第二章 整式单元测试

合集下载

人教版七年级上册数学第二章整式单元测试卷(含知识点)

人教版七年级上册数学第二章整式单元测试卷(含知识点)

人教版七年级上册数学第二章整式单元测试卷(含知识点)1、单项式-3x²减去单项式-4x²y,-5x²,2x²y的和,列算式为,化简后的结果是-3x²+4x²y+5x²-2x²y=2x²+2x²y。

2、当x=-2时,代数式-x²+2x-1=9,x²-2x+1=9.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x²+mx+n。

4、已知:x+1/11=1,则代数式(x+1/11)2010+x-5的值是2/11.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入0.5b-0.4a元。

6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。

7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。

8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x²+3x+7的值为10,则多项式6x²+9x-7的值为28.10、若(m+2)2x³yn-2是关于x,y的六次单项式,则m≠0,n=3.11、已知a²+2ab=-8,b²+2ab=14,则a²+4ab+b²=6,a²-b²=-22.12、多项式3x²-2x-7x³+1是次项式-7x³,最高次项是x³,常数项是1.13、下列等式中正确的是D、2x-5=-(2x-5)。

14、下面的叙述错误的是B、a+2b²的意义是a与b²的2倍的和。

15、7x³y²+x²y³-3xy²的次数是5.16、-(a-b+c)变形后的结果是-B、-a+b-c。

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)一、单选题(每题3分,共24分) 1.下列代数式书写规范的是( )A .22x yB .2m n ÷C . 5a ⨯D .213a 2.多项式22325xy xy -+的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .3,33.若单项式242ab c -3的系数、次数分别是m 、n ,则( ) A .m=23,n=6 B .-m=23,n=6 C .m=23,n=7 D .-m=23,n=7 4.下列说法中,不正确...的是( ) A .13xy - 是整式 B .22+R R ππ是二次二项式C .多项式233a b ab --的三次项的系数为3- D .263+1x x -的项有 26 3 1x x -,, 5.若2110x +=,则42x +=( )A .19B .20C .21D .226.已知25x y -+=,则23(2)6125x y x y --+-的值是( )A .40B .100C .20-D .57.若12m x y -与2n x y 的和仍是单项式,则m n 的值( )A .3B .6C .8D .98.当1x =时,代数式334ax bx -+的值为7,则当=1x -时,这个式子的值为( )A .7B .6C .2D .1二、填空题(每题3分,共24分) 9.单项式235x yz π-的系数是 10.已知320a b -++=,则2+a b = .11.一个两位数的个位数字为m ,十位数字为n ,则这两位数表示为 .12.多项式25323ab a π+-的次数是 .三、解答题(共72分)17.化简:(1)3245a a +--;(2)()()22235x x +--;(3)()()22643241m m m m --+-+.18.先化简,再求值:()()22222825a b ab a b ab a b -+----,其中1a =-和13b =.19.有理数a ,b ,c 在数轴上的位置如图,化简a c a b c b -++--.20.若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m n +的值.21.如果关于x ,y 的单项式2m ax y 与235m bx y -的次数相同.(1)求m 的值.(2)若23250m m ax y bx y +=﹣且0xy ≠,求20132(25)m a b ++的值.22.已知22321A a ab a =+--和21B a ab =-+-.(1)若1a =-,15b =求()432A A B --的值. (2)若2A B +的值与a 的取值无关,求b 的值.23.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是x 米的小路,余下部分设计成花圃进行美化,并用篱笆把不靠墙的三边围起来.(1)用代数式表示所用篱笆的总长度;(2)6,3a x ==米,若篱笆的造价为60元/米,请计算全部篱笆的造价.24.如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.x 时,试计算该住宅的面积.(2)当6参考答案: 1.A2.A3.D4.C5.B6.B7.C8.D9.35π-10.1-11.10n m +/10m n + 12.3/三13.23x - -114.202315.()21826m y x ++ 16.1017.(1)3a --(2)231x +(3)2882m m --18.218ab -,2 19.2a -20.421.(1)3m =(2)022.(1)2-(2)25b =23.(1)()662a x --米;(2)篱全部篱笆的造价是960元24.(1)()22218m x x ++(2)266m。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。

七年级数学上册《第二章-整式的加减》单元测试卷附答案-人教版

七年级数学上册《第二章-整式的加减》单元测试卷附答案-人教版

七年级数学上册《第二章整式的加减》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1. 多项式x2−2xy3−12y−1是( )A. 三次四项式B. 三次三项式C. 四次四项式D. 四次三项式2. 代数式x2+2,1a +4,3ab27,abc,5,1π,−x中,整式的个数是( )A. 7B. 6C. 5D. 43. 若13桶油漆可以刷2m2的墙,则a桶油漆可以刷m2的墙.( )A. 13a B. 2a C. 23a D. 6a4. 下列说法正确的是( )A. 3πx4的系数是34B. x3y+x2−1是三次三项式C. x2−2x−1的常数项是1D. 1−x2是多项式5. 若3a2b n−1与−12a m+1b2的是同类项,则m n的值为.( )A. 3B. 2C. 1D. 06. 若关于x,y的单项式3x a y4和x3y b可以合并成一项,则a−b的值为( )A. 1B. −1C. 2D. −27. 探索规律:观察下面的一列单项式:x、−2x2、4x3、−8x4、16x5、…根据其中的规律得出的第8个单项式是( )A. −64x8B. 64x8C. 128x8D. −128x88. 某校举办的知识竞赛,共10道题,规定答对一道题加x分,答错一道题(不答按错)扣(x−2)分,小明答错了2道题,他得到的分数是( )A. 6x+4B. 6x−4C. 8x+4D. 8x−49. 鸿星尔克某件商品的成本价为a元,按成本价提高10%后标价,又以八折销售,这件商品的售价( )A. 比成本价低了0.12a元B. 比成本价低了0.08a元C. 比成本价高了0.1a元D. 与成本价相同10. 把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1−C 2=( )A. 10cmB. 20cmC. 30cmD. 40cm二、填空题11. 单项式3x 2y 5的次数是______ .12. 若m 2−n 2=24,且m −n =3,则m +n = ______ .13. 如图是一组有规律的图案,第1个图案中有6个涂有阴影的小矩形,第2个图案中有10个涂有阴影的小矩形,第3个图案中有14个涂有阴影的小矩形……按此规律,第n 个图案中涂有阴影的小矩形的个数为______ .(用含n 的代数式表示)14. 按照如图所示的流程图,若输出的M =−1,则输入的m = ______ .15. 已知方程组{x +y =73x −5y =−3,则4(x +y)−2(3x −5y)的值是______ .16. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为1~10时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、千、癸——表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则庚烷分子结构式中“H ”的个数是______ .17. 国家规定初中每班的标准人数为a人,某中学七年级共有六个班,各班人数情况如下表:班级七(1)班七(2)班七(3)班七(4)班七(5)班七(6)班与每班标准人数的差值/人+5+3−5+40−2用含a的式子表示该中学七年级学生总人数为________人.18. 如图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口A,B,C的机动车辆数如图所示,图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则x1,x2,x3的大小关系是.(用“>”、“<”或“=”连接)19. 若a、b、c、d是正整数,且a+b=22,a+c=26,a+d=28则a+b+c+d的最小值为______ .20. 如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m−n=.三、解答题21. 有一个整数x,它同时满足以下的条件:①小于π;②大于−434;③在数轴上,与表示−1的点的距离不大于3.(1)将满足的整数x代入代数式−2(x+1)2+7,求出相应的值;(2)观察上题的计算结果,你有什么发现?将你的发现写出来.22. 已知:A=2a2+3ab−2a−1,B=−a2+ab−1(1)求A+2B的值;(2)若A+2B的值与a的取值无关,求b的值.23. 规定:对于确定位置的三个数:a,b,c计算a−b,a−c2,b−c3将这三个数的最小值称为a,b,c的“白马数”,例如,对于1,−2,3因为1−(−2)=3,1−32=−1,−2−33=−53所以1,−2,3的“白马数”为−53.(1)−2,−4,1的“白马数”为______ ;(2)调整“−2,−4,1”这三个数的位置,得到不同的“白马数”,那么这些不同“白马数”中的最大值是______ ;(3)调整−1,6,x这三个数的位置,得到不同的“白马数”,若其中的一个“白马数”为2,求x的值.24. 已知有理数a、b、c在数轴上的位置如图所示(1)用“>”或“<”填空:c______0,|a|______|c|;(2)若m=|a+b|−|b−1|−|a−c|,试化简等式的右边;(3)在(2)的条件下,求|b|b +|a|a+|c|c−2017⋅(m+c)2017的值.25. 对于代数式,不同的表达形式能表现出它不同的性质.若代数式A=x2+4x+3,代数式B=(x−1)2+4(x−1)+3.改变x的值,代数式A,B有不同的取值,如下表:x−101234 A=x2+4x+3038152435B=(x−1)2+4(x−1)+3−10381524观察表格发现:当x=m时A=x2+4x+3=n,当x=m+1时B=(x−1)2+4(x−1)+3=n.我们把这种现象称为代数式B参照代数式A取值延后,相应的延后值为1.(1)若代数式D参照代数式A取值延后,相应的延后值为2.求代数式D;(2)若代数式x2−2x参照代数式A的取值延后,求相应的延后值;(3)若代数式4x2−3x+b参照代数式ax2−6x+c取值延后,求b−c的值.参考答案1、C2、C3、D4、D5、C6、B7、D8、A9、A10、D 11、312、813、4n+214、−5或215、3416、1617、(6a+5)18、x3>x1>x219、3420、1721、(1)由题意得,满足的整数x为:−4,−3,−2,−1,0,1,2当x=−4时,原式=−11.当x=−3时,原式=−1.当x=−2时,原式=5.当x=−1时,原式=7.当x=0时,原式=5.当x=1时,原式=−1.当x=2时,原式=−11.(2)发现:当x=−1时,代数式有最大值,x距离−1越远,代数式的值越小.22、解:(1)原式=A+2B=2a2+3ab−2a−1+2(−a2+ab−1)=2a2+3ab−2a−1−2a2+2ab−2=5ab−2a−3 (2)若A+2B的值与a的取值无关则5b−2=0解得:b=0.4.23、−532 324、解:(1)>>(2)∵从数轴可知:b<a<−1<0<c<1∴a+b<0,b−1<0,a−c<0∴m=|a+b|−|b−1|−|a−c|=−(a+b)+(b−1)+(a−c)=−a−b+b−1+a−c=−c−1(3)∵从数轴可知:b<a<−1<0<c<1∴|b|b +|a|a+|c|c−2017⋅(m+c)2017=−bb+−aa+cc−2017×(−c−1+c)2017=−1+(−1)+1+2017=2016.25、(1)解:根据题意,D=(x−2)2+4(x−2)+3=x2−1(2)解:设相应的延后值为k,得:(x−k)2+ 4(x−k)+3=x2−2x化简得:x2−2kx+k2+4x−4k+3=x2−2x∴x2−(2k−4)x+k2−4k+3=x2−2x∴2k−4=2,解得k=3当k=3时,k2−4k+3=0∴原式成立∴相应的延后值是3.(3)解:设相应的延后值为m,得:a(x−m)2−6(x−m)+c=4x2−3x+b化简得:ax2−(2am+ 6)x+am2+6m+c=4x2−3x+b∴a=4则上式为:−(8m+6)x+4m2+6m+c=−3x+b∴{8m+6=34m2+6m+c=b∴m=−38∴b−c=4×(−38)2+6×(−38)=−2716.。

人教版七年级数学上册--第二章 整式的加减 单元检测 A卷(含答案)

人教版七年级数学上册--第二章 整式的加减 单元检测 A卷(含答案)

实用文档人教版七年级上第二章整式的加减单元测试A卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A.2a B.-2b C.-2a D.2b下列说法正确的是( )A.23a4的系数是2,次数是7B.若-34x m y2的次数是5,则m=5C.0不是单项式D.若m≠x且x2+mx是单项式,则m=0或x=03.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是()A.-4 B.-2 C.2 D.44.已知12a b+=,则代数式223a b+﹣的值是( )A.2 B.-2 C.-4 D.1 32 -5.已知多项式x2-kxy-3(x2-12xy+y)不含xy项,则k的值为()A.-36 B.36 C.0 D.126.与a﹣b﹣c的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a b>),则-a b的值为()A.6 B.8 C.12 D.98.下列各式正确的是()A .()223232a a b c a a b c --+=--+ B .()222121x x x x --=-+ C .()232232m n a m n a -++-=-++-D .()22624624a k m a k m +-++=-++ 9.下面不是同类项的是( )A .-2与12B .-2a 2b 与a 2bC .2m 与2xD .-y 2x 2与12x 2y 210、已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c二、填空题11.单项式−32πab c 3的系数是_____,次数是_____. 12.在代数式2-12a ,-3xy 3,0,4ab,3x 2-4,7xy ,n 中,单项式有____个 13.把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,排在第三项的是___________.14.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________15.多项式234a b ++的常数项是_____. 16.化简﹣5ab +4ab 的结果是_____.17.已知单项式6x 2y 4与-3a 2b m+2的次数相同,则m 2-2m 的值为_____.18.如图是一个运算程序示意图,不论输入x 的值为多大,输出的y 值总是一个定值(不变的值),则a b +=______. 335()x y x a b x +-−−−→-−−→−−→+−−−→输入输出三、解答题19.化简:(1)a 2﹣3a +8﹣3a 2+4a ﹣6; (2)a +(2a ﹣5b )﹣2(a ﹣2b ).实用文档20.(1)化简:a+2b+3a ﹣2b(2)先化简,再求值:(2m 2﹣3mn+8)﹣(5mn ﹣4m 2+8),其中 m=2,n=1.21.小明准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?22. 已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

七年级数学上册《第二章 整式》单元测试卷-带答案(人教版)

七年级数学上册《第二章 整式》单元测试卷-带答案(人教版)

七年级数学上册《第二章整式》单元测试卷-带答案(人教版)一、选择题1. 在式子5,x=2,a,√ 3,m+n>0,st中,代数式的个数是( )A. 3B. 4C. 5D. 62. 已知m表示一个一位数,n表示一个两位数.若把m放在n的左边,组成一个三位数,则这个三位数可表示为( )A. mnB. m+nC. 10m+nD. 100m+n3. 代数式2(y−2)的正确含义是( )A. 2乘y减2B. 2与y的积减去2C. y与2的差的2倍D. y的2倍减去24. 多项式2a2b−ab2−ab的项数及次数分别是( )A. 3,3B. 3,2C. 2,3D. 25. 若关于x,y的多项式4x2y+7mxy−5y3+6xy化简后不含二次项,则m的值为( )A. −47B. −67C. 0D. 576. 下列代数式中,值总为正数的是( )A. x+1B. |x|C. x2+2D. x37. 代数式3m2−52可表示为( )A. m的3倍的平方减去5除以2B. m的3倍减去5的一半C. m与5的差的3倍除以2D. m的平方的3倍与5的差的一半8. 如图所示的图案均是长度相同的小木棒按一定的规律拼搭而成:第1个图案需7根小木棒,第2个图案需13根小木棒⋯⋯依此规律,第10个图案需小木棒的根数是( )A. 101B. 111C. 133D. 1579. 现定义一种新运算:如:则等于( )A. −9B. −6C. 6D. 910. 按一定规律排列的单项式:x,2x3,4x5,8x7⋯则第n个单项式是( )A. 2n x2n−1B. 2n−1x2n−1C. 2n−1x2n+1D. 2n x2n+1二、填空题11. 单项式−πa2b3的系数是.12. 多项式ab−2a−b中的各项系数和多项式的次数分别是.13. 张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸.若剩余的以每份0.2元的价格退回报社,则张大伯卖报盈利元.14. 若a+2b=8,3a+4b=18,则a+b的值为.15. 将方程2x−3y3=6变形为用含y的式子表示x,那么x=______ .16. 在代数式a3,1x+y,1−x−5xy2,−x,6xy+1,a2−b2中,多项式有个.17. 某种商品原价是m元,第一次降价打“九折”,第二次降价每件又减20元,第二次降价后的售价是元.18. 某化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(t⋅km),铁路运价为1.2元/(t⋅km),且这两次运输共支出公路运费15000元,铁路运费97200元.设购买xt原料,制成yt产品.则从A地到这家化工厂原料运输费是,这批产品的销售款比原料费与运输费的和.多元.19. 将面积分别是9和7的两个三角形按如图所示的方式放置,若图中对应的阴影部分面积分别是m和n,则m−n=.20. 如图,用正方形按如图所示的规律拼图案,图案 ①中有5个正方形,图案 ②中有9个正方形,图案 ③中有13个正方形,图案 ④中有17个正方形,按此规律排列下去,则图案 ⑨中正方形的个数为.三、解答题21. 已知a=8,b=−5,c=−3,求下列代数式的值.(1)a−b−c.(2)a−(c+b).22. 我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220−a).(1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?23. 已知3x2y|m|−(m−1)y+5是关于x,y的三次三项式,求2m2−3m+1的值.24. 根据下列语句列代数式:(1)b的4倍的相反数.3(2)x与y的2倍的和的立方.(3)x减去y的差的平方.(4)x与y的和的倒数.25.如图,有两摞规格相同的数学课本整齐地叠放在讲台上.请根据图中所给的数据信息解答下列问题.(1)每本书的厚度为cm,课桌的高度为cm.(2)若将该规格的x本数学课本在桌面上叠放成一摞,请用含x的式子表示该摞数学课本高出地面的高度.26. 已知m、n是正整数,a、b、c均不为0,若a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,求m、n的值.参考答案1、B2、D3、C4、A5、B6、C7、D8、C9、A10、B11、−π312、1,−2,−1,213、0.3b−0.2a14、515、3y+18216、317、(0.9m−20)18、40000040000019、220、3721、【小题1】16【小题2】1622、【小题1】164次.【小题2】没有危险.23、624、【小题1】−43b.【小题2】(x+2y)3.【小题3】(x−y)2.【小题4】1x+y.25、【小题1】0.5、85【小题2】(85+0.5x)cm26、依题意,可得a m+1b2c的次数为m+1+2+1=m+4,−17ab n+1c2的次数为1+n+1+2=n+4,112a m+3b n c的次数为m+3+n+1=m+n+4因为m、n为正整数,所以m+n+4>m+4,m+n+4>n+4.因为a m+1b2c−17ab n+1c2+112a m+3b n c是八次三项式,所以m+n+4=8,即m+n=4,所以m=1n=3或m=2,n=2或m=3,n=1.。

第二章-整式的加减单元测试题(含答案)

第二章-整式的加减单元测试题(含答案)

第二章 整式的加减单元测试(时间:90分钟,满分120分)一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

第二章 整式的加减单元测试卷(含答案)

第二章 整式的加减单元测试卷(含答案)

第二章 整式的加减单元测试(时间120分钟 总分150分)姓名:__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列代数式中单项式共有( )个.π5,,1,3,5.0,,53232ab c bx ax yx a xy x ++---- A. 2 B. 3 C. 4 D. 5 2、代数式4322++-x x 是( )A. 多项式B. 三次多项式C. 三次三项式D. 四次三项式3、若甲数为x ,乙数为y ,则“甲数与乙数的和除甲数和乙数的差”,写成代数式是( ) A.y x y x -÷+ B.y x y x +÷- C.y x y x -+ D.yx yx +- 4、单项式3432c b a 的系数和次数分别是( )A. 1,9B. 0,9C. 31,9D. 31,24 5、下列计算正确的是( ) A.x 2+x 2=x 4B.x 2+x 3=2x5C.3x-2x=1D.x 2y-2x 2y=-x 2y6、下列各组中,不是同类项的是( )A.12与﹣2B.﹣5a 3b 与2a 3b C.2x 2y 与﹣3xy 2D.2x n y 2与x n y 27、多项式x 2+3kxy ﹣y 2﹣9xy+10中,不含xy 项,则k=( ) A.0 B.2 C.3 D.48、若代数式2x 2+3x +7的值是8,则代数式4x 2+6x +15的值是( ) A .2 B .17 C .3 D .169、有理数m ,n 在数轴上的位置如图1所示,则化简│n │-│m-n │的结果是( ) A .m B .2n-m C .-m D .m-2n图110、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( ) A .710b a +B .107b a +C .710ab + D .107a b +11、一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( ) A .x 2-4xy -2y 2 B .-x 2+4xy +2y 2 C .3x 2-2xy -2y 2 D .3x 2-2xy12、一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( ) A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46二、填空题(共6小题,每小题4分,共24分) 13、 写出235y x -的一个同类项 .14、用代数式表示“a 的平方的6倍与–3的和”为 。

人教版数学七年级上册第二章整式的加减《单元测试》附答案

人教版数学七年级上册第二章整式的加减《单元测试》附答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(20分)1.下列说法中正确的是()A. 单项式的系数是-2,次数是2B. 单项式a的系数是0,次数也是0C. 的系数是1,次数是10D. 单项式的系数是,次数是32.若单项式与是同类项,则m的值为()A. 4B. 2或-2C. 2D. -23.计算(3a2-2a+1)-(2a2+3a-5)的结果是()A. a2-5a+6B. 7a2-5a-4C. a2+a-4D. a2+a+64.当时,代数式的值为()A. B. C. D. 135.如果长方形周长为4a,一边长为a+b,,则另一边长为()A. 3a-bB. 2a-2bC. a-bD. a-3b6.一个两位数,十位数字是a,个位数字是b,则这个两位数为()A. abB. 10a +bC. 10b +aD. a +b7.观察图中给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为( ).A. 3n-2B. 3n-1C. 4n+1D. 4n-38.长方形的一边长为2a+b,另一边比它大a-b,则周长为( )A. 10a+2bB. 5a+bC. 7a+bD. 10a-b9.两个同类项的和是()A. 单项式B. 多项式C. 可能是单项式也可能是多项式D. 以上都不对10.如果A是3次多项式,B也是3次多项式,那么A+B一定是()A. 6次多项式B. 次数不低于3次的多项式C. 3次多项式D. 次数不高于3次的整式二、填空题(32分)11.单项式的系数是___________,次数是___________.12.2a4+a3b2-5a2b3+a-1是____次____项式.它的第三项是__________.把它按a的升幂排列是____________________.13.计算的结果为______________.14.一个三角形的第一条边长为(a+b)cm,第二条边比第一条边的2倍长b cm.则第三条边x的取值范围是__________.15.如图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴____________根.(用含n 的式子表示)……16.观察下列等式9-1=8,16-4=12,25-9=16,36-16=20……这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为______________.17.如图,阴影部分的面积用整式表示为_________.18.若:与的和仍是单项式,则_______19.若与所得的差是单项式,则m= ______n= ______.20.当k=______时,多项式-7kxy++7xy+5y中不含xy项.三、解答题(48分)21.(1)(2)(3)22.先化简再求值(1)9y-{159-[4y-(11x-2y)-10x]+2y},其中x=-3,y=2.(2) ,其中,.23.一个四边形的周长是48厘米,已知第一条边长a厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.24.大客车上原有(3a-b)人,中途下去一半人,又上车若干人,使车上共有乘客(8a-5b)人,问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?25.若多项式-6xy+2x-3y与+bxy+3ax-2by的和不含二次项,求a、b的值。

整式单元测试题(含分析答案)

整式单元测试题(含分析答案)

试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………初中数学第二章整式单元测试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I 卷的文字说明评卷人 得 分一.选择题(共10小题)1.如果单项式2a n b 2c 是六次单项式,那么n=( ) A .6B .5C .4D .32.有下列说法:(1)单项式x 的系数、次数都是0;(2)多项式﹣3x 2+x ﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x 2y 与πr 6都是七次单项式;(4)单项式﹣和﹣πa 2b 的系数分别是﹣4和﹣;(5)是二次单项式;(6)2a +与3π+都是整式,其中正确的说法有( )A .0个B .1个C .3个D .4个 3.下列所列式子错误的是( ) A .x 的3倍与y 的2倍的差:3x ﹣2y B .x 除以2的商与5的和的立方:C .三个数a 、b 、c 的积的10倍再减去10:10abc ﹣10D .x 与y 平方和的倒数:4.某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%,则现在的单价是( )A .(25%x +10)元B .[(1﹣25%)x +10]元C .25%(x +10)元D .(1﹣25%)(x +10)元试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.若A 是五次多项式,B 也是五次多项式,则A +B 的次数是( ) A .十次B .五次C .不高于五次D .不能确定6.在矩形ABCD 内,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD ﹣AB=2时,S 2﹣S 1的值为( )A .2aB .2bC .2a ﹣2bD .﹣2b7.若关于x 、y 的多项式2x 2+mx +5y ﹣2nx 2﹣y +5x +7的值与x 的取值无关,则m +n=( )A .﹣4B .﹣5C .﹣6D .68.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,…,其中第10个式子是( )A .a 10+b 19B .a 10﹣b 19C .a 10﹣b 17D .a 10﹣b 219.若a 2+2ab=﹣10,b 2+2ab=16,则多项式a 2+4ab +b 2与a 2﹣b 2的值分别为( )A .6,26B .﹣6,26C .6,﹣26D .﹣6,﹣2610.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是( ) A .甲>乙 B .甲=乙 C .甲<乙D .不能确定,与桶中原有水的重量有关试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人 得 分二.填空题(共5小题) 11.代数式﹣+4x ﹣3的二次项系数是12.若单项式2a x +1b 与﹣3a 3b y +4是同类项,则x y = . 13.若单项式与﹣2x b y 3的和仍为单项式,则其和为 .14.若多项式A 满足A +(2a 2﹣b 2)=3a 2﹣2b 2,则A= .15.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a |+|c ﹣b |﹣|a +b ﹣c |= .评卷人 得 分三.解答题(共8小题) 16.化简:(1)(2a ﹣b )﹣(2b ﹣3a )﹣2(a ﹣2b )(2)2x 2﹣[7x ﹣(4x ﹣3)﹣x 2]试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………17.化简并求值:3(x 2﹣2xy )﹣[(﹣2xy +y 2)+(x 2﹣2y 2)],其中x 、y 的位置如图所示.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a 2+4ab +4b 2)=a 2﹣4b 2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值19.已知:多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,求: (1)4A ﹣B ;(2)当x=1,y=﹣2时,4A ﹣B 的值.试卷第5页,总6页20.大刚计算“一个整式A 减去2ab ﹣3bc +4ac”时,误把“减去”算成“加上”,得到的结果是2bc +ac ﹣2ab .请你帮他求出正确答案.21.小明在依次测验中计算一个多项式M 加上5ab ﹣3bc +2ac 时,不小心看成减去:5ab ﹣3bc +2ac ,结果计算出错误答案为2ab +6bc ﹣4ac . (1)求多项式M ;(2)试求出原题目的正确答案.22.某天深圳开往北京(西)的列出上原载客(3a ﹣b )人,当车行驶到南昌时,下去了一半客人,又上来了若干人,此时车上共有客人(8a ﹣5b )人,问上车的乘客是多少人?当a=200,b=60时,上车的乘客是多少人?试卷第6页,总6页23.某个体商贩在一次买卖中同时买进两件上衣,每件都以a 元出售,若按成本计算,一件盈利25%,另一件亏本25%,那么该商贩在这次买卖过程中是赚了还是赔本了?赚或赔多少?初中数学第二章整式单元测试题参考答案与试题解析一.选择题(共10小题)1.如果单项式2a n b 2c是六次单项式,那么n=()A.6 B .5 C.4 D.3【分析】直接利用单项式的次数求法得出n的值.【解答】解:∵单项式2a n b2c是六次单项式,∴n+2+1=6,解得:n=3.故选:D.【点评】此题主要考查了单项式,正确把握单项式次数求法是解题关键.2.有下列说法:(1)单项式x的系数、次数都是0;(2)多项式﹣3x2+x﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x2y与πr6都是七次单项式;(4)单项式﹣和﹣πa2b 的系数分别是﹣4和﹣;(5)是二次单项式;(6)2a +与3π+都是整式,其中正确的说法有()A.0个 B.1个 C.3个 D.4个【分析】解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.【解答】解:根据单项式和多项式的概念可知,单项式的系数是字母前的数字,次数是字母的指数和;多项式是若干个单项式的和.故(1),(2),(3)(4)(5)(6)都错.其中(2)多项式﹣3x2+x﹣1不能说多项式的系数,它是2次3项式;(3)单项式﹣34x2y是3次单项式πr6是6次单项式;(4)单项式﹣和﹣πa2b的系数分别是﹣和﹣π;(5)是多项式;(6)2a+是整式,3π+是分式.故选:A.1【点评】主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.3.下列所列式子错误的是()A.x的3倍与y的2倍的差:3x﹣2yB.x除以2的商与5的和的立方:C.三个数a、b、c的积的10倍再减去10:10abc﹣10D.x与y平方和的倒数:【分析】根据题意结合选项分别列出代数式,选出错误的选项即可.【解答】解:A、x的3倍与y的2倍的差:3x﹣2y ,该式正确,故本选项错误;B、x除以2的商与5的和的立方:,该式正确,故本选项错误;C、三个数a、b、c的积的10倍再减去10:10abc﹣10,该式正确,故本选项错误;D、x与y平方和的倒数:,原式错误,故本选项正确;故选:D.【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“和”等,从而明确其中的运算关系,正确地列出代数式.4.某商品的原价为每件x元,后来店主将每件加价10元,再降价25%,则现在的单价是()A.(25%x+10)元B.[(1﹣25%)x+10]元C.25%(x+10)元D.(1﹣25%)(x+10)元【分析】根据某商品原价每件x元,后来店主将每件增加10元,再降价25%,可以求得表示现在的单价代数式,从而可以解答本题.【解答】解:由题意可得,2现在的单价是:(x+10)(1﹣25%),故选:D.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.5.若A是五次多项式,B也是五次多项式,则A+B的次数是()A.十次B.五次C.不高于五次D.不能确定【分析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【解答】解:A是五次多项式,B也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B的次数不高于五次.故选:C.【点评】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.6.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【专题】11:计算题.【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD ﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b (AD﹣AB)=2b.故选:B.3【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.7.若关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,则m+n=()A.﹣4 B.﹣5 C.﹣6 D.6【专题】1:常规题型.【分析】首先利用关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,得出x的二次项、一次项的系数和为0,进而得出答案.【解答】解:2x2+mx+5y﹣2nx2﹣y+5x+7=(2﹣2n)x2+(m+5)x+4y+7,∵关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,∴2﹣2n=0,解得n=1,m+5=0,解得m=﹣5,则m+n=﹣5+1=﹣4.故选:A.【点评】此题主要考查了多项式,正确得出m,n的值是解题关键.8.一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b21【专题】2A:规律型.【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【解答】解:多项式的第一项依次是a,a2,a3,a4,…,a n,第二项依次是b,﹣b3,b5,﹣b7,…,(﹣1)n+1b2n﹣1,所以第10个式子即当n=10时,代入到得到a n+(﹣1)n+1b2n﹣1=a10﹣b19.故选:B.【点评】本题属于找规律的题目,把多项式分成几个单项式的和,分别找出4各单项式的规律是解决这类问题的关键.9.若a2+2ab=﹣10,b2+2ab=16,则多项式a2+4ab+b2与a2﹣b2的值分别为()A.6,26 B.﹣6,26 C.6,﹣26 D.﹣6,﹣26【分析】将多项式合理变形即可,a2+4ab+b2=(a2+2ab)+(b2+2ab);a2﹣b2=(a2+2ab)﹣(b2+2ab).【解答】解:∵a2+2ab=﹣10,b2+2ab=16,∴a2+4ab+b2=(a2+2ab)+(b2+2ab),=﹣10+16,=6;∴a2﹣b2=(a2+2ab)﹣(b2+2ab),=﹣10﹣16,=﹣26.故选:C.【点评】解答本题的关键是合理的将多项式进行变形,与已知相结合.10.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是()A.甲>乙B.甲=乙C.甲<乙D.不能确定,与桶中原有水的重量有关【分析】设甲、乙两个水桶中水的重量是a,甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×,乙桶有水=(1+)a×(1﹣),再比较出其大小即可.【解答】解:设甲、乙两个水桶中水的重量是a,∵甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,∴把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×=a+a=a;乙桶有水=(1+)a×(1﹣)=a,∴甲=乙.故选:B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二.填空题(共5小题)11.代数式﹣+4x﹣3的二次项系数是﹣【专题】1:常规题型.【分析】直接利用多项式中各项系数确定方法分析得出答案.【解答】解:代数式﹣+4x﹣3的二次项系数是:﹣.故答案为:﹣.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.12.若单项式2a x+1b与﹣3a3b y+4是同类项,则x y=.【专题】512:整式.【分析】依据同类项的相同字母指数相同列方程求解即可.【解答】解:单项式2a x+1b与﹣3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=﹣3.∴x y=2﹣3=.故答案为:.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.若单项式与﹣2x b y3的和仍为单项式,则其和为.【分析】若单项式与﹣2x b y3的和仍为单项式,则它们是同类项.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同求出a和b的值.【解答】解:若单项式与﹣2x b y3的和仍为单项式,则它们是同类项.由同类项的定义得a=3,b=2,则其和为﹣x2y3.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.14.若多项式A满足A+(2a2﹣b2)=3a2﹣2b2,则A=a2﹣b2.【分析】此题涉及整式的加减运算,解答时只要用和减去加数即可得出A的结果.【解答】解:A=3a2﹣2b2﹣(2a2﹣b2)=3a2﹣2b2﹣2a2+b2=a2﹣b2.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.括号前是负号,括号里的各项要变号;合并同类项时,注意是系数相加减,字母与字母的指数不变.15.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=0.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:a<0<b<c,∴a<0,c﹣b>0,a+b﹣c<0,∴|a|+|c﹣b|﹣|a+b﹣c|=﹣a+(c﹣b)+(a+b﹣c)=﹣a+c﹣b+a+b﹣c=0.故答案为0.【点评】本题考查的是整式的加减及绝对值的性质,熟知整式的加减实质上就是合并同类项是解答此题的关键.三.解答题(共8小题)16.化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2a﹣b﹣2b+3a﹣2a+4b=3a+b(2)原式=2x2﹣[7x﹣4x+3﹣x2]=2x2﹣[3x+3﹣x2]=2x2﹣3x﹣3+x2=3x2﹣3x﹣3【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.化简并求值:3(x2﹣2xy)﹣[(﹣2xy+y2)+(x2﹣2y2)],其中x、y的位置如图所示.【专题】1:常规题型.【分析】根据数轴可知x与y的值,然后根据整式的运算法则即可求出答案.【解答】解:由数轴可知:x=2,y=﹣1,原式=3x2﹣6xy﹣(﹣2xy+y2+x2﹣2y2)=3x2﹣6xy+2xy﹣y2﹣x2+2y2=2x2+y2﹣4xy=8+1+8=17【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【专题】1:常规题型.【分析】(1)根据整式的运算法则即可求出答案.(2)将a与b的值代入(1)的多项式即可求出答案.【解答】解:(1)所捂多项式=(a2+4ab+4b2)+a2﹣4b2=2a2+4ab(2)当a=﹣2,b=时,所捂多项式=2×4+4×(﹣2)×=8+(﹣4)=4【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:由题意可知:A+(2ab﹣3bc+4ac)=2bc+ac﹣2ab,A=2bc+ac﹣2ab﹣(2ab﹣3bc+4ac)=2bc+ac﹣2ab﹣2ab+3bc﹣4ac=5bc﹣3ac﹣4ab∴A﹣(2ab﹣3bc+4ac)=5bc﹣3ac﹣4ab﹣2ab+3bc﹣4ac=8bc﹣7ac﹣6ab【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.小明在依次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.【专题】11:计算题;512:整式.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)列出正确的关系式,去括号合并即可得到结果.【解答】解:(1)依题意得:M﹣(5ab﹣3bc+2ac)=2ab+6bc﹣4ac,∴M=2ab+6bc﹣4ac+(5ab﹣3bc+2ac)=7ab+3bc﹣2ac,∴多项式M为7ab+3bc﹣2ac;(2)M+(5ab﹣3bc+2ac)=(7ab+3bc﹣2ac)+(5ab﹣3bc+2ac)=12ab,∴原题目的正确答案为12ab.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.某天深圳开往北京(西)的列出上原载客(3a﹣b)人,当车行驶到南昌时,下去了一半客人,又上来了若干人,此时车上共有客人(8a﹣5b)人,问上车的乘客是多少人?当a=200,b=60时,上车的乘客是多少人?【专题】11:计算题;512:整式.【分析】根据题意列出关系式,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:根据题意得:(8a﹣5b)﹣(3a﹣b)=8a﹣5b﹣a+b=(a ﹣b)人,当a=200,b=60时,原式=1300﹣270=1030(人).【点评】此题考查了整式的加减,列代数式,以及代数式求值,熟练掌握去括号法则及合并同类项法则是解本题的关键.23.某个体商贩在一次买卖中同时买进两件上衣,每件都以a元出售,若按成本计算,一件盈利25%,另一件亏本25%,那么该商贩在这次买卖过程中是赚了还是赔本了?赚或赔多少?【专题】12:应用题.【分析】此题首先要设出原来各自的成本,再根据题意表示售价,最后比较总售价和总进价,进行判断.【解答】解:设第一件上衣的成本为x元,第二件的成本为y元.则a=x(1+25%);a=y(1﹣25%).∴,.∴,故该商贩在这次买卖中赔了.赔了元.【点评】注意无论是赔,还是赚,其基数都是原来的进价.。

2022年人教版七年级数学上册第二章-整式单元测试(含答案)

2022年人教版七年级数学上册第二章-整式单元测试(含答案)

试卷第1页,共4页2022年人教版七年级数学上册第二章-整式单元测试说明:考试时间70分钟,满分110分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 一、单选题(共30分) 1.(本题3分)代数式1x , 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个2.(本题3分)下列各选项中,不是同类项的是( ) A .23a b 和25ba - B .212x y 和212xyC .6和32D .nx 5和34nx -3.(本题3分)下列各项中的两项,为同类项的是( ) A .22x y -与2xy B .2π与3y π C . 3mn 与4nm -D .0.5ab -与abc4.(本题3分)下列去括号或添括号的变形中,正确的是( ) A .2a -(3b -c )=2a -3b -c B .3a +2(2b -1)=3a +4b -1 C .a +2b -3c =a +(2b -3c )D .m -n +a -b =m -(n +a -b )5.(本题3分)如果0xy ≠,22103xy axy +=,那么a 的值为( )A .-3B .13-C .0D .36.(本题3分)下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +7.(本题3分)下列说法正确的是( ) A . 3xy π的系数是3 B .3xy π的次数是3 C . 223xy -的系数是23-D .223xy -的次数是28.(本题3分)已知132n x y +与4313x y 是同类项,则n 的值是( )A .2B .3C .4D .59.(本题3分)按一定规律排列的单项式:a ,2a -,3a ,4a -,5a ,6a -,⋯⋯,第n 个单项式是( ) A .n aB .n a -C .1(1)n n a +-D .(1)n n a -试卷第2页,共4页线………线………10.(本题3分)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为( )A .252B .253C .336D .337二、填空题(共20分) 11.(本题4分)任写一个二次单项式:____________.12.(本题4分)若实数a ,b 满足2=a ,41b a -=-||,则a b +=________. 13.(本题4分)单项式22a bπ-的系数是_______.14.(本题4分)按照列代数式的规范要求重新书写:23a a b ⨯⨯-÷,应写成_________. 15.(本题4分)为计算1+2+22+23+…+22019,可另S =1+2+22+23+…+22019,则2S =2+22+23+24+…+22020,因此2S -S =22020-1,根据以上解题过程,猜想:1+3+32+33+…+32019=_________.三、解答题(共60分) 16.(本题8分)计算:(1)3221515x x x x +--+- (2)22(25)2(352)--+-x x x x .17.(本题8分)已知关于x 的多项式||43252a A ax bx x +=+-+,5334B x x x =-+. (1)若整式A B +不含5x 项和不含3x 项,求a 、b 的值; (2)若整式A B -是一个五次四项式,求出a 、b 满足的条件.试卷第3页,共4页…○………学校:______…○………18.(本题8分)(1)若(a ﹣2)2+|b +3|=0,则(a +b )2019= .(2)已知多项式(6x 2+2ax ﹣y +6)﹣(3bx 2+2x +5y ﹣1),若它的值与字母x 的取值无关,求a 、b 的值;(3)已知(a +b )2+|b ﹣1|=b ﹣1,且|a +3b ﹣3|=5,求a ﹣b 的值.19.(本题8分)(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-; (2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.20.(本题8分)已知A ,B ,C 三点在数轴上如图所示,它们表示的数分别是a ,b ,c .且|a |<|b |.(1)填空:abc 0,a +b 0(填“>”“<”或“=”). (2)化简:|a ﹣b |﹣2|a +b |+|b ﹣c |.试卷第4页,共4页……○在※※装※……○21.(本题10分)为响应传统文化进校园的号召,某校决定从网店购买《论语》和《弟子规》两种图书以供学生课外阅读.已知两种图书的购买信息如表:(1)《论语》和《弟子规》每本的价格分别是多少元?(2)若学校计划购买《论语》和《弟子规》两种图书共100本,《弟子规》的数量不超过《论语》数量的2倍.请设计出最省钱的购买方案,并求出此方案的总费用.22.(本题10分)如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B 之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC﹣AB 的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.答案第1页,共11页参考答案:1.B【分析】根据单项式和多项式统称为整式.单项式是字母和数的乘积,单个的数或单个的字母也是单项式.多项式是若干个单项式的和,再逐一判断可得答案. 【详解】解:整式有2x +y , 13a 2b , x y π-,0.5共有4个; 故选:B .【点睛】本题考查了整式.解题的关键是掌握整式的定义:单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式. 2.B【分析】根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项. 【详解】解:A 、23a b 和25ba -是同类项,不符合题意; B 、212x y 和212xy 不是同类项,符合题意;C 、6和32是同类项,不符合题意;D 、nx 5和34nx -是同类项,不符合题意 .故选:B .【点睛】此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项. 3.C【分析】含有相同的字母,相同字母的指数分别相同的项是同类项,依此判定即可. 【详解】A. 22x y -与2xy 不是同类项,不符合题意; B.2π与3y π不是同类项,不符合题意; C. 3mn 与4nm -是同类项;D. 0.5ab -与abc 不是同类项,不符合题意. 【点睛】此题考查同类项,熟记定义即可正确解答. 4.C【分析】由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.答案第2页,共11页【详解】解:()2323a b c a b c --=-+,故选项A 错误,不符合题意;()3221342a b a b +-=+-,故选项B 错误,不符合题意; ()2323a b c a b c +-=+-,故选项C 正确,符合题意;()m n a b m n a b -+-=--+,故选项D 错误,不符合题意;故选:C .【点睛】本题考查去括号和添括号,熟练掌握相关知识是解题的关键. 5.B【分析】根据同类项的定义可知,213xy 和2axy 是同类项,两数和为0,且0xy ≠和a 互为相反数,求解即可.【详解】∵0xy ≠,22103xy axy +=,则213xy 和2axy 是同类项,∵系数互为相反数, ∵1+3a =0, 即13a =-,故选:B .【点睛】本题考查了同类项的定义,相反数的定义,熟记同类项的定义是解题的关键. 6.B【分析】根据单项式的定义判断即可得出答案. 【详解】解:A 、5x不是单项式,不符合题意;B 、a 是单项式,符合题意;C 、3a ba+不是单项式,不符合题意; D 、22x y +是多项式,不是单项式,不符合题意, 故答案选B .【点睛】本题考查单项式的定义:数字与字母的乘积组成的代数式为单项式,的是,单独的一个数字或一个字母也是单项式,且单项式是整式. 7.C【分析】分析各选项中的单项式的系数或者次数,即可得出正确选项.答案第3页,共11页【详解】A .π是数字,3xy π的系数是3π,不符题意; B . 3xy π的次数是2,x ,y 指数都为1,不符题意; C .223xy -的系数是23-,符合题意;D . 223xy -的次数是3 ,x ,y 指数分别为1和2,不符题意.故选C .【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键. 8.B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项,∵n+1=4, 解得,n=3, 故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同. 9.C【分析】观察字母a 的系数、次数的规律即可写出第n 个单项式 【详解】解:a ,2a -,3a ,4a -,5a ,6a -,⋯⋯,1(1)n n a +-, 故选:C .【点睛】本题考查了数字的变化规律,判断出单项式的符号,系数以及幂与序号之间的关系是解决本题的关键. 10.B【分析】根据图形的变化及数值的变化找出变化规律,即可得出结论. 【详解】解:设第n 个图形需要an (n 为正整数)根小木棒, 观察发现规律:第一个图形需要小木棒:6=6×1+0, 第二个图形需要小木棒:14=6×2+2; 第三个图形需要小木棒:22=6×3+4,…, ∵第n 个图形需要小木棒:6n +2(n -1)=8n -2.答案第4页,共11页∵8n -2=2022,得:n =253, 故选:B .【点睛】本题考查了规律型中图形的变化类,解决该题型题目时,出变化规律是关键. 11.答案不唯一,如:2xy .【分析】根据单项式的定义,数与字母的积的形式的代数式是单项式,做这个单项式的次数,这样符合条件的单项式有多个.【详解】解:根据定义,只要字母的指数和为2即可,本题答案不唯一,如:2xy . 故答案为答案不唯一,如:2xy .【点睛】本题考查单项式的定义,确定单项式次数时,项式的次数. 12.−1或5【分析】根据绝对值的定义求出a 、b 的值,再代入计算即可. 【详解】解:∵|a |=2, ∵a =±2,当a =2时,|4−b |=1−2=−1,此时b 不存在; 当a =−2时,|4−b |=3, ∵4−b =3或4−b =−3, 即b =1或b =7,当a =−2,b =1时,a +b =−1; 当a =−2,b =7时,a +b =5. 故答案为:−1或5.【点睛】本题考查绝对值的意义,理解绝对值的意义是正确解答的前提,求出a 、b 正确解答的关键. 13.2π-【分析】根据单项式的系数的定义分析即可求解,数.【详解】解:单项式22a bπ-的系数是2π-,答案第5页,共11页故答案为:2π-.【点睛】本题考查了单项式的系数,理解定义是解题的关键. 14.2a 2-3b【分析】根据代数式的书写要求填空. 【详解】解:应写成:2a 2-3b.故答案为:2a 2-3b.【点睛】本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求: (1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式. 15.2020312-【分析】根据题意设M =1+3+32+33+…+32019,则可得3M =3+32+33+34+…+32020,即可得3M -M 的值,计算即可得出答案.【详解】解:设M =1+3+32+33+...+32019, 则3M =3+32+33+34+ (32020)3M -M =3+32+33+34+…+32020-(1+3+32+33+…+32019), 2M =32020-1, 则M =2020312-,故答案为:2020312-.【点睛】本题主要考查了数字的变化规律,准确理解题目所给的例题解法进行求解是解决本题的关键. 16.(1)151--x ; (2)261110x x --.【分析】(1)移项,合并同类项,根据整式的运算法则计算即可; (2)去括号,移项,合并同类项,根据整式的运算法则计算即可. (1)答案第6页,共11页解:3221515x x x x +--+-3215521+---+x x x x = 151--x =.(2)解:22(25)2(352)--+-x x x x22=256104---+x x x x 22=245610+---x x x x 2=61110--x x .法则,整式的运算法则. 17.(1)3b =,1a =- (2)若3b =-,则1a =-【分析】(1)根据多相似不含5x 项、3x 项,令五次项系数、三次项的系数为0,进而求出a b 的值.(2)根据A B -是一个五次四项式(该多项式中,x 的最高次幂是五次,即5x ,一共有四项)分类讨论得出结论. (1)因为||432535234a A B ax bx x x x x ++=+-++-+,当A B +不含5x 项和不含3x 项时有3330bx x -=和||450a ax x ++=, 因为3(3)0b x -=,30b -=, 所以3b =.因为||45a +=,||1a =,所以1a =-或1a =(不符合题意). 所以1a =-. (2)因为||43253(52)(34)a A B ax bx x x x x +-=+-+--+||432535234a ax bx x x x x +=+-+-+-||4532(3)542a ax x b x x x +=-++--+当A B -是一个五次四项式时, ∵若30b +=,即3b =-,则A B -有||4a ax +,5x -,25x -,4x -,2. 若要A B -多项式中含5x ,且共有四个项, 则||45a +=,且1a ≠, 则1a =-.若3b =-,则1a =-满足条件; ∵若30b +≠,即3b ≠-,则A B -有||4a ax +,5x -,3(3)b x +,25x -,4x -,2. 又||44a +≥,且A B -共有四个项, 则||450a ax x +-=. 则||45a +=,||1a =.则1a =或1a =-(不符合题意).若3b ≠-,则1a =,此时A B -为不含5x 的四项式,不满足条件.【点睛】本题考查多项式的理解和运用能力.几个单项式的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项;多项式里,次数最高项的次数,叫做这个多项式的次数;多项式中,如果不含某一项就是这一项的系数为0.明确多项式的定义,恰当使用分类思想进行分析是解本题的关键. 18.(1)﹣1;(2)a =1,b =2;(3)a ﹣b =﹣8.【分析】(1)利用非负数和的性质可求a =2,b =﹣3,再求代数式的之即可;(2)将原式去括号合并同类项原式=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解方程即可;(3)利用非负数性质可得a +b =0且|b ﹣1|=b ﹣1,可得010a b b +=⎧⎨-≥⎩,由|a +3b ﹣3|=5,可得a +3b=8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去)即可. 【详解】解:(1)∵(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0, ∵a ﹣2=0,b +3=0, 解得a =2,b =﹣3,∵(a +b )2019=(2﹣3)2019=﹣1. 故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1, =(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0, 解得:a =1,b =2;(3)∵(a +b )2+|b ﹣1|=b ﹣1, ∵(a +b )2+|b ﹣1|-(b ﹣1)=0, ∵|b ﹣1|≥(b ﹣1),∵|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0, ∵a +b =0且|b ﹣1|=b ﹣1,∵010a b b +=⎧⎨-≥⎩, 解得,1a bb =-⎧⎨≥⎩,∵|a +3b ﹣3|=5,∵a +3b ﹣3=5或a +3b ﹣3=-5, ∵a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去), ∵a ﹣b =﹣4﹣4=﹣8.【点睛】本题考查非负数和的性质,以及代数式的值与字母x 的取值无关,绝对值化简,掌握非负数和的性质,以及代数式的值与字母x 的取值无关的解法是解题关键. 19.(1)2412y xy --;1;(2)105ab +,15【分析】(1)先根据整式的加减运算法则化简原式,再代值求解即可; (2)先根据整式的加减运算法则化简原式,再求得ab =1代入求解即可. 【详解】(1)解:原式2222561225x y xy y x =--+-2412y xy =--,当13x =,12y =-时,原式2111412232⎛⎫⎛⎫=-⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1=.(2)解:()()22334532A B a ab a ab -=++--105ab =+,∵当a ,b 互为倒数时,1ab =,∵原式15=.【点睛】本题考查整式的加减中的化简求值,熟练掌握运算法则和运算顺序是解答的关键. 20.(1)<,>; (2)﹣3a ﹣2b +c【分析】(1)根据数轴上点的位置可知a <0,b >0,c >0,|c |>|b |>|a |,由此求解即可; (2)根据绝对值的含义和求法,化简|a ﹣b |﹣2|a +b |+|b ﹣c |即可. (1)根据数轴上A 、B 、C 三点的位置,可知a <0<b <c ,且|c |>|b |>|a |, ∵abc <0,a +b >0, 故答案为:<,>; (2)由题意可知,a ﹣b <0,a +b >0,b ﹣c <0, ∵|a ﹣b |﹣2|a +b |+|b ﹣c | =b ﹣a ﹣2(a +b )+c ﹣b =b ﹣a ﹣2a ﹣2b +c ﹣b =﹣3a ﹣2b +c【点睛】此题主要考查了有理数大小比较的方法,绝对值的含义和求法整式的加减,要熟练掌握以上知识点,同时要明确∵当数轴方向朝右时,右边的数总比左边的数大是解题的关键. 21.(1)每本《论语》的价格为20元,每本《弟子规》的价格为15元; (2)当购买《论语34》本,《弟子规66》本时,总费用最少,最少总费用为1670元【分析】(1)设每本《论语》的价格为x 元,每本《弟子规》的价格为y 元,利用总费用=单价⨯数量,结合表格中的数据,即可得出关于x y ,的二元一次方程组,解之即可得出结论; (2)设购买《论语m 》本,则购买《弟子规100m -》()本,根据购买《弟子规》的数量不超过《论语》数量的2倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设学校购买《论语》和《弟子规》的总费用为w 元,利用总费用=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题. (1)设每本《论语》的价格为x 元,每本《弟子规》的价格为y 元,………外………内依题意得:4030125050201300x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩.答:每本《论语》的价格为20元,每本《弟子规》的价格为15元. (2)设购买《论语》m 本,则购买《弟子规》(100)m -本, 依题意得:1002m m -≤, 解得:1003m ≥. 设学校购买《论语》和《弟子规》的总费用为w 元,则201510051500w m m m =+-=+(). 50>,w ∴随m 的增大而增大,又1003m ≥且m 为正整数, ∴当34m =时,w 取得最小值,最小值53415001670=⨯+=,此时1001003466m -=-=答:当购买《论语34》本,《弟子规66》本时,总费用最少,最少总费用为1670元. 解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出w 关于m 的函数关系式 22.(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t 根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可. (1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.。

初一数学第二章-整式练习题(含答案)

初一数学第二章-整式练习题(含答案)

初一数学第二章-整式练习题(含答案)2.1 整式1.判断题1) x+1是关于x的一次两项式。

(错误,应该是一次一项式)2) -3不是单项式。

(正确)3) 单项式xy的系数是1.(正确)4) x^3+y^3是6次多项式。

(错误,应该是3次多项式)5) 多项式是整式。

(正确)2.选择题1.在下列代数式:1a+b/3.2ab。

ab^2+b+1.x^3+x^2-3中,多项式有(4个)。

2.多项式-23m-n^2是(二次二项式)。

3.下列说法正确的是(选项A)。

4.下列说法正确的是(选项D)。

5.下列代数式中,不是整式的是(5a-4b/3a+2)。

6.下列多项式中,是二次多项式的是(3x^2)。

7.x减去y的平方的差,用代数式表示正确的是(x^2-2xy+y^2)。

8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是((2ab)/(a+b))米/分。

9.下列单项式次数为3的是(3abc)。

10.下列代数式中整式有(5个)。

11.下列整式中,单项式是(2x-y)。

12.下列各项式中,次数不是3的是(x^2+y+1)。

13.下列说法正确的是(选项B)。

14.在多项式x^3-xy^2+25中,最高次项是(x^3)。

1.当a=-1时,4a^3=-42.单项式:-4/3xy,系数是-4/3,次数是33.多项式:4x^3,次项式是4x^34.xy^2是次单项式5.一次项系数是4,常数项是-3y6.单项式和多项式统称整式7.单项式xy^2z是三次单项式8.多项式a^2-ab^2-b^2有3项,其中-ab^2的次数是29.整式①有0次单项式,②有一次单项式,③有二次单项式,④有零次单项式,⑤有一次单项式,⑥有二次单项式,⑦有一次单项式。

多项式有三项。

10.x+2xy+y是二次多项式11.比m的一半还少4的数是m/2-412.b的1倍的相反数是-b13.10减去某数的2倍的差是10-2x14.两个连续奇数可以表示为n和n+215.-x^4+3x^3y-6x^2y^2-2y^4的次数是416.当x=2,y=-1时,代数式|xy|-|x|的值是017.当t=1/3时,t-(1+t)/(3t+1)的值等于118.当y=4时,代数式3y-2与y+3的值相等19.-23ab的系数是-23,次数是120.代数式2a^2b^2c和a^3b^2的相同点是都是含有a和b 的项,都是二次项21.多项式x^3y^2-2xy^2-4xy-9是三次四项式,其中最高次项的系数是1,二次项是0,常数项是-922.若-x^2y^3zm与3x^2y^3z^4是同类项,则m=423.在x^2.(x+y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章整式单元测试(正反打印)
一、选择题
1.下列几个式子:,是单项式的有()A.3个B. 4个C. 5个D. 6个
2.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B. 2个C. 3个D. 4个
3.π2与下列哪一个是同类项()
A.ab B.ab2C. 22D.m
4.若多项式y2+(m﹣3)xy+2x|m|是三次三项式,则m的值为()
A.﹣3 B. 3 C.﹣2 D. 2
5.若|a|=2,|b|=3,且a>b,则|a﹣b|的值为()
A.﹣5或﹣1 B. 1或﹣1 C. 5或3 D. 5或1
6.若A和B都是五次多项式,则A+B一定是()
A.十次多项式B.五次多项式
C.数次不高于5的整式D.次数不低于5次的多项式
7.三个连续整数的积是0,则这三个整数的和是()
A.﹣3 B. 0 C. 3 D.﹣3或0或3
8.商店分别以相同的价格n元卖出两件不同品牌的衬衣,其中一件盈利20%,另一件亏本20%,该商店在这次买卖中()
A.不亏不赚B.亏了C.赚了D.不能确定
9.已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为()
A.﹣1 B. 1 C. 0 D. 2
10.一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n千克,则这两块地平均每公顷的粮食产量为()
A.B.C.D.
二、填空题
11.当a<3时,|a﹣3|+a=.
12.x表示一个两位数,y表示一个三位数,若x放在y的左边形成一个五位数,用含x、y的代数式表示这个五位数是.
13.张强上山速度为2km/h,下山速度为3km/h,则他上山下山的整个路程的平均速度是
选做题:1 2 3 3 4 5 6 7 8 9 10 11 12 13
14.已知a,b,c,x,y,z,w为有理数.规定:符号表示运算,符号表
示运算|xw﹣y2|.则+=(直接写出答案)
三、解答题
15.化简:(6分)(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)2a﹣3b+[4a﹣(3a﹣b)].
16.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|+|a+c|﹣2|c﹣b|.
(6分)
17.已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.(8分)
18.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B ﹣2C的值.
19..在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,(10分)
(1)求a,b的值;
(2)若|x+a|+|y﹣b|=0,求(x﹣y)÷y的值.
20.某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?(10分)
21.如图,已知梯形的下底长为a,高为r,半圆的半径为r.(12)
(1)求阴影部分的面积(用含a,r的式子表示);
(2)当r=4,a=12时,求阴影部分的面积(结果用π表示).。

相关文档
最新文档