2-2 金属热态下的塑性变形

合集下载

材料成形技术基础第3章

材料成形技术基础第3章
晶粒越大,距离越大,位错源开动的时间就越长, 位错数也越大。
材料成形技术基础
由此可见,粗晶粒金属的变形由一个晶粒 转移到另一个晶粒会容易一些,而细晶粒 则需要在更大的外力作用下才能使相邻晶 粒发生塑性变形。
材料成形技术基础
细晶粒的塑性比粗晶粒好
在一定体积内,细晶粒金属的晶粒数目比粗晶粒 金属的多,因而,塑性变形时,位向有利的晶粒 数较多,变形能够均匀分散到各个晶粒上。
材料成形技术基础
应力偏张量:应力偏张量不会引起物体的体积变
化。再者,应‍力偏张量中的剪应力成分与整个应 力张量中的剪应力成分完全一致,因此应力偏张 量完全包含‍了应力张量作用下的形状变化因素, 也就是说,物体是否发生塑性变化只与应力偏张 量有关。
3.晶粒与晶粒之间和晶粒内部与晶界附近区域之 间变形的不均匀性。
材料ቤተ መጻሕፍቲ ባይዱ形技术基础
晶粒越小,金属的屈服极限越大
滑移由一个晶粒转移到另一个晶粒,主要取决于晶 粒晶界附近位错塞积群所产生的应力场能否激发相 邻晶粒中的位错源也开动起来,以进行协调性的次 滑移,而位错塞积群所产生的应力场的强弱与塞积 的位错数量相关,数量越大,应力场越大。
材料成形技术基础
5.应力球张量和应力偏张量
称为平均应力,又称为静水压力
材料成形技术基础
应力球张量:当质点处于球应力状态下,过该
点的任意方向均为主方向,且各方向的主应力相 等,而任意切面上的剪应力均为零。所以球形应 力张量的作用与静水应力相同,它只能引起物体 的体积变化,而不能使物体发生形状变化。
材料成形技术基础
4.主剪应力和最大剪应力
‍物体的塑性变形是由剪应力产生的,当 剪应力达到某个临界值‍时,物体便由弹性 状态进入塑性(屈服)状态。通过点的应力 状态可‍求出剪应力的极值。使剪应力取极 限值的平面为主剪应力平面。它们为与某 一主平面垂直,而与另两个主平面成450‍交 角的平面。主剪应力平面上的剪应力称为 主剪应力。

金属的塑性变形

金属的塑性变形

滑移
滑移:在切应力作用下,晶体的一部分相对于另一部分沿着一
定的晶面(滑移面)和晶向(滑移方向)产生相对位移, 且不破坏晶体内部原子排列规律性的塑变方式。
τ
τ
a)未变形
bτ )弹性变形
τc)弹塑性变形
单晶体滑移变形示意图
d)塑性变形
孪生
孪生:晶体内的一部分原子(红色)相对另一部分原子沿某个
晶面转动,使未转动部分与转动部分的原子排列成镜面对称关系。
一、金属的可锻性(塑性加工性能)
定义:在锻造过程中,金属通过塑性加工而不开裂, 并获得合格零件的能力。 衡量指标:金属的塑性和变形抗力 塑性越高、变形抗力越低,可锻性越好。
二、影响金属可锻性的因素:
三个主要因素:金属的本质、加工条件、应力状态 1、金属的本质(内在因素): ①化学成分
➢ 碳钢:钢的含碳量越低,可锻性越好; ➢ 合金钢:合金元素含量越高,可锻性越差; ➢ 纯金属的可锻性优于合金。 ②金属组织
冷变形过程缺点:
①冷变形过程的加工硬化使金属的塑性变差,给进一步塑性变 形带来困难。 ②对加工坯料要求其表面干净、无氧化皮、平整。 ③加工硬化使金属变形处电阻升高,耐蚀性降低。
五、纤维组织及其利用
纤维组织(热加工流线):
塑性加工中,金属的晶粒形状和晶界分布的杂质沿变形方 向被拉长,呈纤维状。纤维组织不能热处理消除,只能通过锻 压改变其形状和方向。
纯金属或单相固溶体(奥氏体)的可锻性优于多相组织; 均匀细晶的可锻性优于粗晶组织和铸态柱状晶; 钢中存在网状二次渗碳体时可锻性下降。
影响金属可锻性的因素:
2、加工条件:
①变形温度 温度越高,金属塑性提高,
变形抗力降低,可锻性提高。
加热温度过高,产生缺陷: 过热:晶粒长大,使综合机械性能下降; 过烧:晶粒边界氧化或熔化 ,一击即碎; 脱碳:碳与环境气体反应,使表层含碳量减少; 严重氧化:表层与 氧反应,生成氧化物。

第二章 金属材料的塑性变形与性能

第二章 金属材料的塑性变形与性能

9
根据载荷作用性质不同:
a)拉深载荷 --拉力 b)压缩载荷 —压力 c)弯曲载荷 --弯力 d)剪切载荷--剪切力 e)扭转载荷--扭转力
10
2.内力 (1)定义 工件或材料在受到外部载荷作用时,为使其不变形,在 材料内部产生的一种与外力相对抗的力。 (2)大小 内力大小与外力相等。 (3)注意 内力和外力不同于作用力和反作用力。
2
§1.金属材料的损坏与塑性变形
1.常见损坏形式
a)变形
零件在外力作用下形状和尺寸所发生的变化。 (包括:弹性变形和塑性的现象。
c)磨损
因摩擦使得零件形状、尺寸和表面质量发生变化的现象。
3
2.常见塑性变形形式 1)轧制 (板材、线材、棒材、型材、管材)
28
2)应用范围 主要用于:测定铸铁、有色金属及退火、正火、 调质处理后的各种软钢或硬度较低的 材料。 3)优、缺点 优点:压痕直径较大,能比较正确反映材料的平均 性能;适合对毛坯及半成品测定。 缺点:操作时间比较长,不适宜测定硬度高的材料; 压痕较大不适合对成品及薄壁零件的测定。
29
2.洛氏硬度(HR)——生产上应用较广泛 1)定义 采用金刚石压头直接测量压痕深度来表示材料的硬度值。 2)表示方法
11
3.应力 (1)定义 单位面积上所受到的力。 (2)计算公式 σ= F/ S( MPa/mm2 ) 式中: σ——应力; F ——外力; S ——横截面面积。
12
二、金属的变形 金属在外力作用下的变形三阶段: 弹性变形 弹-塑性变形 断裂。 1.特点 弹性变形: 金属弹性变形后其组织和性能不发生变化。 塑性变形: 金属经塑性变形后其组织和性能将发生变化。 2.变形原理 金属在外力作用下,发生塑性变形是由于晶体内部 缺陷—位错运动的结果,宏观表现为外形和尺寸变化。

第三章 金属塑性变形的物理基础

第三章 金属塑性变形的物理基础

(1)塑性的基本概念
什么是塑性? 塑性是金属在外力作用下产生永久变形 而不破坏其完整性的能力。
塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
塑性与柔软性的对立统一
铅---------------塑性好,变形抗力小
不锈钢--------塑性好,但变形抗力高 白口铸铁----塑性差,变形抗力高
塑性指标的测量方法
拉伸试验法 压缩试验法 扭转试验法 轧制模拟试验法
拉伸试验法
Lh L0 100%
L0 F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
%
晶粒5 晶粒4 晶粒3
晶粒2
晶粒1
位置,mm
图5-6 多晶铝的几个晶粒各处的应变量。 垂直虚线是晶界,线上的数字为总变形量
四、合金的塑性变形
单相固溶体合金的变形 多相合金的变形
§3. 2 金属塑性加工中组织和性能变化 的基本规律
一、冷塑性变形时金属组织和性能的变化 二、热塑性变形时金属组织和性能的变化
2200
N/mm2
图4-6 正压力对摩擦系数的影响
0.5
μ
0.4
0.3
0.4
0.2 0.2
0.1
0

200
400
600
800
图4-7 温度对钢的摩擦系数的影响
0
400
600
800 ℃
图4-8 温度对铜的摩擦系数的影响
测定摩擦系数的方法
夹钳轧制法 楔形件压缩法 塑性加工常用摩擦系数 圆环镦粗法

金属的塑性变形

金属的塑性变形
孪生机制
在某些特定条件下,金属晶体的一部分相对于另一部分沿一定轴进 行镜像对称的移动,形成孪晶。
扩散机制
金属在高温下,原子扩散能力增强,通过原子间的相互移动实现塑 性变形。
应力-应变关系与曲线分析
应力-应变关系
描述金属在塑性变形过程中所受应力 与产生的应变之间的关系。应力是单 位面积上的内力,应变是物体形状或 体积的改变程度。
热处理工艺改进
退火处理
通过退火处理可以消除金属材料内部的残余应力,改善其组织结 构和力学性能,从而提高其塑性变形能力。
正火处理
正火处理可以使金属材料获得细化的晶粒和均匀的组织,提高其 强度和塑性。
回火处理
回火处理可以消除淬火应力,稳定金属材料的组织和性能,进一 步提高其塑性变形能力。
微观组织调控手段
热处理工艺对塑性影响
01
退火处理
退火处理可以消除金属内部的残余应力,改善组织结构,提高其塑性。
例如,冷加工后的金属经过退火处理,可以恢复其塑性和韧性。
02
正火处理
正火处理可以使金属获得细化的晶粒和均匀的组织,从而提高其塑性和
韧性。正火处理常用于改善中碳钢的切削性能和力学性能。
03
淬火处理
淬火处理可以使金属获得马氏体组织,提高其硬度和强度,但会降低其
金属的塑性变形
目 录
• 塑性变形基本概念与原理 • 金属塑性变形过程中的组织结构演变 • 影响金属塑性变形能力因素探讨 • 金属塑性变形实验方法及技术应用 • 提高金属材料塑性变形能力策略探讨 • 总结:金属塑性变形研究意义与未来发展趋势
塑性变形基本概念与
01
原理
塑性变形定义及特点
塑性变形定义
利用电子显微镜的高分辨率和 高放大倍数,观察金属的微观 组织和结构缺陷,如位错、层 错、孪晶等。这些信息有助于 深入了解金属的塑性变形机制 和强化机制。

第二章 金属塑性变形的物理基础

第二章 金属塑性变形的物理基础

26
锻造温度区间的制定
27
2、锻合内部缺陷 3、打碎并改善碳化物和非金属夹杂物在钢 中的分布 4、形成纤维组织 5、改善偏析
28
塑性变形过程中晶粒的变化
29
第三节 金属的超塑性变形
一、超塑性的概念和种类 概念:金属和合金具有的超常的均匀变形 能力。
大伸长率、无颈缩、低流动应力、易成形、无加工硬化
另一个取向,故晶界处原子排列处于过渡状态。
4、晶界不同于晶内性质:
3
一、变形机理
晶内变形 1、滑移 2、孪生 晶间变形 晶粒之间的相互转动和滑动 注意: 晶间变形的情况受温度的影响
4
1、滑移面和滑移方向的确定
确定滑移面:原子排 列密度最大的晶面 确定滑移方向:原子 排列密度最大的方向
5
金属的主要滑移方向、滑移面、滑移系
种类:
细晶超塑性:在一定的恒温下,在应变速率和晶粒度都满 足要求的条件下所呈现出的超塑性。 相变超塑性:具有相变或同素异构转变的金属,在其转变 温度附近以一定的频率反复加热、冷却。在外力的作用下 所呈现出的超塑性。
30
二、细晶超塑性变形的力学特征
无加工硬化
31
三、影响细晶超塑性的主要因素
应变速率
20
21
二、性能的变化 (力学性能) 加工硬化 成因:位错交互作用,难以运动 应用:强化(奥氏体钢) 避免:多次塑性加工中加入退火工序
22
第二节 金属热态下的塑性变形
热塑性变形:再结晶温度以上进行的塑性 变形 一、塑性变形时的软化过程 1、动态回复、动态再结晶 2、静态回复、静态再结晶、亚动钢中的碳和杂质元素的影响 碳 磷 硫 氮 氢 氧
37
2、合金元素对钢的塑性的影响 合金元素的加入,会使钢的塑性降低、变 形抗力提高 原因见课本p43

金属塑性成形原理---第二章_金属塑性变形的物理基础

金属塑性成形原理---第二章_金属塑性变形的物理基础

位错的攀移
❖ 螺型位错无攀移
❖ 正攀移——正刃型位错位错线上移
负刃型位错位错线下移
编辑课件
位错的交割
❖ 两根刃型位错线都在各自的滑移面上移动,
则在相遇后交截分别形成各界,形成割阶后
仍分别在各自的平面内运动。
❖ 刃型位错和螺型位错交割时,在各自的位错
线上形成刃型割阶,位错线也能继续滑移。
❖ 螺型位错和螺型位错交割时,相交后形成的
❖ 假设:理想晶体两排原子相距为a,同排原子间距
为b。原子在平衡位置时,能量处于最低的位置。
在外力τ作用下,原子偏离平衡位置时,能量上升,
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以上。
编辑课件
典型的晶胞结构
编辑课件
典型的晶胞结构
编辑课件
三种晶胞的晶格结构
编辑课件
一、塑性变形机理
实际金属的晶体结构
❖ 单晶体:各方向上的原子密度不同——各向
异性
❖ 多晶体:晶粒方向性互相抵消——各向同性

❖ 塑性成形所用的金属材料绝大多数为多晶
体,其变形过程比单晶体复杂的多。
编辑课件
多晶体塑性变形的分类
加工中,会使变形力显著增
加,对成形工件和模具都有
III.抛物线硬化阶段:
一定的损害作用;但利用金
与位错的交滑移过程有关,
θ3
随应变增加而降低,应力应变
属加工硬化的性质,对材料
曲线变为抛物线。
进行预处理,会使其力学性
能提高
编辑课件
2.2 金属热态下的塑性变形

二篇金属的塑性成形工艺

二篇金属的塑性成形工艺
利用此定律,调整某个方向流动阻力,改变金属在某些方向的流动量→成形合理。
<图6-10)最小阻力定律示意图
在镦粗中,此定律也称——最小周边法则
二、塑性变形前后体积不变的假设
弹性变形——考虑体积变化
塑性变形——假设体积不变<由于金属材料连续,且致密,体积变化很微小,可忽略)
此假设+最小阻力定律——成形时金属流动模型
落料——被分离的部分为成品,而周边是废料
冲孔——被分离的部分为废料,而周边是成品
如:平面垫圈:制取外形——落料
制取内孔——冲孔
1.冲裁变形过程
冲裁件质量、冲裁模结构与冲裁时板料变形过程关系密切,
其过程分三个阶段
<1)弹性变形阶段<图8-1)
冲头接触板料后,继续向下运动的初始阶段,使板料产生弹性压缩、拉伸与弯曲等变形,板料中应力迅速增大。此时,凸模下的材料略有弯曲,凹模上的材料则向上翘,间隙↑→弯曲、上翘↑SixE2yXPq5
§6-1塑性变形理论及假设
一、最小阻力定律
金属塑性成形问题实质,金属塑性流动,影响金属流动的因素十分复杂<定量很困难)。应用最小阻力定律——定性分析<质点流动方向)p1EanqFDPw
最小阻力定律——受外力作用,金属发生塑性变形时,如果金属颗粒在几个方向上都可移动,那么金属颗粒就沿着阻力最小的方向移动。DXDiTa9E3d
[注]按变形的模膛数:单膛锻模<如齿轮坯)
多膛锻模<图7-7)
§7-3锤上模锻成形工艺设计
模锻生产的工艺规程包括:制订锻件图、计算坯料尺寸、确定模锻工步<选模膛)、选择设备及安排修整工序等。
最主要是锻件图的制定和模锻工步的确定
一、模锻锻件图的制定

金属塑性变形机制-讲义

金属塑性变形机制-讲义

金属塑性成形理论基础(一)金属塑性变形机制参考讲义前言金属塑性加工是利用金属的塑性,在外力的作用下,通过模具(或工具)使简单形状的坯料成形为所需形状和尺寸的工件(或毛坯)的技术。

它也被称之为塑性成形或压力加工。

金属塑性加工方法主要包括锻造、冲压、轧制、拉拔、挤压等几种类型。

为何采用塑性成形技术?⏹金属经过塑性成形后能改善其组织结构和力学性能。

铸造组织经过热塑性变形后由于金属的变形和再结晶,会使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、缩松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。

因此铸件的力学性能低于同材质的锻件的力学性能。

⏹塑性成形能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命。

什么是塑性变形?当外力增大到使金属的内应力超过该金属的屈服极限以后,金属就会产生变形。

当外力停止作用后,金属的变形并不消失。

这种变形称为塑性变形。

(当外力作用在金属上时,如受拉,金属内的原子间距变大,如果这种变化是弹性范围内的,当外力去除后,原子还能恢复到原来的状态;如果外力较大,这种变化就达到了塑性阶段了,当外力去除之后,有一部分变化就不能恢复了,金属就发生了塑性变形。

作为一种极限,当外力大到一定程度,原子间的结合力被打破,那么金属就断了。

)塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。

塑性不仅与材料本身的性质有关,还与变形有方式和变形条件有关。

材料的塑性不是固定不变的,不同的材料在同一变形条件下会有不同的塑性,而同一材料,在不同的变形条件下,会表现不同的塑性。

塑性是反映金属的变形能力,是金属的一咱重要的加工性能。

塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。

金属材料通过冶炼、铸造,获得铸锭后,可通过塑性加工的方法获得具有一定形状、尺寸和力学性能的型材、板材、管材或线材,以及零件毛坯或零件。

第二章_金属塑性变形的物理基础

第二章_金属塑性变形的物理基础
超塑性是指金属在特 定变形条件下,呈现 出异常低的流变抗力、 异常高的流变性能 (例如大的延伸率) 的现象。
超塑性的特点
超塑性变形的一般特点: 1、大伸长率 2、无缩颈 3、低流动应力 4、易成形
采用超塑性成形工艺,可获得形状复杂和尺寸精确的锻件, 而变形力大大降低 。
超塑性成形实例
b 弥散强化
位错切过第二相粒子(表面能、错排能、 粒子阻碍位错运动)
四 塑性变形对金属组织和性能的影响
1 对组织结构的影响 (1) 形成纤维组织
晶粒拉长 杂质呈细带状或链状分布
H62黄铜挤压的带状组织
(2) 亚结构
变形量增大 位错缠结 位错胞 (大量位错缠结在胞壁,胞内位错密度低)
(3) 形变织构
四 塑性变形对金属组织和性能的影响
2 对力学性能的影响(加工硬化) (1)加工硬化(形变强化、冷作强化):随变形 量的增加,材料的强度、硬度升高而塑韧性下降 的现象。
2 对力学性能的影响(加工硬化)
强化金属的重要途径
利 提高材料使用安全性
(2)利弊
材料加工成型的保证
弊 变形阻力提高,动力消耗增大
孪生的特点
(1)孪生是一部分晶体沿孪晶面相对于另一部分晶体 作切变,切变时原子移动的距离是孪生方向原子间距的 分数倍;孪生是部分位错运动的结果;孪晶面两侧晶体 的位向不同,呈镜面对称;孪生是一种均匀的切变。
孪生的特点
(2)孪晶的萌生一般需 要较大的应力,但随后长 大所需的应力较小,其拉 伸曲线呈锯齿状。孪晶核 心大多是在晶体局部高应 力区形成。变形孪晶一般 呈片状。变形孪晶经常以 爆发方式形成,生成速率 较快。
位错密度越高,金属的强度、硬度越高。
S:位错线长度,V:体积,ρ:位错密度

02第二章金属塑性变形的物理基础

02第二章金属塑性变形的物理基础

Fe-C合金(钢铁)
Fe-0.8C

Fe-(1.3,1.6,1.9)C -
GCr15
0.42
Fe-1.5C-1.5Cr

Fe-1.37C-1.04Mn0.12V

AISI01(0.8C)
0.5
52160
0.6
高级合金
901

Ti-6Al-4V
0.85
210~250 470 540 1200 817 1200 1220
合金成分(Wt%) 共析合金 Zn-22Al 共晶合金
Zn-5Al
m 延伸率δ(%) 变形温度(℃)
0.5
>1500
200~300
0.48~ 0.5
300
200~360
Al-33Cu Al-Si Cu-Ag
Mg-33Al Sn-38Pb Bi-44Sn
Pb-Cd
0.9 - 0.53 0.85 0.59 - 0.35
一、概念和种类
(一)概念 具有超常的均匀变形能力,伸长率达到百分之几 百~百分之几千。
伸长率:δ>200%;
应变速率敏感性指数:m>0.3;
抗缩颈能力大。
特点:大伸长率、低流动应力、易成形。
(二)种类
1.细晶超塑性(结构超塑性或恒温超塑性) 条件:a.晶粒超细化和等轴长(<10um);
b.恒温条件的下限温度0.5Tm
Al-Zn-Ca Cu基合金 Cu-9.5Al-4Fe Cu-40Zn
0.5 0.43 0.9 0.9
- 0.72 -
0.64 0.64
1800~2000 1310 100 1550 >1000 >600 267

金属塑性变形的物理基础

金属塑性变形的物理基础

第二节金属热态下的塑性变形
01
02
03
04
第二节金属热态下的塑性变形 1.热塑性变形时软化过程
23% Option 1
30% Option 2
热塑性变形时软化过程
静态回复 在较低的温度下、或在较早阶段发生转变的过程称为静态回复。它是变形后的金属自发地向自由能降低的方向转变的过程。
静态再结晶 在再结晶温度以上,金属原子有更大的活动能力,会在原变形金属中重新形成新的无畸变等轴晶,并最终取代冷变形组织,此过程称为金属的静态再结晶。
01
02
03
04
05
06
3.合金的塑性变形
(一) 单相固溶体的塑性变形 2 固溶强化 (3)屈服和应变时效 现象:上下屈服点、屈服延伸(吕德斯带扩展)。 预变形和时效的影响:去载后立即加载不出现屈服现象;去载后放置一段时间或200℃加热后再加载出现屈服。这种现象叫做应变时效。 原因:柯氏气团的存在、破坏和重新形成。
在孪生变形时,所有平行于孪生面的原子平面都朝着一个方向移动。每一晶面移动距离的大小与它距孪生面的距离成正比。每一晶面与相邻晶面的相对移动恒等于点阵常数的若干分之一。
01
晶体以何种方式变形,取决于那张变形需要的切应力低。
02
常温下滑移切应力低于孪生,很低温度下,孪生低于滑移。
03
变形速度的增加可促使晶体的孪生化,如高速冲击。
热轧和热挤时,动、静态回复和再结晶的示意图。
图4-10 动、静回复和再结晶示意
热塑性变形机理
第二节金属热态下的塑性变形 2.热塑性变形的机理 变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变。 一般来说,晶内滑移是最主要和常见的;孪生多在高温变形时发生,但对刘芳晶系金属,这种机理起重要作用。晶界滑移和扩散蠕变只在高温变形时才发挥作用。 (1)晶内滑移 热变形的主要机理仍然是晶内滑移。高温时原子间距加大,热振动和扩散速度增加,位错滑移、攀移、交滑移及节点脱锚比低温容易;滑移系增多,滑移灵便性提高,各晶粒之间变形更加协调;晶界对位错运动阻碍作用减弱。

金属的塑性变形

金属的塑性变形

五、金属变形程度
常用锻造比表示 Y=F0/F F0表示变形前面积 F表示变形后面积
钢锭Y=2-3 合金钢Y=3-4 高速钢Y=5-12
六、冷、热变形比较
热变形特点:
(1)均匀、细化晶粒 (2)消除加工硬化
(3)高温、塑性好 (4)氧化严重
(5)精度差
(6)设备贵,维修费高
冷变形特点:
(1)不加热
(2)精度、表面质量好
单晶体的滑移
多晶体
二、冷变形后的金属组织与性能 塑Байду номын сангаас变形后:
(1)产生纤维组织,引起各向异性 (2)晶格扭曲 (3)晶粒间产生碎晶 使金属的强度、硬度增加,塑性、韧性 下降,即加工硬化。增加滑移阻力,使金 属形变强化
1.纤维组织 2.加工硬化 3.残余内应力
2.加工硬化(形变硬化、冷作硬化)
(3)硬度、强度高 (4)材料有方向性
(5)设备贵,存在残余应力,易产生裂纹。
§1-2 锻前加热与锻后冷却
一、锻造前加热目的及方法
目的: 提高金属塑性,降低变形抗力.易于锻造成形 并获得好的锻后组织.
按加热热源不同可分为:
1.火焰加热,燃料来源方便,炉子修造简单,加热费 用低适应范围广。用于各种大、中、小型坯料的加热。 劳动条件差,加热速度慢,加热质量难于控制。
§1-1 金属的塑性变形
压力加工:在外力作用下,使金属产生塑性变形,获得一定几 何形状、尺寸和力学性能毛坯,原材料或零件的加工方法。压 力加工有自由锻、模锻、板料冲压、轧制、挤压、拉拔等。
一、塑性变形实质 1、单晶体塑性变形 (1)当无外力,晶格正常排列。 (2)外力作用使原子离开平衡位置,晶格变形。 (3)当剪应力足够大,沿晶面移动一个或几个原子距离。 2、多晶体塑性变形 多晶体是多个位向不同变形总和。特点: (1)变形过程复杂。 (2)变形抗力比单晶体大的多。

金属材料的塑性变形

金属材料的塑性变形
⑵滑移只能在切应力的作用下发生。 ⑶滑移时晶体的一部分相对于另一部分沿滑移方向位移的距离 为原子间距的整数倍。滑移是通过位错的运动来实现的。
整理课件
3
2.孪生
在切应力作用下,晶体的一部分沿一定的晶面(孪晶面)和晶 向(挛晶方向)相对于另一部分所发生的切变称为孪生。
孪生与滑移的区别是: 1)孪生所需要的临界切应力比滑移大得多,变形速度极快。 2)发生切变、位向改变的这一部分晶体称为孪晶带或孪晶。 3)孪晶中每层原子沿孪生方向的相对位移距离是原子间距的分数。
⑶形变织构的产生 当变形量很大(70%以上)时,会使绝大部分 晶粒的某一位向与外力方向趋于一致,形成特殊的择优取向。择优取
向的结果形成了具有明显方向性的组织,称为织构。
整理课件
9
3.2.3 塑性变形产生的残余应力
残余应力: 金属表层与心部的变形量不同会形成表层与心部之间的
宏观内应力; 晶粒彼此之间或晶内不同区域之间的变形不均匀会形成
⑴纤维组织形成 金属在外力作用下发生塑性变形时,随着变形 量的增加晶粒形状发生变化,沿变形方向被拉长或压扁。
当拉伸变形量很大时,晶粒变成细条状,金属中的夹杂物也被 拉长,形成所谓纤维组织。
变形前后晶粒形状变化示意图
整理课件
8
⑵亚结构形成 金属经大量的塑性变形后,大量的位错聚集在 局部地区,将原晶粒分割成许多位向略有差异的小晶块,即亚晶粒。
整理课件
4
3.1.2 多晶体的塑性变形
1.晶粒取向对塑性变形的影响
在多晶体中,各个晶粒内原 子排列的位向不一致,这样 不同晶粒的滑移系的取向就 会不同。
作用在不同晶粒滑移系 上的分切应力会有差别,分 切应力最大的那些晶粒最先 开始滑移。多晶体金属的塑 性变形将会在不同晶粒中逐 批发生.

塑性变形知识点总结

塑性变形知识点总结

塑性变形(3)1.冷变形金属在退火过程中显微组织的变化:在回复阶段,由于不发生大角度晶界的迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学显微组织上几乎看不出变化。

在再结晶阶段,首先是在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。

最后,在晶界表面能的驱动下,新晶粒互相吞食而长大,从而得到一个在该条件下较为稳定的尺寸,这称为晶粒长大阶段。

2.回复:是指冷变形后金属在加热温度较低时,原子活动能力不在,金属中的一些点缺陷和位错的迁移,使得晶格畸变逐渐减少,内应力逐渐降低的过程。

回复的驱动力:弹性畸变能(特征:1.金属的晶粒大小和形状尚无明显的变化,因而其强度,硬度和塑性等机械性能变化不大;2.内应力及电阻率等物理性能显著不为降低。

(宏观内应力))3.回复机制:a.低温回复:回复主要与点缺陷的迁移有关。

b.中温回复:温度稍高时,会发生位错运动和重新分布。

机制主要与位错滑移和位错密度降低有关。

c.高温回复(~0.3Tm),刃型位错可获得足够能量产生攀移,位错密度下降,位错重排成较稳定的组态----亚晶结构。

4.再结晶:将冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状况,这个过程称之为再结晶。

再结晶的驱动力:是变形金属经回复后未被释放的储存能(相当于变形总储能的90%)5.储存能:塑性变形中外力所作的功除去大部分转化为热之外,还有一小部分以畸变能的形式储存在形变材料内部,这部分能量叫做储存能。

6.残余应力:一种内应力。

它在工件中处于自相平衡状态,其产生是由于工件内部各区域变形不均匀性,以及相互间的牵制作用所致。

7.再结晶温度:冷变形金属开始进行再结晶的最低温度。

》》通常,把对应于再结晶后得到特别粗大晶粒的变形程度称为“临界变形度”,一般金属的临界变形度约为2%~10%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2-25冷变形金属加热时组织和性能的变化
金属塑性成形原理
3.静态回复机理
原子只在晶内作短程扩散,使点缺陷和位错发生运动,改变了晶体缺陷的 数量和分布状态。
金属的强度、硬度有所下降,塑性、韧性有所提高;但显微组织没有发生 明显的变化。
低温回复(0.1~0.3Tm)时,回复的主要机理是点缺陷运动和互相结合,使 点缺陷的浓度下降。
金属塑性成形原理
一、热塑性变形时金属的软化过程
热塑性变形时金属的软化过程比较复杂,它与变形温度、应变速率、变形 程度和金属本身的性质有关,主要有静态回复、静态再结晶、动态回复、动态 再结晶和亚动态再结晶等。
动态回复与动态再结晶:一般将热变形过程中,在应力状态作用下所发生 的回复与再结晶过程称为动态回复与动态再结晶。
金属塑性成形原理
综合上述可知,在整个回复阶段: ✓点缺陷减少,位错密度有所下降,位错分布形态经过重新调整和组合而处 于低能态; ✓位错发团变薄、网络更清晰,亚晶增大;但晶粒形状没有发生变化; ✓整个金属的晶格畸变程度和内应力大为减小,其性能也发生相应的变化。 ✓金属的物理性能有较大恢复,如密度增加、电阻率下降,而力学性能没有 明显变化。
金属塑性成形原理
2)性能变化
回复阶段:强度、硬度略有下降,塑性略 有提高。内应力明显下降。
再结晶阶段:强度、硬度明显下降,塑性 明显提高。内应力可完全消除。
晶粒长大阶段:强度、硬度继续下降,塑 性继续提高,粗化严重时下降。
电阻在回复阶段可明显下降, 密度在回复阶段可明显增加。
根本原因:缺陷密度降低
中温回复(0.3~0.5Tm)时,除了点缺陷的运动,还出现位错发团(晶体位 错的高密度区出现的位错线纷乱纠缠的现象)内部位错重新组合和调整、位错运 动和异号位错互毁,导致位错发团厚度变薄,位错网络清晰,晶界位错密度下降, 亚晶缓慢长大。
高温回复(T>0.变能降低。高温回复的主要机理是“多边形化”。
再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸变的等轴晶粒 逐渐取代变形晶粒,而使形变强化效应完全消除的过程。
金属塑性成形原理
2、冷变形金属加热过程中显微组织和性能的变化
1)显微组织变化 回复阶段:显微组织仍为纤维状,无可见变化; 再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒。 晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺寸。
低层错能金属
变形率90% 图2-24 动、静态回复和再结晶示意图
金属塑性成形原理
(一)静态回复和再结晶
金属冷变形后,组织、结构和性能都发生了复杂的变化。变形引起加工硬 化,晶体缺陷增多,金属畸变内能增加,原子处于不稳定的高自由能状态,具 有向低自由能状态转变的趋势。当加热升温时,原子获得足够的扩散能力,变 形后的金属自发地向低自由能状态转变。这一转变过程称为回复和再结晶。
静态回复与静态再结晶:金属冷塑性变形后产生了加工硬化,如果将它加 热,则会发生相反的变化,也就是产生软化,即发生回复和再结晶。通常把这 种回复和再结晶称为静态回复和静态再结晶。
热变形间歇期间或热变形后,利用金属的高温余热产生的回复和再结晶也称 为静态回复和静态再结晶。
变形率50%
高层错能金属
金属塑性成形原理
金属塑性成形原理
2.2 金属热态下的塑性变形
金属塑性成形原理
内容提纲
一、热塑性变形时的软化过程 二、热塑性变形机理 三、双相合金热塑性变形的特点 四、热塑性变形对金属组织和性能的影响
金属塑性成形原理
第二节 金属热态下的塑性变形
热塑性变形(又称热加工):是指变形金属在再结晶温度以上进行的塑 性变形。
去应力退火是回复在工业生产中的应用之一。回复后金属基本上保持加 工硬化状态。但内应力降低,从而避免了变形或开裂,并改善工件的耐蚀性。
从回复机制可以理解,回复过程中电阻率的下降主要是由于过量空位的 减少和位错应变能的降低;内应力的降低主要是由于晶体内弹性应变的基本 消除;硬度及强度下降不多是由于位错密度下降不多,亚晶还较细小之故。
热加工的不足之处: (1)对薄或细的轧件,由于散热较快,在生产中保持热加工的温度条件比较困难。因此, 目前对生产薄的或细的金属材料来讲,一般仍采用冷加工(如冷轧、冷拉)的方法。 (2)热加工后轧件的表面不如冷加工生产的尺寸精确和光洁。因为在加热时,由于轧件 表面生成氧化皮和冷却时收缩的不均匀。 (3)热加工后产品的组织及性能不如冷加工时均匀。因为热加工结束时,工件各处的温 度难于均匀一致。
热塑性变形目的: 一是成形;二是改善材料组织与性能。
金属塑性成形原理
热加工的优点: (1)金属在热加工变形时,变形抗力较低,消耗能量较少。 (2)金属在热加工变形时,其塑性升高,产生断裂的倾向性减小。 (3)与冷加工相比较,热加工变形一般不易产生织构。 (4)在生产过程中,不需要像冷加工那样的中间退火,从而可使生产工序简化,生产效 率提高。 (5)热加工变形可引起组织性能的变化,以满足对产品某些组织与性能的要求。
金属塑性成形原理
多边形化:位错通过滑移、攀移、交滑移等多种运动形式,使滑移面上的位错由 水平塞积逐渐变为垂直排列,形成所谓位错壁。于是晶体即被位错壁分隔成许多 位向差小、而原子排列基本规则的小晶块。这些小晶块的形状近似一个多边形, 故将此过程称为多边形化。
多边形化的结果是形成亚晶,金属应变能降低、处于更稳定状态
实际中的热塑性加工中,为了保证再结晶过程的顺利完成以及操作上的需要 等,其变形温度通常远比再结晶温度高。一般在热变形时金属所处温度范围是其 熔点绝对温度的0.75-0.95倍,热锻、热轧和热挤压等即属于这一类。在变形过程 中,回复、再结晶与加工硬化同时发生,加工硬化不断被回复或再结晶软化所抵 消,而使金属处于高塑性、低变形抗力的软化状态。
回复往往是在较低的温度下或较早的阶段发生的过程,再结晶则是在较高 的温度下或较晚的阶段发生的转变。
转变过程中金属的组织和性能都会发生不同程度的变化,直至恢复到冷变形 前的原始状态。此转变过程也即变形金属的软化过程。
1. 回复与再结晶的定义
回复:冷变形金属在低温加热时,其显微组织无可见变化,但其物理、力学性能却 部分恢复到冷变形以前的过程。
相关文档
最新文档