§2-2 岩石的变形特性
工程地质学-第二章 岩石的工程地质性质-2-岩石的力学性质
3.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸
形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;h/d≥(2-3)较合理 (3)加载速度 加载速度越大,表现强度越高(见图2-5) 我国规定加载速度为0.5 -1.0MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明 显,对泥岩、粘土等软弱岩体,干燥强度是饱和强度的2 -3倍。 温度度:180℃以下部明显:大于180℃,湿度 越高强度越小。
三、岩石的抗拉强度
1. 定义:岩石试件在受到轴向拉应力后其试件发生破坏时 的单位面积上所受的拉力。
2. 直接拉伸法
抗拉强度
Rt P / A
关键技术
①试件和夹具之间的连接
②加力P与试件同心
四、岩石的抗剪强度
1. 定义
指一定的应力条件下(主要指压应力),所能抵抗
的最大剪应力常用 表示
2. 类型:
a.抗剪断试验
3、水楔作用:当两个矿物颗粒靠得很近,有水分子补 充到矿物表面时,矿物颗粒利用其表面吸引力将水分子 拉到自己周围,在颗粒接触处由于吸引力作用使水分子 向两个矿物颗粒之间的缝隙内挤入,这种现象称为水楔 作用。
根据破坏时的应力类型,岩石的破坏可有拉破坏、剪 破坏和流动破坏三种基本类型。由于受力状态和破坏形式 的不同,岩石的强度又可分为单轴抗压强度、单轴抗拉强 度、抗剪强度和三轴压缩强度等。
一、岩石的变形性质
1.岩石在单轴压缩应力作用下的变形特性 1)普通试验机下 应力-应变曲线形状与 岩性有关。 (1)典型的岩石应力、应 变曲线特征为: Ⅰ.压密阶段 Ⅱ.弹性变形至微破裂稳 定发展阶段 Ⅲ.非稳定破裂发展阶段 (或称累进性破裂阶段) Ⅳ.破坏后阶段
岩石的物理力学性质
n0
Vn0 V
100%
(5)闭空隙率nc: 即岩石试件内闭型空隙的体积(Vnc)占 试件总体积(V)的百分比。
nc
Vnc V
100%
2 、空隙比(e)
所谓空隙比是指岩石试件内空隙的体积(V V)与 岩石试件内固体矿物颗粒的体积(Vs)之比。
e VV V Vs n
Vs
Vs
1 n
四、岩石的水理性质
c 具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。P点加载弹模 取过P点的加载曲 线的切线斜率,P 点卸载弹模取过P 点的卸载曲线的切 线斜率。
d、弹塑性类岩石
Ee e
2、变形模量
E0 e p
变形
弹性变形 塑性变形
线弹性变形 非线弹性变形
o
理想弹性体
s
o
线性硬化弹塑性体
s
o
理想弹塑性体
o
d
dt
理想粘性体
一、岩石在单轴压缩状态下的力学特性
1、σ~ε曲线的基本形状 美国学者米勒将σ~ε曲线分为6种。
σ~ε曲线的基本形状
致密、坚硬、少裂隙 致密、坚硬、多裂隙
少裂隙、 岩性较软
较多裂隙、 岩性较软
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
饱和密度就是饱水状态下岩石试件的密度。
w
Ww V
(g/cm3)
w wg
(kN /m3)
式中:WW——饱水状态下岩石试件的质量 (g); V——岩石试件的体积(cm3);
岩石力学-岩体的变形特性
2.5 岩体的变形特性
2.5.3 岩体各向异性变形 试件模型:
12mmX12mmX36mm的 块体单元 x=1表示贯通, x =0为完整试 件, x为分离度
①岩体力学性质具有各向异性, 变形、破坏机制、强度特征 不同。
②工程布置要考虑如何扬长避短, 充分发挥岩体自身强度,维 持工程稳定性。
④当卸荷至零并持续一定时间后,
有较大回弹变形,这是弹性后
效的表现。
⑤残余变形模量
E
a b
2.5 岩体的变形特性
2.5.2 岩体剪切变形特征 ①在屈服点前,变形曲线与抗压
变形相似,上凹型。 ②屈服点后,某个结构面或结构
体首先剪坏,随之出现一次应 力下降。峰值前可能发现多次 应力升降。升降程度与结构面 或结构体强度有关,岩体越破 碎,应力降反而不明显。 ③当应力增加到一定应力水平时, 岩体剪切变形已积累到一定程 度,没剪破的部位以瞬间破坏 方式出现,并伴有一次大的应 力降。 ④随后产生稳定滑移
2.5 岩体的变形特性
2.5.1 岩体的单轴和三轴压缩变形 特征
(1)岩体应力-应变全过程曲线 ①在加载过程,结构面压密与闭合,
应力-应变曲线,呈上凹型。 ②中途卸载有弹性后效现象和不可
恢复残余变形。这是结构面闭 合、滑移、错动造成的。 ③完全卸载,再加载形成形式上的 “开环型”曲线,这也是弹性 后效造成的。 ④峰值强度后,岩体开始破坏,应 力下降较缓慢,仍有残余应力, 这是岩体结构效应。
2.5 岩体的变形特性(单轴和三轴压缩变形特征)
(2)卸载时荷载不降至零时的应 力-应变曲线
①卸荷不降至零时的循环加载应力 -应变曲线呈“闭环型”。
②随着外荷加大、循环次数增多, 闭环后效,这是结构面逐级被 压密与啮合,这是结构面逐级 被压密与啮合所致。
岩体力学岩石的变形特性
普通试验机得到峰值应力前的变形特性,多数
岩石在峰值后工作。 注:C点不是破坏的 开始(开始点B), 也不是破坏的终。 说明:崩溃原因, Salamon1970年提 出了刚性试验机下 的曲线。
刚性机
(1)刚性试验机工作简介
压力机加压(贮存弹性应能) 岩石试件达峰点强度(释放 应变能)导致试件崩溃。 AA′O2O1面积——峰点后, 岩块产生微小位移所需的能。 ACO2O1面积——峰点后, 刚体机释放的能(贮存的能) ABO2O1——峰点后, 普通机释放的能(贮存的能)。
(2)应力、应变全过程曲线形态 在刚性机下,峰值前后的全部应力、应变曲线 分四个阶段:1-3阶段同普通试验机。 4阶段应变软化阶段
特点:
①岩石的原生和新生裂隙贯穿,到达D点,靠碎块间的摩擦 力承载,故 D —称为残余应力。 ②承载力随着应变增加而减少,有明显的软化现象。
(3)全应力——应变曲线的补充性质
线性弹性体。
本构方程:k
应力应变曲线(见右图):
模型符号:H
o
虎克体的性能:a.瞬变性 b.无弹应性力-后应变 效曲线
c.无应力松弛 d.无蠕变流动
5.1 描述流变性质的三个基本元件
(2)塑性元件
材料性质:物体受应力达到屈服极限0时便开始产生 塑性变形,即使应力不再增加,变形仍不 断增长,其变形符合库仑摩擦定律,称其 为库仑(Coulomb)体。是理想的塑性体。
b.弹性常数与强度的确定
弹性模量国际岩石力学学会(ISRH)建议三种方法
初始模量 割线模量
E0
d d
0
c
E50 / 50
切线模量 d / d 50
极限强度 c
2、反复循环加载曲线
岩石力学 岩石的变形 破坏特征
体胀系数:温度上升1℃所引起的体积增量与初始体积的比值。
vs
Vt V0 V0
线胀系数:温度上升1℃所引起的长度增量与初始长度的比值。
ls
Lt L0 L0
岩石的导热率是度量岩石的热传导能力的参数,是指当温度上升1℃时,热量
在单位时间内传递单位距离的损耗值。
Ct
QT LtT
3、岩石的各向异性和渗透性
A
r
o
a
空隙闭合应力:单轴压缩状态下使岩石中的空隙闭合的 最下应力。
2.岩石变形特征
v
r r
e B
A
o
a
比例弹性极限或弹性极限:应力-应变曲线保持直线 关系的极限应力
2.岩石变形特征
v
r r
p
C
e B
A
a
屈服应力:单轴压缩状态下岩石出现塑性变形的极限应力
2.岩石变形特征
抗冻性:岩石抵抗冻融破坏的能力。 膨胀性:岩石吸水后体积增大引起岩石结构破坏的
性能称膨胀性。 崩解性:岩石被水浸泡,内部结构遭到完全破坏呈
碎块状崩开散落的性能。具有强烈崩解性的岩石和 土,短时间内即发生崩解。
2、岩石的物理性质
岩石的热理性:是指岩石温度发生变化时所表现出来的
物理性质。(热胀冷缩)
大、小开空隙的相对比例关系。
Wp
mw2 ms
100 %
Wa
mw1 ms
100%
2、岩石的物理性质
岩石的软化性
岩石浸水饱和后强度降低的性质,称为软化性
软化系数(KR)为岩石试件的饱和抗压强度(σcw)与 干抗压强度(σc)的比值
KR
2-2岩石力学性质-强度性质
2.5 岩块强度
2.5.1 岩石的单轴抗压强度
所谓岩石的单轴抗压强度是指岩石在单轴压缩载 荷作用下,达到破坏前所能承受的最大压应力。 亦即岩石受轴向力作用破坏时单位面积上所承受 的荷载。即: P c (2-18)
c
式中:
A
c —单轴抗压强度;
P—只有轴向载荷时的破坏荷载; A—试件的截面面积。
图2-4 在刚性承压板之间压缩时岩石端面的应力分布 图2-5 粗面岩的抗压强度与h/d的关系
(4)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (5)环境 含水量:含水量越大强度越低;岩石越软越明显, 对泥岩、粘土等软弱岩体,干燥强度是饱和强度 的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高 强度越小。
由于试件端面与承压板之间的摩擦力,使试件端 面部分形成了约束作用,而这一作用随远离承压 板而减弱,使其表现为拉应力。 在无侧限的条件下,由于侧向的部分岩石可自由 地向外变形、剥离,最终形成圆锥形破坏的形态。 因此,在试验时一般要求在试件的端面与承压板 之间加润滑剂,以减少试验时的端部效应。
c
c
c d 0.788 0.22 h
(2-19)
由图2—5可见,当 试验结果
h / d 2.0 3.0
时, 曲线趋于稳定,
c
c
值不随
h/d
的变化而明显变化。
国际岩石力学学会实验室和现场试验标准化委员 会制定的《岩石力学试验建议方法》中,建议岩
石单轴抗压强度试验试件的高径比为2.5~3.0。
(1)单轴抗压强度的试验方法 在岩石力学中,岩石的单轴抗压强度是研究 最早、最完善的特性之一。按中华人民共 和国岩石试验方法标准的要求,单轴抗压 强度的试验是在带有上、下块承压板的试 验机上进行,按一定的加载速度单向加压 直至试件破坏。
岩块的变形与强度性质
岩块的力学属性:1.弹性(elasticity):在一定的应力范围内,物体受外力产生的全部变形当去除外力后能够立即恢复其原有的形状和大小的性质。
2.塑性(plasticity):物体受力后产生变形,在外力去除(卸荷)后不能完全恢复原状的性质。
不能恢复的变形叫塑性变形或永久变形、残余变形。
3.粘性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质。
应变速率随应力变化的变形叫流动变形。
4.脆性(brittle):物质受力后,变形很小时就发生破裂的性质。
5.延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质。
第一节岩块的变形性质一、单轴压缩条件下的岩块变形性质1.连续加载下的变形性质(1)加载方式:单调加载(等加载速率加载和等应变速率加载)循环加载(逐级循环加载和反复循环加载)(2)四个阶段:①Ⅰ:OA段,孔隙裂隙压密阶段;②Ⅱ:AC段,弹性变形至微破裂稳定发展阶段(AB段和BC段)弹性极限→屈服极限③Ⅲ:CD段,非稳定破裂发展阶段(累进破裂阶段)→“扩容”现象发生“扩容”:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂(裂纹)继续发生和扩展,岩石的体积应变增量由压缩转为膨胀的力学过程。
—峰值强度或单轴抗压强度④Ⅳ:D点以后阶段,破坏后阶段(残余强度)以上说明:岩块在外荷作用下变形→破坏的全过程,具有明显的阶段性,总体上可分为两个阶段:1)峰值前阶段(前区)2)峰值后阶段(后区)(3)峰值前岩块的变形特征(Miller,1965)①应力—应变曲线类型米勒(Miller,1965)6类(σ—εL曲线),如图4.3所示:Ⅰ:近似直线型(坚硬、极坚硬岩石):如玄武岩、石英岩等;Ⅱ:下凹型(较坚硬、少裂隙岩石):如石灰岩、砂砾岩;Ⅲ:上凹型(坚硬有裂隙发育):如花岗岩、砂岩;Ⅳ:陡“S”型(坚硬变质岩):如大理岩、片麻岩;Ⅴ:缓“S”型(压缩性较高的岩石):如片岩;Ⅵ:下凹型(极软岩)。
岩石力学-岩石的变形特征
不同围压下同种岩石的应力-应变曲线
第四节 岩石的流变性质
岩石的变形和应力受时间因素的影响。在外部条 件不变的情况下,岩石的应力或应变随时间变化 的现象叫流变。
岩石的流变性主要包括以下几个方面:
蠕变:在恒定应力条件下,变形随时间逐渐增长的现象 松弛:应变一定时,应力随时间逐渐减小的现象 流动特征:指时间一定时,应变速率与应力的关系 长期强度:指长期荷载(应变速率小于10-6/s)作用下 岩石的强度
粘性与流变
粘性(viscosity) :物体受力后变形不能在瞬时完成,
且应变速率随应力增加而增加的性质,称为粘性。 应变速率随应力变化的变形称为流动变形。 流变(rheology ):材料的应力、应变随时间变化而
变化的现象。
岩石变形的表示方法
• 岩石的变形特性常用弹性模量E和泊松比μ两个常数来表示。 • 如果把岩石当作弹性体,用E、μ来描述岩石的变形特性是足 够的。 • 但实际情况说明,仅仅用这些弹性常数来表征岩石的变形性质 是不够的,因为许多岩石的变形是非弹性的,即荷载卸去后岩 石变形并不能够完全恢复。特别是在现场条件下岩石有裂隙、
p
e
逐级循环加载条件下的变形特性
应力-应变曲线的外包线与连续加载条件下的曲线基本 一致,说明加、卸荷过程并未改变岩块变形的基本习 性,这种现象称为岩石记忆。
每次加荷、卸荷曲线都不 重合,且围成一环形面积 称为回滞环
随循环次数增加,塑性滞回环的 面积有所扩大,卸载曲线的斜率 (代表岩石的弹性模量)逐次略 有增加,这个现象称为强化。
基岩的不均匀变位可以使坝体的剪应力和主拉应力增长,造成开裂
错位等不良后果。如果岩基中岩石的变形性质已知并且在岩基内这 此性质的变化也已确定,那么在坝施工中可以采取必要措施防止不 均匀变形。
岩体力学02-岩石的基本物理力学性质.资料
风化系数(Kf):风化岩石的饱和单轴
抗压强度(cw’)与新鲜岩石饱和单轴 抗压强度(cw)之比。
Iw
mw mrd
Kv
vcp vrp
2
Kf
' c
w
cw
硬质岩石风化风化程度分类表
风化程度 全风化 强风化
中等风化 微风化 未风化
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
m g/cm 3
V—岩石试件的总体积;
V
m—岩石试件的总质量
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个
2、饱和密度( sat)
岩石中空隙全部被水充填时单位体积的质量,即
sa tm s V V vw g/c3 m
•岩石的粒间连结分结晶连结与胶结连结 •结晶连结:矿物颗粒通过结晶相互嵌合在一起, 它是通过共用原子或离子使不同晶粒紧密接触。 •胶结连结:矿物颗粒通过胶结物连结在一起。 胶结连结的岩块强度:硅质胶结>铁质、 钙质>泥质胶结
三、岩块的风化
岩石经过风化,矿物组成和结构改变,岩块的物 理力学性质改变:强度降低、抗变形性能减弱、 空隙率增大、渗透性加大。
岩土流变力学
应力不为常数时 蠕变方程 应力随时间 的变化规律 每时刻在给定应力下的应变
蠕变方程
0 J (t )
恒定应力 t的函数
0
0时刻:作用应力:σ τ-t时刻:作用应力: σ 0 +Δ σ t时刻:应变:
0
0 J (t ) 0 J (t )
设应力增量Δ σ 作用在0时刻: τ 时刻的应变为:
0 (1)瞬时弹性变形阶段(OA):
0
E
(2)一次蠕变阶段(AB): (瞬态蠕变段/第一蠕变阶段/初始蠕变段/ 减速蠕变阶段)
d 2 0 2 d t
此阶段卸载 一部分应变瞬时恢复(PQ段) 一部分应变随时间逐渐恢复变阶段(BC):应变速率不变 (第二蠕变阶段/等速或稳定蠕变段)
d 2 0 2 d t
此阶段卸载 一部分应变瞬时恢复
一部分应变随时间逐渐恢复
一部分应变不能恢复(ε v)
粘弹塑性 (4)三次蠕变阶段(CD):应变速率迅 速增加,直到破坏 (第三蠕变阶段/加速蠕变段)
d 2 0 2 d t
当应力水平 较低时,可能无此阶段 (稳定蠕变)
蠕变变形总量:ε =ε
0+ε 1(t)+ε 2(t)+ε 3(t)
式中:ε 0为瞬时弹性应变;ε 1(t),ε 2(t),ε 3(t)为与时间有关的一次蠕 变、二次蠕变、三次蠕变。ε v 为粘塑性应变, ε Q 为粘弹性应变。
3、岩石的蠕变曲线类型
类型1 :稳定蠕变 。曲线包含瞬时弹性变形、瞬态蠕变和稳定蠕 变3个阶段(压应力10MPa,12.5MPa),无第三阶段蠕变 类型2:典型蠕变 。曲线包含4个阶段(压应力15MPa,18.1MPa) 类型3 :加速蠕变 。曲线几乎无稳定蠕变阶段,应变率很高(压 应力20.5MPa,25MPa)变形近似直线状急剧发展,迅速破坏
02-岩体的基本性质
2 岩体的基本性质通常把在地质历史过程中形成的,具有一定的岩石成分和一定结构,并赋存于一定地应力状态的地质环境中的地质体,称为岩体。
岩体在形成过程中,长期经受着建造和改造两大地质作用,生成了各种不同类型的结构面,如断层、节理、层理、片理等。
受其影响,岩体往往表现出明显的不连续、非均质和各向异性,具有一定的结构是岩体的显著特征之一,它决定了岩体的工程特性及其在外力作用下的变形破坏机理。
因此,从抽象的、典型化的概念来说,可以把岩体看作是由结构面和受它包围的结构体共同组成的。
所谓“结构面”,是指在地质发展历史中,尤其是地质构造变形过程中形成的,具有一定方向、延展较大、厚度较小的二维面状地质界面,它包括岩石物质的分界面和不连续面,如岩体中存在的层面、节理、断层、软弱夹层等,可统称为结构面。
结构面是岩体的重要组成单元,由于受结构面的切割,岩体的物理力学性质与岩石有很大的差别。
岩体的物理力学性质取决于结构面和结构体两部分的组合情况,尤其在工程上,岩体的工程力学稳定性质主要取决于岩体内结构面的数量、空间大小、空间组合情况、结构面特征以及充填介质的性质等。
所谓结构体是指由结构面切割而成的岩石块体。
结构体的四周都被结构面包围,常见的结构体大都是有棱角的多面体,如立方体、长方体、柱状体、板状体、菱形体、梯形体、楔形体、锥形体等。
结构体也是岩体的重要组成部分,它本身的物质组成和排列组合方式也影响到岩体的力学性质。
总之,岩体是由结构面和结构体两部分组成的,这也决定了其物理力学性质不是单纯取决定于某一方面的结果,而是二者共同作用和表现的结果,这在岩体力学分析和研究时是十分重要的。
在上一章开始时曾简单介绍过岩石和岩体二者之间的关系,指出工程上的岩石可视为岩体中的结构体(岩块),在无特殊说明的情况下,工程中的岩石均是指岩体中的结构体即岩块而言的。
从力学角度来看,岩体与岩石有许多区别,其中较明显的特征可归纳为以下几点:1)岩体的非均质性岩体可以由一种或几种岩石组成,而且以后者居多。
岩石的岩石的力学性质
岩石的1岩石的力学性质-岩石的变形岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够承受的最大应力。
岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。
岩石在荷载作用下,首先发生的物理力学现象是变形。
随着荷载的不断增加,或在恒定载荷作用下,随时间的增长,岩石变形逐渐增大,最终导致岩石破坏。
岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质。
-1・5岩石变形性质的几个基本概念・1)弹性(elasticity):物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质称为弹性。
・弹性体按其应力-应变关系又可分为两种类型:・线弹性体:应力-应变呈直线关系。
・非线性弹性体:应力—应变呈非直线的关系。
・2)塑性(plasticity):物体受力后产生变形,在外力去除(卸载)后变形不能完全恢复的性质,称为塑性。
・不能恢复的那部分变形称为塑性变形,或称永久变形,残余变形。
・在外力作用下只发生塑性变形的物体,称为理想塑性体。
・理想塑性体,当应力低于屈服极限时,材料没有变形,应力达到后,变形不断增大而应力不变,应力-应变曲线呈水平直线.・3)黏性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质,称为粘性。
・应变速率与时间有关,->黏性与时间有关・其应力-应变速率关系为过坐标原点的直线的物质称为理想粘性体(如牛顿流体),・4)脆性(brittle):物体受力后,变形很小时就发生破裂的性质。
・5)延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质,称为延性。
・1・7岩石变形指标及其确定・岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。
3)全应力-应变曲线的工程意义・①揭示岩石试件破裂后,仍具有一定的承载能力。
・②预测岩爆。
・若A>B,会产生岩爆・若B>A,不会产生岩爆③预测蠕变破坏。
・当应力水平在H 点以下时保持应力恒定,岩石试件不会发生蠕变。
岩石的物理力学性质岩石力学
a031
a3 2 0
a3 3 0
0 a4 4
0 0
0 0
xzy
yz
0
0
0
0
a5 5
0
yz
zx 0 0 0 0 0 a66zx
Mar , 2019
21
第2章 岩石的物理力学性质
在岩石某一平面内的各方向弹性性质相同,这个面称为各向同性面,而垂直此面 • 方横向观的各力向学同性性质体是不同的,具有这种性质的物体称为横观各向同性体(Z 方向和X
E0 e p
d
切线模量就是曲线上的切线的ห้องสมุดไป่ตู้率;
d
割线模量就是割线的斜率;
卸载模量就是卸载曲线上的切线斜率。
Mar , 2019
6
第2章 岩石的物理力学性质
岩石变形指标 •弹性模量 •泊松比(poisson’ratio) •剪切模量 •拉梅常数 •体积模量
P
l d/2
l
d
E
e
x y
G
E
21
岩石变形性质的室内测定
1E12
Kv
E
312
Mar , 2019
7
第2章 岩石的物理力学性质
常见岩石的变形模量和泊松比
岩石名称 变形模量(×104MPa)
初始
弹性
花岗岩
2~6
5~10
流纹岩
2~8
5~10
闪长岩
7~10
7~15
k ' 4= l / l
第2章 岩石的物理力学性质
岩石的变形特性
上式用应力表示应变。
即
[D][A]1
1 a ij c ij
为了说明问题,将6个应力分量编号为: σx σy σz τxy τyz τzx 12 34 5 6 将6个应变分量产生的位置编号为:
式中:aij代表第j个应力分 量等于1个单位时在i方向所引
x轴 y轴 z轴 x-y面 12 3 4 5
y-z面 6
有21个是独立的。
在y-z面引起的剪应变为:a51σx
在z-x面引起的剪应变为:a61σx
二、正交各向异性体
1、概念 (1)弹性对称面:在任意两个与某个面对称的方向上,材料的弹性相 同(弹性常数相同),那么,这个面就是对称面。 (2)弹性主向:垂直于弹性对称面的方向为弹性主向。 (3)正交各向异性体:弹性体中存在3个互相正交的弹性对称面,在各 个对称面的对称方向上,弹性相同,但在这3个弹性主向上的弹性并不相 同,这种物体称为正交异性体。
x a11 a12 a13 0 0 0 x
y
a12
a22
a12
0
0
0
y
由(4)式得:
z
xy
a013
a12 0
a11 0
0 a44
0 0
0 0
xzy
yz
0
0
0
0
a44
0
yz
zx 0 0 0 0 0 a66 zx
可见:在矩阵[A]中只剩下a11,a12,a13,a22,a44,a66六个常数项, 并且由弹性力学公式有:
z-x面
起的应变分量,如a31表示σx 则: σx 所引起的6个应变分量为: 等于一个单位时在z方向引起 在x轴引起的线应变为: a11σx
岩石工程特性主要指标
岩石工程特性主要指标岩石工程特性主要指标是用于描述和评价岩石在工程应用中的特性和性能的一系列指标。
这些指标可以用来评估岩石的强度、变形特性、稳定性以及在岩石工程设计和施工过程中的适用性。
以下是一些常见的岩石工程特性主要指标:1.岩石强度指标岩石的强度指标是衡量岩石抵抗外部荷载作用下破坏的能力。
常见的强度指标包括抗压强度、抗拉强度、抗剪强度等。
抗压强度是岩石最常用的强度指标之一,它表示岩石在垂直于作用方向的外部压力下能承受的最大应力。
抗拉强度是岩石抵抗拉伸作用的能力,常用于评估岩石的断裂性质。
抗剪强度是岩石抵抗剪切作用的能力,常用于评估岩石的稳定性。
2.岩石变形特性指标岩石的变形特性指标描述了岩石在受力作用下的变形行为。
常见的变形特性指标包括弹性模量、泊松比、抗弯刚度和岩石的变形模量。
弹性模量代表岩石在受力后恢复原状的能力。
泊松比表示岩石在受力过程中体积收缩的程度。
抗弯刚度是评估岩石抵抗弯曲变形的能力。
岩石的变形模量是描述岩石在受力作用下的变形程度的指标。
3.岩石稳定性指标岩石的稳定性指标是评估岩石在自重和外部荷载作用下的稳定性的能力。
常见的稳定性指标包括摩擦角、强度准则和岩石的排水能力。
摩擦角是用于描述岩石表面之间摩擦的指标,较大的摩擦角表示岩石结构稳定性更好。
强度准则是用于评估岩石破坏的标准,包括强度准则、稳定性准则和应力准则。
岩石的排水能力是指岩石在受水作用时的渗透性和排水性能。
4.岩石侵蚀特性指标岩石的侵蚀特性指标是用来描述岩石在风化、侵蚀、冻融循环等自然环境作用下的耐久性和稳定性。
常见的侵蚀特性指标包括岩石的吸水性、抗冻性和耐候性。
岩石的吸水性是描述岩石对水的渗透能力,抗冻性是评估岩石在冻融循环作用下的稳定性和耐久性。
岩石的耐候性是指岩石在大气、水分和化学作用下的稳定性和抗侵蚀性能。
综上所述,岩石工程特性主要指标包括岩石的强度指标、变形特性指标、稳定性指标和侵蚀特性指标。
这些指标是评估岩石适用性和在岩石工程设计和施工中的性能表现的重要依据。
岩土工程中的岩石力学特性
岩土工程中的岩石力学特性岩土工程中,岩石力学特性是指岩石在受力状态下的物理性质和变形特性。
岩石力学特性对于岩土工程设计和施工至关重要,它们可以直接影响岩土工程的稳定性和安全性。
本文将探讨岩土工程中的岩石力学特性,包括岩石的强度、变形性能以及岩石力学参数的测定方法。
一、岩石的强度特性岩石的强度特性是指岩石在受力作用下破坏的抵抗能力。
岩石强度特性的研究对于工程设计有重要的指导意义。
1. 抗拉强度岩石的抗拉强度是指岩石在拉应力作用下破坏的抵抗能力。
岩石的抗拉强度是岩石力学特性中最基本的参数之一。
测定岩石的抗拉强度可以采用试验方法,如拉伸试验等。
2. 抗压强度岩石的抗压强度是指岩石在压应力作用下破坏的抵抗能力。
岩石的抗压强度也是岩石力学特性中的重要参数。
测定岩石的抗压强度可以采用压缩试验等方法。
3. 剪切强度岩石的剪切强度是指岩石在切应力作用下破坏的抵抗能力。
岩石的剪切强度是岩石力学特性中的重要参数之一。
测定岩石的剪切强度可以采用剪切试验等方法。
二、岩石的变形性能岩石的变形性能是指岩石在受力作用下的变形特性。
岩石的变形性能对工程设计和施工有重要的影响。
1. 弹性模量岩石的弹性模量是指岩石在受力作用下线弹性的变形特性。
弹性模量是岩石力学参数中的重要指标之一,它反映了岩石的刚度和变形能力。
测定岩石的弹性模量可以采用弹性模量试验等方法。
2. 压缩模量岩石的压缩模量是指岩石在受力作用下的压缩变形能力。
压缩模量是岩石力学特性中的重要参数之一,它反映了岩石的抗压性能和变形能力。
3. 剪切模量岩石的剪切模量是指岩石在受力作用下的剪切变形特性。
剪切模量是岩石力学特性中的重要参数之一,它反映了岩石的抗剪切性和刚度。
三、测定岩石力学参数的方法测定岩石力学参数是岩土工程中的重要任务。
准确测定岩石力学参数可以为工程设计和施工提供可靠依据。
1. 实验室试验方法实验室试验是测定岩石力学参数最常用的方法之一。
常用的实验室试验方法包括拉伸试验、压缩试验、剪切试验等。
岩石变形特性的统计分析方法
岩石变形特性的统计分析方法一、引言岩石变形特性的统计分析方法是岩石力学领域中一项重要的研究工作。
通过对岩石变形特性进行准确分析,可以为工程建设和地质灾害预测提供可靠的依据。
本文将介绍几种常用的岩石变形特性统计分析方法,并说明它们的应用领域和优缺点。
二、变形指标的选择在进行岩石变形特性统计分析之前,首先需要选择合适的变形指标。
常见的岩石变形指标包括岩石的弹性模量、抗压强度、抗拉强度、剪切强度等等。
根据具体的研究对象和目的,选择适当的变形指标对于后续统计分析的准确性和实用性至关重要。
三、正态分布分析方法1. 原理正态分布分析方法是一种常用的统计分析方法,适用于岩石变形特性的数据分布近似正态分布的情况。
该方法通过计算样本均值和标准差,利用正态分布的特性来描述岩石变形特性的分布规律。
2. 应用领域正态分布分析方法主要应用于岩石的力学性质研究,如弹性模量、抗压强度等参数的统计分析。
通过分析岩石变形特性的正态分布情况,可以评估岩石力学性质的可靠性和稳定性。
3. 优缺点正态分布分析方法的优点在于简单易用,计算结果直观明了。
然而,该方法对数据的偏态和尾重敏感,当数据分布不满足正态性假设时,结果可能存在一定的偏差。
四、非参数统计分析方法1. 原理非参数统计分析方法是一种不依赖于数据分布特性的分析方法,适用于岩石变形特性的数据分布不满足正态分布的情况。
该方法通过排序、秩次差和秩次和等统计量,对岩石变形特性进行描述和分析。
2. 应用领域非参数统计分析方法主要应用于岩石的断裂韧度、岩石团聚力等非线性力学性质的研究。
通过对岩石变形特性的非参数统计分析,可以揭示岩石的非线性特性。
3. 优缺点非参数统计分析方法的优点在于对数据分布的假设要求较低,适用性较广。
然而,该方法在处理大样本数据时计算复杂度较高。
五、回归分析方法1. 原理回归分析方法是一种用于分析变量之间关系的统计方法,适用于岩石变形特性的多因素分析。
该方法通过建立数学模型,描述岩石变形特性与其他因素之间的关联程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
2、岩石变形模量的确定 、
当岩石受力后既有弹性变形又有塑性变形时, 用岩石的变形模量来表征总变形
σ σ E0 = = ε εe + ε p
22
3、 泊松比μ:岩石在单轴压缩条件下横向应变与纵向应变 、 泊松比μ 之比。 之比。
ε µ = ε
c2 a2
− ε − ε
c1 a1
13
围压对岩石变形的影响
14
三轴应力状态下大理岩的应力- 图 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 砂岩:孔隙较多,岩性较软, 增大, 辉长岩:致密坚硬, 增大,弹性模量几乎不变。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。
3
线弹性变形 弹性变形 变形 塑性变形 非线弹性变形
4
σ
σ
σs
o
ε
o
ε
理想弹性体
σ
σs
σ
理想弹塑性体
o
ε
o
dε dt
线性硬化弹塑性体
理想粘性体
5
一、岩石在单轴压缩状态下的力学特性
1、σ~ε曲线的基本形状
美国学者米勒将σ 美国学者米勒将σ~ε曲线分为6种。 曲线分为6
6
σ~ε曲线的基本形状
少裂隙、 少裂隙、 致密、坚硬、 致密、坚硬、少裂隙 岩性较软
9
2、刚性压力机与全应力-应变曲线及破坏后的性态 刚性压力机与全应力-
10
刚度K 指物体产生单位位移所需的外力。 刚度K:指物体产生单位位移所需的外力。
K= P u
弹性变形能W 弹性变形能W:
1 P2 W = Pu = 2 2K
式中: 式中: 物体的刚度, K——物体的刚度,kN/mm; 物体的刚度 kN/mm; 外力, p——外力,N; 外力 在外力作用下的位移。 u——在外力作用下的位移 。 在外力作用下的位移
第 二 章 岩石的基本物理力学性质
1
本章内容: 本章内容:
§2-1 岩石的基本物理性质 §2-2 岩石的变形特性 §2-3 岩石的强度特性 岩石的流变性(时效性、 §2-4 岩石的流变性(时效性、粘性 ) §2-5 影响岩石力学性质的因素 §2-6 岩石的强度理论
2
岩石的变形特性 §2-2 岩石的变形特性
较多裂隙、 较多裂隙、 致密、坚硬、 致密、坚硬、多裂隙 岩性较软
岩 石 应 力 应 变 曲 线
B c B
(1)0A段:微裂隙闭合阶段,微裂隙压密极限σA。 微裂隙闭合阶段,微裂隙压密极限σ 为弹性极限。 (2)AB段:近似直线,弹性阶段,σB 为弹性极限。 )AB段 近似直线,弹性阶段, (3)BC段:屈服阶段,σC为屈服极限。 )BC段 屈服阶段, 为屈服极限。 CD段 破坏阶段, 为强度极限,即单轴抗压强度。 ( 4 ) CD 段 : 破坏阶段 ,σD 为强度极限, 即单轴抗压强度。 (5)DE段:即破坏后阶段,σE为残余强度。 DE段 即破坏后阶段,σ 为残余强度。
12
二、三轴压缩状态下的岩石变形特性 1、岩石在常规三轴(假三轴)试验条件下的变形特性 岩石在常规三轴(假三轴)
岩石在常规三轴试验 条件下的变形特征通常用轴 向应变ε 与主应力差( 向应变 ε1 与主应力差 ( σ2的关系曲线表示。 σ3)的关系曲线表示。 真三轴: 真三轴: σ1>σ2>σ3 假三轴: 假三轴:σ1>σ2=σ3 (常规三轴) 常规三轴)
四、岩石变形特性参数的测定
1、弹性模量E的确定 、弹性模量 的确定 a、线弹性类岩石――σ ~ε 曲线呈线性关系, 曲线上任 、 线弹性类岩石――σ ――σ~ 曲线呈线性关系, 一点P的弹性模量E 一点 的弹性模量E: 的弹性模量
σ E= ε
19
b
σ~ε曲线呈非线性关系
初 始 模 量 : E 初= 始模
弹性: 物体在外力作用下发生变形, 弹性:指物体在外力作用下发生变形,当外力撤出后变形 能够恢复的性质。 立即恢复其原有形状和尺寸) 能够恢复的性质。(立即恢复其原有形状和尺寸) 塑性:指物体在外力作用下发生变形, 塑性:指物体在外力作用下发生变形,当外力撤出后变形 不能完全恢复原状的性质。 不能完全恢复原状的性质。 脆性:物体在外力作用下变形很小时就发生破坏的性质。 脆性:物体在外力作用下变形很小时就发生破坏的性质。 延性: 延性:物体能够承受较大的塑性变形而不丧失其承载能力 的性质。 的性质。 粘性(流变性) 物体受力后变形不能在瞬间完成, 粘性(流变性):物体受力后变形不能在瞬间完成,且应 变速度(dε/dt)随应力大小而变化的性质。 变速度(dε/dt)随应力大小而变化的性质。
dσ dε
ε =0
切线模量(直线段): 切线模量(直线段)
σ a 2 − σ a1 E 切= ε a 2 − ε a1
σ 割线模量: 割线模量: E 割 = ε
工程上常用E 工程
初始模量反映了岩石中微裂隙的多少
切线模量反映了岩石的弹性变形特征
割线模量反映了岩石的总体变形特征。 割线模量反映了岩石的总体变形特征。
15
围压对岩石强度的影响
16
三轴应力状态下大理岩的应力- 图 三轴应力状态下大理岩的应力-应变曲线
17
2、岩石在真三轴试验条件下的变形特性
岩石的真三轴试验在20世纪60年代才开始的 岩石的真三轴试验在20世纪60年代才开始的。 20世纪60年代才开始的。
常数, 极限应力σ 增大而增大, (a)σ3=常数, 极限应力σ1 随σ2增大而增大,但破坏前的塑性变 形量却减小;破坏形式从延性向脆性变化; 形量却减小;破坏形式从延性向脆性变化; 常数, 极限应力σ 增大而增大, (b)σ2=常数, 极限应力σ1 随σ3增大而增大,破坏前的塑性变形 量增大,但屈服极限未变。破坏形式从脆性向延性变化。 量增大,但屈服极限未变。破坏形式从脆性向延性变化。