高中数学必修4第一章_三角函数知识点
最新人教版高中数学必修4第一章《三角函数》本章总览
第四章 三角函数
网络体系总览
考点目标定位
1.角的概念的推广.弧度制.
2.任意角的三角函数.单位圆中的三角函数线.
3.同角三角函数的基本关系式.正弦、余弦的诱导公式.
4.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
5.正弦函数、余弦函数的图象和性质.周期函数.
6.函数y=Asin(ωx+φ)的图象.正切函数的图象和性质.已知三角函数值求角. 复习方略指南
本部分内容历来为高考命题的热点,其分值约占15%,一般都是二或三个小题,一个大题.小题主要考查三角函数的基本概念、图象、性质及“和、差、倍角”公式的运用.大题则着重考查y=Asin(ωx+φ)的图象和性质及三角函数式的恒等变形.试题大都来源于课本中的例题、习题的变形,一般为容易题或中档题.因此复习时应“立足于课本,着眼于提高”. 本章内容公式多,三角函数作为工具,和其他知识间的联系密切,因此复习中应注意:
1.弄清每个公式成立的条件,公式间的内在联系及公式的变形、逆用等.切不可死记硬背,要在灵、活、巧上下功夫.
2.本章突出显现以数形结合思想与等价转化思想为主导的倾向.在本章复习中,应深刻理解数与形的内在联系,理解众多三角公式的应用及三角函数式的化简、求值、证明等无一不体现等价转化思想.
3.通过图象的变换理解并掌握利用变换研究图象的思想方法,并从中体会“变换美”.
4.有关三角函数方面的应用题,大都需要用“辅助角公式”asinx+bcosx=22b a sin(x+φ)(其中φ角所在象限由a 、b 的符号确定,φ角的值由tan φ=a
b 确定)将函数化成y=Asin(ωx+φ)+h
的形式,再求其最值或周期等.。
高中数学必修四 第一章三角函数 1.4.2.1 周期函数
7 2
-4
, 即������
7 2
= ������
-
1 2
.
又当 x∈(-1,0)时,f(x)=2x+1,
∴������
7 2
= ������
-
1 2
=2×
-
1 2
+ 1 = 0.
题型一 题型二 题型三 题型四
反思1.解答此类题目的关键是利用化归的思想,借助周期函数的 定义把待求问题转化到已知区间上,代入求值即可.
π 6
+ 2π = 2(������ + π) − π6,
∴f(x+π)=sin
2(������
+
π)-
π 6
=sin
2������-
π 6
+
2π
= sin
2������-
π 6
= ������(������).
∴T=π.
本节结束,谢谢大家!
题型一 题型二 题型三 题型四
题型二 求三角函数的周期
【例 2】 求下列函数的周期:
(1)f(x)=sin
1 4
������
+
π 3
(������∈R);
(2)y=|sin x|(x∈R).
分析:对于(1),可结合周期函数的定义求解;对于(2),可通过画函
数图象求周期.
题型一 题型二 题型三 题型四
(2)函数 y=sin
������������
+
π 4
(������
>
0)的周期是
2π 3
,
则������
=
_____.
高中数学必修4《三角函数》知识点与易错点归纳
高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。
3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。
4.角ααcos 2=-,则2α角是 象限角。
知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。
2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。
知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。
yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令 ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。
高一数学人教A版必修4第一章(三角函数)本章小结课件
1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,
必修4 数学 三角函数1
高中数学 必修4——三角函数1【知识归纳】1、象限角:第一象限角的集合为 第二象限 第三象限 第四象限2、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z3、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 4、定义:设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 5、三角函数在各象限的符号:一全二正弦,三切四余弦6、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .7、同角三角函数的基本关系:()221sin cos 1αα+= ()sin 2tan cos ααα=8、三角函数的诱导公式:(口诀:奇变偶不变,符号看象限.)9、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数sin y x =+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标缩短(ω>1)(伸长ω<1)到原来的ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 10.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.11、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x =tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1- []1,1-R函 数 性 质最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴【类型题】1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( ) A .B=A ∩C B .B ∪C=C C .A C D .A=B=C 2.下列各组角中,终边相同的角是( ) A .π2k与)(2Z k k ∈+ππ B .)(3k3Z k k ∈±πππ与 C .ππ)14()12(±+k k与 )(Z k ∈ D .)(66Z k k k ∈±+ππππ与4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或 B .ππ4745或 C .ππ454或 D .ππ474或 5. 已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .1623D .-1623变:已知21tan -=x ,则1cos sin 3sin 2-+x x x = .6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54B. 54-C. 53D.53-8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( ) A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y在下列哪个区间为增函数( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=xC .8π=xD .π45=x13、要得到函数)32cos(2π+=x y 的图像。
必修四 第一章 诱导公式、三角函数图像及其性质 复习
学生教案教师姓名学生姓名填写时间年级高一学科数学上课时间 第( )次课阶段基础( √ ) 提高()强化(1、 熟记诱导公式及其运用; 2、 熟悉三角函数的图像及其单调性;)课时计划 共( )次课教学目标3、 熟悉 y Asin(x )( A 0, 0) 的图像及其变化1、 重难点 2、诱导公式及三角函数的关系; 三角函数图像的变化与三角函数的关系;课后作业:教师评语 及建议:科组长签名学生教案诱导公式 可用十个字概括为“奇变偶不变,符号看象限” 。
诱导公式一: sin( 2k ) sin , 诱导公式二: sin(180 ) sin ; 诱导公式三: sin( ) sin ; 诱导公式四: sin(180 ) sin ; 诱导公式五: sin(360 ) sin ; - sin cos -sin cos cos( 2k ) cos ,其中 k Zc o s ( 1 8 0 )c o s cos( ) cos cos(180 ) cos c o s ( 3 6 0 ) cos2 -sin cos sin -cos -cos -sin 2k k Z cos sin 2cos sin (1)要化的角的形式为 k 180 ( k 为常整数) ; (2)记忆方法: “函数名不变,符号看象限” ; 知识点一 、诱导公式的的直接运用 用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是什么? ①化负角的三角函数为正角的三角函数; ②化大于 2 π 的正角的三角函数为 0~ 2 π 内的三角函数; ③化 0~ 2 π 内的三角函数为锐角的三角函数.1 例 1、:已知 是第三象限的角且 sin ,求 sin( π ) , sin( π) 3变式 1、cos150 °的 值 为 ()2、下 列 各 数 中 , 与 cos1030 °相 等 的 是 (A . cos50 ° B . -cos50 °) C . sin50 ° D . -sin50 °3、学生教案4、5、诱 导 公 式 tan ( n π - α ) = (A . -tan α C . ± tan α) ( 其 中 n∈ Z) B . tan α D. 与 n 的 值 为 奇 偶 数 有 关6、 例 2、、已知 cos , 且 1 32 0, 求sin( ) sin(2 ) 的值 cos( ) tan变式练习 1、2、例题 3、变式练习 1、学生教案2、3、配凑角 例题 4、已知 sin(π 1 5π ) ,求 sin( ) 的值. 6 3 6变式练习1、2、汇总练习 1 选择题 (1) 1 sin 2 678 =( (A)sin42° (2)计算 (A)0 (3)cos( π +α )= A. ) (C)sin21° ) (C)-1 (D)2 ) D. (D)cos21°(B)cos42° sin( ) sin() 的值为( tan( )(B)11 3π α 2 π ,则 sin(2 π -α )等于( , 2 2B.3 23 2C.1 23 2学生教案cos( ) sin 2 ( 3) (4)化简 的结果是( tan( 4) tan( ) cos3 ( )(A)1 (5)已知α ∈ (B)0 (C)-1)(D)1 2)3 π 3π , , tan(α -9 π )=- ,则 sin α +cosα 等于( 4 2 2 B.-A.-1 53 5C.1 5D.±1 52、计算 tan 37π 55π 35π 46π 的值. tan sin cos 6 6 6 3 3、化简:sin(5400 x) 1 cos(3600 x) sin( x) tan( 9000 x) tan(4500 x) tan( 8100 x)正弦、余弦、正切函数的图象和性质函数 正弦函数 余弦函数 正切函数图象定义域 值域 周期性 奇偶性R [-1,1] 周期为 2π 奇函数R [-1,1] 周期为 2π 偶函数 x | x k , k Z 2 R 周期为π 奇函数学生教案在每一个闭区间在每一个闭区间 - 2 2k , 2 2k 上都 是增函数; 单调性 在每一个闭区间3 2 2k , 2 2k 上都 (k Z) 是减函数 2k-1), ( 2k 上都是增在每一个开区间 函数; 在每一个闭区间 - k , k 上都是 2 2 (k Z) 增函数2k( , 2k+ 1 ) 上都是减(k Z) 函数当 x 2k , k Z 时,y2当 x 2k , k Z 时, y取 得最大值 1;当 无最大值,也无 最小值取得最大值 1;当 最值x2 2k , k Z 时, x 2k , k Z 时,y取得最小值-1. 既是中心对称图形, 对称中y 取得最小值-1. 既是中心对称图形, 对称中 心为 k ,0, (k Z ) ; 又是 对称性 轴对称图形, 对称轴为直线 心为 k ,0 , (k Z ) ; 2 又是轴对称图形, 对称轴为是中心对称图形, 对称中心 为 k ,0, (k Z )x2 k , ( k Z )x k , (k Z )2.图象画法:①“几何描点法”——借助三角函数线;②“五点作图法”――抓住五 个关键点. 3.周期函数定义:一般地,对于函数 f(x),如果存在一个非零常数 ....T,使得当 x 取定义 域内的每一个 值时,都有 f(x+T)=f(x),那么函数 f(x)就叫做周期函数,非零常数 T 叫做这 ... 个函数的周期.对于一个周期函数 f(x),如果在它所有的周期中存在一个最小的正数,那么 这个最小正数就叫做 f(x)的最小正周期.学生教案知识点 1 正弦、余弦图像、正切图形 例 题 1、变式练习 1 、 已 知 a 是 实 数 , 则 函 数 f ( x ) =acosax 的 图 象 可 能 是 ( )A.B.C.D.2 、 已 知 函 数 f ( x ) =x 2 sinx , 则 f ( x ) 在 [-2 π , 2 π ] 上 的 大 致 图 象 是 ()A.B.C.D.3、学生教案例题变式练习1 、 函 数 y=1+cosx 的 图 象 ( A. 关 于 x 轴 对 称 ) B. 关 于 y 轴 对 称 D . 关 于 直 线 x= C. 关 于 原 点 对 称π 2对称 )2、已 知 a 是 实 数 , 则 函 数 f ( x ) =acosax 的 图 象 可 能 是 (A.B.C.D.知识点二 正余弦图像性质(正切图像对图像进行分析主要突出定义域和单调区间的不同) 三角函数周期例题 1、变式练习1、D. A. 4π B. 2π C. ππ 22、函 数 y=sin3x 的 最 小 正 周 期 是 ()学生教案3、例题 2、变式练习1、2、函 数 f ( x ) =Asin ( ω x+ θ ) ( A > 0 , ω > 0 ) 的 部 分 图 象 如 图 所 示 , 则 f ( 1 )+f ( 2 ) + „ +f ( 2011 ) 的 值 为 ( )三角函数奇偶性 例题 1、函 数 y=-sin2x , x ∈ R 是 ( A. 最 小 正 周 期 为 π 的 奇 函 数 B. 最 小 正 周 期 为 π 的 偶 函 数 C. 最 小 正 周 期 为 2π 的 奇 函 数 D. 最 小 正 周 期 为 2π 的 偶 函 数 )学生教案例题 2变式练习 1 、2 、三角函数定义域与值域 例题 1、若 三 角 方 程 sinx=0 与 sin2x=0 的 解 集 分 别 为 E , F , 则 (A. E⊊F B. E⊋F C . E=F ) D . E ∩ F= ∅变式练习 1、 值域 例题 1、函 数 y=sinx 的 最 大 值 是 ( A . -1 B. 0 ) C. 1 D. 2变式 2、3、 4、学生教案三角函数的单调性例题 1、1、2、下 列 函 数 中 在 区 间 ( 0 , + ∞ ) 上 单 调 递 增 的 是 (A . y=sinx B . y=-x 2 C . y=e - x) D . y=x 33、4、5、学生教案6、对称性例题 1、变式练习 1 、复合函数求单调性、最值、等问题例题 1、变式 1、求上式子的最值及其对应的 x,对称轴、对称中心、变式 2、学生教案变式 3变式 4、变式 5提高例 2、变式1、学生教案2、3、4、函数 y Asin(x )( A 0, 0) 的图象要点归纳 1.函数 y Asin(x )( A 0, 0) 的相关概念: A——振幅, T=2——周期, f=1 ——频率, x ——相位, ——初相 T2.函数 y Asin(x )( A 0, 0) 的图象: 3 (1)五点作图法:令 x 0, ,, , 2 从而得到 x、y 的值进而找出关键点. 2 2知识点一、五点做函数图像学生教案例 1、例2变式练习 1 、2、学生教案知识点二、图像的变化(通过简单作图分析 A 、 、 对图像的影响) (2)图象变换法 y=sinx x [0,2 ]向左(φ>0)或 向右(φ<0)平 移|φ|个单位 横坐标不变,纵坐 标变为原来的 A 倍y=sin(x+φ) x [ ,2 ]纵坐标不变,横坐 标变为原来的y=sin(ωx+φ)x [1倍 2 , ] y=Asin(ωx+φ) 2 x [ , ] 扩展(每次平移2个单位长度)y=Asin(ωx+φ) x∈ R例 题1 、变式1、学生教案4、5、6、提高学生教案知识点三 观察图像求解析式 例题 1、例2、变式练习 1、2、学生教案2、3、4、学生教案5、6、7、提高备注:请加封面。
(完整版)高一数学必修4三角函数知识点及典型练习
第一、任意角的三角函数一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边相同的角的集合}{|2,k k z ββπα=+∈ ,弧度制,弧度与角度的换算,弧长lr α=、扇形面积21122s lr r α==,二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切xya =tan ,它们都是以角为自变量,以比值为函数值的函数。
三角函数值在各象限的符号:三:同角三角函数的关系式与诱导公式: 1. 平方关系:22sincos 1αα+= 2. 商数关系:sin tan cos ααα=3.诱导公式——口诀:奇变偶不变,符号看象限。
正弦余弦正切4. 两角和与差公式 :()()()sin sin cos cos sin cos cos cos sin sin tan tan tan 1tan tan αβαβαβαβαβαβαβαβαβ⎧⎪±=±⎪⎪±=⎨⎪±⎪±=⎪⎩m m5.二倍角公式:22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα⎧⎪=⎪=-=-=-⎨⎪⎪=-⎩余弦二倍角公式变形: 222cos1cos2,2sin 1cos2αααα=+=-第二、三角函数图象和性质基础知识:1、三角函数图像和性质2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作sin()y A x ωϕ=+简图:五点分别为:、 、 、 、 。
3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+ 周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。
高中数学必修4第一章_三角函数知识复习
1第一章 三角函数知识点1、角的定义:⎧⎪⎪⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。
5、长度等于半径长的弧所对的圆心角叫做1弧度。
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=。
7、弧度制与角度制的换算公式:180********.3180πππ⎛⎫===≈ ⎪⎝⎭,,8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==。
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin yrα=,cos x r α=,()tan 0y x x α=≠。
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。
必修四-第一章-三角函数知识点及例题详解
第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
高中数学必修4三角函数知识点归纳总结【经典】
《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈锐角:{}090αα<< 小于90的角:{}90αα<任意角的概念弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角和角公式 倍角公式 差角公式 应用应用 应用 应用应用 应用 应用5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π8、角度与弧度对应表: 角度 0︒ 30︒ 45︒ 60︒90120︒ 135︒ 150︒ 180︒ 360︒弧度6π 4π 3π 2π 23π 34π 56π π2π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”) 度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α 01222 32132 22121 0cos α132 2212 012- 22- 32- 1- 0 1tan α 0 3313无 3-1-33-无ry)(x,αPsin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, c o s 1x x x OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
(完整版)高中必修四三角函数知识点总结
§04。
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。
01745 1=57。
30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。
30°=57°18ˊ. 1°=180π≈0。
01745(rad )3、弧长公式:rl ⋅=||α。
扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。
yr=αcsc 。
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。
高中数学必修4《第一章三角函数》精品课件:1.1.1任意角
S={α|α=45°+k·180°,k∈Z}.
S={ -315°,-135°,45°,225°, 405°,585°}
课堂小结
Office组件之word2007
1.角的概念推广 正角、负角、零角、象限角
2.终边相同的角
3.终边在x轴、y轴上的角的表示
4.终边在各个象限上的角的表示
Office组件之word2007
思考2:终边在x轴上的角的集合表示
终边在x轴上:S={α|α=k·180°,k∈Z};
新课教学
Office组件之word2007
思考3:终边在y轴非正半轴、非负半轴
上的角分别如何表示?
y轴非负半轴:α= 90°+k·360°,k∈Z ; y轴非正半轴:α= 270°+k·360°,k∈Z .
思考4:终边在y轴上的角的集合表示
y
x o
知识探究(三):终边相同的角 Office组件之word2007
思考1:-32°,328°,-392°是第几 象限的角?这些角有什么内在联系?
y
328° o
-392° x
-32°
新课教学
Office组件之word2007
思考2:与-32°角终边相同的角有多 少个?这些角与-32°角在数量上相 差多少?
Office组件之word2007
1.1.1 任意角
知识探究(一):角的概念的推广
Office组件之word2007
复习:角的定义 角是由平面内一条射线绕其端点从
一个位置旋转到另一个位置所组成的 图形(如图).
B
始边
终边
A O
顶点
新课教学
Office组件之word2007
思考1:你认为将一条射线绕其端点按逆时针方向旋
人教版数学必修4第一章1.2.1《任意角的三角函数》课件
转化为求 0 到 2 或 0 到 角3 的三 6 角函0数值 .
例3 求下列三角函数值:
(1) cos9
4
(2) tan( 11)
6
解:(1)co 9 4 sco 4 s 2 ( ) co 4 s2 2
(2)ta 1 n )1 ( ta n 2 ) (ta n ta n 3
A.4 3
B.4 3
C.4 3
D. 3
例2、已知角 的终边经过点P0(3,4),求角
的正弦、余弦和正切值 .
解:由已知可得:
rx2y2 3 2 ( 4 )2 5
于是,sin y 4 r5
cosx 3 r5
tan y 4 x3
合作 演练
变式1、已知角 的终边过点 P1,2 5 ,
求 的三个三角函数值.
规律: “一全正、二正弦正、三正切正、四余弦正”
“一全二正弦,三切四余弦”
例1 确定下列三角函数值的符号:
(1)co2s50(2)tan(67)2(3)sin
4
解:(1)因为 250是第三象限角,所以co 2s5 0 0;
(2)因为 tan(67)2= ta 2 n 3 ( 6 4 ) 0 8 ta 4 ,n 8
r
第 二 象 限 : x 0 ,r 0 ,故 r x 为 负 值 ; o
x
第 三 象 限 : x 0 ,r 0 ,故 x 为 负 值 ; r
第 四 象 限 : x 0 ,r 0 ,故 x 为 正 值 ; r
三角函数在各象限内的符号:
交叉正负
第 3一 、 象 正 限 切 : 函 x 数 0 ,值 y t0 a,n 故 y 为 x y 正 值 ; y x
高一下册数学必修四第一章 三角函数.知识点及同步练习
巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案
21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品
1第一章 三角函数知识点
1、角的定义:
⎧⎪⎪
⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为22,2k k k παπαπ⎧⎫
<<+∈Z ⎨⎬⎩⎭
第二象限角的集合为22,2k k k π
απαππ⎧⎫
+
<<+∈Z ⎨⎬⎩
⎭
第三象限角的集合为322,2k k k παππαπ⎧⎫
+<<+∈Z ⎨⎬⎩⎭
第四象限角的集合为3222,2k k k παπαππ⎧⎫
+
<<+∈Z ⎨⎬⎩⎭
终边在x 轴上的角的集合为
{},k k ααπ=∈Z
终边在y 轴上的角的集合为,2k k π
α
απ⎧⎫=+
∈Z ⎨⎬⎩
⎭
终边在坐标轴上的角的集合为,2k k πα
α⎧⎫=
∈Z ⎨⎬⎩
⎭
3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z
4、已知α是第几象限角,确定
()*n n
α
∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴
的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n
α
终边所落在
的区域。
5、长度等于半径长的弧所对的圆心角叫做1弧度。
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l
r
α=。
7、弧度制与角度制的换算公式:
180********.3180π
ππ⎛⎫
===≈ ⎪⎝⎭
,, 8、若扇形的圆心角为()α
α为弧度制,
半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,211
22
S lr r α==。
9、设α是一个任意大小的角,α的终边上任意一点P
的坐标是(),x y ,它与原点的距离是
()
0r r =>,则sin y
r
α=
,cos x r α=,()tan 0y x x α=≠。
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,
第三象限正切为正,第四象限余弦为正。
11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT 。
(如图) 12、同角三角函数的基本关系:
()222222(1)sin cos 1 sin 1cos ,cos 1sin αααααα+==-=-
sin sin tan sin tan cos ,cos cos tan ααααααααα⎛
⎫=== ⎪⎝
⎭(2)
13、三角函数的诱导公式:
三角函数值等于
的同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数
名不变,符号看象限
精品
三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限
14、(1)函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数
()sin y x ωϕ=+的图象;
再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y A x ωϕ=+的图象。
(2)函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数
sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕ
ω
个单位长度,得到函数()sin y x ωϕ=+的图象;
再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y A x ωϕ=+的图象。
(3)函数()()sin 0,0y A x A ωϕω=+>>的性质:
①振幅:A ;②周期:2T π
ω=;③频率:12f T ω
π
==;④相位:x ωϕ+;⑤初相:ϕ。
(4)函数()sin y A x B ωϕ=++,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则
()max min 12A y y =
-,()max min 12B y y =+,()21122
T
x x x x =-<。
sin y x =
cos y x = tan y x =
图象
定义域
R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域 []1,1-
[]1,1-
R
最值 当22
x k π
π=+
()k ∈Z 时,
max 1y =;当22
x k π
π=- ()k ∈Z 时,min 1y =-.
当()2x k k π=∈Z 时,
max 1y =;当2x k ππ=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性 2π
2π
π
奇偶性
奇函数 偶函数
奇函数
单调性
在2,22
2k k π
πππ⎡
⎤
-
+
⎢⎥⎣
⎦
()k ∈Z 上是增函数;在
32,222k k ππππ⎡
⎤++⎢⎥⎣⎦
()k ∈Z 上是减函数.
在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+
()k ∈Z 上是减函数.
在,2
2k k π
πππ⎛
⎫
-
+
⎪⎝
⎭
()k ∈Z 上是增函数.
对称中心 ()(),0k k π∈Z
(),02k k ππ⎛
⎫+∈Z
⎪⎝⎭ (),02k k π⎛⎫
∈Z ⎪⎝⎭
对称轴 ()2
x k k π
π=+
∈Z
()
x k k π=∈Z
无对称轴
.
函 数
性
质。