若电场由几个点电荷共同产生

合集下载

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种求法一.公式法1.qF E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。

2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。

3.dU E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。

二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。

例:如图,带电量为+q 的点电荷与均匀带电。

例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。

已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r qk =ϕ。

假设左侧部分在M 点的电场强度为E 1,电势为1ϕ;右侧部分在M 点的电场强度为E 2,电势为2ϕ;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( )A .若左右两部分的表面积相等,有E 1>E 2,1ϕ>2ϕB .若左右两部分的表面积相等,有E 1<E 2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4D .不论左右两部分的表面积是否相等,总有E 1>E 2,E 3=E 4答案:D例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。

高中物理电场知识点总结

高中物理电场知识点总结

高中物理电场知识点总结电场是电荷及变化磁场周围空间里存在的一种特殊物质。

电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的,电场具有通常物质所具有的力和能量等客观属性。

下面给大家分享一些关于高中物理电场知识点总结,希望对大家有所帮助。

1.两种电荷(1)自然界中存在两种电荷:正电荷与负电荷.(2)电荷守恒定律2.库仑定律(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.(2)适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q方向:正电荷在该点受力方向.(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.(2)沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.8.电场中的功能关系(1)电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.(2)只有电场力做功,电势能和电荷的动能之和保持不变.(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.带电粒子在电场中的运动(1)带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.(2)带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.(4)带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极--′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

江苏省2021高考物理一轮复习第七章静电场第1讲电场力的性质教案

江苏省2021高考物理一轮复习第七章静电场第1讲电场力的性质教案

第1讲电场力的性质目标要求内容要求说明1.电荷和电荷守恒定律通过实验,了解静电现象.能用原子结构模型和电荷守恒的知识分析静电现象.带电粒子在匀强电场中运动的计算2。

点电荷和库仑定律知道点电荷模型.知道两个点电荷间相互作用的规律.体会探究库仑定律过程中的科学思想和方法.3.电场和电场强度电场知道电场是一种物质.了解电场强度,体会用物理量之比定义新物理量的方法.会用电场线描述电场.实验九观察电容器的的充、放电现象场强的情况。

第1讲电场力的性质一、电荷电荷守恒定律1.元电荷、点电荷(1)元电荷:e=1.60×10-19C,所有带电体的电荷量都是元电荷的整数倍.(2)点电荷:代表带电体的有一定电荷量的点,忽略带电体的大小、形状及电荷分布状况的理想化模型.2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变.(2)三种起电方式:摩擦起电、感应起电、接触起电.(3)带电实质:物体得失电子.(4)电荷的分配原则:两个形状、大小相同且带同种电荷的同种导体,接触后再分开,二者带等量同种电荷,若两导体原来带异种电荷,则电荷先中和,余下的电荷再平分.自测1如图1所示,两个不带电的导体A和B,用一对绝缘柱支撑使它们彼此接触.把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔都张开()图1A.此时A带正电,B带负电B.此时A带正电,B带正电C.移去C,贴在A、B下部的金属箔都闭合D.先把A和B分开,然后移去C,贴在A、B下部的金属箔都闭合答案C解析由静电感应可知,A左端带负电,B右端带正电,选项A、B错误;若移去C,A、B两端电荷中和,则贴在A、B下部的金属箔都闭合,选项C正确;先把A和B分开,然后移去C,则A、B带的电荷不能中和,故贴在A、B下部的金属箔仍张开,选项D错误.二、库仑定律1.内容真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.表达式F=k错误!,式中k=9.0×109N·m2/C2,叫做静电力常量.3.适用条件真空中的静止点电荷.(1)在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式.(2)当两个带电体间的距离远大于其本身的大小时,可以把带电体看成点电荷.4.库仑力的方向由相互作用的两个带电体决定,即同种电荷相互排斥,异种电荷相互吸引.判断正误(1)由库仑定律公式F=k错误!可知,当r→0时,F 为无穷大.(×)(2)两个带电体之间的库仑力是一对相互作用力,大小相等,方向相反.(√)(3)库仑定律是通过实验总结出的规律.(√)三、电场、电场强度1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质;(2)基本性质:对放入其中的电荷有力的作用.2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F与它的电荷量q的比值.(2)定义式:E=错误!;单位:N/C或V/m。

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种求法一. 公式法1.qFE =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用 2.2rk QE =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。

3.dUE =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。

二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。

例:如图,带电量为+q 的点电荷与均匀带电。

例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大?例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。

已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为rqk=ϕ。

假设左侧部分在M 点的电场强度为E 1,电势为1ϕ;右侧部分在M 点的电场强度为E 2,电势为2ϕ;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1ϕ>2ϕ B .若左右两部分的表面积相等,有E 1<E 2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4D .不论左右两部分的表面积是否相等,总有E 1>E 2,E 3=E 4 答案:D例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。

电场的叠加

电场的叠加

等量同种点电荷
电场线 分布图
连线中点O处的场 强
连线上的场强大小
沿中垂线由O点向 外场强大小 关于O点对称的
最小,指向负电 荷一方
沿连线先变小, 再变大
O点最大,向外 逐渐减小
等大同向
为零
沿连线先变小, 再变大 O点最小,向外先 变大后变小
等大反向
应用举例
例题.在真空中有两个点电荷Q1=+3.0×10-8C和Q2=-3.0×10-8C,它们相距0.1m,求 电场中A点的场强.(A点与两个点电荷的距离相等,r=0.1m)
E+ A
+Q1
EA=2.7×104N/C −Q2
小结
等效方法
Q
rP
电场叠加
Qr P
原则 定义
电场的叠加
主讲:姜老师
电场叠加
在几个点电荷共同形成的电场中,某点的场强等于
各个电荷单独存在时在该点产生的场强的矢量和,
这叫做电场的叠加原理。
Q
r
P
与一个位于球心的、电荷量相等的点电荷 产生的电场相同
Q
r
P
电场叠加
叠加原则
平行四边形法则电场Fra bibliotek加两个等量点电荷连线及中垂线上电场场强的叠加.
比较
等量异种点电 荷

高中物理选修3-1笔记 电场

高中物理选修3-1笔记  电场

第一章静电场1.1电荷及其守恒定律一、电荷1.物体带电:物体有了吸引轻小物体的性质,我们就说它带了电或有了电荷。

2.两种电荷(自然界只存在两种电荷)1)正电荷:用丝绸摩擦过的玻璃棒所带的电荷(丝玻正)2)负电荷:用毛皮摩擦过的橡胶棒所带的电荷(毛橡负)3.自由电子和离子金属中原子核最远的电子往往会脱离原子核的束缚而在金属中自由活动,这种电子叫做自由电子,失去这种电子的原子便成为带正电的离子。

(失正得负)4.作用规律:同种电荷相互排斥,异种电荷相互吸引二、物体带电的三种方式(本质都是自由电子的转移)1.摩擦起电当两个物体相互摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体,于是原来是电中性的物体由于得到电子而带负电,失去电子的物质则带正电。

2.静电感应当导体靠近带电体时,导体中的自由电子就会受到带电体对它的排斥或者吸引,使导体两端出现异种电荷,近端与带电体异号,远端与带电体同号,这种方式称为感应起电,这种现象称为静电感应。

验电器的原理:两片金箔带同种电荷,彼此相斥而张开3.接触起电不带电的物体与带电体接触,能使不带电的物体带上电荷,这种方式成为接触起电。

分配规律:A带-Q,B带+5Q,AB接触再分开,电荷相加在平分A=B=+2Q三、电荷守恒定律1.内容:电荷既不会创生,也不会消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。

在转移的过程中,电荷的总量保持不变。

在一定情况下,带电粒子可以产生和湮灭。

一个高能光子在一定条件下可以产生一对正、负电子;一对正、负电子可以同时湮灭转化为光子。

现代表述:一个与外界没有电荷交换的系统,电荷的代数和保持不变。

四、元电荷1.电荷量:电荷量又叫电量,它表示了电荷的多少,其单位是“库仑”,简称“库”,用符号C表示2.元电荷:最小电荷量(即科学实验发现的最小电荷量,最早由美国物理学家密里根测定),用e表示。

电荷量不能连续变化1)e=1.6×10-19C2)质子:所带电荷量与元电荷相同,符号与电子相反。

微专题43 电场强度的叠加-2025版高中物理微专题

微专题43  电场强度的叠加-2025版高中物理微专题

微专题43电场强度的叠加【核心考点提示】求合场强的四种特殊方法电场的叠加原理:如果有几个点电荷同时存在,它们的电场就互相叠加形成合电场.这时某点的场强等于各个电荷单独存在时在该点产生的场强的矢量和.(1)同一直线上电场叠加,E 合=E 1±E 2(同向则应相加,异向则应相减).(2)不在同一直线上电场叠加,E 合用平行四边形定则求解.以上是求合场强最基本的方法,求合场强还有一些技巧型的方法如:对称法、补偿法、等效替换法、极限法、特值法、微元法等.【经典例题选讲】【例题1】(2018·衡水模拟)如图所示,N (N >5)个小球均匀分布在半径为R 的圆周上,圆周上P 点的一个小球所带电荷量为-2q ,其余小球带电量为+q ,圆心处的电场强度大小为E 。

若仅撤去P 点的带电小球,圆心处的电场强度大小为()A .E B.E 2C.E 3D.E 4解析:选C 假设圆周上均匀分布的都是电荷量为+q 的小球,由于圆周的对称性,圆心处场强为0,则知在P 处带电量+q 的小球在圆心处产生的场强大小为E 1=k qr 2,方向水平向左,可知圆周上其余小球在O 处产生的场强大小为E 2=E 1=k qr 2,方向水平向右,带电量为-2q的小球在圆心处产生的场强大小为E 3=k2qr 2,方向水平向右。

根据叠加原理E =E 2+E 3,则k q r 2=E 3,所以撤去P 点的小球后,圆心处场强大小为E3,C 正确。

【变式1】(2018·抚顺期中)如图所示带正电的金属圆环竖直放置,其中心处有一电子,若电子某一时刻以初速度v 0从圆环中心处水平向右运动,则此后电子将()A .做匀速直线运动B .做匀减速直线运动C .以圆心为平衡位置振动D .以上选项均不对[解析]将圆环分成无数个正点电荷,再用点电荷场强公式和场强叠加原理求出v 0方向所在直线上的场强分布即可。

由场强叠加原理易知,把带电圆环视作由无数个点电荷组成,则圆环中心处的场强为0,v 0所在直线的无穷远处场强也为0,故沿v 0方向从圆心到无穷远处的直线上必有一点场强最大。

磁场,电场,电磁感应知识点汇总

磁场,电场,电磁感应知识点汇总

高中物理磁场知识点1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场. (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用. (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F 跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5★.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.★洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.★★★带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动. (2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB ②周期公式: T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解. (2)带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高” “至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.高中物理电场知识点1.两种电荷-----(1)自然界中存在两种电荷:正电荷与负电荷. (2)电荷守恒定律:2.★库仑定律(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.(2)公式:(3)适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q 方向:正电荷在该点受力方向.(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功W AB与电荷量q的比值WAB/q 叫做AB两点间的电势差.公式:U AB =W AB /q 电势差有正负:U AB =-U BA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.(2)沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.8.电场中的功能关系(1)电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.(2)只有电场力做功,电势能和电荷的动能之和保持不变.(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.★★★★带电粒子在电场中的运动(1)带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.(2)带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动:Vx=V0,L=V0 t.平行于场强方向做初速为零的匀加速直线运动:(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.(4)带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容-----(1)定义:电容器的带电荷量跟它的两板间的电势差的比值高中物理电磁感应知识点1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.。

2023高考物理专题冲刺训练--电场力的性质(二)--电场强度的计算、叠加问题

2023高考物理专题冲刺训练--电场力的性质(二)--电场强度的计算、叠加问题

电场强度的计算、叠加问题一、电场强度的理解和计算1.电场强度的性质(1)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向。

(2)唯一性:电场中某一点的电场强度E 是唯一的,它的大小和方向与放入该点的电荷q 无关,它决定于形成电场的电荷(场源电荷)及空间位置。

(3)叠加性:如果有几个静止点电荷在空间同时产生电场,那么空间某点的电场强度是各场源电荷单独存在时在该点所产生的电场强度的矢量和。

2.电场强度的三个公式比较三个公式⎩⎪⎨⎪⎧E =F q(适用于任何电场)E =kQ r 2(适用于点电荷产生的电场)E =U d (适用于匀强电场)二、等量同种和异种点电荷周围电场强度的比较连线上O 点场强最小,指向三、电场强度的叠加1.电场强度的叠加(如右图所示)2.“等效法”“对称法”和“填补法”(1)等效法在保证效果相同的前提下,将复杂的电场情景变换为简单的或熟悉的电场情景.例如:一个点电荷+q 与一个无限大薄金属板形成的电场,等效为两个等量异种点电荷形成的电场,如图甲、乙所示.(2)对称法利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化. 例如:如图所示,均匀带电的34球壳在O 点产生的场强,等效为弧BC 产生的场强,弧BC 产生的场强方向,又等效为弧的中点M 在O 点产生的场强方向.(3)填补法将有缺口的带电圆环或圆板补全为完整的圆环或圆板,或将半球面补全为球面,从而化难为易、事半功倍.3.选用技巧(1)点电荷电场、匀强电场场强叠加一般应用合成法.(2)均匀带电体与点电荷场强叠加一般应用对称法.(3)计算均匀带电体某点产生的场强一般应用补偿法或微元法.三、针对练习1、(多选)下列关于电场强度的说法,正确的是( )A .电场中某点的电场强度在数值上等于单位电荷在该点所受的电场力B .电场强度的方向总是跟试探电荷所受电场力的方向一致C .在点电荷Q 附近的任意一点,如果没有把试探电荷放进去,则这一点的电场强 度为零D .点电荷场强计算式是由库仑定律的表达式221r q kq F =和电场强度的定义式 q F E =推导出来的,其中22r kq 是带电荷量2q 的点电荷产生的电场在带电荷量1q 的点电荷处的场强大小,而21rkq 是带电荷量1q 的点电荷产生的电场在带电荷量2q 的点电荷处的场强大小2、如图所示,E 、F 、G 、H 为矩形ABCD 各边的中点,O 为EG 、HF 的交点,AB 边的长度为d .E 、G 两点各固定一等量正点电荷,另一电荷量为Q 的负点电荷置于H 点时,F 点处的电场强度恰好为零.若将H 点的负电荷移到O 点,则F 点处场强的大小和方向为(静电力常量为k )( )A .4kQ d 2,方向向右B .4kQ d 2,方向向左C .3kQ d 2,方向向右D .3kQ d2,方向向左3、如图甲所示,AB 是一个点电荷形成的电场中的一条电场线,图乙则是放在电场线上P 、Q 处检验电荷所受电场力的大小与其电荷量之间的函数图像,电场方向由A 指向B ,由此可以判断( )A .场源电荷是正电荷,位于A 侧B .场源电荷是正电荷,位于B 侧C .场源电荷是负电荷,位于A 侧D .场源电荷是负电荷,位于B 侧4、如图所示,四个点电荷所带电荷量的绝对值均为Q ,分别固定在正方形的四个顶点上,正方形边长为a ,则正方形两条对角线交点处的电场强度( )A .大小为42kQ a 2,方向竖直向上B .大小为22kQ a 2,方向竖直向上 C .大小为42kQ a 2,方向竖直向下 D .大小为22kQ a 2,方向竖直向下5、(多选)电场线能直观、方便地反映电场的分布情况.如图甲是等量异号点电荷形成电场的电场线,图乙是电场中的一些点;O 是电荷连线的中点,E 、F 是连线中垂线上关于O 对称的两点,B 、C 和A 、D 是两电荷连线上关于O 对称的两点.则( )A .E 、F 两点场强相同B .A 、D 两点场强不同C .B 、O 、C 三点中,O 点场强最小D .从E 点向O 点运动的电子加速度逐渐减小6、如图所示,在真空中有两个固定的等量异种点电荷+Q 和-Q .直线MN 是两点电荷连线的中垂线,O 是两点电荷连线与直线MN 的交点.a 、b 是两点电荷连线上关于O 的对称点,c 、d 是直线MN 上的两个点.下列说法中正确的是( )A .a 点的场强大于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先增大后减小B .a 点的场强小于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先减小后增大C .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先增大后减小D .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先减小后增大7、如图所示,M 、N 为两个等量同种正电荷Q ,在其连线的中垂线上任意一点P 自由释放一个负电荷q ,不计重力影响,关于点电荷q 的运动下列说法正确的是( )A .从P →O 的过程中,加速度越来越大,速度也越来越大B .从P →O 的过程中,加速度越来越小,到O 点速度达到最大值C .点电荷越过O 点时加速度为零,速度达到最大值D .点电荷越过O 点后,速度越来越小,加速度越来越大,直到速度为零8、在M 、N 两点放置等量的异种点电荷如图所示,MN 是两电荷的连线,HG 是两电荷连线的中垂线,O 是垂足.下列说法正确的是( )A .OM 中点的电场强度大于ON 中点的电场强度B .O 点的电场强度大小与MN 上各点相比是最小的C .O 点的电场强度大小与HG 上各点相比是最小的D .将试探电荷沿HG 由H 移送到G ,试探电荷所受电场力先减小后增大9、如图所示,正电荷q 均匀分布在半球面ACB 上,球面半径为R ,CD 为通过半球面顶点C 和球心O 的轴线。

电场的叠加

电场的叠加
两个等量点电荷连线及中垂线上电场场强的叠加.
比较
等量异种点电荷 等量同种点电荷
电场线 分布图
连线中点O处的 场强
最小,指向负电 荷一方
为零
连线上的场强大 沿连线先变小, 沿连线先变小,

再变大
再变大
沿中垂线由O点 O点最大,向外 O点最小,向外
向外场强大小 逐渐减小
先变大后变小
关于O点对称的 等大同向
创新微课 现在开始
电场的叠加
电场的叠加
电场的叠加
创新微课
与一个位于球心的、电荷量相 等的点电荷产生的中,某点的场强等于各个
r
P
电荷单独存在时在该点产生
的场强的矢量和,这叫做电
Q
r
P
场的叠加原理。
电场的叠加
电场强度的叠加
叠加原则
平行四边形法则
创新微课
电场的叠加
- 4Q +9Q
-5 -3 -1 1
电场的叠加
小结
等效方法
Q rP QrP
电场叠加
原则 定义
创新微课
同学,下节再见
等大反向
创新微课
电场的叠加
创新微课
例题.在真空中有两个点电荷Q1=+3.0×10-8C和Q2=-3.0×10-8C, 它们相距0.1m,求电场中A点的场强.(A点与两个点电荷的距离 相等,r=0.1m)
E+ A
+Q1
EA=2.7×104N/C −Q2
电场的叠加
创新微课
练习. 如图,在x轴上的x = -1和x =1两点分别固定电荷量为- 4Q 和 +9Q 的点电荷。求:x轴上合场强为零的点的坐标。并求在x = -3点 处的合场强方向。

2024届高考复习 专题20 电场力的性质(原卷版)

2024届高考复习 专题20   电场力的性质(原卷版)

专题20 电场力的性质目录题型一 库仑定律与带电体平衡 (1)类型1 库仑力的叠加 .............................................................................................................. 1 类型2 库仑力作用下的平衡 .................................................................................................. 2 题型二 电场强度的理解和计算 ..................................................................................................... 4 题型三 等量同种和异种点电荷周围电场强度的比较 ................................................................. 6 题型四 电场强度的叠加 .. (8)类型1 点电荷电场强度的叠加 .............................................................................................. 9 类型2 非点电荷电场强度的叠加及计算 ............................................................................ 10 题型五 静电场中的动力学分析 (13)题型一 库仑定律与带电体平衡1.库仑定律适用于真空中静止点电荷间的相互作用。

2.对于两个均匀带电绝缘球体,可将其视为电荷集中在球心的点电荷,r 为球心间的距离。

3.对于两个带电金属球,要考虑表面电荷的重新分布,如图2所示。

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种求法.公式法1.E F q是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。

2. E k r Q2 是真空中点电荷电场强度的决定r式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。

3.E U d是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。

二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。

例:如图,带电量为+q 的点电荷与均匀带电。

例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大b a + ddd 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L垂直AB 把半球壳一分为二,L与AB 相交于M 点,对称轴AB上的N 点和M 点关于O点对称。

已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为k q r。

假设左侧部分在M 点的电场强度为E1,电势为 1 ;右侧部分在M 点的电场强度为E2,电势为 2 ;整个半球壳在M 点的电场强度为E3,在N 点的电场强度为E4,下列说法中正确的是()A.若左右两部分的表面积相等,有E1> E2,1 > 2B.若左右两部分的表面积相等,有E1<E2, 1 < 2C.只有左右两部分的表面积相等,才有E1>E2,E3=E4D.不论左右两部分的表面积是否相等,总有E1> E2,E3=E4答案:D例:ab 是长为L 的均匀带电细杆,P1、P2 是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1 处的场强大小为E1,在P2 处的场强大小为E2。

静电力叠加原理

静电力叠加原理

静电力叠加原理的重要性
准确描述电场分布
推广到其他领域
通过静电力叠加原理,可以准确计算出多个 点电荷或电荷分布在不同位置的电场强度和 方向,从而描述出整个空间的电场分布。
静电力叠加原理不仅适用于静电学,还 可以推广到其他领域,如电磁学、力学 等,为解决类似问题提供思路和方法。
解决复杂问题
对于复杂的静电场问题,如多个点电荷的相 互作用、电荷分布在非均匀介质中的电场等 ,静电力叠加原理提供了一种有效的解决方 法。
连续分布电荷电势叠加
对于连续分布的电荷,其电势也可以通过积分运算进行叠加,即将各个微小电 荷元在该点产生的电势进行代数积分。
叠加原理在复杂电场问题求解中应用
求解多个电荷共同作用下的电场
在复杂电场问题中,往往存在多个电荷共同作用的情况。此时,可以利用叠加原理将复杂 问题简化为多个单一电荷作用的问题进行求解。
的叠加方法进行计算。
实际应用案例分析
01
案例一
电偶极子静电力叠加。电偶极子由两个等量异号点电荷组成,通过计算
两个点电荷之间的静电力和它们对外部点的静电力,可以了解电偶极子
的电场分布和叠加效果。
02
案例二
均匀带电球体静电力叠加。均匀带电球体是一种常见的连续分布电荷系
统,通过计算球体内部和外部点的静电力,可以了解均匀带电球体的电
静电力大小与方向
静电力大小与带电体所带电荷量 成正比,与它们之间的距离平方
成反比。
静电力方向沿着带电体之间的连 线,同种电荷相互排斥,异种电
荷相互吸引。
静电力的大小和方向可以通过库 仑定律进行定量计算。
03
静电力叠加原理详述
叠加原理基本概念
叠加原理是一种线性系统的基本性质 ,适用于电场、磁场等物理场。

高中物理每日一点十题之电场强度 的叠加

高中物理每日一点十题之电场强度 的叠加

高中物理每日一点十题之电场强度的叠加一知识点1.电场强度叠加原理在几个点电荷共同形成的电场中,电场中任意一点的总电场强度等于各个点电荷在该点各自产生的电场强度的矢量和.这就是场强叠加原理.2.注意(1)独立性——各个场源电荷产生的电场互不干扰.(2)叠加原理——只有同时作用在同一区域内的电场才可以进行叠加.电场强度叠加遵循平行四边形定则.3.一个半径为R的均匀带电球体(或球壳)在外部产生的电场,与一个位于球心的、电荷量相等的点电荷产生的电场相同.十道练习题(含答案)一、单选题(共10小题)1. 如图,xOy平面直角坐标系所在空间有沿x轴负方向的匀强电场(图中未画出),电场强度大小为E.坐标系上的A、B、C三点构成边长为L的等边三角形.若将两电荷量相等的正点电荷分别固定在A、B两点时,C点处的电场强度恰好为零.则A处的点电荷在C点产生的电场强度大小为( )A. EB. EC. ED. E2. 如图,真空中a、b、c、d四点共线且等距.先在a点固定一点电荷+Q,测得b点场强大小为E.若再将另一等量异种点电荷-Q放在d点,则( )A. b点场强大小为EB. c点场强大小为EC. b点场强方向向左D. c点场强方向向左3. 如图所示,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=60°.电荷量相等、电性相反的两个点电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N 点处的点电荷移至P点,此时O点的场强大小为E2,则E1与E2之比为( )A. 1∶2B. 2∶1C. 2∶D. 4∶4. 如图所示,A、B、C三点的连线构成一个等腰直角三角形,∠A是直角.在B点放置一个电荷量为+Q的点电荷,测得A点的电场强度大小为E.若保留B点的电荷,再在C点放置一个电荷量为-Q 的点电荷,则A点的电场强度大小等于( )A. 0B. EC. ED. 2E5. 如图所示,以O为圆心的圆周上有六个等分点a、b、c、d、e、f.等量正、负点电荷分别放置在a、d两处时,在圆心O处产生的电场强度大小为E.现改变a处点电荷的位置,关于O点的电场强度变化,下列叙述正确的是( )B. 移至b处,O处的电场强度大小减半,方向沿OdC. 移至e处,O处的电场强度大小减半,方向沿OcD. 移至f处,O处的电场强度大小不变,方向沿Oe6. 如图所示,a、b、c、d四个点在一条直线上,a和b、b和c、c和d间的距离均为R,在a点处固定一电荷量为Q的正点电荷,在d点处固定另一个电荷量未知的点电荷,除此之处无其他电荷,已知b点处的场强为零,则c点处场强的大小为(k为静止力常量)( )A. 0B. kC. kD. k7. 如图所示,A、B、C是直角三角形的三个顶点,∠A=90°,∠B=30°.在A、B两点分别放置两个点电荷q A、q B,测得C点的电场强度E c方向与AB平行.下列说法正确的是( )A. 点电荷q A、q B的电性可能都为正B. 点电荷q A、q B的电荷量大小之比是1∶2C. 点电荷q A、q B的电荷量大小之比是1∶4D. 点电荷q A、q B的电荷量大小之比是1∶88. 如图所示,直角三角形ABC的∠A=37°,∠B=90°,在A、B两点各放一个点电荷,则C点的电场强度大小为E,方向与AC垂直指向右下,sin 37°=0.6,cos 37°=0.8,则( )A. A、B两点处点电荷都带正电B. A点处点电荷带负电,B点处点电荷带正电C. A、B两点处点电荷的带电量之比为5∶3D. A、B两点处点电荷的带电量之比为4∶39. 如图所示,a、b、c、d分别是一个菱形(竖直放置)的四个顶点,∠abc=120°,O点为菱形对角线的交点,现将三个电荷量均为+Q的点电荷分别固定在a、b、c三个顶点上,下列说法正确的是( )A. d点电场强度的方向由O指向dB. O点电场强度的方向由d指向OC. d点的电场强度大于O点的电场强度D. d点的电场强度等于O点的电场强度10. 如图,真空中有三个电荷量相等的点电荷A、B、C,它们固定在等边三角形的三个顶点上,A、B 带正电,C带负电,三角形的中心O处的电场强度大小为E.当把点电荷C移至AB连线的中点D时,中心O处的电场强度大小为( )A. B. C. D.1. 【答案】B【解析】C点三个电场方向如图所示,根据题意可知E1cos 30°+E2cos 30°=E,又知道E1=E2,故解得E2=E,B正确.2. 【答案】B【解析】设ab=bc=cd=L,+Q在b点产生的场强大小为E,方向水平向右,由点电荷的场强公式得:E=k,-Q在b点产生的场强大小为E1=k=E,方向水平向右,所以b点的场强大小为E b=E+E=E,方向水平向右,故A、C错误;根据对称性可知,c点与b点的场强大小相等,为E,方向水平向右,故B正确,D错误.3. 【答案】B【解析】依题意,两点电荷在O点产生的场强大小均为,当N点处的点电荷移至P点时,O点场强如图所示,则合场强大小E2=,故=,选项B正确.4. 【答案】C【解析】正电荷Q在A点产生的电场强度为E,沿BA方向,负电荷Q在A点产生的电场强度也为E,方向沿AC方向,根据电场强度的叠加原理可知E合==E,故C正确,A、B、D错误.5. 【答案】C【解析】由题意可得,正、负点电荷在O处产生的电场强度的大小都为,方向沿Od;当a处点电荷移至c处时,两点电荷在O处的电场强度方向的夹角为120°,合电场强度大小为,方向沿Oe,选项A错;同理,当a处点电荷移至b处时,O处的合电场强度大小为,方向沿Oe与Od的角平分线斜向上,选项B错;同理,当a处点电荷移至e处时,O处的合电场强度大小为,方向沿Oc,选项C对;同理,当a处点电荷移至f处时,O处的合场强大小为,方向沿Oc与Od的角平分线斜向下,选项D错.6. 【答案】B【解析】据题可知,点处的场强为零,说明点处和点处的两个点电荷在点处产生的场强大小相等、方向相反,则有:k=k,得Q′=4Q,电性与Q相同.则Q在c点处产生的场强大小E1=k=k,方向向右,Q′在c点处产生的场强大小E2=k=k,方向向左,故c点处场强的大小为E=E2-E1=k,B正确.7. 【答案】D【解析】放在A点和B点的点电荷在C处产生的电场强度方向分别在AC和BC的连线上,因C点电场强度方向与BA方向平行,放在A点的点电荷和放在B点的点电荷产生的电场强度方向只能如图所示,q A带负电,q B带正电,且E B=2E A,即=2,又由几何关系知:=2,所以q A∶q B=1∶8,故D正确,A、B、C错误.8. 【答案】C【解析】由于A点点电荷在C点产生的场强与AC平行,因此B点点电荷在C点的场强沿AC方向的分量与A点点电荷在C点的场强等大反向,因此场强E是B点点电荷在C点场强的分量,由此可以判断B点点电荷带负电,A点点电荷带正电,A、B项错误;设AC间的距离为r,则BC间的距离为0.6r,由k=k sin 37°,解得q A∶q B=5∶3,C项正确,D项错误.9. 【答案】A【解析】a、c两点的点电荷在d点叠加的电场强度的方向由O指向d,b点的点电荷在d点的电场强度的方向也由O指向d,所以d点电场强度的方向由O指向d,选项A正确;同理,O点电场强度的方向由O指向d,选项B错误;设菱形的边长为L,a点的点电荷在d点产生的电场场强在竖直方向的分量为E0y=,由对称性及电场叠加原理知,d点的电场强度E d=2×+=,同理得O 点的场强为E O==,所以E d<E O,选项C、D错误.10. 【答案】D【解析】设等边三角形的边长为L,由题意可知E=2k=2k=,当把点电荷C移至AB连线的中点D时,中心O处的电场强度E′=k-k=-==E,故选D.。

静电场教案讲义

静电场教案讲义

静电场一、静电现象与产生1.静电产生(1)使物体带电的三种方式微观解释①摩擦起电:通过两种不同的物体相互摩擦是物体带电得失电子②接触带电:通过与带电导体接触时物体带电方式电荷转移③感应起电:通过静电感应使物体带电的方式电荷间相互作用(2)带电体的电性①丝绸摩擦过的玻璃棒带正电②毛皮摩擦过的橡胶棒带负电(3)三种起电方式比较2.电荷守恒定律①内容:电荷既不能创造也不能消失,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中电荷总量保持不变。

②理解:a.电荷守恒定律是自然界最基本的定律之一b.两物体之间或物体各部分之间转移的是电子c.起电过程的实质是物体中正、负电荷的分离和转移的过程,电荷发生转移或分离后由于剩余的正负电荷的代数和不为零,从而对外显电性,那种电荷量多,显哪种电性d.电荷中和,实质是等量的正电荷和负电荷代数和为零从而不显电性,而不是电荷消失 3.几个小球电量分配问题①两个完全相同的带电金属球接触后再分开,电荷量Q A ’’=Q B ’= 2Q Q BA ,代入电荷量数值时将电性符号一起带入进行代数运算②三个完全相同的带电金属球接触后在分开,先用公式计算两个,结果再和第三个小球用公式计算 二、静电力、库仑定律 1.静电力与点电荷模型(1)静电力:静止的带电体之间的相互作用(2)点电荷:把本身的大小比相互之间的距离小得多的带电体称为点电荷 ①理解a.点电荷是物理模型,只有电荷量,没有大小和形状的理想化模型,类比质点b.把带电体看成点电荷的条件:带电体间的距离比它们自身大小大得多;c.点电荷只具有相对意义,一个物体能否看成是点电荷要看其具体问题,不能凭带电体自身的大小和形状 2.库仑定律(1)内容:真空中两个点电荷之间的相互作用力F 的大小,跟它们的电荷量Q 的乘积成正比,跟他们的距离r 的平方成反比,作用力的方向沿着它们的连线。

(2)表达式:F=221r q q k(3)使用条件①真空中②点电荷(4)解释:K 为静电力常量 k=9.0×109N ·m 2/C 2 由于只计算静电力大小所以q 取正值 方向根据同性相吸异性相斥的原理判断(5)静电力的叠加原理:对于两个以上的点电荷,其中每一个点电荷受到的库仑力的大小,都等于其他点电荷分别单独存在时对该点电荷作用力的矢量和例如:下面有三个完全相同的金属球ABC ,A 球带+q 的电量,B 球带-q 的电量,C 球带+q的电量,如图所示分布在一个等边三角形的三个顶点上,求C 求受到的静电力 F1为AC 之间的静电力,F2为BC原理,金属球C 受到的力就是F1和F2形得到C 受到的合力F(6)几个带电小球求静电力的问题根据静电力叠加原理进行计算,如上例题所示,具体步骤为: ①确定研究对象②受力分析③分别列受到的静电力公式④矢量和相加(7)三个点电荷相互作用下平衡时的规律:“三点共线,两同夹一异,两大夹一小,近小远大”满足322131q q q q q q +=3.静电力与万有引力的比较三、电场及其描述 1.电场(1)电场:电荷周围存在场,电荷的相互作用不可能超越距离,是通过场传递的,这种场称为电场,ABF电场是一种客观存在,是物质存在的一种形式。

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种计算方法公式法 1.qFE =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。

2.2r k QE =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。

3.dUE =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。

二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。

例:如图,带电量为+q 的点电荷与平均带电。

例:如图,带电量为+q 的点电荷与平均带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大?例:一平均带负电的半球壳,球心为OL 垂直AB 把半球壳一分为二,L 与AB 相交于N 点和M 点关于O 点电荷q 在距离其为r 处的电势为rqk =ϕ。

假设左侧部分在M 点的电场强度为E1,电势为1ϕ;右侧部分在M 点的电场强度为E2,电势为2ϕ;整个半球壳在M 点的电场强度为E3,在N 点的电场强度为E4,下列说法中正确的是( )A .若左右两部分的表面积相等,有E1>E2,1ϕ>2ϕB .若左右两部分的表面积相等,有E1<E2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E1>E2,E3=E4D .不论左右两部分的表面积是否相等,总有E1>E2,E3=E4答案:D例:ab 是长为L 的平均带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E1,在P2处的场强大小为E2。

则以下说法正确的是( )A .两处的电场方向相同,E1>E2B .两处的电场方向相反,E1>E2C .两处的电场方向相同,E1<E2D .两处的电场方向相反,E1<E2 三.等效替代法例:平均带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场,如图,在半球面A 、B 上平均分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM=ON=2R ,已知M 点的场强大小为E ,则N 点场强大小为( )A .E R -22kqB .24kq RC .E R -24kqD .E R+24kq答案:A例:【2021安徽20】如图所示,xOy 平面是无穷大导体的表面,该导体充满0z <的空间,0z >的空间为真空。

3电场强度叠加

3电场强度叠加

电场强度的叠加考情分析一,知识导图二,重点知识透析电场强度是描述电场力的性质的物理量,是电场中最基本、最重要的概念之一,高中阶段的学习对整个电场部分起了辅垫作用,而在高考中也是考试的热点。

求解电场强度的基本方法有:1 定义法E=F/q,2 真空中点电荷场强公式法E=KQ/r2,3 匀强电场公式法E=U/d,4 若空间某位置的电场强度是由几个点电荷共同产生时,则该点的电场强度可认为等于每个点电荷单独存在时所激发的电场强度的矢量和。

矢量叠加法E=E1+E2+E3……等。

但对于某些电场强度计算,必须采用特殊的思想方法。

三典例分析一、叠加条件的理解如图所示,一导体球A带有正电荷,当只有它存在时,它在空间P点产生的电场强度的大小为E A,在A球球心与P点连线上有一带负电的点电荷B,当只有它存在时,它在空间P点产生的电场强度大小为E B,当A、B同时存在时,P点的场强大小应为A.E B B.E A+E B C.E A-E B D.以上说法都不对讲析因为导体球A不能视为点电荷,即引入电荷B后,导体球的电荷分布发生了变化,所以P点的电场强度无法确定,正确答案为D。

二利用叠加式E=E1+E2+…(矢量合成)求场强E2如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b 点处的场强为零,则d点处场强的大小为(k为静电力常量)( )A.k B.k C.k D.k[解析] 考查真空中点电荷的场强公式及场强的叠加.由题意,b点处的场强为零说明点电荷q和圆盘在b点产生的场强等大反向,即圆盘在距离为R的b点产生的场强为E Q=,故圆盘在距离为R的d 点产生的场强也为E Q=,点电荷q在d点产生的场强E q=,方向与圆盘在d点产生的场强方向相同,d点的合场强为二者之和,即E合=+=,B正确.3图中a、b是两个点电荷,它们的电量分别为Q1、Q2,MN是ab连线的中垂线,P是中垂线上,电荷连线上方的一点。

电势以及叠加原理

电势以及叠加原理

第六讲电势
内容:§9-6
1.电势和电势差
2.电势叠加原理
3.电势的计算
要求:
1.掌握电势叠加原理;
2.掌握电势的两种计算方法。

重点与难点:
3.电势的计算方法。

作业:
习题:P39:21,22
意大利物理学家。

伏打在物理学方面做出了许多重要贡献,他发明过起电盘,发明过验电器、储电器等多种静电实验仪器。

伏打最显赫的功绩是发明了伏打电池。

伏打电池的出现对电学的发展却产生的深远的影响,开创了一个新的广阔天地,成为人类征服自然的最有力的武
伽伐尼在1786年和1792年在实验中观察到用铜钩挂起来的蛙腿在碰到铁架时会发生痉挛。

他认为这是生物电产生的效果。

伏打认为上述现象的产生是由于两种不同金属接触时所产生的电效应。

两种观点曾引起了十年之久的争论。

3.电势差
在静电场中,任意两点-=V U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q = ∫ ρdV = ∫ 4πAr 3 d r = πAr 4
V 0
r
(r≤R)
以该球面为高斯面,按高斯定理有 得到
E1 = Ar 2 / (4ε 0 ) , (r≤R)
E1 ⋅ 4 πr 2 = πAr 4 / ε 0
方向沿径向,A>0 时向外, A<0 时向里. 在球体外作一半径为 r 的同心高斯球面,按高斯定理有 E 2 ⋅ 4πr 2 = πAR 4 / ε 0 得到
一 选择题 ( 共27分)
1. (本题 3分)(1056)
(D)
2. (本题 3分)(1252)
(B)
3. (本题 3分)(1584)
(C)
4. (本题 3分)(1047)
(B)
5. (本题 3分)(5085)
(C)
6. (本题 3分)(1085)
(D)
7. (本题 3分)(1359)
(D)
8. (本题 3分)(1099)
2分 2分
(1) 导线表面处 (2) 圆筒内表面处
E1 =
U 12 =2.54 ×106 V/m R1 ln (R 2 / R1 ) U12 E2 = =1.70×104 V/m R2 ln(R2 / R1 )
2分 2分
20. (本题 5分)(1652)
解:(1) 令无限远处电势为零,则带电荷为 q 的导体球,其电势为 q U= 4πε 0 R 将 dq 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电 q d A = dW = dq 势能 3分 4πε 0 R (2) 带电球体的电荷从零增加到 Q 的过程中,外力作功为 Q qdq Q2 A = ∫d A = ∫ = 4πε 0 R 8πε 0 R 0
E 2 = AR 4 / 4ε 0 r 2 ,
3分
(
)
(r > R) 2分
方向沿径向,A>0 时向外,A<0 时向里.
18. (本题10分)(1653)
解:(1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,即 1 q1 q2 1 4πr12σ 4πr22σ U0 = + = − 4πε 0 r2 r1 r2 4πε 0 r1
3分
从上向下 mg / ( Ne )
13. (本题 4分)(1145)
1分 2分 2分 2分 2分 1分 2分 2分 2分
第 1 页
-q -q
14. (本题 5分)(1206)
εr
1
εr
15. (本题 4分)(1511)
2 Fd / C 2 FdC
16. (本题 3分)(5681)
3.36×10 V/m 参考解:
we = 1 1 DE = ε 0 ε r E 2 2 2 2we 11 =3.36×10 V/m E=
11
3分
ε 0ε r
三 计算题 ( 共38分)
17. (本题 8分)(1373)
解:在球内取半径为 r、厚为 dr 的薄球壳,该壳内所包含的电荷为 d q = ρ d V = Ar ⋅ 4πr 2 d r 在半径为 r 的球面内包含的总电荷为
21. (本题 5分)(5,故电场中各点的电位移矢量 D 保持不变, w 1 1 1 1 又 w = DE = D2 = D02 = 0 2 2ε 0 ε r ε r 2ε 0 εr 因为介质均匀,∴电场总能量 W = W0 / ε r
四 回答问题 ( 共10分)
σ (r1 + r2 ) ε0 U ε 2 9 σ = 0 0 =8.85×10- C / m r1 + r2
=
3分 2分
(2) 设外球面上放电后电荷面密度为 σ ′ ,则应有 1 ′= (σ r1 + σ ′ r2 ) = 0 U0
ε0

σ′ = −
r1 σ r2
2分
外球面上应变成带负电,共应放掉电荷 r1 q′ = 4πr22 (σ − σ ′) = 4πr22σ 1 + r 2 9 = 4πσr2 (r1 + r2 ) = 4πε 0U 0 r2 =6.67×10- C
(C)
9. (本题 3分)(1341)
(B)
二 填空题 ( 共25分)
10. (本题 3分)(5086)
若电场由几个点电荷共同产生,则电场中任意一点处的总场强等于各个点电 荷单独存在时在该点各自产生的场强的矢量和. 3分
11. (本题 3分)(1279)
q1q2 4πε 0 r
12. (本题 3分)(2791)

4 页
3分 2分
22. (本题 5分)(1015)
答:1. (1)、(2) 两式中的 q 意义不同.(1) 式中的 q 是置于静电场中受到电场力 2分 作用的试验电荷;(2)中的 q 是产生电场的场源电荷. 2. 式(1)是场强的定义式,普遍适用; 式 (2)适用于真空中点电荷的电场(或均匀带电球面外或均匀带电球体外 的电场); v 式 (3)仅适用于均匀电场,且 A 点和 B 点的连线与场强 E 平行.而 l = AB . 3分
3分

2 页
19. (本题10分)(1501)
解:设导线上的电荷线密度为λ,与导线同轴作单位长度的、半径为 r 的(导线半 径 R1<r<圆筒半径 R2)高斯圆柱面,则按高斯定理有 2πrE =λ / ε0 E = λ / (2πε0r) (R1<r<R2 ) 得到 方向沿半径指向圆筒.导线与圆筒之间的电势差 R2 v R λ λ R2 d r v = ln 2 U 12 = ∫ E ⋅ d r = ∫ R1 R 2 πε 0 1 r 2πε 0 R1 U 12 E= 则 rln (R2 / R1 ) 代入数值,则: 2分

3 页
23. (本题 5分)(0585)
答:在 c 点,由于 q 受力沿中垂线向下,且初速为零,所以 q 沿力的方向向下作 加速运动.当 q 运动到 O 点时,受力为零,但由于速度不为零,故 q 通过 O 点继 续向下运动.过 O 点后,力的方向与运动方向相反,q 的速度愈来愈小,到-x 处速度为零,在力的作用下又向上运动.过 O 点又作减速运动,至 c 点速度又变 为零,然后再向下运动,……如此反复,形成以 O 为中心沿中垂线的周期性振 动. 5分
相关文档
最新文档