2019-2020学年高中数学苏教版必修4教案:第一章 三角函数 第4课时 1.1任意角的三角函数(2)
苏教版高中数学必修4教学案:第一章三角函数第4课时 任意角的三角函数(2)
第4课时 任意角的三角函数(2)【学习目标】1、掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义2、会用三角函数线表示任意角三角函数的值3、掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号【学习重点、难点】会用三角函数线表示任意角三角函数的值【自主学习】一、复习回顾1.单位圆的概念:在平面直角坐标系中,以________为圆心,以_______为半径的圆。
2.有向线段的概念:把规定了正方向的直线称为___________________;规定了___________(即规定了起点和终点)的线段称为有向线段。
3.有向线段的数量:若有向线段AB 在有向直线l 上或与有向直线l _____________,根据有向线段AB 与有向直线l 的方向_____________或_____________,分别把它的长度添上______或_______,这样所得的__________叫做有向线段的数量。
4.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交于点(,)P x y ,过点P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与α的终边(当α为第_______象限角时)或其反向延长线(当α为第______象限角时)相交于点T 。
根据三角函数的定义:sin y α==________;cos x α==_______;tan y xα==__________。
【典型例题】例1.作出下列各角的正弦线、余弦线、正切线:()31π()π652()π323-()64π-例2.利用三角函数线比较大小 () 30sin 1______ 150sin : () 25sin 2______ 150sin : ()π32cos 3______π54cos ; ()π32tan 4______π32tan例3.解下列三角方程()23sin 1=x ()21cos 2=x ()1tan 3=x变题1.解下列三角不等式()23sin 1>x ()21cos 2≤x ()1tan 3>x变题2.求函数()x x y cos 211sin 2lg ++-=的定义域.【巩固练习】1.作出下列各角的正弦线、余弦线、正切线 ()π6111-()π3222.利用余弦线比较cos 64,cos 285的大小;3.若42ππθ<<,则比较sin θ、cos θ、tan θ的大小;4.分别根据下列条件,写出角θ的取值范围:(1)cos θ<; (2)tan 1θ>- ; (3)sin θ>5.当角α,β满足什么条件时,有βαsin sin =6.若cos θ<,sin θ>,写出角θ的取值范围。
高中数学必修4第一章三角函数完整教案
高中数学必修4第一章三角函数完整教案4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。
三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。
旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
o师:在体操比赛中我们经常听到这样的术语:“转体720” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300. 师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。
本节课将在已掌握角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.2.角的概念的推广:(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角α。
2019-2020年高中数学第1章三角函数4任意角的三角函数(2)教学案(无答案)苏教版必修4
2019-2020年高中数学第1章三角函数4任意角的三角函数(2)教学案(无答案)苏教版必修4目标要求1.理解单位圆中的三角函数线;2.能利用单位圆中的三角函数线探究三角函数的有关问题.重点与难点重点:会用三角函数线解简单的三角方程与三角不等式.难点:理解三角函数线的意义.教学过程:一、问题情境在前面的学习中,我们知道,角α的三角函数值与角的终边上的点P(x, y)的位置是无关的,那么我们就可以在角的终边上取一些特殊的点,让问题研究变得简单些.二、数学建构1、有向线段:有向直线:有向线段的数量:2、作出角的正弦线、余弦线、正切线特殊情况:3、根据单位圆中的三角函数线,探究:(1)正弦函数、余弦函数、正切函数的值域;(2)正弦函数、余弦函数在区间上的单调性;(3)正切函数在区间上的单调性.三、典例剖析例1 作出下列各角的正弦线,余弦线,正切线.(1);(2);(3)例2 利用单位圆,求使下列等式成立的的集合:(1),;(2),;(3).例3 利用单位圆,求使下列不等式成立的的范围:(1); (2) ;(3)例4 若,试比较的大小.四、巩固练习:1、若的正弦线与余弦线的长度相等,且符号相同,那么的值为.2、已知,用不等号填空:(1);(2).3、利用单位圆写出符合下列条件的角(1)若,则;(2)若,则.五、课堂小结1. 单位圆的概念,有向线段、有向直线的定义,正弦线、余弦线、正切线的定义.三角函数线都是一些特殊的有向线段,一是其与坐标轴平行(或重合),二是其与单位圆有关,这些线段分别都可以表示相应三角函数的值,它们是三角函数的几何表示.2. 应用单位圆中的三角函数线,解决了一些与三角函数有关的问题,如比较三角函数值的大小,求角或角的范围.这里,关键在于要学会用数形结合的思想来解决问题,同时,也是培养学生数形结合意识的好机会.江苏省泰兴中学高一数学作业(40)班级姓名得分1、若角的终边在直线上,则等于.2、在上满足的的取值范围是.3、利用正弦线比较的大小:.4、若,试比较与的大小:.5、已知,且,则角的集合为_________________.6、若,则的取值范围为_________________.7、利用单位圆,求使下列等式成立的的范围:(1);(2);(3)8、利用单位圆,求使下列不等式成立的的范围:(1)(2)。
2019-2020年高中数学 1.3.4《三角函数的应用》教案 苏教版必修4
2019-2020年高中数学 1.3.4《三角函数的应用》教案苏教版必修4一、教学目标:1.掌握用待定系数法求三角函数解析式的方法;2.培养学生用已有的知识解决实际问题的能力;3.能用计算机处理有关的近似计算问题.二、重点难点:重点是待定系数法求三角函数解析式;难点是选择合理数学模型解决实际问题.三、教学过程:【创设情境】三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.【自主学习探索研究】1.学生自学完成P42例1点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;(2)求该物体在t=5s时的位置.(教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)2.讲解p43例2(题目加已改变)2.讲析P44例3海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?(3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题:(1)选择怎样的数学模型反映该实际问题?(2)图表中的最大值与三角函数的哪个量有关?(3)函数的周期为多少?(4)“吃水深度”对应函数中的哪个字母?3.学生完成课本P45的练习1,3并评析.【提炼总结】从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.四、布置作业:P46 习题1.3第14、15题2019-2020年高中数学 1.3.4三角函数的应用练习(含解析)苏教版必修4情景:如图,某大风车的半径为2 m,每12 s旋转一周,它的最低点O离地面0.5 m,风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m).思考:你能求出函数h=f(t)的关系式吗?你能画出它的图象吗?1.已知函数类型求解析式的方法是________.答案:待定系数法2.在y=A sin(ωx+φ)的解析式确定中最关键是确定________,可通过________来确定.答案:ω周期3.三角函数平移变换改变图象的________,伸缩变换改变图象的________.答案:位置形状4.函数y =f (x )与y =f (|x |)图象关系是___________________________________________________________ __________________________________________________________.答案:y =f (x )在y 轴右侧的图象关于y 轴对称的图象,连同y =f (x )在y 轴右侧的图象在一起,即是y =f (|x |)的图象(也包括与y 轴的交点)5.函数y =f (x )与y =|f (x )|图象关系是___________________________________________________________ __________________________________________________________.答案:y =f (x )在x 轴下方的图象关于x 轴对称的图象,连同y =f (x )在x 轴上方的图象在一起,即是y =|f (x )|的图象(包括图象与x 轴交点)6.三角函数可以作为描述现实世界中________现象的一种数学模型. 答案:周期7.y =|sin x |是以________为周期的波浪型曲线. 答案:π8.在三角函数f (x )=A sin(ωx +φ)+b ,(A >0,ω>0)中,f (x )的最大值为M ,最小值为m ,则A =________,b =________,周期T =________,φ的值要利用________求得.答案:M -m 2M +m 2 2πω代点法9.用数学知识研究生活中的数学问题,应首先采集________,然后根据数据作出________,通过计算归纳函数关系式,再去研究它的性质,解决实际问题时最容易忽视的是__________________________________________________________.答案:数据 分析 实际问题中自变量的取值范围10.解三角函数的应用问题的基本步骤是________________________________________________________、 ______________、______________.答案:阅读理解,审清题意 收集整理数据,建立数学模型依据模型解答,求出结果 将所得结果转化成实际问题三角函数模型的应用三角函数的应用主要是其性质的应用,特别是三角函数周期性的应用,一些物理现象如单摆、匀速圆周运动等均用到三角函数的知识.建模的一般步骤数学应用题一般文字叙述较长,反映的事件背景新颖,知识涉及面广,这就要求有较强的阅读理解能力、捕捉信息的能力、归纳抽象的能力.解决此类函数应用题的基本步骤是:第一步,阅读理解,审清题意,读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题.第二步,根据所给模型,列出函数关系式.根据已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步,利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果.第四步,再将所得结论转译成原有问题的解答.基础巩固1.如果音叉发出的声波可用f(x)=0.002sin 520πt描述,那么音叉声波的频率是________.答案:2602.已知函数y =2sin ωx (ω>0)的图象与直线y +2=0的相邻两个公共点之间的距离为2π3,则ω的值为________. 答案:33.y =|sin 2x |的最小正周期是________. 答案:π24.下图是函数y =2sin(ωx +φ)⎝⎛⎭⎪⎫|φ|<π2的图象,则ω=________,φ=________.答案:2 π65.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针从P 0(注此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为________.答案:y =sin ⎝ ⎛⎭⎪⎫-π30t +π66.若函数f (x )=A sin(ωx +φ)(A >0,ω>0)的初相为π4,且f (x )的图象过点P ⎝ ⎛⎭⎪⎫π3,A ,则函数f (x )的最小正周期的最大值为________.答案:8π37.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解析:(1)因为f (t )=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝⎛⎭⎪⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.能力升级8.关于x 的方程sin ωx =cos ωx 在区间⎣⎢⎡⎦⎥⎤b ,b +πω上解的个数判断正确的是( )A .只有一个解B .至少有一个解C .至少有两个解D .不一定有解解析:本题考查y =A sin(ωx +φ)与y =A cos(ωx +φ)的图象.由于y =sin ωx 与y =cos ωx 的周期是2πω,而区间⎣⎢⎡⎦⎥⎤b ,b +πω是半个周期的长度.y =sin ωx 与y =cos ωx在半个周期内至少有一个交点,最多有两个交点.∴sin ωx =cos ωx 在⎣⎢⎡⎦⎥⎤b ,πω+b 内至少有一个解.答案:B9.方程sin x =k 在⎣⎢⎡⎦⎥⎤π6,π上有两个不同解,则实数k 的取值范围是________.解析:作出y =sin x 和y =k 在⎣⎢⎡⎦⎥⎤π6,π上的图象,若两图象有两个交点,数形结合知12≤k <1.答案:⎣⎢⎡⎭⎪⎫12,110.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.解析:y =f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].在同一平面直角坐标系内画y =f (x )与y =k 的图象,如图.由图可知,当y =f (x )与y =k 的图象有且仅有两个不同交点时,k 的取值范围为1<k <3.答案:(1,3)11.试结合图象判断方程sin x =lg x 的实根的个数.解析:在同一平面直角坐标系中作出函数y =sin x 与函数y =lg x 的图象,如图所示,要求方程sin x =lg x 的实根个数,只需求函数y =sin x 与函数y =lg x 的图象的交点个数.由于函数y =lg x 的定义域为(0,+∞),且x >10时有y >1,所以交点只可能在区间(0,10)内.从图象可以看出,这时它们有3个交点,即方程sin x =lg x 有3个实根.12.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,∴A 可排除;∵当x =2时,y =2sin 2>2,∴D 可排除;又∵当x =π6时,y =π6sinπ6=π3>1,∴B 可排除.故选C.答案:C13.如下图所示,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动,求点P 的纵坐标y 关于时间t 的函数关系,并求点的运动周期和频率.答案:y =r sin(ωt +φ)(t ≥0),T =2πω,f =ω2π14.下图为一个观览车示意图,该观览车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ度角到OB ,设B 点与地面距离为h .(1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒到达OB ,求h 与t 间的函数解析式.解析:(1)如图,过点O 作地面的平行线ON ,过点B 作ON 的垂线BM 交ON 于点M .当θ>π2时,∠BOM =θ-π2.h =|OA |+0.8+|BM |=5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2.当0≤θ≤π2时,上述关系式也适合. ∴h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2)点A 在⊙O 上逆时针运动的角速度是π30rad/s. ∴t 秒转过的弧度数为π30t . ∴h =4.8sin ⎝ ⎛⎭⎪⎫π30t -π2+5.6,t ∈[0,+∞).15.据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月呈f (x )=A sin(ωx +φ)+B 的模型波动(x 为月份),已知3月份达到最高价为8千元,7月份达到最低价为4千元,该商品每件的售价为g (x )(x 为月份),且满足g (x )=f (x -2)+2.(1)分别写出该商品每件的出厂价函数f (x ),售价函数g (x )的解析式;(2)问哪几个月能盈利?解析:(1)f (x )=A sin(ωx +φ)+B ,由题意,可得A =2,B =6,ω=π4,φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6,1≤x ≤12且x ∈N *, g (x )=2sin ⎝ ⎛⎭⎪⎫π4x -34π+8,1≤x ≤12且x ∈N *. (2)由g (x )>f (x ),得sin π4x <22. 2k π+34π<π4x <2k π+94π,k ∈Z , ∴8k +3<x <8k +9,k ∈Z.∵1≤x ≤12,k ∈Z ,∴当k =0时,3<x <9.∴x =4,5,6,7,8.当k =1时,11<x <17,∴x =12.∴x =4,5,6,7,8,12,故4,5,6,7,8,12月份能盈利.16.以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元;而该商品在商店的销售价格是在8元基础上按月份随正弦曲线波动的,并已知5月份销售价格最高为10元,9月份销售价最低为6元.假设某商店每月购进这种商品m 件且当月能售完,请估计哪个月盈利最大,并说明理由.解析:设x 为月份,则由条件可得出厂价格函数为y 1=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6,x ∈[1,12]且x ∈N *, 销售价格函数为y 2=2sin ⎝⎛⎭⎪⎫π4x -3π4+8, 则利润函数 y =m (y 2-y 1)=m ⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫π4x -3π4+8-2sin ⎝ ⎛⎭⎪⎫π4x -π4-6 =m ⎝⎛⎭⎪⎫2-22sin π4x , 所以,当x =6时,y =(2+22)m ,即6月份盈利最大.。
2019-2020年高中数学任意角的三角函数教案苏教版必修4
2019-2020年高中数学任意角的三角函数教案苏教版必修4一、教学目标的确定知识目标:理解任意角三角函数(正弦、余弦、正切)的定义;会利用定义求三角函数值。
能力目标:培养学生勇于探索发现问题的科学精神、严谨的数学思维和良好的语言表达能力。
情感目标:引导学生探索知识,让学生体验学习过程的乐趣。
二、教学的重点和难点重点:任意角三角函数的定义难点:用单位圆上点的坐标刻画三角函数。
学生熟悉的函数y=f(x)是实数到实数的对应,而这里给出的函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就会给学生的理解造成一定的困难。
三、教学基本流程锐角三角函数的定义(在直角三角形中定义)→在直角坐标系中利用终边上的点的坐标定义→任意角三角函数定义→定义的应用→课时小结六、附例题和练习书P14例1:书P14例2:练习:书P15练习第1题,第2题,第3题,第4题,第5题2019-2020年高中数学任意角的三角函数(1)教案新人教A版知识目标: 1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标:(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.授课类型:新授课教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b asinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
高中数学 第一章 三角函数学案 苏教版必修4
第一章三角函数学案1.三角函数的概念重点掌握以下两方面内容:①理解任意角的概念和弧度的意义,能正确迅速进行弧度与角度的换算.②掌握任意的角α的正弦、余弦和正切的定义,能正确快速利用三角函数值在各个象限的符号解题,能求三角函数的定义域和一些简单三角函数的值域.2.同角三角函数的基本关系式能用同角三角函数的基本关系式进行化简、求值和三角恒等式的证明;能逆用公式sin2α+cos2α=1巧妙解题.3.诱导公式能用公式一至公式六将任意角的三角函数化为锐角三角函数,利用“奇变偶不变,符号看象限”牢记所有诱导公式.善于将同角三角函数的基本关系式和诱导公式结合起来使用,通过这些公式进行化简、求值,达到培养推理运算能力和逻辑思维能力提高的目的.4.三角函数的图象与性质函数y=sin x y=cos x y=tan x图象定义域R R (kπ-π2,kπ+π2)(k∈Z)值域[-1,1][-1,1](-∞,+∞)最值x=2kπ+π2(k∈Z)时,y max=1;x=2kπ-π2(k∈Z)时,y min=-1x=2kπ(k∈Z)时,y max=1;x=2kπ+π(k∈Z)时,y min=-1无最大、最小值周期性周期T=2kπ(k∈Z)周期T=2kπ(k∈Z)周期T=kπ(k∈Z)奇偶性奇函数偶函数奇函数单调性在2kπ-π2,2kπ+π2(k∈Z)上是增函数;在2kπ+π2,2kπ+3π2(k∈Z)上是减函数在[2kπ-π,2kπ](k∈Z)上是增函数;在[2kπ,2kπ+π](k∈Z)上是减函数在(kπ-π2,kπ+π2)(k∈Z)上是增函数对称性轴对称图形,对称轴方程是x=kπ+π2,k∈Z;轴对称图形,对称轴方程是x=kπ,k∈Z;中心对称图形,对称中心对称图形,对称中心⎝⎛⎭⎪⎫kπ2,0(k∈Z)中心对称图形,对称中心(k π,0)(k ∈Z )中心(k π+π2,0)(k ∈Z )5.三角函数的图象与性质的应用(1)重点掌握“五点法”,会进行三角函数图象的变换,能从图象中获取尽可能多的信息,如周期、半个周期、四分之一个周期等,如轴对称、中心对称等,如最高点、最低点与对称中心之间位置关系等.能从三角函数的图象归纳出函数的性质.(2)牢固掌握三角函数的定义域、值域、周期性、单调性、奇偶性和对称性.在运用三角函数性质解题时,要善于运用数形结合思想、分类讨论思想、化归转化思想将综合性较强的试题完整准确地进行解答.题型一 任意角的三角函数的定义及三角函数线掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数的定义求三角函数值,利用三角函数线判断三角函数的符号,借助三角函数线求与三角函数有关的定义域. 例1 求函数y =sin x + cos x -12的定义域.解 由题意知 ⎩⎪⎨⎪⎧ sin x ≥0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x ≥0,cos x ≥12,如图,结合三角函数线知:⎩⎪⎨⎪⎧2k π≤x ≤2k π+πk ∈Z ,2k π-π3≤x ≤2k π+π3k ∈Z ,解得2k π≤x ≤2k π+π3(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π≤x ≤2k π+π3,k ∈Z . 跟踪演练1 设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值. 解 (1)由1-2sin x ≥0,根据正弦函数图象知: 定义域为{x |2k π+56π≤x ≤2k π+13π6,k ∈Z }.(2)∵-1≤sin x ≤1, ∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0, ∴0≤1-2sin x ≤3, ∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.题型二 同角三角函数的关系式及诱导公式(1)牢记两个基本关系式sin 2 α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.在应用中,要注意掌握解题的技巧,同时要体会数学思想方法,如数形结合思想、分类讨论思想、转化与化归思想及函数与方程思想的应用. (2)诱导公式可概括为k ·π2±α(k ∈Z )的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的异名函数(即正余互变);若是偶数倍,则函数名称不变.符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.例2 已知2+tan θ-π1+tan 2π-θ=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.解 方法一 由已知2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ),解得tan θ=2. ∴(sin θ-3cos θ)(cos θ-sin θ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2 θ+cos 2θ=4tan θ-tan 2θ-3tan 2θ+1=8-4-34+1=15. 方法二 由已知2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ. ∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos 2θ=cos 2θsin 2 θ+cos 2θ=1tan 2θ+1=15. 跟踪演练2 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2 α-sin 2α用tan α表示出来,并求其值. 解 (1)方法一 联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2 α+cos 2 α=1, ②由①得cos α=15-sin α,将其代入②,整理得25sin 2 α-5sin α-12=0.∵α是三角形内角,∴sin α>0,∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.方法二 ∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0, ∴sin α-cos α=75,由⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=75,得⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α =tan 2α+11-tan 2α, ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. 题型三 三角函数的图象及变换三角函数的图象是研究三角函数性质的基础,又是三角函数性质的具体体现.在平时的考查中,主要体现在三角函数图象的变换和解析式的确定,以及通过对图象的描绘、观察来讨论函数的有关性质.具体要求:(1)用“五点法”作y =A sin (ωx +φ)的图象时,确定五个关键点的方法是分别令ωx +φ=0,π2,π,3π2,2π.(2)对于y =A sin (ωx +φ)+b 的图象变换,应注意先“平移”后“伸缩”与先“伸缩”后“平移”的区别.(3)由已知函数图象求函数y =A sin (ωx +φ)(A >0,ω>0)的解析式时,常用的解题方法是待定系数法,由图中的最大值或最小值确定A ,由周期确定ω,由适合解析式的点的坐标来确定φ,但由图象求得的y =A sin (ωx +φ)(A >0,ω>0)的解析式一般不是唯一的,只有限定φ的取值范围,才能得出唯一的解,否则φ的值不确定,解析式也就不唯一. 例3 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)在一个周期内的图象如图.(1)求y =f (x )的解析式;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,求y =g (x )的解析式.解 (1)由题意,知A =2,T =7-(-1)=8,故ω=2πT =π4.∵图象过点(-1,0),∴-π4+φ=0.∴φ=π4.∴所求的函数解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4.(2)∵g (x )与f (x )的图象关于直线x =2对称,∴g (x )的图象是由f (x )沿x 轴平移得到的,找出f (x )上的点(1,2)关于直线x =2的对称点(3,2),代入g (x )=2sin ⎝⎛⎭⎪⎫π4x +θ得θ=-π4,∴g (x )的解析式为g (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4.跟踪演练3 若0<x <π2,则2x 与πsin x 的大小关系是________.①2x >πsin x ;②2x <πsin x ;③2x =πsin x ;④与x 的取值有关. 答案 ②解析 在同一坐标平面内作出函数y =2x 与函数y =πsin x 的图象,如图所示.观察图象易知:当x =0时,2x =πsin x =0;当x =π2时,2x =πsin x =π; 当x ∈⎝⎛⎭⎪⎫0,π2时,函数y =2x 是直线段,而曲线y =πsin x 是上凸的.所以2x <πsin x .题型四 三角函数的性质三角函数的性质,重点应掌握y =sin x ,y =cos x ,y =tan x 的定义域、值域、单调性、奇偶性、对称性等有关性质,在此基础上掌握函数y =A sin(ωx +φ),y =A cos(ωx +φ)及y =A tan(ωx +φ)的相关性质.在研究其相关性质时,将ωx +φ看成一个整体,利用整体代换思想解题是常见的技巧.例4 已知f (x )是定义在R 上的偶函数,对任意实数x 满足f (x +2)=f (x ),且f (x )在[-3,-2]上单调递减,而α,β是锐角三角形的两个内角,求证:f (sin α)>f (cos β). 证明 ∵f (x +2)=f (x ),∴y =f (x )的周期为2. ∴f (x )在[-1,0]与[-3,-2]上的单调性相同. ∴f (x )在[-1,0]上单调递减.∵f (x )是偶函数, ∴f (x )在[0,1]上的单调性与[-1,0]上的单调性相反.∴f (x )在[0,1]上单调递增.① ∵α,β是锐角三角形的两个内角, ∴α+β>π2,∴α>π2-β,且α∈⎝ ⎛⎭⎪⎫0,π2,π2-β∈⎝⎛⎭⎪⎫0,π2.又∵y =sin x 在⎝⎛⎭⎪⎫0,π2上单调递增, ∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,即sin α>cos β.②由①②,得f (sin α)>f (cos β).跟踪演练 4 已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5. (2)由(1)得a =2,b =-5, ∴f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎭⎪⎫k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .三角函数的性质是本章复习的重点,在复习时,要充分利用数形结合思想把图象与性质结合起来,即利用图象的直观性得到函数的性质,或由单位圆中三角函数线表示的三角函数值来获得函数的性质,同时也能利用函数的性质来描述函数的图象,这样既有利于掌握函数的图象与性质,又能熟练运用数形结合的思想方法.。
2019-2020年高中数学 第1章《三角函数》教案 苏教版必修4
2019-2020年高中数学 第1章《三角函数》教案 苏教版必修4一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:(3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式: 扇形面积公式: 3.任意角的三角函数yxx y x rr x y rr y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一)诱导公式:与的三角函数关系是“立变平不变,符号看象限”。
如:等。
(二)同角三角函数的基本关系式: ①平方关系;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系;③倒数关系;1sec cos ;1csc sin ==αααα。
关于公式的深化;;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;注:1、诱导公式的主要作用是将任意角的三角函数转化为~角的三角函数。
2、主要用途:a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 三、三角函数的性质y=sinxy=cosxy=tanxy=cotx图象定义域 x ∈R x ∈R x ≠k π+(k ∈Z )x ≠k π(k ∈Z )值域 y ∈[-1,1] y ∈[-1,1] y ∈R y ∈R 奇偶性 奇函数偶函数奇函数奇函数单调性 在区间[2k π-,2k π+]上都是增函数 在区间[2k π+, 2k π+]上都是减函数 在区间[2k π-2k π]上都是增函数 在区间[2k π,2k π+π]上都是减函数在每一个开区间(k π-, k π+)内都是增函数在每一个开区间(k π,k π+π)内都是减函数周期 T=2π T=2π T=π T=π 对称轴 无 无 对称 中心基础题型归类1.运用诱导公式化简与求值:要求:掌握,,,,,等诱导公式. 记忆口诀:奇变偶不变,符号看象限. 例1.求值:练1 (1)若cos(π+α)=,<α<2π, 则sin(2π-α)等于 . (2)若,那么的值为 . (3)(π)的值为 .2.运用同角关系化简与求值:要求:掌握同角二式(,),并能灵活运用. 方法:平方法、切弦互化. 例2 (1)化简sin 1sin tan tan sin cos x xx x x x+--; (2)已知, 且, 求的值. 练2 (1)已知,且<α<,则的值为 .(2)已知=3, 计算:(i ); (ii )αααα22cos 4cos sin 3sin +-.3.运用单位圆及三角函数线:要求:掌握三角函数线,利用它解简单的三角方程与三角不等式. 方法:数形结合.例5 (1)已知,则、、的大小顺序为 . (2)函数的定义域为 .练5 (1)若, 则角α的取值集合为____________.(2)在区间(0,2)内,使成立的的取值范围 . 4.弧度制与扇形弧长、面积公式:要求:掌握扇形的弧长与面积计算公式,掌握弧度制. 方法:方程思想.例6 某扇形的面积为1,它的周长为4,那么该扇形圆心角的弧度数为 .练6 (1)终边在直线上的所有角的集合为 ,其中在-2π~2π间的角有 . (2)若α为第三象限角,那么-α,、2α为第几象限的角? 5.三角函数的定义、定义域与值域:要求:掌握三角函数定义(单位圆、终边上点),能求定义域与值域. 方法:定义法、数形结合、整体.例7角α的终边过点P (-8m ,-6cos60°)且cos α=-,则m 的值是 . 练7 (1)函数的定义域为____________.(2)把函数的图像上各点的横坐标变为原来的,再把所得图像向右平移,得到 . 6.三角函数的图象与性质:要求:掌握五点法作图、给图求式,由图象研究性质. 方法:五点法、待定系数法、数形结合、整体.例8 (1)已知函数.求的最小正周期、定义域、单调区间.(2)已知函数. (i )求此函数的周期,用“五点法”作出其在长度为一个周期的闭区间上的简图. (ii )求此函数的最小值及取最小值时相应的值的集合练8 (1)函数sin()(0,0,)y A x A ωϕωϕπ=+>><最高点的坐标是,由最高点运动到相邻的最低点时,函数图象与轴的交点坐标是(4,0),则函数的表达式是 .(2)如图,它表示电流sin()(0,0)I A t A ωϕω=+>>在一个周期内的图象. 则其解析式为 .(3)函数的单调减区间为 .(4)函数的图象和直线y =2所围成的封闭图形的面积为 . (5)画出函数,∈R 的简图. 并有图象研究单调区间、对称轴、对称中心. 7.三角函数的应用(1)某港口水深(米)是时间(0≤≤24,单位:小时)函数,记为,下面是某日水深数据: t (时) 0 3 6 9 12 15 18 21 24 y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 经过长期观察,的曲线可以近似看成y=Asint+b 的图象. (i )根据以上数据求出的近似表达式; (ii )船底离海底5米或者5米以上是安全的,某船的吃水深度为6.5米(船底离水面距离),如果此船在凌晨4点进港,希望在同一天安全出港,那么此船最多在港口停留多少时间?(忽略进出时间).(2)如图,表示电流强度I 与时间的关系式sin()(0,0),I A t A ωϕω=+>>在一个周期内的图象.根据图象得到的一个解析式是 .(3)已知某海滨浴场的海浪高度(米)是时间(0≤t≤24,单位:小时)的函数,经过长期的观察,该函数的图象可以近似地看成. 下表是测得的某日各时的浪高数据:浪高不低于1米时浴场才开放,试安排白天内开放浴场的具体时间段..。
(新课程)高中数学 第1章《三角函数》教案 苏教版必修4
三角函数一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式:r l ⋅=α 扇形面积公式:22121r lr S α== 3.任意角的三角函数yxx y x rr x y r r y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一)诱导公式:α-απ- απ+ απ-2απ-2απ+2απ-23 απ+23 αsinαcos αtanαπ±⋅2k )(Z k ∈与α的三角函数关系是“立变平不变,符号看象限”。
如:,27cos ⎪⎭⎫ ⎝⎛+απ ()⎪⎭⎫⎝⎛--απαπ25sin ;5tan 等。
(二)同角三角函数的基本关系式: ①平方关系1cos sin 22=+αα;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系αααtan cos sin =;αααcot sin cos = yxP(x,y)r22>+=y x r 0y全++++sinα和cscαtanα和cotαcosα和secα③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。
关于公式1cos sin 22=+αα的深化()2cos sin sin 1ααα±=±;αααcos sin sin 1±=±;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
数学苏教版必修4教学设计:第1章三角函数 Word版含解析
教学设计本章复习整体设计知识网络1.任意角的概念是本章的基础,推广了角,扩大了研究的范围.在此基础上,为了计算中的简单,引入了两种度量制度:角度制与弧度制,但是其本质是一样的.其最基本的一个应用就是简化了弧长与扇形面积公式.同时也为定义任意角的三角函数作了前期工作,也就得到了本章的核心问题——任意角的三角函数定义.从这个核心出发,分成四条路线走,研究最基本的比例,就可以得到同角三角函数的基本关系式,同时根据定义就可以推导出诱导公式.知道了核心的本质意义在坐标系里面,可以定义点的坐标,为推导第三章和角公式作了应有的准备.而和角公式的两个特殊方面只是本身的一个推广,由此就得来了复杂多变的三角函数公式,而这些复杂的公式(第三章的倍角公式,差角公式)的本质又是和角公式.抛开比例的式子,应用弧度制的度量作为基础,就有了三角函数的图象和性质,这是三角与函数结合的产物,既有函数的特征,因此可以用函数的知识来解,又具有三角的特性,因此还可以用这一特点进行一些特殊的运算.所有的推导可以应用在计算与化简、证明恒等式上.2.数学的魅力在于系统、严密,学习的兴趣在于环环相扣.本章最为理想的复习方法就是引导学生打通本章中的这张知识网络图,这是进行具体问题具体分析的理论依据,也是解决问题最基本的方法.教师指导学生步步为营,将其引入数学王国,畅游科学殿堂.《三角函数》一章知识网络图三维目标1.通过全章复习,让学生切实掌握三角函数的基本性质,会判定三角函数的奇偶性,确定单调区间及求周期的方法.熟练掌握同角三角函数的基本关系式及六组诱导公式,弄清公式的推导关系和互相联系,让学生做到记准、用熟.2.要求学生会用“五点法”作正、余弦函数的简图,掌握应用基本三角变换公式的求值、化简、证明.3.本章的最终目标是让学生熟练掌握三角函数基础知识、基本技能、基本运算能力,以及数形结合思想、转化与化规思想,激发学生学习兴趣,培养他们善于总结、善于合作、善于创新以及应用数学解决实际问题的能力.重点难点教学重点:三角函数的定义,诱导公式,以及三角函数的图象与性质.教学难点:三角恒等变形及三角函数的图象与性质的综合运用.课时安排1课时教学过程导入新课思路1.(复习导入)了解一下全章的知识网络结构,并回顾思考本章学习了哪些具体内容:首先,我们给出了三角函数的定义,包括任意角的三角函数的符号,同角三角函数的关系式,诱导公式.又共同学习了正弦函数、余弦函数、正切函数的图象和性质.接下来,我们又共同探讨了它们的应用,并能运用上述公式和性质进行三角函数式的化简、求值、证明以及它们的综合运用.由此展开全章的系统复习.思路2.(问题导入)你现在已经会求任意角的三角函数值,会画三角函数的图象,会用三角函数模型来解释现实生活中具有周期性变换规律的一些现象.你是如何学习到这些知识的?又是如何提高自己能力的?由此引导学生回顾全章知识的形成过程,进而展开全面复习.推进新课知识巩固①我们是怎样推广任意角的?又是怎样得到任意角的三角函数定义的?②本章学习了哪些同角三角函数的基本关系式?怎样推导的?③本章都学习了哪些诱导公式?各有什么用途?怎样记忆?④你是如何得到正弦曲线、余弦曲线和正切曲线的?⑤你能从图象上说出三角函数的哪些性质?活动:问题①,为了使学生了解知识的形成顺序与过程,教师可引导学生回忆从前的学习情景,让学生感悟数学是在什么样的背景下向前推进的,同时也加强系统数学知识的记忆,居高临下地来掌握全章知识.问题②,教师引导学生回忆三角函数定义,回忆同角三角函数的基本关系式的推导,并回忆这些公式的作用和应用方法技巧.利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,也就是要就角所在象限进行分类讨论.同角三角函数的基本关系式揭示了同一个角的三角函数间的相互关系,利用它可以使解题更方便,但要注意公式成立的前提是角对应的三角函数有意义.sin2α+cos2α=1,sinαcosα=tanα.问题③,教师引导学生回顾的同时,最好能利用多媒体或幻灯片来展示这些公式.以前学习的都是孤立的、零碎的,现在是放在一起记忆提高.幻灯片如下:问题④,三角函数性质是通过图象来研究的,而且画图、识图、用图也是对学生的基本要求.教师要让学生亲自动手画一画,以加深学生对三角函数性质的进一步理解提升.让学生明了:利用平移正弦线,可以比较精确地画出正弦函数的图象,利用正弦函数的图象和诱导公式,可以画出余弦函数的图象,可以看出在长度为一个周期的闭区间上有五个点(即函数值最大和最小的点以及函数值为0的点).这五个点在确定正弦函数、余弦函数图象的形状时起着关键的作用.因此,在精确度不太高时,我们常用“五点法”画正弦、余弦函数以及与它们类似的一些函数〔特别是函数y=Asin(ωx+φ)〕的简图.教师同时打出幻灯(如图1、图2、图3):图1图2图3问题⑤,让学生由图象说性质,教师可引导学生从函数的定义域、值域、奇偶性、单调性、最值、周期性、对称性等方面叙述.教师要强调,正弦、余弦、正切函数的图象以及它们的主要性质非常重要,要牢固掌握,但不要死记硬背.讨论结果:①~⑤略.应用示例例1已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sinα+cosα的值.活动:本例属于较为简单的题目,目的是要学生熟悉任意角的三角函数定义,也要明确解题中的一种很重要的方法是回归定义.教师引导学生思考距离与坐标的不同、是否需要对点的坐标进行分类讨论,然后让学生独立完成此题.解:由题意,需对角α终边的位置进行讨论:①若角α终边过点P(4,3),则2sinα+cosα=2×35+45=2; ②若角α终边过点P(-4,3),则2sinα+cosα=2×35+-45=25;③若角α终边过点P(-4,-3),则2sinα+cosα=2×-35+-45=-2; ④若角α终边过点P(4,-3),则2sinα+cosα=2×-35+45=-25. 点拨:任意角的三角函数定义不仅是本章的核心,也是整个三角函数的中心问题.要指导学生深刻理解三角函数定义的内涵,它只是一个比值,只与角的大小有关,而与点P 在角的终边上的位置无关.例2已知sinα+3cosα=0,求:(1)3cosα-sinα3cosα+sinα;(2)2sin 2α-3sinαcosα+2的值. 活动:教师引导学生观察本题的条件与结论,关键是求sinα与cosα的值,由sinα+3cosα=0及sin 2α+cos 2α=1联立方程组即得sinα与co sα的值.教师进一步点拨:根据同角三角函数的基本关系,不直接求sinα与cosα的值,需作怎样的变形即可?对看出本题由已知可得tanα=-3的同学教师给予鼓励并作进一步探究,对看不出这一步的学生再给予进一步引导,直至其独立解出此题.解:(1)3cosα-sinα3cosα+sinα=3-tanα3+tanα=3+33-3=-2- 3. (2)2sin 2α-3sinαcosα+2=4sin 2α-3sinαcosα+2cos 2α=cos 2α(4tan 2α-3tanα+2)=11+tan 2α(4tan 2α-3tanα+2)=11+(-3)2(4×9+3×3+2)=4710. 点拨:本题主要考查利用同角三角函数关系式求值.对于只含有正弦、余弦函数的齐次式,在求解时常常转化为只含有正切的式子,这种变形技巧十分重要,也称为“1”的代换,在今后的学习中经常用到,应要求学生仔细体会并熟悉掌握.变式训练1.已知α是三角形的内角,且sinα+cosα=15,求tanα的值. 解:由sinα+cosα=15平方整理,得sinαcosα=-1225<0. ∵α为三角形的内角,∴0<α<π,sinα>0,cosα<0.∴sinα-cosα>0.∵(sinα-cosα)2=1-2sinαcosα=4925, ∴sinα-cosα=75. 由⎩⎨⎧ sinα+cosα=15sinα-cosα=75 ⇒⎩⎨⎧ sinα=45,cosα=-35,∴tanα=-43. 点拨:本题主要考查同角三角函数的基本关系式.对于三角求值题目,一定要注意角的范围,有时要根据所给三角函数值的大小,适当缩小所给角的范围,才能求出准确的值.教师要抓住时机就此进一步挖掘,以激起学生的探究兴趣.2.已知sinθ=m -3m +5,cosθ=4-2m m +5,π2<θ<π,则m 的取值范围是… ( ) A .3≤m ≤9 B .m ≤-5或m ≥3C .m =0或m =8D .m =8答案:D例3已知函数y =Asin(ωx +φ),x ∈R (其中A>0,ω>0)的图象在y 轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x 轴正半轴的第一个交点为N(6,0),求这个函数的解析式.活动:本例是一道经典例题,主要考查三角函数模型的应用及训练学生的分析思维能力,对数形结合的思维要求也较高.教师可引导学生展开思考讨论,怎样根据题目中给出的条件找到思维的切入点.题目中虽然没有直接给出图象,实质是已知图象求解析式问题.指导学生画出草图,利用数形结合来深化题意的理解,事实上,学生很容易看出A 的值.如果学生没找出周期问题,教师可进一步点拨:题目中告诉的x 轴的横坐标2与6表示图象的哪段.根据题意,知道点M 、N 恰是函数y =Asin(ωx +φ),x ∈R (其中A>0,ω>0)在对应于包含0的周期的那段图象的五个关键点中的两个.由此可知A 、T ,但要注意指导φ的求法.解:方法一:根据题意,可知T 4=6-2=4,所以T =16. 于是ω=2πT =π8.又A =22, 将点M 的坐标(2,22)代入y =22sin(π8x +φ), 得22=22sin(π8×2+φ), 即sin(π4+φ)=1. 所以满足π4+φ=π2的φ为最小正数解.所以φ=π4. 从而所求的函数解析式是y =22sin(π8x +π4),x ∈R . 方法二:由题意可得A =22,将两个点M(2,22),N(6,0)的坐标分别代入y =22sin(ωx +φ)并化简,得⎩⎪⎨⎪⎧sin (2ω+φ)=1,sin (6ω+φ)=0, 故在长度为一个周期且包含原点的闭区间上,有⎩⎪⎨⎪⎧2ω+φ=π2,6ω+φ=π,从而所求的函数解析式是y =22sin(π8x +π4),x ∈R . 点拨:由三角函数图象求解析式确定φ时,答案可能不只一个,这里可提醒学生注意,习惯上一般取离x 轴最近的一个,这样的解析式简洁.本例对学生有着很高的训练价值,特别是数形结合思想、转化与化归思想的运用.数形结合是数学中重要的思想方法,对各类函数的研究都离不开图象,在中学阶段,几乎所有函数的性质都是通过观察图象而得到的.log(sinx-cosx).例4已知函数f(x)=12(1)求它的定义域;(2)判断它的奇偶性;(3)判断它的周期性.图4活动:这是一组知识性很强的基础题,要求学生全面掌握有关三角函数的定义和性质.教师可先让学生自己动手操作,必要的时候给予点拨帮助.本题的关键是熟悉三角函数线或三角函数图象,利用数形结合直观性训练学生快速解题.如图4、图5.图5解:(1)x 必须满足sinx -cosx>0,利用图4或图5,知2kπ+π4<x<2k π+5π4(k ∈Z ), ∴函数定义域为(2kπ+π4,2kπ+5π4),k ∈Z . (2)∵f(x)定义域在数轴上对应的点关于原点不对称,∴f(x)不具备奇偶性.(3)函数f(x)的最小正周期为T =2π.点评:利用单位圆中的三角函数线或正、余弦线可知:以第Ⅰ、Ⅱ象限角平分线为标准,可区分sinx -cosx 的符号;以第Ⅱ、Ⅲ象限角平分线为标准,可区分sinx +cosx 的符号.要让学生在深刻理解的基础上记忆这点,因函数的定义域是函数的核心,故研究函数的性质都必须以函数的定义域为前提.变式训练1.如图6,⊙O 与x 轴的正半轴的交点为A ,点C 、B 在⊙O 上,且点C 位于第一象限,点B 的坐标为(45,-35),∠AOC =α(α为锐角).图6(1)求⊙O 的半径,并用α的三角函数表示C 点的坐标;(2)若|BC|=2,求tanα的值.解:(1)⊙O 的半径r =(45)2+(-35)2=1,点C(cosα,sinα).(2)在△BOC 中,由于|OB|=|OC|=1,|BC|=2,∴∠COB 是直角.由三角函数的定义,知cos(α-90°)=sinα=45,且α为锐角,故cosα=35,tanα=43.2.已知函数f(x)=sin(ωx +π3)(ω>0)的最小正周期为π,则该函数的图象() A .关于点(π3,0)对称 B .关于直线x =π4对称C .关于点(π4,0)对称D .关于直线x =π3对称答案:A知能训练教科书复习题1~18.课堂小结提出问题让学生回顾总结,通过本节复习,系统掌握三角函数有关知识,你对三角函数有什么新的认识?三角函数与以前所学函数有什么异同之处?在灵活应用本章知识进行三角函数式的化简、求值、证明方面你都有哪些提高?我们都解决了哪些实际问题?教师与学生一起归纳总结,共同完成本节小结.作业已知函数f(x)=sinπx 图象的一部分如图7(1),则图7(2)的函数图象所对应的函数解析式可以为( )图7A .y =f(2x -12) B .y =f(2x -1) C .y =f(12x -1) D .y =f(12x -12) 答案:B设计感想1.本章复习课只安排了1课时,课堂设计的容量较大,指导思想是充分利用多媒体,放手让学生根据教师提供的知识网络自己进行归纳总结,教师在知识的交汇处、在思维的提高上给予指导、点拨.建议教师课堂上不要把自己的思路、提前归纳的方法直接告诉学生.2.加强学生的学法指导,因为“在不断变动的世界上,没有任何一门或一套课程可供在可见的未来使用,或可供你终身受用.现在需要的最重要的技能是如何学习”.因此数学课的学习过程,不仅是传授知识、技能的过程,更是教会学生如何学习数学的过程.也就是说,学习数学的过程实际上就是学生获取、整合、储存、运用数学知识和获得学习能力的过程.在本章复习课设计中,就体现了学生如何学习的问题.3.复习不是简单的重复,不是练习堆积的习题课,而是成为学生再发现、再提高、再创造的氛围场所,是学生对所学知识居高临下的掌握和学生身心健康成长的愉悦体验.备课资料一、备用习题1.已知集合A ={α|α=60°+k·360°,k ∈Z },B ={β|β=60°+k·720°,k ∈Z },C ={γ|γ=60°+k·180°,k ∈Z },那么集合A ,B ,C 之间的关系是( )A .B AC B .A B C C .B C AD .C B A2.若α是第四象限角,则π-α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.一扇形的半径与弧长之比是3∶π,则该扇形所含弓形的面积与该扇形的面积之比是A .(2π-33)∶2πB .(6π-33)∶6πC .(4π-33)∶4πD .(8π-33)∶8π4.把函数y =4cos(x +π3)的图象向左平移m 个单位,所得图象关于y 轴对称,则m 的最小值是( )A.π6B.π3C.2π3D.5π65.如果|x|≤π4,设函数f(x)=cos 2x +sinx 的最大值为M ,最小值为m ,则M m的值为… ( ) A .-54B .-3-2 2C .3+2 2D .-52+526.已知函数y =Asin(ωx +φ)(A>0,ω>0)的周期为1,最大值与最小值之差是3,且函数图象过点(18,34),则函数表达式为( ) A .y =3sin(2x +7π12) B .y =3sin(2x -π12) C .y =32sin(2πx +π12) D .y =32sin(2πx -π12) 7.函数f(x)=tanωx (ω>0)的图象的相邻两支截直线y =π4所得线段的长为π4,则f(π4)=__________.8.已知α、β∈(0,π2),且α+β>π2,求证:对于x ∈(0,π),有f(x)=(cosαsinβ)x +(cosβsinα)x <2. 参考答案:1.A 2.C 3.A 4.C 5.D 6.D 7.08.由α+β>π2,知α>π2-β. 又由α、β∈(0,π2),知π2-β∈(0,π2). ∵y =sinx 在(0,π2)内为增函数,y =cosx 在(0,π2)内为减函数, ∴sinα>sin (π2-β)=cosβ,cosα<cos (π2-β)=sinβ.∴0<cosβsinα<1,0<cosαsinβ<1. 又∵x ∈(0,π),∴(cosβsinα)x <1,(cosαsinβ)x <1.∴f(x)=(cosαsinβ)x +(cosβsinα)x <2. 二、三角函数的拓展1.关于三角函数的发展史三角函数亦称圆函数,是正弦、余弦、正切、余切、正割、余割等函数的总称.在平面直角坐标系xOy 中,在与x 轴正向夹角为α的动径上取点P ,P 的坐标是(x ,y),OP =r ,则正弦函数sinα=y r ,余弦函数cosα=x r ,正切函数tanα=y x ,余切函数cotα=x y,正割函数secα=r x ,余割函数cscα=r y. 这6种函数在1631年徐光启等人编译的《大测》中已齐备.正弦最早被看作圆内圆心角所对的弦长,公元前2世纪古希腊天文学家希帕霍斯就制造过这种正弦表,公元2世纪托勒密又制造了0°~90°每隔半度的正弦表.公元5世纪时印度最早引入正弦概念,还给出正弦函数表,记载于《苏利耶历数书》(约400年)中.该书中还出现了正矢函数,现在已很少使用它了.约510年印度数学家阿那波多考虑了余弦概念,传到欧洲后有多种名称,17世纪后才统一.正切和余切函数是由日影的测量而引起的,9世纪的阿拉伯计算家哈巴什首次编制了一个正切、余切表.10世纪的艾布·瓦法又单独编制了第一个正切表.哈巴什还首先提出正割和余割概念,艾布·瓦法正式使用.到1551年奥地利数学家、天文学家雷蒂库斯在《三角学准则》中收入正弦、余弦、正切、余切、正割、余割6种函数,并附有正割表.他还首次用直角三角形的边长之比定义三角函数.1748年欧拉第一次以函数线与半径的比值定义三角函数,令圆半径为1,并创用许多三角函数符号.至此现代形式的三角函数开始通行,并不断发展至今.现在的许多教辅资料中,有关三角函数的运算都是6种函数的综合运算.2.关于三角函数的定义法三角函数定义是三角函数的核心内容.关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”,这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.由上述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”,所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角α,这三个比值(如果有的话)都不会随点P在α的终边上的位置的改变而改变等,对于确定的角α,上面三个比值都是惟一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角α的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.3.关于《新课程》中的三角函数种类《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的,因此教师在教学中没有必要对其他的三角函数再作补充.(设计者郑吉星)。
2019-2020年高中数学《三角函数的应用》教案1苏教版必修4
2019-2020年高中数学《三角函数的应用》教案1苏教版必修4【三维目标】:一、知识与技能1. 会由函数的图像讨论其性质;能解决一些综合性的问题。
2.会根据函数图象写出解析式;能根据已知条件写出中的待定系数.3.培养学生用已有的知识解决实际问题的能力二、过程与方法1. 通过具体例题和学生练习,使学生能根据函数图象写出解析式;能根据已知条件写出中的待定系数.2.并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
三、情感、态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
【教学重点与难点】:重点:待定系数法求三角函数解析式;难点:根据函数图象写解析式;根据已知条件写出中的待定系数.【学法与教学用具】:1. 学法:2. 教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题复习:1.由函数的图象到的图象的变换方法:方法一:先移相位,再作周期变换,再作振幅变换;方法二:先作周期变换,再作相位变换,再作振幅变换。
2.如何用五点法作的图象?3.对函数图象的影响作用二、研探新知函数[(,),0),sin(+∞∈+=x x A y ϕω其中的物理意义:函数表示一个振动量时::这个量振动时离开平衡位置的最大距离,称为“振幅”:往复振动一次所需的时间,称为“周期”:单位时间内往返振动的次数,称为“频率”:称为相位:x = 0时的相位,称为“初相”三、质疑答辩,排难解惑,发展思维1.根据函数图象求解析式例1 已知函数(,)一个周期内的函数图象,如下图 所示,求函数的一个解析式。
解:由图知:函数最大值为,最小值为,又∵,∴,由图知,∴,∴,又∵, ∴图象上最高点为,∴,即,可取,所以,函数的一个解析式为.2.由已知条件求解析式例2 已知函数(,,)的最小值是, 图象上相邻两个最高点与最低点的横坐标相差,且图象经过点,求这个函数的解析式。
高中数学 第1章 三角函数 1.3.4 三角函数的应用教学设计 苏教版必修4
1.3.4 三角函数的应用整体设计教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节通过例题,循序渐进地从四个层次来介绍三角函数模型的应用,本节在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.三维目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过函数拟合得到具体的函数模型,提高数学建模能力,并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.3.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.重点难点教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题,是本节的难点,主要原因是背景陌生,数据处理较复杂,学习起来感到难以切入.课时安排2课时教学过程第1课时导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.(直接导入)我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.推进新课新知探究用三角函数的图象和性质解决一些简单的生活实际问题.活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助其回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.解决问题的一般程序是:(1)审题:逐字逐句地阅读题意,审清楚题目条件、要求、理解数学关系;(2)建模:分析题目变化趋势,选择适当函数模型;(3)求解:对所建立的数学模型进行分析研究得到数学结论;(4)还原:把数学结论还原为实际问题的解答.应用示例思路1例1见课本本节例1.变式训练如图1,某地一天从6~14时的温度变化曲线近似满足函数y =sin(ωx+φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道题目是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本题是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本题给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决. 题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6时到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小 题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20 ℃.(2)从图中可以看出,从6~14时的图象是函数y =Asin(ωx+φ)+b 的半个周期的图象,∴A=12(30-10)=10,b =12(30+10)=20. ∵12·2πω=14-6,∴ω=π8.将x =6,y =10代入上式,解得φ=3π4.综上,所求解析式为y =10sin(π8x +3π4)+20,x∈[6,14]. 点评:本题中所给出的一段图象恰好是半个周期的图象,提醒学生注意抓关键.本题所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.例2见课本本节例2.例3如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h 0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?图2活动:本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0=htanθ.由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意,两楼的间距应不小于MC.图3根据太阳高度角的定义,有∠C=90°-|40°-(-23°26′)|=26°34′,所以MC=h0tanC=h0tan26°34′≈2.000h0,即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.知能训练课本本节练习1、2.课堂小结1.本节课我们学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.作业1.图5表示的是电流I 与时间t 的函数关系I =Asin(ωx+φ)(ω>0,|φ|<π2)在一个周期内的图象.图5(1)根据图象写出I =Asin(ωx+φ)的解析式.(2)为了使I =Asin(ωx+φ)中的t 在任意一段1100s 的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值为多少?解:(1)由图知A =300,第一个零点为(-1300,0),第二个零点为(1150,0), ∴ω·(-1300)+φ=0,ω·1150+φ=π. 解得ω=100π,φ=π3. ∴I=300sin(100πt+π3). (2)依题意有T≤1100,即2πω≤1100, ∴ω≥200π,故ωmin =629.2.搜集、归纳、分类现实生活中周期变化的情境模型.解:如以下两例:①人体内部的周期性节律变化和个人的习惯性的生理变化,如人体脉搏、呼吸、排泄、体温、睡眠节奏、饥饿程度等;②蜕皮(tuipi)昆虫纲和甲壳纲等节肢动物,以及线形动物等的体表具有坚硬的几丁质层,虽有保护身体的作用,但限制动物的生长、发育.因此,在胚后发育过程中,必须进行1次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮;蜕下的“旧表皮”称为“蜕”,只有这样,虫体才能得以继续充分生长、发育.蜕皮现象的发生具有周期性,但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉,蛇的外层角质层连同眼球外面透明的皮肤,约每2个月为一个周期可完整地脱落1次,称为蛇蜕.设计感想1.本教案设计指导思想是:充分唤起学生已有的知识方法,调动起相关学科的知识,尽量降低实例背景的相对难度,加大实际问题的鲜明、活跃程度,以引发学生探求问题的兴趣.2.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,确定它的周期,从而建立起适当的三角函数模型.如果学生选择了不同的函数模型,教师应组织学生进行交流,或让学生根据自己选择的模型进行求解,然后再根据所求结果与实际情况的差异进行评价.3.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,有条件的要用多媒体进行动态演示,以使学生有更多的时间用于对问题本质的理解.备课资料一、备选习题1.下列函数中,图象的一部分如图6所示的是( )图6A .y =sin(x +π6)B .y =sin(2x -π6) C .y =cos(4x -π3) D .y =cos(2x -π6) 2.已知函数y =Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图7所示,求函数的解析式.图73.已知函数y =Atan(ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象与x 轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过点(0,-3),求此函数的解析式. 4.单摆从某点开始来回摆动,离开平衡位置的距离s(厘米)和时间t(秒)的函数关系为s =6sin(2πt+π6). (1)单摆开始摆动(t =0)时,离开平衡位置多少厘米? (2)单摆摆动到最右边时,离开平衡位置多少厘米? (3)单摆来回摆动一次需要多少时间? 5.函数f(x)=sinx +2|sinx|,x∈[0,2π]的图象与直线y =kx 有且仅有两个不同的交点,求k 的取值范围.参考答案:1.D2.由图7,得A =2,T 2=3π8-(-π8)=π2,∴T=π.∴ω=2.∴y=2sin(2x +φ).又∵图象经过点(-π8,2),∴2=2sin(-π4+φ).∴φ-π4=2kπ+π2(k∈Z ).∴φ=2kπ+3π4.∴函数解析式为y =2sin(2x +3π4).3.∵T=πω=5π6-π6,∴ω=32.∵32×π6+φ=0,且-3=Atan(32×0+φ),∴A=3,φ=-π4.故y =3tan(32x -π4).4.(1)t =0时,s =3,即离开平衡位置3厘米;(2)振幅为6,所以最右边离平衡位置6厘米;(3)T =1,即来回一次需要1秒钟.5.将原函数化简为f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧ 3sinx ,x∈[0,π],-sinx ,x∈π,2π],由此可画出图8,图8由数形结合可知,k的取值范围为1<k<3.二、数学与音乐若干世纪以来,音乐和数学一直被联系在一起.在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中.今天的新式计算机正在使这条纽带绵延不断.乐谱的书写是表现数学对音乐的影响的第一个显著的领域.在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等.书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应.作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的.如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数.除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系.毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的.他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系.他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比.按整数比增加弦的长度,能产生整个音阶.例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C.不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状.19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点.他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和.每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来.傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来.音高与曲线的频率有关,音量和音质分别与周期函数的振幅和形状有关.如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展.数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的.许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较.电子音乐复制的保真度也与周期曲线密切相关.音乐家和数学家将继续在音乐的产生和复制方面发挥着同等重要的作用.(设计者:郑吉星)第2课时导入新课思路1.(作业导入)学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.推进新课新知探究三角函数性质在生活中的应用.本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,调动学生的学习气氛.应用示例例1货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生仔细、准确地观察散点图,如图9.图9教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y=Asin(ωx+φ)+h的函数来刻画.其中x是时间,y是水深,我们可以根据数据确定相应的A,ω,φ,h的值.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深.根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯.在本例的(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型?求货船停止卸货、将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候.进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨.解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图9).根据图象,可以考虑用函数y =Asin(ωx+φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h =5,T =12,φ=0,由T =2πω=12,得ω=π6. 所以这个港口的水深与时间的关系可用y =2.5sin(π6x)+5近似描述. 由上述关系式易得港口在整点时水深的近似值:(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.令2.5sin(π6x)+5≥5.5,得sin π6x≥0.2.画出y =sin(π6x)的图象,由图象可得 0.4≤x≤5.6或12.4≤x≤17.6.故该船在0:24至5:36和12:24至17:36期间可以进港.图10(3)设在时刻x 货船的安全水深为y ,那么y =5.5-0.3(x -2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6~7时之间两个函数图象有一个交点(如图11).图11通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.7时之前停止卸货,将船驶向较深的水域.点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释. 变式训练 发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t 的函数,I A =Isinωt,I B =Isin(ωt+120°),I C =Isin(ωt+240°),则I A +I B +I C =__________. 答案:0例2已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为4+π2.(1)求函数f(x)的解析式;(2)若sinx +f(x)=23,求sinxcosx 的值. 解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ).∴φ=π2.∴f(x)=sin(ωx+π2)=cosωx. 相邻两点P(x 0,1),Q(x 0+πω,-1). 由题意,|PQ|=πω2+4=π2+4,解得ω=1. ∴f(x)=cosx.(2)由sinx +f(x)=23,得sinx +cosx =23. 两边平方,得sinxcosx =-518. 例3小明在直角坐标系中,用1 cm 代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm 代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm 代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?解:小明原作的曲线为y =sinx ,x∈R ,由于纵坐标改用了2 cm 代表一个单位长度,与原来1 cm 代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1 cm 只能代表12个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y =12sinx ,x∈R .同理,若纵坐标保持不变,横坐标改用2 cm 代表一个单位长度,则横坐标被压缩到原来的12,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y =sin2x ,x∈R .例4求方程lgx =sinx 实根的个数.解:由方程式模型构建图象模型.在同一坐标系内作出函数y =lgx 和y =sinx 的图象,如图12.可知原方程的解的个数为3.图12点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.知能训练课本习题1.3 14.课堂小结1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活地运用三角函数的图象和性质解决现实问题.作业课本习题1.3 13.设计感想1.本节是三角函数内容中新增加的一节,目的是加强学生的应用意识,本节教案设计的指导思想,是让学生围绕着采集到的数据展开讨论,在学生思考探究的过程中,学会积极冷静地对待陌生背景,正确处理复杂数据以及准确分析问题中的数量关系,这很符合新课改理念.2.现实生活中的问题是多变的,学生的思维是发散的,观察的视角又是多样的,因此课题教学中,教师要善于挖掘并发现学生思维的闪光点,通过讨论例题这个载体,充分激发学生的潜能,让学生从观察走向发现,从发现走向创造,走向创新.3.学生面对枯燥的数据,潜意识里是讨厌的,因此教师要在有限的课堂时间里,着重解决物理背景下、地理背景下的三角函数的函数模型的选定,不要把时间浪费在一些计算上.备课资料一、备选习题1.图13是周期为2π的三角函数f(x)的图象,那么f(x)可写成( )图13A.sin(1+x) B.sin(-1-x)C.sin(x-1) D.sin(1-x)。
高中数学第一章三角函数第4课时1.1任意角的三角函数(2)教案苏教版必修4
第4课时 §1.1 任意角的三角函数(2)【教学目标】一、知识与技能1、掌握任意角的三角函数的定义,理解角与=2的同名三角函数值相等。
2、掌握用单位圆中的线段表示三角函数值,从而对三角函数的定义域、值域有更深的理解。
3、通过启发根据三角函数的定义,确定三角函数在各象限的符号,并熟练地处理一些问题。
二、过程与方法三、情感态度价值观教学重点难点:三角函数线的作法与表示【教学过程】一、复习回顾(1)六个三角函数定义,定义域(2)六个三角函数值在各象限内的符号二、新课当角的终边上一点(,)P x y1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.单位圆:圆心在圆点O ,半径等于单位长的圆叫做单位圆。
2.有向线段:既有大小又有方向的线段(矢量)坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
3.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与 点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角 α的终边或其反向延长线交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====, tan y MP AT AT x OM OAα====. 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
说明:①三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦 线在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
②三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。
③三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时 §1.1 任意角的三角函数(2)
【教学目标】
一、知识与技能
1、掌握任意角的三角函数的定义,理解角与=2k +(k Z)的同名三角函数值相等。
2、掌握用单位圆中的线段表示三角函数值,从而对三角函数的定义域、值域有更深的理解。
3、通过启发根据三角函数的定义,确定三角函数在各象限的符号,并熟练地处理一些问题。
二、过程与方法
三、情感态度价值观
教学重点难点:三角函数线的作法与表示
【教学过程】
一、复习回顾
(1)六个三角函数定义,定义域
(2)六个三角函数值在各象限内的符号
二、新课
当角的终边上一点(,)P x y
1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.单位圆:圆心在圆点O ,半径等于单位长的圆叫做单位圆。
2.有向线段:既有大小又有方向的线段(矢量)
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
3.三角函数线的定义:
设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与
点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角 α的终边或其反向延长线交与点T .
(Ⅰ)
由四个图看出:
当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有
sin 1y y y MP r α=
===, cos 1x x x OM r α====, tan y MP AT AT x OM OA
α====. 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
说明:
①三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦
线在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
②三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。
③三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。
④三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
三、例题分析:
例1、在单位圆中运用三角函数线作出符合下列条件的角的终边
(1)21sin =
α (2) 2
1cos -=α (3)1tan =α
(Ⅳ)
(Ⅲ)
例2、作出下列各角的正弦线、余弦线、正切线。
(1)
3π; (2)56π; (3)23π-; (4)136π-.
例3、 利用单位圆写出符合下列条件的角x 的范围。
(1)1sin 2x <-; (2)1cos 2
x >; (3)10,sin 2x x π<<>且1cos 2x <;
(4)1|cos |2x ≤
; (5)1sin 2
x ≥且tan 1x ≤-.
例4、求函数)sin 43lg(2x y -=的定义域
例5、利用单位圆证明若)2
,0(πα∈,则有αααtan sin <<
课堂小结: 1.三角函数线的定义;2.会画任意角的三角函数线3.利用单位圆比较三角函数值的大小,求角的范围。