高数考研辅导选讲一
课题_高等数学选讲
连保胜 2015-11-24第一讲 极限的求法(包括一元和多元)极限的基本形式是000,,1,,0,,00∞∞∞-∞∞∞∞等 一、型未定式的求法: 1、 分式,因式分解,约分,约去0的部分,代入计算。
或者根据留大去小原则,保留加法形式中的低阶无穷小来处理。
2、 根式,换元发,变分式,或者,有理化,包括分子有理化和分母有理化。
3、 0的等价表互相替换0,注意,相互替换的是0,或者替换复合函数中的0部分。
条件为:0x →(或者等价条件,例如:1,2nn →∞,只要是0换0,这个原则不能改变)等价表如下(根据五大类函数依次列出):11112x x n指数函数:1ln ;1x x a x a e x --对数函数:log (1)log ;ln(1)e a a x x x x ++三角反三角函数:1sin tan arcsin arctan ;1cos 2x x x x x x x - 4、 罗必达法则:()()limlim()()f x f xg x g x '=',注意使用这个法则的时候非0的部分一定不要参与求导的运算,应使用基本的一些运算将他和0部分分开。
5、 泰勒展式替换0,使用在0处的泰勒展式替换极限中的0部分 五大函数的泰勒展式:幂函数:0112(1).........n nx C C x C x C x ααααα+=+++++期中(1)(2) (1)(1)(2) (1)nn C n n n ααααα---+=--,当1α=-时,有无穷等比数列的和的公式:2111...(1)......1n n x x x x+=-+++-++ 指数函数:22(ln )(ln )1ln .........2!!n xna a a x a x x n =+++++;2111.........2!!x n e x x x n =+++++对数函数:231ln(1)...(1)...23nn x x x x x n++--++-+ 三角反三角函数:312111sin ...(1)......3!(21)!n n x x x x n +-=+++-+- 2211cos 1...(1)......2!(2)!n n x x x n =-++-+ 二、∞∞型未定式的极限的求法 6、 保留留大去小原则,保留加法中的高阶无穷大,再求极限。
考研数学复习教程答案详解高数部分
第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。
3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。
12.13.提示:由1 未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。
16.17.提示:先指数对数化,再利用洛必达法则。
18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。
20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。
三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。
(3)(4)(5)提示:先指数对数化,再用洛必达法则。
(6)提示:请参照“例1.2.14(3)”求解。
22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。
24.提示:先指数对数化,再由导数定义可得。
25.26.28.提示:利用皮亚诺型余项泰勒公式求解。
数学分析考研辅导班讲义1
n
2n p
p
11 2n1 2n2
1 2n
p
1 2n1
1
1 2p
1
1 2
1 2n
1 n
,
故 0 , N 1 0 ,当 n N 时, 自然数 p ,由以上不等式知
an p an
1 n
,
故an 收敛. 定理 1.2.2 数列an 收敛 an 的任意两个子数列都收敛,且都收敛于同一
1
2 n2 n
n
1 n2 1
2 n2
2
n n2
n
1
2 n2 1
n
nn 1
2 n2 1
而
lim n n 1
n 2 n2 1
1 2
,故原极限
1 2
.
例 1.2.8 设 0 x1 1, xn1 xn 1 xn , n 1, 2, , 证 明 xn 收 敛 , 并 求
第 3 步 写出 u 在不同区间段上 x 所对应的变化区间;
第 4 步 将第 3 步中所得结果代入 y f (u) 中,便得 y f (g(x)) 的
表达式及相应 x 的变化区间 .
练习题
1
设
f
(x)
1, 0,
x 1 x 1
,
g(x)
2 x2,
2,
x 2 x 2
ab
b 0 不存在 b 0 不定 a 0 不存在 a 0 不定
不确定
lim an b n n
考研数学强化班高等数学讲义-汤家凤
第一讲 极限与连续主要内容概括〔略〕 重点题型讲解一、极限问题类型一:连加或连乘的求极限问题 1.求以下极限: 〔1〕⎪⎪⎭⎫⎝⎛+-++⨯+⨯∞→)12)(12(1531311lim n n n ; 〔2〕11lim 332+-=∞→k k nk n π;〔3〕∑=∞→+nk nn k k 1])1(1[lim ;2.求以下极限:〔1〕⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 22241241141lim ; 3.求以下极限: 〔1〕⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n ; 〔2〕nn nn !lim∞→; 〔3〕∑=∞→++ni n ni n 1211lim。
类型二:利用重要极限求极限的问题 1.求以下极限:〔1〕)0(2cos 2cos 2cos lim 2≠∞→x x x x n n ;〔2〕nn n n n n 1sin )1(lim 1+∞→+;2.求以下极限: 〔1〕()xx xcos 1120sin 1lim -→+;〔3〕)21ln(103sin 1tan 1lim x xx x x +→⎪⎭⎫⎝⎛++;〔4〕21cos lim x x x ⎪⎭⎫ ⎝⎛∞→;类型三:利用等价无穷小和麦克劳林公式求极限的问题 1.求以下极限:〔1〕)cos 1(sin 1tan 1lim 0x x xx x -+-+→;〔2〕)cos 1(lim tan 0x x e e x x x --→;〔3〕]1)3cos 2[(1lim30-+→x x x x ; 〔4〕)tan 11(lim 220xx x -→; 〔5〕203)3(lim xx xx x -+→; 〔6〕设A a x x f x x =-+→1)sin )(1ln(lim,求20)(lim x x f x →。
2.求以下极限:xx ex x x sin cos lim 3202-→-类型四:极限存在性问题:1.设01,111=-+=+n n x x x ,证明数列}{n x 收敛,并求n n x ∞→lim 。
2020高等数学辅导讲义练习题参考答案
《高等数学辅导讲义》练习题解答第一章 函数、极限、连续 1. 【解】应选(D).由于+∞=−→xx xe x tan lim 2π,则)(x f 无界.2. 【解】应选(B). 由于x x x x sin ,1sin都在),0(+∞上连续.且01sin lim 0=→x x x ,;11sin lim =+∞→xx x 1sin lim 0=→x x x ,0sin lim =+∞→x x x .故xxx x sin ,1sin 都在),0(+∞上有界. 3. 【解】应选(D).由于)]()([t f t f t −+是奇函数,则∫−+xt t f t f t 0d )]()([是偶函数.4. 【解】应选(D).反证:否则,若n x 和n y 都有界,则n n y x 有界,与题设矛盾。
(A)的反例:L ,0,3,0,1:n x ;.,4,0,2,0:L n y (B)的反例:L ,1,3,1,1:n x ;.,4,1,2,1:L n y (C)的反例: L ,0,3,0,1:n x ;.,4,0,2,0:L n y 5. 【解】应选(A).反例见上题.6. 【解】应选(C).若}{n a 收敛,由 1+≤≤n n n a b a 及夹逼原理知}{n b ;反之若}{n b 收敛,则}{n b 上有界,由 1+≤≤n n n a b a 知}{n a 单调增且上有界,故}{n a 收敛.7.【解】选(A).若附加条件,0)(≠x ϕ则应选(D). 8.【解】选(B).)1(1)1(1lim 1)11(1sinlim )11()11(1lim11sin≠−=−+=+−+−∞→−∞→∞→ααααxxx x x x e x x xx9.【解1】选(C).20)()21ln(lim xx xf x x ++→2220)()](2)2(2[lim x x xf x x x x ++−=→ο,12)(2lim0=−+=→x x f x 则 ,3)(2lim 0=+→x x f x【解2】20)()21ln(lim x x xf x x ++→20)](2[2)21ln(lim xx xf x x x x ++−+=→ ,1)(2lim 2)21ln(lim 020=++−+=→→xx f x x x x x 又.2)2(21lim 2)21ln(lim 22020−=−=−+→→xx x x x x x 则 ,3)(2lim 0=+→x x f x 10.【解1】应选(D).直接法: 由2cos 1)(lim 0=−→x x f x 知 221)(lim20=→x x f x .即2~)(x x f n x n xx n x x x x x dt t x t t f 60sin 020sin 00sin 31lim lim d )(lim 22→→→==∫∫.0≠=a 则6=n . 【解2】 排除法:由2cos 1)(lim 0=−→xx f x 知,取2)(x x f =显然符合题设条件,此时∫∫==x x x x t t t t f 22sin 0sin 0662.31~sin 31d d )( 则(A)(B)(C)均不正确,故应选(D) 11. 【解】应选(D).若,2=a 则bx xx x g x f x x 22ln 2sin arctan lim )()(lim−=→→2ln 222ln 2limb bx x x x −=−=→,显然(B)不正确,则,1=a 且 3002sin arctan lim )()(lim x b x x x g x f x x −=→→302][sin ][arctan lim x b x x x x x −−−=→ 33302]61[]31[lim x b x x x −−−=→,131261lim 330=−=−=→b xb x x 故应选(D). 12. 【解】应选(C). k x x cx x x x g x f 3sin sin 3lim )()(lim00−=→→k x cxx x x x ]33[sin ]3sin 3[lim 0−−−=→ k x kx cx x cx x x 303304lim 6)3([)]61(3[lim →→=−−−=13. 【解】应选(D)(A))(21)](21[)](211[1222244242x x x x x x ex x οοο+−=++−++=−+ (2阶)或]1[]11[1242422−−−+=−+x x ex ex 22~24x x −2~2x −(B)221~)cos 1(tan sin tan x x x x x x −=− (3阶) (C)3sin 02sin 02)(sin 31~sin x dt t dt t xx =∫∫ (3阶)(D)25cos 1023cos 1023)cos 1(52~sin x dt t tdt xx −=∫∫−−252)21(52~x (5阶)14.【解】应选(A). 验证知2,1π±==x x 为)(x f 的无穷间断点,而1)(lim ,1)(lim 00−==−+→→x f x f x x .15.【解】应选(D).)(x f 在1,0±=x 处可能间断,验证可知1−=x 为无穷间断点.16.【解】应选(C). xx x x x f xln )1(1)(+−=在1,0,1−=x 处没定义,x x x e x x x x x f xx x xx x ln )1(1limln )1(1lim )(lim ln 111+−=+−=−→−→−→=∞=+=+−→−→11lim ln )1(ln lim 11x x x x x x x x x x x e x x x x x f xx x xx x ln )1(1limln )1(1lim )(lim ln 000+−=+−=→→→111lim ln )1(ln lim 00=+=+=→→x x x x x x x x x x x e x x x x x f xx x xx x ln )1(1limln )1(1lim )(lim ln 111+−=+−=→→→=2111lim ln )1(ln lim 11=+=+→→x x x x x x x x 故0=x 和1=x 为可去间断点. 17.【解】 应选(C). 由函数be x a x xf x+−+=122)1)(()(在),(+∞−∞上有一个可去间断点和一个跳跃间断点可知,0<b ,否则)(x f 只有一个间断点.0=x显然0=x 是)(x f 的一个间断点,而另一个间断点只能是.1=x 而.e b −=,)(lim 20ea x f x =−→ .0)(lim 0=+→x f x ee x a x xf xx x −−+=→→12211)1)((lim)(lim e e x a x x −−+=→112)1(lim )1(e a e xa xx 21212111lim )1(+−=−+=→则1=x 为可去间断点,而0≠a 时,0=x 为跳跃间断点。
考研高数讲义新高等数学上册辅导讲义——第二章上课资料
第二章导数与微分第一节导数概念一、导数的定义 定义:若极限()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆存在,则称函数()y f x =在点0x 处可导,此极限值称为函数()y f x =在点0x 处的导数。
记为: ()0f x '、0x x y ='、0x x dy dx =、()0x x df x dx = (或极限()()lim 000x x f x f x x x →--存在也可)()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆单侧导数:左导数:()()lim 000x f x x f x x-∆→+∆-=∆()()lim 000x x f x f x x x -→--存在,则称左导数存在,记为:()0f x -'。
右导数:()()lim 000x f x x f x x+∆→+∆-=∆()()lim 000x x f x f x x x +→--存在,则称右导数存在,记为:()0f x +'。
【例1】(89一)已知()32f '=,则【例2】(87二)设()f x 在x a =处可导,则(A )()f a '. (B )()2f a '.(C )0. (D )()2f a '.【例3】(89二)设()()()()12f x x x x x n =+++,则()0f '= .(C)可导,但导数不连续. (D)可导,但导数连续.处的(A)左、右导数都存在. (B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左、右导数都不存在.【例7】(96二)设函数()f x在区间(,)-δδ内有定是()f x的(A)间断点. (B)连续而不可导的点. (C)可导的点,且()00f'=.(D)可导的点,且()00f'≠.【例8】(90三)设函数()f x 对任意的x 均满足等式()()1f x af x +=,且有()0f b '=,其中a 、b 为非零常数,则(A )()f x 在1x =处不可导.(B )()f x 在1x =处可导,且()1f a '=.(C )()f x 在1x =处可导,且()1f b '=.(D )()f x 在1x =处可导,()1f ab '=.二、导数的几何意义和物理意义导数的几何意义: 切线的斜率为:()()tan lim 00x x f x f x k x x →-==-α, ()()00f x f x x x --导数的物理意义:某变量对时间t 的变化率,常见的有速度和加速度。
2012考研数学:高数讲义重点题型解答(一)
f ( x )dx < 0 ,即 an 单调减少
3 n 2 n −1
an = f (1) − ∫ f ( x )dx + f (2 ) − ∫ f ( x)dx + " + f (n − 1) − ∫
1
f ( x )dx + f (n )
= ∑ ⎡ f (k ) − ∫ ⎢ k k =1 ⎣
n −1
1
2. lim (a n + b n + c n ) n ( a, b, c非负) ;
解:因为 f ( x ) 在 [0,+∞ ) 上单调减少、非负、连续, 故 f (k ) =
∫
k
k −1
f (k )dx < ∫
k
k −1
f (x )dx < ∫
k
k −1
f (k − 1)dx = f (k − 1) , k ≥ 1
则 an +1 − an = f (n + 1) −
2
∫
n +1
n
xn − xn −1 1 − xn + 1 − xn −1
且 x2 = 0 < x1 ,故 x2 < x1 , x3 < x2 " xn < xn −1 ,即 xn 单调减少; x1 ≥ −2 ,不妨假设 xn ≥ −2 则 xn +1 ≥ − 1 + 2 ,即 xn 有下届,单调有界数列必在极限,故极限存在。 不妨假设 lim xn = A ,则 A + 1 + A = 0 ,解得 A =
( )
sin x sin 2 x sin 3 x x x 2 x3 3 同理 1 + sin x = 1 + − + + o sin x = 1 + − − + o x3 2 2 16 2 2 48
考研数学高分导学班讲义汤家凤
考研数学高分导学班讲义汤家凤课程配套讲义说明1、配套课程名称2013年考研数学高分导学(汤家凤,16课时)2、课程内容此课件为汤家凤老师主讲的2013考研数学高分导学班课程。
此课程包含线代和高数,请各位学员注意查看。
3、主讲师资汤家凤——文都独家授课师资,数学博士,教授,全国著名考研数学辅导专家,全国唯一一个能脱稿全程主讲的数学辅导老师,全国大学生数学竞赛优秀指导老师。
汤老师对数学有着极其精深的研究,方法独到。
汤老师正是凭借多年从事考研阅卷工作的经验,通过自己的归纳总结,在课堂上为学生列举大量以往考过的经典例子。
深入浅出,融会贯通,让学生真正掌握正确的解题方法。
严谨的思维、激情的课堂,轻松的学习,这是汤老师课堂的特色!主讲:高等数学、线性代数。
4、讲义20页(电子版)文都网校2011年9月15日2013考研数学高分导学班讲义线性代数部分—矩阵理论一、矩阵基本概念1、矩阵的定义—形如??mn m m n n a a a a a a a a a 212222111211,称为矩阵n m ?,记为n m ij a A ?=)(。
特殊矩阵有(1)零矩阵—所有元素皆为零的矩阵称为零矩阵。
(2)方阵—行数和列数都相等的矩阵称为方阵。
(3)单位矩阵—主对角线上元素皆为1其余元素皆为零的矩阵称为单位矩阵。
(4)对称矩阵—元素关于主对角线成轴对称的矩阵称为对称矩阵。
2、同型矩阵—行数和列数相同的矩阵称为同型矩阵。
若两个矩阵同型且对应元素相同,称两个矩阵相等。
3、矩阵运算(1)矩阵加、减法:=??????? ??=mn m m n n mn m m n n b b b b b b b b b B a a a a a a a a a A 212222111211212222111211,,则±±±±±±±±±=±mn mn m m m m n n n n b a b a ba b a b a b a b a b a b a B A221122222221211112121111。
现代数学选讲(分析)一讲
物理应用
导数在物理学中也有许多应用, 如描述物体的运动状态(速度、 加速度等)、求解力学问题(如 牛顿第二定律)等。
经济应用
微分在经济学中有着广泛的应用, 如边际分析、弹性分析等。通过 微分可以研究经济变量之间的变 化关系,为经济决策提供科学依 据。
05
积分学基础
定积分概念及性质
01
定积分的定义
现代数学选讲(分析)一讲
目
CONTENCT
录
• 引言 • 实数与函数 • 极限与连续 • 导数与微分 • 积分学基础 • 级数理论初步 • 总结与展望
01
引言
课程目的与意义
加深对现代数学理论的理解
通过选讲现代数学中的核心概念和理论,帮助学生 更深入地理解现代数学的思想和方法,提高数学素 养。
拓展数学视野
定积分可以用来计算总收益、总成本、消费 者剩余、生产者剩余等。
06
级数理论初步
数项级数概念及性质
数项级数定义
由无穷多个数列项按一定顺序 排列而成的表达式,形如
$sum_{n=1}^{infty} a_n$。
收敛与发散
若数项级数的部分和数列有极 限,则称该级数收敛;否则称
该级数发散。
绝对收敛与条件收敛
ቤተ መጻሕፍቲ ባይዱ
对未来学习的建议
深入学习相关课程
对于有兴趣在现代数学分析领域 深造的学生,建议他们继续学习 相关的高级课程,如实变函数、 复变函数、泛函分析等,以进一 步巩固和扩展他们的知识体系。
关注前沿研究领域
鼓励学生关注现代数学分析领域 的最新研究进展和前沿问题,参 加学术研讨会和阅读相关学术论 文,以培养他们的学术视野和研 究能力。
不定积分的性质
数学分析专题选讲教案
数学分析专题选讲教案一、引言1.1 课程背景1.2 课程目标1.3 课程内容概述1.4 教学方法与手段二、函数极限与连续性2.1 函数极限的概念2.2 极限的性质与运算2.3 无穷小与无穷大2.4 函数的连续性2.5 连续函数的性质与应用三、导数与微分3.1 导数的概念3.2 导数的计算规则3.3 高阶导数3.4 隐函数与参数方程函数的导数3.5 微分学的基本定理与应用四、不定积分与定积分4.1 不定积分的基本概念与计算方法4.2 定积分的基本概念与计算方法4.3 定积分的性质与应用4.4 变限积分的导数4.5 定积分的推广与应用五、微分方程5.1 微分方程的基本概念5.2 常微分方程的解法5.3 线性微分方程5.4 微分方程的应用5.5 线性微分方程组六、级数6.1 级数的基本概念6.2 幂级数6.3 泰勒级数与麦克劳林级数6.4 级数的收敛性6.5 级数的应用七、多元函数微分学7.1 多元函数的基本概念7.2 多元函数的极限与连续性7.3 多元函数的偏导数7.4 全微分与高阶偏导数7.5 多元函数的极值及其判定八、重积分8.1 二重积分的基本概念与计算8.2 二重积分的性质与应用8.3 三重积分的基本概念与计算8.4 三重积分的性质与应用8.5 重积分的应用案例九、常微分方程组9.1 常微分方程组的概述9.2 常微分方程组的解法9.3 常微分方程组的解的存在性与唯一性9.4 常微分方程组的应用9.5 常微分方程组的数值解法十、泛函分析与线性空间10.1 泛函分析的基本概念10.2 线性空间与线性映射10.3 内积空间与正交关系10.4 希尔伯特空间与巴拿赫空间10.5 泛函分析在数学分析中的应用十一、微分几何11.1 微分几何基本概念11.2 曲线和曲面的切线与法线11.3 曲率、挠率和曲率张量11.4 测地线与测地线方程11.5 微分几何在物理学和工程学中的应用十二、偏微分方程12.1 偏微分方程的定义与分类12.2 偏微分方程的基本解法12.3 偏微分方程的解的存在性与唯一性12.4 偏微分方程的应用案例12.5 偏微分方程的数值解法十三、复变函数13.1 复数与复平面13.2 复变函数的基本概念13.3 复变函数的积分13.4 复变函数的级数13.5 复变函数在复平面上的应用十四、随机变量与概率积分14.1 随机变量及其分布14.2 随机变量的数字特征14.3 概率积分与变换14.4 随机过程的基本概念14.5 随机过程的应用十五、数值分析15.1 数值分析概述15.2 插值法与函数逼近15.3 数值微积分15.4 常微分方程的数值解法15.5 非线性方程与系统的数值解法重点和难点解析一、函数极限与连续性重点:函数极限的性质与运算,无穷小与无穷大的概念,函数的连续性及其性质。
[整理]考研数学高数定积分公开课讲义(汤家凤)
课程配套讲义说明1、配套课程名称2013年考研数学高数中值定理及定积分公开课(汤家凤)2、课程内容此课程为2013年考研数学高数部分的公开课,主要讲授定积分部分。
3、主讲师资汤家凤——主讲高等数学、线性代数。
著名考研辅导专家,南京大学博士,南京工业大学教授,江苏省大学生数学竞赛优秀指导教师。
凭借多年从事考研阅卷工作的经验,通过自己的归纳总结,在课堂上为学生列举大量以往考过的经典例子。
深入浅出,融会贯通,让学生真正掌握正确的解题方法。
4、讲义:6页(电子版)文都网校2011年5月27日公开课二:定积分理论一、实际应用背景1、运动问题—设物体运动速度为)(t v v =,求],[b a t ∈上物体走过的路程。
(1)取b t t t a n =<<<= 10,],[],[],[],[12110n n t t t t t t b a -⋃⋃⋃= , 其中)1(1n i t t t i i i ≤≤-=∆-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,ini it f S ∆≈∑=)(1ξ;(3)取}{max 1i ni x ∆=≤≤λ,则ini ix f S ∆=∑=→)(lim1ξλ2、曲边梯形的面积—设曲线)(0)(:b x a x f y L ≤≤≥=,由b x a x L ==,,及x 轴围成的区域称为曲边梯形,求其面积。
(1)取b x x x a n =<<<= 10,],[],[],[],[12110n n x x x x x x b a -⋃⋃⋃= , 其中)1(1n i x x x i i i ≤≤-=∆-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,ini ix f A ∆≈∑=)(1ξ;(3)取}{max 1i ni x ∆=≤≤λ,则ini ix f A ∆=∑=→)(lim1ξλ。
二、定积分理论(一)定积分的定义—设)(x f 为],[b a 上的有界函数,(1)取b x x x a n =<<<= 10,],[],[],[],[12110n n x x x x x x b a -⋃⋃⋃= , 其中)1(1n i x x x i i i ≤≤-=∆-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,作ini ix f ∆∑=)(1ξ;(3)取}{m a x 1i ni x ∆=≤≤λ,若ini ix f ∆∑=→)(lim 1ξλ存在,称)(x f 在],[b a 上可积,极限称为)(x f 在],[b a 上的定积分,记⎰badx x f )(,即⎰badx x f )(i ni i x f ∆=∑=→)(lim 1ξλ。
高等数学考研教材书目一览
高等数学考研教材书目一览在进行高等数学考研准备的过程中,选择适合自己的教材是非常重要的。
良好的教材对于理解数学概念、掌握解题技巧以及提升数学能力都具有至关重要的作用。
本文将为大家介绍一些常用的高等数学考研教材,供大家参考选择。
1.《高等数学(上、下)》李建民等:该教材是许多学校采用的教材之一,以其全面、系统的数学内容和清晰的表达而闻名。
上下两册分别涵盖了高等数学的基础知识和一些拓展内容,适合对高等数学概念基础不太牢固的考生。
此教材还配有大量的例题和习题,供考生进行练习。
2.《数学分析教程(上、下)》汤家凤:该教材是一套经典的高等数学教材,以其严谨的数学推导和详尽的解题方法而受到广大考生的喜爱。
教材由浅入深,系统地讲解了高等数学的基本概念、定理和证明,适合具备一定数学基础的考生。
此外,该教材还包含了一些常见的高等数学题型,供考生进行深入理解和巩固练习。
3.《高等数学教程(上、下)》同济大学数学系编:该教材是同济大学数学系编写的,内容全面,适合对高等数学有一定了解基础的考生,特别是对于一些证明性的题目和高级应用题有很好的讲解。
教材部分章节还附有一些历年考研真题的解析,供考生进行练习和考查。
4.《高等数学选讲与考研试题精解》胡丹:该教材是一本研究生考试的辅导用书,主要针对高等数学考研中的一些重点和难点进行详细解析和讲解。
书中包含了大量的例题和习题,并配有详细的答案和解析,供考生进行针对性复习和巩固练习。
5.《高等数学学习指导与习题解析》孙家贵等:该教材结合了理论知识和解题技巧的讲解,旨在帮助考生快速有效地掌握高等数学的知识点。
教材附有大量的习题和解析,帮助考生检验自己的学习效果并找出薄弱环节。
总结起来,高等数学考研教材的选择应根据自己的数学基础和学习能力进行判断。
选择一本适合自己的教材,并结合教材中的例题和习题进行深入理解和练习,将有助于考生在考研数学中取得更好的成绩。
希望以上介绍对大家有所帮助,祝愿大家取得满意的考研成绩!。
高数选讲课程教学大纲
高数选讲课程教学大纲课程编码:12120602303 课程性质:专业选修课课时: 36 学分: 2开课学期: 6 先修课程:微积分、线性代数、概率论数理统计适用专业:物流工程课程简介:《高数选讲》是淮南师范学院物流工程本科专业开设的一门专业选修课。
高数选讲的授课的主要内容是研究生升学考试的数学课程考试的主要内容。
包括:微积分、线性代数、概率论与数理统计。
设置这门课的主要目的是为物流工程专业考研同学作为一门专业选修课开设的。
为部分考研同学明确考研方向,理清考研思路,明确教学内容有很大帮助。
一、课程教学目标通过开设高数选讲这门课程为部分考研同学明确考研方向,理清考研思路,明确教学内容,掌握数学知识。
能够为同学们前期的考研准备打下坚实基础,为同学们考研中期的学习准备指点迷津,能够为学生考研后期的学习坚定信心。
同时帮助学生树立终身学习观念和思想,培养学生独立思考问题和解决问题的能力。
二、课程重点、难点在本课程在教学过程中的重难点主要有函数、极限、连续,一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程、行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型、随机事件和概率、随机变量及其分布、多维随机变量的分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计。
三、整体课时分配章节序号章节名称理论学时实验学时第一章一、函数、极限、连续 3 0 第二章二、一元函数微分学 3 0 第三章三、一元函数积分学 3 0 第四章四、多元函数微积分学 3 0 第五章五、无穷级数 3 0 第六章六、常微分方程与差分方程 3 0第七章一、行列式二、矩阵三、向量四、线性方程组6 0第八章 五、矩阵的特征值和特征向量六、二次型4 0 第九章 一、随机事件和概率二、随机变量及其分布三、多维随机变量的分布四、随机变量的数字特征4 0 第十章 五、大数定律和中心极限定理六、数理统计的基本概念七、参数估计 4 0四、课程内容安排微积分一、函数、极限、连续教学内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质教学要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学教学内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值教学要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理、拉格朗日( Lagrange )中值定理,了解泰勒(Taylor )定理、柯西(Cauchy )中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学教学内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用教学要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学教学内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分教学要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数教学内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式教学要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解e x ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程教学内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用教学要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式教学内容行列式的概念和基本性质行列式按行(列)展开定理教学要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵教学内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算教学要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量教学内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法教学要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组教学内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解教学要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量教学内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵教学要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型教学内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性教学要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率教学内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验教学要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布教学内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布教学要求1.理解随机变量的概念,理解分布函数{}()F x P X x =≤(x -∞<<+∞)的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为e ,0()0,0x xf x x λλ-⎧>⎪=⎨≤⎪⎩若若 5.会求随机变量函数的分布.三、多维随机变量的分布教学内容多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量简单函数的分布教学要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N μμσσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布.四、随机变量的数字特征随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev )不等式 矩、协方差、相关系数及其性质教学要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理教学内容切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre -Laplace )定理 列维—林德伯格(Levy -Lindberg )定理教学要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念教学内容总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布教学要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1ni i S X X n ==--∑ 2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布的上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计教学内容点估计的概念 估计量和估计值 矩估计法 最大似然估计法1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.五、教材与学习资源(一)参考教材:同济大学编,高等数学,第6版,高等教育出版社。
数学分析专题选讲教案
数学分析专题选讲教案一、第一章:极限与连续性1.1 极限的概念定义:函数f(x)当x趋近于某一值a时,如果存在一个实数L,使得f(x)趋近于L,称f(x)在x=a处极限为L。
性质:保号性、传递性、三角不等式性质。
1.2 极限的计算极限的基本性质:0.9^n→0(n→∞)、(1+1/n)^n→e(n→∞)。
极限的运算法则:lim (f(x)+g(x)) = lim f(x) + lim g(x)、lim (cf(x)) = c lim f(x)、lim (f(g(x))) = lim f(t) lim g(x)。
1.3 连续性的概念定义:函数f(x)在点x=a处连续,如果满足f(a)=lim f(x)(x→a)且对于任意ε>0,存在δ>0,使得当0<|x-a|<δ时,有|f(x)-f(a)|<ε。
1.4 连续性的性质与判定连续函数的基本性质:保号性、可积性、可微性。
连续函数的判定:函数在某一点的极限存在且等于函数在该点的函数值,则函数在该点连续。
二、第二章:导数与微分2.1 导数的定义定义:函数f(x)在点x=a处的导数,记为f'(a)或df/dx|_{x=a},表示函数在x=a 处的瞬时变化率。
导数的几何意义:函数图像在点x=a处的切线斜率。
2.2 导数的计算基本求导法则:常数倍法则、幂函数求导、指数函数求导、对数函数求导、三角函数求导。
高阶导数:f''(x)、f'''(x)等。
2.3 微分的概念与计算概念:微分表示函数在某一点的切线与x轴之间的距离,记为df(x)/dx|_{x=a}。
微分的计算:dx表示自变量的增量,微分的结果为切线的斜率乘以dx的值。
三、第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与计算概念:泰勒公式是一种将函数在某一点展开成多项式的公式,用于逼近函数在某一点的值。
泰勒公式:f(x)在某一点a处的泰勒公式为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2++f^n(a)(x-a)^n+R_n(x)。
考研数学强化班高等数学讲义汤家凤
第一讲 极限与连续主要内容归纳(略)要点题型解说一、极限问题种类一:连加或连乘的求极限问题 1.求以下极限:( 1) lim111;n13 35(2n1)(2n 1)( 2) limnk 3 1 ;1nk 2k 3n( 3) lim [nk 11] n ;k (k 1)2.求以下极限:( 1) lim111;222n4n 14n24nn3.求以下极限:( 1) lim111;22222nn 2 n n21 n( 2) lim nn!;nnn 1( 3) lim。
ni2i 11nn种类二:利用重要极限求极限的问题 1.求以下极限:( 1) lim cos x cos xcos x(x0) ;( n 1) n 112 n ( 2) limnsin;n222nnn2.求以下极限:1( 1) lim 1 sin x 2 1 cos x ;x 011( 3) lim1 tan x x 3ln(1 2 x)(4) lim cos1 sin x;xx 0x种类三:利用等价无量小和麦克劳林公式求极限的问题1.求以下极限:x 2;( 1) lim1 tan x 1 sin x ;( 2) lime tan xe x ;x 0x(1 cosx) x 0x(1 cosx)( 3) lim1 2 cos xx1] ;( 4) lim (11) ;x 3 [(3)x 2tan 2x 0xx( 5) lim(3 x) x3 x2;x 0xln(1 f (x) ) f (x)( 6)设 lim sin xA ,求 lim 。
x2x 0 a 1 x 0 xx 22.求以下极限: lim cos x e 23x 0x sin x种类四:极限存在性问题:1.设 x 1 1, x n 11 x n0 ,证明数列 { x n } 收敛,并求 lim x n 。
nnn2.设 f ( x) 在 [ 0, ) 上单一减少、非负、连续, a nf (k)f (x)dx(n 1,2, ) ,证明:k11lim a n 存在。
考研高数讲解新高等数学上册辅导讲解第一章上课资料
第一章函数与极限第 1 页第一节映射与函数一、集合常用数集:自然数集:整数集:有理数集:实数集:开区间:闭区间:半开区间:;邻域:去心邻域:二、函数定义:都有唯一与之对应,记为。
三、函数性质讨论函数:,讨论区间:1、有界性有界:假设,使得,称在区间上有界无界:对,总,使得,那么称在区间上无界上界、下界:假设,使得,,称在区间上有上界;假设,使得,,称在区间上有下界定理:假设在区间上有界在区间上有上界也有下界。
2、单调性严格单调增〔减〕:假设,且,恒有广义单调增〔减〕:假设,恒有,3、奇偶性偶函数:奇函数:常见奇函数:等常见偶函数:等4、周期性周期函数:,对,有,且,那么称为周期为周期函数。
常见周期函数:等【例1】〔87二〕是〔〕(A)有界函数. 〔B〕单调函数.〔C〕周期函数. 〔D〕偶函数.四、复合函数与反函数1、复合函数设定义域为,定义域为,值域为,且,在定义域上有复合函数。
【例2】〔88一二〕,且,求并写出它定义域.2、反函数将函数称为直接函数,函数称为反函数。
与图形关于直线对称。
五、初等函数第二节数列与函数极限一、数列极限定义数列:,,称为整标函数。
其函数值:叫做数列〔序列〕。
数列每一个数称为项,第项称为数列一般项。
简记数列为数列极限:已给数列与常数,如果对于,都,使得对于,不等式恒成立,那么称当时,以为极限,或收敛于,记为或。
反之,假设无极限,说发散。
二、函数极限定义〔1〕:设函数在内有定义,为一常数,假设对于,都,使有,那么称当时,以为极限,记为或。
单侧极限:左极限:。
右极限:定理:〔2〕:设函数在充分大时有定义,为一常数,假设对于,都,使都有,那么称当时,以为极限,记为或。
单侧极限:;定理:【例1】设〔为常数〕,求值,使得存在。
三、极限性质性质1 〔极限唯一性〕数列——假设存在,那么极限值是唯一。
函数——假设存在,那么其极限值是唯一。
性质2 〔有界性〕数列——如果收敛,那么一定有界。
考研辅导—高数(1)函数
2 2 1 x x3 ,则 若 f (x ) 2 f ( x)dx x 1 x4 1 x 答案: ln 3 ,其中 f ( x) 2 。 2 x 2
。
3.求出函数表达式中的未知常数 例 5. 设 f ( x ) 3 x 2 x lim f ( x ) ,其中 lim f ( x) 存在,求 lim f ( x) 及 f ( x ) 。
1
(2)
其中(1)式称为函数的“本义反函数” ; (2)式称为函数的“矫形反函数” 。通常我们所说 的反函数,指的都是矫形反函数。 3.函数的几何特性 奇偶性:设函数 f ( x) 的定义域关于原点对称,则
f ( x) f ( x)
f ( x) 是偶函数;
f ( x) f ( x)
y f ( x)
量 y 的集合 Z 称为函数的值域。 函数“ y f ( x) 2.反函数
xD
其中 x 称为自变量, y 称为因变量,全体自变量 x 的集合 D 称为函数的定义域,全体因变
x D ”简称为“函数 y f ( x) ”或“函数 f ” 。
设函数 y f ( x) 的定义域为 D ,值域为 Z 。如果对于每 一个 y Z ,存在 唯一的
f ( x1 ) f ( x 2 )
f ( x) 是奇函数。
f ( x) 在 I 上单调增加;
第1页
单调性:设函数 f ( x) 在区间 I 上有定义, x1 、 x 2 I 且 x1 x 2 ,则
第一部分:微积分
f ( x1 ) f ( x 2 )
界,否则称 f ( x) 在 I 上无界。
1
[ f ( x)] x ,
f[f
2024考研汤家凤高等数学辅导讲义
2024考研汤家凤高等数学辅导讲义(实用版)目录1.2024 考研汤家凤高等数学辅导讲义概述2.汤家凤辅导讲义的内容特点3.如何获取 2024 考研汤家凤高等数学辅导讲义4.汤家凤辅导讲义对考研数学的帮助正文一、2024 考研汤家凤高等数学辅导讲义概述2024 考研汤家凤高等数学辅导讲义是一本针对考研数学的高等数学辅导书籍,由著名数学教育专家汤家凤编写。
这本书旨在帮助广大考研学生更好地掌握高等数学的知识点,提高考研数学成绩。
二、汤家凤辅导讲义的内容特点1.系统性强:汤家凤辅导讲义全面覆盖了考研数学高等数学部分的所有知识点,从基本概念到复杂题目,都有详细讲解。
2.重点突出:汤家凤辅导讲义针对考研数学的考试重点进行了重点讲解,帮助学生把握考试命脉,提高答题效率。
3.技巧性强:汤家凤辅导讲义总结了大量解题技巧和方法,帮助学生快速解决各类题目,提高答题速度。
4.实用性强:汤家凤辅导讲义提供了大量实例和练习题,帮助学生巩固所学知识,提高实际解题能力。
三、如何获取 2024 考研汤家凤高等数学辅导讲义想要获取 2024 考研汤家凤高等数学辅导讲义,可以关注汤家凤的官方公众号或在线教育平台,也可以在各大书店或网络书店购买。
同时,一些考研交流群组也会分享电子版的讲义,可以加入相关群组进行获取。
四、汤家凤辅导讲义对考研数学的帮助1.提高理论水平:通过学习汤家凤辅导讲义,可以系统地掌握高等数学的理论知识,为考研数学打下坚实的基础。
2.提高解题能力:汤家凤辅导讲义中总结了大量解题技巧和方法,可以帮助学生提高解题能力,迅速提高考研数学成绩。
3.提高应试水平:汤家凤辅导讲义针对考研数学的考试重点进行了重点讲解,可以帮助学生把握考试命脉,提高答题效率和准确率。
武忠祥高等数学辅导讲义第25页第一题
武忠祥高等数学辅导讲义第25页第一题
【实用版】
目录
1.题目概述
2.题目解析
3.题目解答
正文
一、题目概述
本文将以武忠祥高等数学辅导讲义第 25 页第一题为例,详细解析该题的解题过程。
该题属于高等数学中的典型题目,可以帮助学生巩固和提高数学知识,培养解题能力。
二、题目解析
1.题目类型:该题属于高等数学中的微分方程题目,主要考察学生对微分方程基本概念和解法掌握程度。
2.题目难点:该题的难点在于如何正确地建立微分方程模型,并运用适当的解法求解。
三、题目解答
1.建立微分方程模型:首先,根据题目所给条件,我们可以得到微分方程的一般形式。
2.选择适当的解法:根据微分方程的性质和形式,我们可以选择恰当的解法,如分离变量法、常数变易法等。
3.求解微分方程:将所选解法应用于该题,逐步求解微分方程,得到方程的解。
4.检验解的正确性:将求得的解代入原方程进行检验,确保解的正确
性。
5.解答完毕:得出题目的解答,并对解答进行简要总结,指出解题过程中需要注意的问题。
通过以上步骤,我们可以得出武忠祥高等数学辅导讲义第 25 页第一题的完整解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数考研辅导选讲一
第一讲、空间解析几何与向量代数
一、 基本内容及要求
1、a b 的定义及坐标运算,垂直的充要条件。
2、a b ⨯ 的定义及坐标运算,平行的充要条件。
3、方向余弦的求法。
4、曲面及其方程,会画二次曲面的图形。
5、空间曲线及其方程,会求曲线在坐标面上的投影曲线。
6、会求直线和平面的方程,了解平面束的假设方法。
7、了解点到平面距离,点到直线的距离求法及公式。
二、 举例
例1、
已知()()()2,3,1,1,2,3,2,1,2,,,14,:a b c r a r b r r =-=-=⊥⊥=
c 设且prj 求
解:()14,10,2r =
例2、 0l i m ,(0)
x a x b a x b a x
→+⋅--⋅≠ 解:2a b I a ⋅=
例3、 求直线112:112x y z L -++==-绕Z 轴旋转而成的曲面方程。
解:方法是:圆周上的点到圆心的距离相等。
方程是:2221482
x y z z +=++
例4、 求异面直间的距离:1212::011210
x y z x y z L L -+====-和
解:利用向量求或利用作异面直线的方法求。
1d =
例5、 求直线10:10x y z L x y z +--=⎧⎨
-++=⎩在平面0x y z ++=上的投影直线方程。
解:利用平面束的方法求。
投影直线方程为:100y z x y z --=⎧⎨
++=⎩ 练习:
1、过直线L :5040x y z x z ++=⎧⎨
-+=⎩并且与平面48120x y z --+=交成二面角为4π
的平面方程。
()207120,480x y z x y z ++-=--=
2、求直线L :11111
x y z --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕Y 轴旋转一周所成曲面的方程。
(2224174210x y z y -++-=)。
3、求两直线1212321:
,:101211
x y z x y z L L ---+-====-的公垂线L 的方程。
(3231604790x y z x y z ++-=⎧⎨--+=⎩ )
第二讲、多元函数微分学
一、 基本内容及要求
1、极限,连续,可导,可微的定义及它们之间的关系。
2、会求偏导数及全微分。
3、曲面的法向量和曲线的切向量求法及应用。
4、方向导数及梯度。
二、举例
例1设()()2222322222,0,0
,0x y x y f x y x y x y ⎧⋅+≠⎪⎪=+⎨⎪+=⎪⎩求证:函数在()0,0处连续,
偏导数存在,但不可微分。
解:目的是了解非初等函数的可导性,连续性,可微性的解题方法,掌握它们的定义。
例2 332(,)(0,0)32lim x y x y x y xy x y →++-+
解:了解极限不存在的解题方法。
例3 设()2222,z z x y z xyf z f y x y
∂∂++=+∂∂其中可微,求:x 解:掌握隐函数和复合函数的求导方法及全微分求法的应用。
()21z xyf z ⎛⎫ ⎪ ⎪'-⎝⎭
例4 求过曲面(),,0F x y z =上一点的切平面方程和法线方程。
例5 求过曲线:()(),,0:,,0F x y z L G x y z =⎧⎪⎨
=⎪⎩上一点的切线方程。
例6 求过直线10:210x L y z -=⎧⎨
+-=⎩且与曲面22:44x y z ∑-=相切的切平面方程。
解:可解得切点:()()0,1,1,2,1,0-,则可得切平面方程:000442z z
x x y y +-=⋅。
练习题:
1、试证:
()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在原点()0,0o 处可微分.
2、若()()0000,,,x y x y f
f
x y ∂∂∂∂都存在,则()()00,,f x y x y 在处( )
A 、极限存在但不一定连续;
B 、极限存在且连续;
C 、沿任意方向的方向导数存在;
D 、极限不一定存在,也不一定连续。
3、设(
)()()()()242,,0,0,0,,0,0x y x y x y f x y x y ≠+=⎪=⎩
,试讨论()(),0,0f x y 在处
的连续性、可偏导性、可微性。
4、求函数()23221,2,15U xy z x y =-+=在点处沿曲面的外法向的方向导数。
(U
n ∂=∂。