若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由. 解:MN =m2cm 成立.当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC.又因为MN =MC -CN ,所以MN =12(AC -BC )=12AB =m2 cm.如图,只要点C 在线段AB 所在直线上,点M ,N 分别是AC ,BC 的中点,那么MN =12AB.图1 图2 图31.如图,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.若AB =8 cm ,AC =3.2 cm ,则线段MN 的长为2.4cm.2.如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长. 解:(1)因为AB =24,CD =10, 所以AC +DB =14.因为M ,N 分别为AC ,BD 的中点, 所以CM =12AC ,DN =12BD.所以MC +DN =12(AC +DB )=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =a -b.所以MC +DN =12(AC +DB )=12(a -b ).所以MN =MC +DN +CD =12(a -b )+b =12(a +b ).类型2 直接计算3.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使BC =2AB ,取线段AC 的中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度. 解:(1)如图.(2)因为BC =2AB ,且AB =4, 所以BC =8.所以AC =AB +BC =8+4=12. 因为D 为AC 中点, 所以AD =12AC =6.所以BD =AD -AB =6-4=2.类型3 方程思想4.如图,已知B ,C 两点把线段AD 分成2∶5∶3三部分,点M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 则AD =AB +BC +CD =10x cm. 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm.所以BM =AM -AB =5x -2x =3x cm. 因为BM =6 cm , 所以3x =6.解得x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).5.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ). 因为EF =10 cm , 所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.类型4 分类讨论思想6.已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长度. 解:当点C 在线段AB 上时,如图1,图1CD =12AC =12(AB -BC )=12×(60-20)=12×40=20(cm ); 当点C 在线段AB 的延长线上时,如图2,图2CD =12AC =12(AB +BC )=12×(60+20)=12×80=40(cm ). 所以CD 的长度为20 cm 或40 cm.7.课间休息时小明拿两根木棒玩,小明说:“较短木棒AB 长40 cm ,较长木棒CD 长60 cm ,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E 和点F ,则点E 和点F 间的距离是多少?你说对了我就给你玩.”聪明的你请帮小华求出此时两根木棒的中点E 和F 间的距离是多少?解:如图1,当AB 在CD 的左侧且点B 和点C 重合时,图1因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =BE +CF =20+30=50(cm ). 如图2,当AB 在CD 上且点B 和点C 重合时,图2因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =CF -BE =30-20=10(cm ).所以此时两根木棒的中点E 和F 间的距离是50 cm 或10 cm.类型5 动态问题8.如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值;(3)【分类讨论思想】当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上,如图所示:此时PQ =OP -OQ =(OA +AP )-OQ =(10+t )-2t =10-t =8.(3)PQ =|OP -OQ|=|(OA +AP )-OQ|=|(10+t )-2t|=|10-t|. 因为PQ =12AB ,所以|10-t|=2.5. 解得t =7.5或t =12.5.4.3 角 4.3.1 角基础题知识点1 角的定义及表示方法 1.下列说法中,正确的是(C ) A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 2.图中角的表示方法正确的有(B )A.1个B.2个C.3个D.4个 3.如图所示,下列表示角的方法错误的是(D )A.∠1与∠AOB 表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB ,∠AOC,∠BOCD.∠AOC 也可用∠O 来表示4.如图,∠1,∠2表示的角用大写字母分别表示为∠ABC,∠BCN;∠A 也可表示为∠BAC,还可以表示为∠MAN .5.如图所示,能用一个字母表示的角有2个,以A 为顶点的角有3个,图中所有的角有7个(小于平角).知识点2 角的度量6.(厦门中考)1°等于(C )A.10′B.12′C.60′D.100′ 7.下列各角中,是钝角的是(B )A.14周角B.23平角C.平角D.14平角8.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A ) A.∠1=∠3 B.∠1=∠2 C.∠1<∠2 D.∠2=∠3 9.计算:(1)12′=0.2°或720″; (2)360″=0.1°或6′; (3)57.18°=57°10′48″. 知识点3 钟面角10.某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的小于平角的角等于90°.易错点1 角的概念辨析有误 11.下列说法正确的是(C ) A.平角就是一条直线 B.小于平角的是钝角C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数为0° 易错点2 角度换算时出错12.(1)把124.24°化为度、分、秒的形式为124°14′24″; (2)若把36°36′36″化成以度为单位,则结果为36.61°. 中档题13.下列各式中,角度互化正确的是(D ) A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′14.【易错】一个20°的角放在10倍的放大镜下看是(A ) A.20° B.2° C.200° D.无法判断 15.如图,点O 在直线AB 上,则在此图中小于平角的角有(B )A.4个B.5个C.6个D.7个16.如图,有下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠OGB是同一个角;③∠DOF和∠EOG是同一个角;④∠ABC和∠ACB是同一个角.其中正确的有(B)A.1个B.2个C.3个D.4个17.(通辽中考)4点10分,时针与分针所夹的小于平角的角为(B)A.55°B.65°C.70°D.以上结论都不对18.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).解:(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.19.爸爸问小明:“一个方桌有四个角,如果锯掉一个角,还剩几个角?”小明回答:“还剩3个角.”并画出了如下图形.小明回答正确吗?若不正确,请说明理由,并画出图形.解:不正确,理由:除小明这种画法外还有如下两种画法,所以还剩3个或4个或5个角.画图如下:【变式】 n 边形剪去一个角,还剩(n -1)或n 或(n +1)个角. 综合题20.【类比探究】有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点.如图所示,如果过角的顶点:(1)在角的内部作1条射线,那么图中一共有3个角; (2)在角的内部作2条射线,那么图中一共有6个角; (3)在角的内部作3条射线,那么图中一共有10个角;(4)在角的内部作n 条射线,那么图中一共有(n +2)(n +1)2个角.【变式】 以直线l 外一点P 为端点,向直线l 上的n (n>1)个点作射线,则以点P 为顶点,以这些射线为边的角(小于180°)的个数为n (n -1)2.(用含有n 的式子表示)。

【教案】立体图形与平面图形(第1课时)

【教案】立体图形与平面图形(第1课时)

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时一、教学目标【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体。

【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度与价值观】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形五、课前准备教师:课件、三角尺、各种图片等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课观察实物及欣赏图片:(出示课件2-5)我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.(二)探索新知1.师生互动,探究图形的概念教师问1:什么是图形?在小学里,在日常生活中,我们已经接触过很多图形.请同学们想一想,举几个例子学生回答:三角形、正方形、圆……教师问2:(出示长方体模型)这是什么图形?(出示课件7)学生回答:长方体.教师问3:观察这个纸盒,从中可以看出哪些你熟悉的图形?学生回答:从整体上看,它的形状是长方形;看不同的侧面,得到的是正方形或长方形;看棱得到的是线段;看顶点得到的是点.(出示课件8)教师问4:(将画有正方体的纸贴到黑板上)这张纸上画的是什么图形?学生回答:正方体.(师板书:正方体)(师依次出示圆柱、圆锥、球的模型,教学过程同上)总结点拨:(出示课件9)类似地观察罐头,足球或篮球的外形,可以得到圆柱、球、圆等.长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学过的三角形、四边形等,都是从物体外形中得出的,它们都是几何图形.教师问5:(出示课件11三棱柱模型)这是什么图形?师生共同解答如下:这个图形叫棱柱.教师问6:(将画有三棱柱的纸贴到黑板上)这张纸上画的是什么图形?学生回答:棱柱.(师板书:棱柱)教师问7:(出示六棱柱模型)这又是什么图形?学生回答:这个图形也是棱柱.教师问8:(将画有六棱柱的纸贴到黑板上)这张纸上画的是什么图形?学生回答:棱柱.(师板书:棱柱)教师问9:(三棱柱、六棱柱的棱垂直桌面放置)这两个图形都是棱柱,但它们的形状还是有不一样的地方,有什么不一样的地方?师生共同解答如下:(演示三棱柱)这个棱柱相对的这两个面都是三角形,(演示六棱柱)这个棱柱相对的这两个面都是六边形,所以我们把这个棱柱叫做三棱柱,(板书:三)把这个棱柱叫做六棱柱.(板书:六)教师问10:三棱柱像我们生活中见过的什么东西?(三棱柱的棱平行桌面放置)学生回答:三棱柱像是一个帐篷……. (多让几位学生表达)教师问11:(六棱柱的棱垂直桌面放置)六棱柱像我们生活中的什么东西?学生回答:……(多让几位同学说)六棱柱挺像是一个茶叶盒.(也可说其它东西)(以下教师依次出示四棱锥、圆锥,教学过程与棱柱教学基本相同)教师问12:(指模型)刚才我们看了正方体、长方体、圆柱、圆锥、球、棱柱、棱锥,这些图形有什么共同的特点呢?师生共同解答如下:它们都是立体图形.(板书:立体图形)总结点拨:(出示课件10)这些几何图形的各部分不都在同一平面内,它们是立体图形.教师问13:(指板书)这些立体图形在我们生活中都是常见的,请大家把课本翻到115页,(稍停)上面一排印了一些实物,这些实物是什么东西?学生回答:地球仪、魔方、现代汉语词典、沙堆、铅笔、建筑物.教师问14:这些实物是什么立体图形呢?请大家把实物与下面一排的图形用线连起来.学生连线,给出答案.教师问15:(指板书)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形. 观察小茗的房间,说说你能看到哪些立体图形.(出示课件12)学生回答:……(多让几位同学发表看法)教师问16:(出示两个模型的组合图形,譬如将正方体与圆锥组合在一起)这个图形是立体图形吗?学生讨论后回答:是立体图形.教师问17:(出示三个模型的组合图形)这个图形是立体图形吗?学生回答:是立体图形.教师问18:(出示四个模型的组合图形)这个图形是立体图形吗?学生回答:是立体图形.教师总结:这些图形都是立体图形,将一些立体图形组合在一起,我们可以得到各种各样的立体图形.实际上,只要图形的各部分不都在同一个平面内,也就是说图形不是平平的,这样的图形都是立体图形.一棵树可以看成是一个立体图形,一朵花可以看成是一个立体图形,一只藏羚羊可以看成是一个立体图形,雄伟的布达拉宫可以看成是一个立体图形,甚至整座城市也可以看成是一个立体图形.教师问19:棱锥与棱柱的区别是什么?(出示课件14)学生讨论后回答:棱柱的两个底面形状相同,大小相等,棱锥只有一个底面,所有侧棱交于一点.棱柱的侧面时长方形,棱锥的侧面是三角形.教师问20:圆锥与圆柱的区别是什么?学生回答:圆柱的两个底面都是圆且相等,圆锥只有一个底面是圆和一个顶点.教师问21:根据已有的数学经验,我们能否把它们进行分类?你的标准是什么?(出示课件15)学生回答:合理即可。

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

仅供学习交流!
答案:
学前温故
新课早知
2. 立体图形 和 平面图形 是两类不同的几何图形,且立体 图形的各部分不都在 同一平面 内,平面图形的各部分都在 同一平面 内. 3.下图中的平面图形有长方形、直角梯形、圆 .
常见几何图形的识别 【例题】 下图中哪些图形是立体图形,哪些图形是平面图形?分 别说出它们的名称.
第四章
几何图形初步
4.1
几何图形
4.1.1
立体图形与平面图形
第1课时
几何图形
学前温故
新课早知
小学里认识的平面图 形: 三角形 、 正方形 、 长方形 、 平行四边形 、 梯形 等;立体图 圆 、 形: 正方体 、 长方体 、 圆柱 、 圆锥 、 球 .
学前温故
新课早知
1.把下列物体与其相似的图形连接起来.
分析①是由6个面组成的,所以它是一个立体图形,是一个正方体. ②是由1个面组成的,是一个平面图形,是长方形. ③是由1个面组成的,是一个平面图形,是三角形. ④是由3个面组成的,2个平面1个曲面,是一个立体图形,是圆柱. ⑤是由1个曲面组成的,是一个立体图形,是球. ⑥是由1个曲面和1个平面组成的,是一个立体图形,是圆锥. ⑦是由4个平面组成的,是一个立体图形,是棱锥. 解:①④⑤⑥⑦是立体图形,名称分别为正方体、圆柱、球、圆 锥、三棱锥;②③是平面图形,名称分别为长方形、三角形.
1
2
3
4
5
1.下列图形都是平面图形的一组是( C ) A.三角形、圆、球、圆锥 B.点、线、面、体 C.角、三角形、四边形、圆 D.点、相交线、线段、圆柱
1
2
3
4
5
2.在下面四个物体中,最接近圆柱的是(

2022年人教版七年级上册数学第四章几何图形初步单元教案

2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。

《立体图形和平面图形》(第1课时几何图形的认识)

《立体图形和平面图形》(第1课时几何图形的认识)

《立体图形和平面图形》(第1课时几何图形的认识)汇报人:日期:CATALOGUE 目录•立体图形•平面图形•立体图形和平面图形的认识过程•立体图形和平面图形的在生活中的应用•小结与展望立体图形01立体图形是指图形的各个部分不都在同一平面内的图形。

与平面图形的区别立体图形是三维的,而平面图形是二维的。

立体图形的定义立体图形在空间中占据一定的体积,而平面图形只存在于一个平面上。

占据空间方向感立体感立体图形具有方向感,不同方向看到的形状可能不同;而平面图形则不具备方向感。

立体图形能够给人一种立体感,而平面图形则不具备立体感。

03立体图形的特点0201常见的立体图形球体只有一个曲面,并且没有棱的立体图形。

圆锥体具有一个顶点和一个底面,并且侧面展开后为扇形的立体图形。

圆柱体具有上下两个圆面,并且侧面展开后为矩形的立体图形。

正方体具有6个面,12条棱,8个顶点的立体图形。

长方体具有6个面,12条棱,8个顶点的立体图形,与正方体相似但长宽高不同。

平面图形02平面图形是一个二维图形,它描绘的是在一个平面上的点、线、面等元素之间的关系。

定义平面图形是无限延展的,没有边界,可以在平面上自由移动而不改变其形状和大小。

特点圆形、三角形、矩形、正方形、椭圆、扇形等。

常见的平面图形平面图形是由线段、曲线、角等元素组成的,这些元素之间通过点、角、边等关系相互连接。

特点根据构成元素的差异,平面图形可以分为线段图形、多边形图形、圆形图形等。

分类平面图形的性质包括对称性、平行性、垂直性等,这些性质在解决几何问题中具有重要的作用。

性质圆形圆形是一个由曲线包围的平面图形,它具有轴对称性和旋转对称性。

圆形的周长和面积是两个非常重要的几何量。

三角形是一个由三条线段组成的平面图形,它具有稳定性、平衡性和简洁性等特点。

三角形的内角和等于180度,这是三角形的一个重要性质。

矩形是一个由两条平行线和两条垂直线组成的平面图形,它具有平行性和垂直性等特点。

立体图形与平面图形1

立体图形与平面图形1
(2)知道一些简单的立体图形的展开图. (3)在平面图形和立体图形互相转换的过程中, 初步建立空间观念.
认识几何体与从不同方向看它所得 的平面图形之间的关系;了解一些 简单的立体图形和它的展开图之间 的关系.
从平面图形和立体图形的互相转换 过程中,培养空间想象力.
知识点1 不同方向看到的平面图形
问题1 在建筑、工程等设计中,常常用 从不同方向看到的平面图形来表示立体 图形.下图是某个工件的立体图.从正面、 左面、上面观察到的形状是什么样的?
请同学们从三个方向看下面物体,你能分别画 出看到的图象吗
从正面看
从左面看
从上面的活动中可以体会到从不同的方向看同一 物体时,可能看到不同的图形从.其上面中看,
从正面看 从左面看 从上面看
1、画出下面几何体的主视图、左视Hale Waihona Puke 与 俯视图主视图左视图
俯视图
从正面看
2、画出下面几何体的左视图、主视图、 俯视图。
主视图
左视图
俯视图
问题3 分别从正面、左面、上面看圆柱、圆 锥、球,各能得到什么平面图形?
立体图形
从正面看
从左面看
从上面看
.
问题4 分别从正面、左面、上面观察三棱 柱和四棱锥,看一看各能得到什么平面图 形
4.1.1 立体图形与平面图形
第2课时 从不同方向看立体图形和立体图形的展开图
《题西林壁》
新课导入
横看成岭侧成峰, 远近高低各不同 不识庐山真面目,只 缘身在此山中。
古诗中“横看成岭侧成峰”一句蕴含了 怎样的数学道理
从不同方向看飞机,看到的形状一样吗?
(1)初步体会从不同的方向观察同一个物体可能 会看到不同的平面图形,能识别简单物体从 正面看、 从左面看、从上面看的平面图形.

2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》01(含答案)

2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》01(含答案)

人教版七年级数学上册第四章几何图形初步《4.1.1立体图形与平面图形》课时练一、选择题1.下列说法错误的是()A.若棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形2.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.有两个面平行,其余各面都是四边形的几何体叫棱柱C.将直角三角形绕它的一边所在的直线旋转一周,形成的几何体一定是圆锥D.棱台的侧棱所在的直线交于一点3.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱4.对于棱锥,下列叙述正确的是()A.四棱锥共有四条棱B.五棱锥共有五个面C.六棱锥的顶点有六个D.任何棱锥都只有一个底面5.下列五种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;其中属于立体图形的是()A.①②③B.③④⑤C.③⑤D.④⑤6.如图(1)(2)是放置一个水管三叉接头,若从正面看这个接头时,看到图形如图(2),则从上面看这个接头时,看到的图形是()A.B.C.D.7.太阳、西瓜、易拉罐、篮球、书本中,形状类似圆柱的有()A.1个B.2个C.3个D.4个8.如图是正方体的平面展开图,在顶点处标有自然数1~11,折叠围绕成正方体后,与数字6重合的数字是()A.7,8B.7,9C.7,2D.7,49.很多立体图形都是由平面图形围成的,下面立体图形不都是由平面图形围成的是()A.长方体B.三棱锥C.圆锥D.六棱柱10.一个棱长为10分米的正方体,体积是()立方分米.A.109B.106C.103D.1027二、填空题11.如图,下图中是圆柱体的有________,是棱柱体的有_________.(只填图的标号)12.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图,则搭成这个几何体的小正方体的个数最多为___,最少为_____.13.如图,5个棱长为1 cm的正方体摆在桌子上,则露在外面的部分(不包括底面)的面积为______cm2.14.从正面和从左面看一个长方体得到的形状图如图所示(单位:cm),则其从上面看到的形状图的面积是______.15.如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为.三、解答题16.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)17.如图所示的五棱柱的底面边长都是5cm ,侧棱长12cm ,它有多少个面?它的所有侧面的面积之和是多少?18.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+ a 2b +3,B =﹣ a 2b +a 3,C =a 3﹣1,D =﹣ (a 2b +15),且相对两个512151面所表示的代数式的和都相等,求E、F代表的代数式.19.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.20.如图是一个正方体的平面展开图,标注了字母M的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和底面的数字和.21.如图,是一个直四棱柱及其主视图和俯视图(等腰梯形).(1)根据图中所给数据,可求出俯视图(等腰梯形)的高为________;(2)在虚线框内画出左视图,并标出各边的长.22.明明家打算在一块长为16m,宽为4m的矩形土地上搭建一个截面为半圆形的全封闭蔬菜棚,并全部盖上塑料薄膜(如图所示),则所需薄膜的面积至少为多少平方米?(结果可含π,不考虑埋入土中部分的面积)23.如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为40cm 的正方形,求这个长方体的体积.参考答案1.D 2.D 3.D 4.D 5.B 6.A 7.A 8.C 9.C 10.C11.③、④②、⑤、⑥12.9,713.1614.12cm215.7.16.略17.这个五棱柱共7个面,侧面的面积之和是300cm 2.18.(1)面F ,面E ;(2)F = a 2b ,E =1 19.(1)这个几何体是圆柱;(2)表面积为1000π. 20.(1)1.5;(2)-5.21.(1)4;(2)略22.36π(m 2).23.这个长方体的体积是 4000cm³ 21。

人教版七年级数学上册 4.1.1 :立体图形与平面图形

人教版七年级数学上册 4.1.1 :立体图形与平面图形

提升训练 9.观察,填写下面的空. (1)三棱锥有___4_____个面,____6____条棱,___4_____个顶点; (2)四棱锥有___5_____个面,____8____条棱,___5_____个顶点; (3)猜想n棱锥有_(_n_+_1__) _个面,__2_n____条棱,__(n_+__1_)__个顶点.
( 圆柱 ) ( 圆锥 )
( 四棱锥 )
( 六棱柱 )
( 三棱柱 )
( 四棱柱 )
(球)
( 圆台 )
练一练 4.如图,回答问题.
立体图形有
平面图形有
练一练
5.观察如图,第n个图形中三角形的个数是____
6.观察表格中的图, 填空.
7.右图几何体的面数是_____
提升训练
8.观察,填写下面的空. (1)三棱柱有___5_____个面,____9____条棱,____6____个顶点; (2)六棱柱有___8_____个面,____1_8___条棱,____1_2___个顶点; (3)猜想n棱柱有_(_n_+__2_)_个面,__3_n____条棱,____2_n___个顶点.
4.1.1 立体图形与平面图形
北京奥林匹克公园占地约1135 hm2.总建筑面积 约200万m2,内有可容纳9万观众的国家体育场(鸟巢)、 国家游泳中心(水立方)、国家体育馆等14个比赛场馆.
园 天然林水气·立王设计一个产品包装盒? 怎样绘制一张校园布局平面图? 不同的图形各有什么特点和性 质? 所有这些,都需要我们知道更 多的图形知识.
物体的形状、大小和位置关系是几何要研究的内容.
温故知新 对于生活中的各种各样的物体,数学中关注的是: 1.物体的形状(如方的,圆的等) 2.物体的大小(如长度,面积,体积等) 3.物体的位置(如相交,垂直,平行等)

4.1.1立体图形与平面图形

4.1.1立体图形与平面图形

4.1.1 立体图形与平面图形
栏目索引
例2 如图4-1-1-3所示,下列各标志图形主要由哪些简单的几何图形组 成?
图4-1-1-3
解析 图①由圆组成;图②由长方形和正方形组成;图③由四边形(或菱 形)组成;图④由圆和圆弧组成.
4.1.1 立体图形与平面图形
知识点三 从不同方向看物体
栏目索引
常见立体图形从不同方向看得到的平面图形列表如下:
栏目索引
答案 B A是球,B是圆柱,C是圆锥,D是三棱柱,故选B.
4.1.1 立体图形与平面图形
2.如图是一座房子的平面图,组成这幅图的图形有 ( )
栏目索引
A.三角形、长方形 B.三角形、正方形、长方形 C.三角形、正方形、长方形、梯形 D.正方形、长方形、梯形 答案 C 由题图可以看出,在这个平面图中,房子的屋顶是三角形,其 余的图形分别有长方形、正方形、梯形.这座房子的平面图是由上述四 种图形组成的.
答案 A 点拨 考查从不同角度观察物体的能力,体会立体图形与平面图形相互 转化的过程,培养空间想象能力.
4.1.1 立体图形与平面图形
栏目索引
题型二 正方体的平面展开图 例2 图4-1-1-8是每个面上都有一个汉字的正方体的一种平面展开图, 那么在原正方体中和“国”字所在面相对的面上的汉字是 ( )
4.1.1 立体图形与平面图形
知识点一 认识立体图形 1.下列几何图形中,是棱柱的是 ( )
答案 B A是圆柱;B是棱柱;C是球;D是圆锥.
栏目索引
4.1.1 立体图形与平面图形
栏目索引
2.与图中实物图相类似的立体图形按从左至右的顺序依次是 ( )
A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体

4.1.1立体图形与平面图形

4.1.1立体图形与平面图形

4.1.1立体图形与平面图形(第一课时)设计者:闫晓刚 迟璐一、学习目标1、观察生活中的大量实物,认识基本的几何体2、通过比较不同的物体学会观察物体间的不同特征,体会几何体的联系与区别重点:1、通过具体情境认识一些基本的几何体2、能用自己的语言描述几何体的特征难点:1、观察身边的事物,用数学的眼光来评价它们2、借助所了解的图形,归纳出集合体的分类二、课前测试请写出下列公式:__________=三角形面积 ⎩⎨⎧==______________面积周长正方形⎩⎨⎧==____________________面积周长长方形 ⎩⎨⎧==____________________面积周长圆 ____________=梯形面积 ______=平行四边形面积 ⎩⎨⎧==___________________体积表面积圆柱 ⎩⎨⎧==________________体积表面积长方体 ⎩⎨⎧==__________________体积表面积正方体 _______=圆锥体积三、引导自学(一)回忆:小学学过哪些几何图形?⎩⎨⎧______________________________________________________立体图形:平面图形:几何图形⎩⎨⎧同一平面内立体图形:各部分同一平面内平面图形:各部分看书归纳总结定义____________ (二)探索新知1、观察书114P 图4.1-1和116P 图4.1-5,找出图片中你所熟悉的几何图形2、观察书115P 图4.1-3,回答下列问题:1)图中哪些物体的形状与长方体、正方体类似?2)图中哪些物体的形状与圆锥、圆柱类似?3)图中哪些物体的形状与笔筒形状类似?3、请用自己的语言描述正方体、长方体、圆柱、圆锥、棱柱、棱台、球的特征(三)典型例题将书115P 图4.1-4几何体分类,并说明理由四、完成练习书116P 练习#1,2五、作业导航6463P ~P4.1.1立体图形与平面图形(第二课时)设计者:闫晓刚迟璐一、学习目标1、经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看2、能画出从不同方向看一些基本几何图形(直棱柱、圆锥、圆柱、球)以及他们的简单组合的道德平面图形3、在立体图形与平面图形相互转换的过程中,初步建立空间观念,发展几何直觉重点:经历活动过程与合作交流过程,发展学生思维能力难点:画出从不同方向看一些基本几何图形的平面图形二、课前预习1、观察物体可以从哪几个角度观察?2、从不同角度观察到的平面图是否一样?3、从不同角度观察到的平面图与物体展开图是否一样?三、引导自学P图4.1-7,请画出该物体从上面、左面、正面看到的1、观察书117平面图并思考:1)画出来的图形有什么问题?2)怎样解决这样的问题呢?2、看看自己手中的墨水盒,你能画出它从正面、上面、左面看到的平面图吗?总结定义:什么是三视图?(三)典型例题1、小明从正面观察图1所示的两个物体,看到的是( )图12、图2中的几何体从正面看得到的平面图形是________,从左面看得到的平面图形是______,从上面看得到的平面图形是__________。

人教版七年级数学上册.1立体图形与平面图形第1课时教学课件

人教版七年级数学上册.1立体图形与平面图形第1课时教学课件
1.学生先自主作答; 2.教师展示答案; 3.学生参考答案修改.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例2】下列图形中,哪些是立体图形,哪些是平面图形? 长方体;圆;正方体;圆锥;三角形;梯形;棱锥;棱柱;平行 四边形;球;圆柱;正方形;长方形.
立体图形
长方体 正方体 圆柱 圆锥 棱锥 棱柱 球
再见
棱柱
圆柱
棱锥

圆柱

长方体
圆锥
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例1】说出下列物体的形状所对应的立体图形,并按照柱体、 锥体、球体将这些物体分成三类.
柱体
锥体
球体
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例2】下列图形中,哪些是立体图形,哪些是平面图形? 长方体;圆;正方体;圆锥;三角形;梯形;棱锥;棱柱;四 边形;球;圆柱;正方形;长方形.
生活中的立体图形展示
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
生活中的立体图形展示
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
视察 视察下面的物体,从中能抽象出什么立体图形?
帐篷
茶叶盒
金字塔
棱柱
棱柱
棱锥
棱柱、棱锥也是常见的立体图形.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
(1) 圆
(2) 三角形 长方形
(3) 三角形 四边形
(4) 圆
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
立体图形:


各部分不都在同一平面内的图形.

4.1.1(1)认识立体图形与平面图形

4.1.1(1)认识立体图形与平面图形
这是一件令全国都振奋的事情
它发生在2001年7月13日
它的举办体现了一种精神
它将在2008年举行,地点是北京
2008北京奥运会的奥运村模型图
世贸中心重建方案
大 连 天 伦 商 厦
上 海 东 方 明 珠
北京西站
温 岭 大 厦
温 岭 电 信 大 楼
太平新貌
繁昌小区
乡 村 一 角
城北大石、泽太互通立交
交 通 标 志
箬 横 拼 搏 雕 塑
小 区 东 雕 辉 塑 公 园 海 鸟 雕 塑
北 山 河 绿 地 雕 塑
三 星 转 盘 申 奥 雕 塑
4.1 多姿多彩的图形
3.1.1 立体图形和平面图形(一)
长方体
正方体

圆柱
圆锥
长方体、正方体、球、圆柱、圆锥等 几何图形都是立体图形(solid figure)。 你还能再举出生活中类似于这些立体 图形的物体吗?
3.1.1 立体图形和平面图形(一)
帐篷
笔筒
金字塔
棱柱
棱锥
棱柱、棱锥也都是立体图形。
你能举出生活中类似于棱柱、棱锥的物体吗?
3.1.1 立体图形和平面图形(一)

棱锥
以上图形都是立体图形
请你说出图中含有的一些立体图形。
3.1.1 立体图形和平面图形(一)
用橡皮泥做出以下立体图形:
3.1.1 立体图形和平面图形(一)
发 现 了 什 么 ?
学 会 了 什 么 ?
你 知 道 了 什 么 ?
请 你 谈 收 获
3.1.1 立体图形和平面图形(一)
请你用几何图形帮小明设计庭院。
作业:
1、作业本(2) P24
2、教科书 P115~116 习题3.1(1~3)题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从城市建筑到乡村 住宅,从立交桥到交通标 志,从剪纸艺术到城市雕 塑,从申奥标志到动物形 态„„图形世界是多姿多 彩的! 物体的形状、大小 和位置关系是几何研究 的内容.
说一说下面这些几何图形又有什么共同特点?
有些几何图形的各部分都在同一平面内, 它们是平面图形.
下面各图中包含哪些简单的平面图形?请再举出一 些平面图形的例子.
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四锥
三棱柱
图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
正方体

六棱柱
圆锥
长方体
四棱锥
练习:
1.如图,说出下图中的 一些物体的形状所对应 的立体图形.
2.图中的各立体图形的表面包含哪些平面图形? 试指出这些平面图形在立体图形中的位置.
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的. 从实物中抽象出的各种图形统称为几何图形.
说一说下面这些几何图形有什么共同特点?
有些几何图形的各部分不都在同一平面内,它们 是立体图形. 请再举出一些立体图形的例子.
义务教育教科书
数学
七年级
上册
4.1.1 立体图形与平面图形 (第1课时)
课件说明
本课学习“立体图形”和“平面图形”两个概 念,是初中学段“图形与几何”领域的第一课.首 先通过前言中的实际问题和大量实物图片,展示现 实生活中多姿多彩的图形世界与几何知识间的密切 联系;接着从观察长方体形纸盒入手,引导我们初 次经历从具体物体的外形中抽象出几何图形,然后 通过观察、对比,归纳出立体图形和平面图形的概 念,并进一步认识常见的棱柱和棱锥等立体图形.
练习:
3.如图,你能看到哪些立体图形?
(第4题)
( 第5题)
4.如图,你能看到哪些平面图形?
小结: 本节课主要学习了立体图形和平面图形的概念, 并初步经历了由具体实物的外形中抽象出几何图形 的过程,体验到了现实生活与数学的密切联系.
作业: 1.结合身边的实际物体,看一看可以得到哪些 几何图形,其中哪些是立体图形?哪些是平面图形? 说出来与同学交流一下. 2.动手画一画你所熟悉的立体图形. 3.选用合适的材料和工具,做一个三棱柱和一 个四棱锥.
课件说明
学习目标: 1.可以从简单实物的外形中抽象出几何图形,并 了解立体图形与平面图形的区别; 2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥. 学习重点: 立体图形和平面图形的概念.
学习难点: 从实物的外形中抽象出几何图形.
北京奥林匹克公园占地约1135hm2.总建筑面积 约200万m2,内有可容纳9万观众的国家体育场(鸟巢)、 国家游泳中心(水立方)、国家体育馆等14个比赛场馆.
相关文档
最新文档