人教版高中数学必修4三角函数

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

人教版高中数学必修四课件:3.3三角函数的积化和差与和差化积43

人教版高中数学必修四课件:3.3三角函数的积化和差与和差化积43

2sin 54 22 cos 54 22
2
2
2sin 38 cos16
(4) sin5x sin3x
2cos 5x 3x sin 5x 3x
2
2
2cos 4xsin x
例3. 已知A+B+C=180°, 求证: sin Asin B sinC 4 cos A cos B cos C
(2) cos 40 cos52
(3) sin 54 sin 22
(4) sin5x sin3x
解:(1)
cos3 cos 2cos 3 cos 3
2
2
2cos 2 cos
(2)cos 40 cos52
2sin 40 52 sin 40 52
2
2
2sin 46 sin 6
(3)sin 54 sin 22
2
从上面四个式子又可以得到
sin( ) sin( ) 2sin cos sin( ) sin( ) 2cos sin cos( ) cos( ) 2cos cos cos( ) cos( ) 2sin sin
积化和差公式
sin cos 1 [sin( ) sin( )]
3.本题若只是简单处理,可能会做不下去.
到此或许许多人就束手无策了,当然,这样做如果 处理得法,还是会最后得到正确结果的,但是计算 太大了. 若注意到10°、50°分别与80°、40°互为余角, 利用诱导公式可得如下解法.
(四)小结 三角函数的恒等变换,由于三角公式较多、用起 来也较活,所以应当掌握变形的一般规律,而一 般规律的获得主要靠自己的实践以及理性上的升 华。通过一个阶段的学习与练习,应是有一定体 会的.一般说三角变换问题,第一要关注问题中 的角,特别是角的和、差、倍、半关系,当然这 些关系也不是一成不变的,如适当时候,我们也 可以把α看作是

高中数学必修4三角函数化简与证明

高中数学必修4三角函数化简与证明

顺德大良总校 顺德大良一分校 顺德大良北区分校 顺德大良新桂分校 顺德容桂分校 顺德容桂体育路分校 顺德龙江分校 顺德北滘分校 顺德乐从分校 顺德勒流分校 南海桂城分校 南海黄岐分校 南海大沥分校 禅城丽雅苑分校 禅城金澜分校 一、 基础知识:1、诱导公式sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin2、 两角和与差的三角函数公式:⑴ sin()_____________________αβ±=; ⑵ cos()____________________αβ±= ; ⑶ tan()_____________αβ±= 3、二倍角公式;⑴ cos 2__________α= __________= __________= ⑵sin 2__________θ= ⑶tan 2____________θ= 4、公式的变形应用:⑴ 降次公式:2cos _______α=, 2sin _________α=;22cos _______α=, 22sin _________α=;sin cos _______θθ=⑵ 升幂公式:1cos 2______;α-= 1cos 2_______α+= ⑶ 常用变形公式:13sin _______22x x += ; sin cos _______x x +=;31cos _______22x x -=; sin cos _______x x -=; tan tan __________________αβ+=⑷ 常见的角的变换:2α=(α+β)+( );α=2βα++______; α=(α+β)- =(α-β)+2βα+=(α-2β)-( ); ()(_____)4x π-+=2π5、和差化积sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2ba - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+6、积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)]7、主要方法与思路:⑴.分析思路上,主要有三看: 、 、 ; ⑵.主要方法上:函数名称的变换( 、 )、角的变换( )、1的变换等方面;二.两角和与差的三角函数(1)公式不但要会正用,还要会逆用. 例6 计算:.(2)公式的变形应用要熟悉.熟记:tan α+tan β=tan(α+β)(1-tan α·tan β),它体现了两个角正切的和与积的关系.分析(1)中涉及80°与70°的正切和与积,(2)中涉及α+β与α的正切差与积,所以都用正切和角公式的变形公式.(3)角的变换要能灵活应用,如α=(α+β)-β,β=α-(α-β),2α=(α+β)+(α-β)等.分析因为β=(α+β)-α,所以求cosβ用余弦两个角差的公式.分析因为2β=(α+β)-(α-β),所以例10已知3sinβ=sin(2α+β),则tan(α+β)=2tanα.证明将已知变形:3sin(α+β-α)=sin(α+β+α) 3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα.等式两边同时除以cos(α+β)·cosα,即得tan(α+β)=2tanα.4.倍角公式,半角公式(2)使用二倍角的正弦、余弦公式时,公式的选择要准确.如已知sinα,cosα,tanα求cos2α时,应分别选择cos2α=1-(3)余弦的二倍角公式的变形——升幂公式、降幂公式必须熟练掌握.要明确,降幂法是三角变换中非常重要的变形方法.对sin3α,cos3α的公式应记住.(4)使用正弦、余弦的半角公式时,要注意公式中符号的确定方法.正在使用无理表达式时,须要确定符号;在使用两个有理表达式时,无须确定符号,这是与选用无理表达式最大的区别,因此在化简、证明题中,例11求值:(4)先把sin10°·sin50°·sin70°化成余弦,得cos20°·cos40°·cos80°,由于20°,40°,80°顺序为2倍的关系,联想到正弦的2倍角公式,分析使用1±cosα的升幂公式,便于开方.(2)5sin2θ-3sinθ·cosθ+2cos2θ.分析由已知得tanθ=-4.(2)原式可以加一个分母sin2θ+cos2θ,这样分子、分母同时除以cos2还可以这样研究:将sin2θ、cos2θ降幂,使用万能公式.原式=5·5.和差化积、积化和差公式这两组公式现在不要求记忆,但要会使用.(1)要明确,这两组公式是解决正、余弦的加、减、乘的运算关系式.(3)对下列关系式要熟记:例14将下列各式化积:(1)1-sin2α-cos2α;(2)sin5x·sin4x-sin3x·sin2x-sin8x·sinx;分析对(1),题中有1±cosα时,通常都用升幂公式.对(2)、(3),先将乘积化和差,再和差化积.例15求值:(1)cos2A+cos2(60°+A)+cos2(60°-A);(1)分析可以用余弦的两角和、差公式展开计算;若先降幂,再化积更简单.(1)cos(α-β);(2)sin(α+β)-2cos(α+β).解(1)将已知的两式平方相加,得(2)将已知的两式化积并相除,得评述对sinα±sinβ=a,cosα±cosβ=b这样两个式子通常的用法是,如(1),两式平方相加;如(2),两式化积并相除.这两种用法要掌握.。

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题三角函数诱导公式sin〔-α〕=-sinα,cos〔-α〕=cosα,tan〔-α〕=-tanαcot〔-α〕=-cotαsin〔π/2-α〕=cosα,cos〔π/2-α〕=sinα,tan〔π/2-α〕=cotα,cot〔π/2-α〕=tanα,sin〔π/2+α〕=cosα,cos〔π/2+α〕=-sinα,tan〔π/2+α〕=-cotα,cot〔π/2+α〕=-tanα,sin〔π-α〕=sinαcos〔π-α〕=-cosα,tan〔π-α〕=-tanα,cot〔π-α〕=-cotαsin〔π+α〕=-sinα,cos〔π+α〕=-cosα,tan〔π+α〕=tanαcot〔π+α〕=cotα,sin〔3π/2-α〕=-cosα,cos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotα,cot〔3π/2-α〕=tanα,sin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinα,tan〔3π/2+α〕=-cotα,cot〔3π/2+α〕=-tanαsin〔2π-α〕=-sinα,cos〔2π-α〕=cosα,tan〔2π-α〕=-tanαcot〔2π-α〕=-cotα,sin〔2kπ+α〕=sinα,cos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanα,cot〔2kπ+α〕=cotα(其中k∈Z)习题精选一、选择题1.假设,那么的值为〔〕.A.B.C.D.2.的值等于〔〕.A.B.C.D.3.在△ 中,以下各表达式为常数的是〔〕.A. B.C.D.4.如果,且,那么可以是〔〕.A. B. C. D.5.是方程的根,那么的值等于〔〕.A.B.C.D.二、填空题6.计算.7.,,那么,.8.假设,那么.9.设,那么.10..三、解答题11.求值:12.角终边上一点的坐标为,〔1〕化简以下式子并求其值:;〔2〕求角的集合.13.,求证:.14.假设,求的值.15.、、为△ 的内角,求证:〔1〕;〔2〕.16.为锐角,并且,,求的值.参考答案:一、选择题1.B 2.D 3.C 4.D 5.A二、填空题6.2 7.,8.9.10.三、解答题11..12.〔1〕;〔2〕.13.提示:.14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.16..提示:化简条件,再消去得.。

高中数学必修四 第一章三角函数 1.4.2.1 周期函数

高中数学必修四 第一章三角函数 1.4.2.1 周期函数

7 2
-4
, 即������
7 2
= ������
-
1 2
.
又当 x∈(-1,0)时,f(x)=2x+1,
∴������
7 2
= ������
-
1 2
=2×
-
1 2
+ 1 = 0.
题型一 题型二 题型三 题型四
反思1.解答此类题目的关键是利用化归的思想,借助周期函数的 定义把待求问题转化到已知区间上,代入求值即可.
π 6
+ 2π = 2(������ + π) − π6,
∴f(x+π)=sin
2(������
+
π)-
π 6
=sin
2������-
π 6
+

= sin
2������-
π 6
= ������(������).
∴T=π.
本节结束,谢谢大家!
题型一 题型二 题型三 题型四
题型二 求三角函数的周期
【例 2】 求下列函数的周期:
(1)f(x)=sin
1 4
������
+
π 3
(������∈R);
(2)y=|sin x|(x∈R).
分析:对于(1),可结合周期函数的定义求解;对于(2),可通过画函
数图象求周期.
题型一 题型二 题型三 题型四
(2)函数 y=sin
������������
+
π 4
(������
>
0)的周期是
2π 3
,
则������
=
_____.

人教版高中数学必修四第2讲:任意角的三角函数(学生版)

人教版高中数学必修四第2讲:任意角的三角函数(学生版)

人教版高中数学 任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题.(一)任意角的三角函数: 任意点到原点的距离公式:=r ____________________1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2222(||||0)r r x y x y =+=+>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

(二)单位圆与三角函数线:1.三角函数线的定义:当角的终边上一点(,)P x y 的坐标满足____________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。

2.有向线段:____________________________规定:与坐标轴方向一致时为_____,与坐标方向相反时为______。

3.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====_________________, cos 1x x x OM r α====_______________,tan y MP AT AT x OM OA α====_______________ 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

数学必修4第一章三角函数

数学必修4第一章三角函数

第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0.10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.。

数学必修4 常用三角函数公式总结

数学必修4 常用三角函数公式总结
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) Fra bibliotek三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系

高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系

互动探究 探究点1 同角三角函数的基本关系式对任意角α都成立吗?
提示 同角三角函数的基本关系式成立的条件是使式子两边都
有意义.所以sin2α+cos2α=1对于任意角α∈R都成立,而
sin cos
αα=tan
α并不是对任意角α∈R都成立,这时α≠kπ+π2,k∈
Z.
探究点2 在利用平方关系求sin α或cos α时,其正负号应怎样确 定?
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
[规律方法] (1)证明三角恒等式的实质:清除等式两端的差异, 有目的的化简. (2)证明三角恒等式的基本原则:由繁到简. (3)常用方法:从左向右证;从右向左证;左、右同时证.
ቤተ መጻሕፍቲ ባይዱ
【活学活用2】 化简:
1-2sinα2cosα2+ 1+2sinα2cosα20<α<π2.
解 原式=
cosα2-sinα22+
cosα2+sinα22
=cosα2-sinα2+cosα2+sinα2.
∵α∈0,π2,∴α2∈0,π4.
利用tan α=csoins αα和sin2α+cos2α=1向等号左边式子进行转化;
也可利用tan
α=
sin cos
α α
将等号左、右两边式子进行切化弦,结
合sin2α+cos2α=1达到两边式子相等的目的.
证明
∵右边= tan
tan2α-sin2α α-sin αtan αsin
α
=tantaαn2-α-sintaαn2tαacnoαs2sαin α=tantαan-2αsi1n-αctaons2ααsin α

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

(完整版)高中必修四三角函数知识点总结

(完整版)高中必修四三角函数知识点总结

§04。

三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。

01745 1=57。

30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。

30°=57°18ˊ. 1°=180π≈0。

01745(rad )3、弧长公式:rl ⋅=||α。

扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。

yr=αcsc 。

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。

高中数学必修4第一章三角函数的知识点

高中数学必修4第一章三角函数的知识点
当 x 2k 时 ,

2
1,1
k
; 当 当 x 2 k k 时,
y m ax 1 ;当 x 2 k
R

倍(纵坐标
不变) ,得到函数 y sin x 的图象;再将函数 y sin x 的图象上所有点的纵坐标 伸长(缩短)到原来的 倍(横坐标不变) ,得到函数 y sin x 的图象. 函数 y sin x 的图象上所有点的横坐标伸长(缩短)到原来的
2
奇函数
偶函数
奇函数

2
, 2k

2

;③频率: f
1


2
;④相位: x ;⑤初相: .
函数 y s in x ,当 x x1 时,取得最小值为 y m in ;当 x x 2 时,取得最大值为
y m a x ,则
sin , co s

co s , tan
, tan

tan .
3、与角 终边相同的角的集合为 k 3 6 0 , k


sin , co s
co s

tan .
终边所落在的区域.
co s , co s sin , tan co t . 2 2 2 co s , co s sin , tan co t . 2 2 2
1 2
y m ax
y m in ,

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

高一数学必修四三角函数公式

高一数学必修四三角函数公式

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(s ina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。

新人教版必修4第一章第二节任意角三角函数课件

新人教版必修4第一章第二节任意角三角函数课件

有向线段CD:方向C→D,等.
思考3:你能更好的利用有向线段的概念表示角α 的正弦吗?
sinα=MP cosα=0M O
y
P
M
x
思考4:类比的,你能在单位圆中用有向线段表 示角α的余弦吗?
思考5:设α 为锐角,你能根据正弦线和余弦线说明sinα y +cosα >1吗? P
MP+OM>OP=1 O M
A(1,0)
o
P α的终边
x
o
P T
x α的终边
(Ⅲ )
(Ⅳ )
思考6:若终边函数的一种几何表示,即用 有向线段表示三角函数值,是今后进一步研究三 角函数图象的有效工具.
2.正弦线的始点随角的终边位置的变化而变化, 余弦线和正切线的始点都是定点,分别是原点O 和点A(1,0).
例2.(1)试作出角α的终边,使sinα=0 . 5; (2)根据(1)求出所有满足sinα=0 . 5的角 α的集合. (3)根据(1)、(2)求出所有满足sinα≧ 0 . 5 的角α的集合.
变式:求y 2cos x 1的定义域.
正弦、余弦、正切的三角函数线。
设任意角顶点在原点O,始边与x轴非负半轴重合,终边
思考2:能不去掉绝对值符号,使得线段MP的值与 坐标的正负是一致呢?怎样规定?
有向线段:规定了方向的线段.
注意:
1)与坐标轴方向一致时为正,与坐标方向相反时为负.
2)有向线段的书写: 有向线段的起点字母在前,终点 字母在后面.
y C D 有向线段AB:方向A→B;记作AB x 值为正 A o B 有向线段BA:方向B→A ;记作 BA 值为负
y tan AT x
M O
A T

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角一、知识概述1、角的分类:正角、负角、零角.2、象限角:(1)象限角.(2)非象限角(也称象限间角、轴线角).3、终边相同的角的集合:所有与角终边相同的角,连同α角自身在内,都可以写成α+k·360°(k∈Z)的形式;反之,所有形如α+k·360°(k∈Z)的角都与α角的终边相同.4、准确区分几种角锐角:0°<α<90°;0°~90°:0°≤α<90°;第一象限角:.5、弧度角:弧长等于半径的弧所对应的角称为1弧度角(1 rad).1 rad=,1°=rad.6、弧长公式:l=αR.7、扇形面积公式:.二、例题讲解例1、写出下列终边相同的角的集合S,并把S中适合不等式的元素写出来:(1)60°;(2)-21°;(3)363°14′.解:(1),S中满足的元素是(2),S中满足的元素是(3),S中满足的元素是例2、写出终边在y轴上的角的集合.解析:∴.注:终边在x轴非负半轴:.终边在x轴上:.终边在y=x上:.终边在坐标轴上:.变式:角α与β的终边关于x轴对称,则β=_______.答案:.角α与β的终边关于y轴对称,则β=_______.答案:任意角的三角函数一、知识概述1、定义:在直角坐标系中,设α是一个任意角,α的终边与圆心在坐标原点的单位圆交于点P(x,y),那么sinα=y,cosα=x,tanα=.注:①对于确定的角α,其终边上取点,令,则.②α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置.2、公式一:,,,其中.3、三角函数线角α的终边与单位圆交于P点,过P作PM⊥x轴于M,则sinα=MP(正弦线),cosα=OM(余弦线).过A作单位圆的切线,则α的终边或其反向延长线交此切线于点T,则tanα=AT(正切线).注:若,则.二、例题讲解例1、已知角α的终边上一点,且,求的值.解:,∴,.当时,,∴;当时,,∴;当时,,∴.例2、化简下列各式(1);(2).解:(1)(2)同角三角函数的基本关系一、知识概述1、平方关系:.2、商数关系:.二、例题讲解例1、已知tanα为非零实数,用tanα表示sinα,cosα.解:∵,,∴.∴,即有,又∵为非零实数,∴为象限角.当在第一、四象限时,即有,从而,;当在第二、三象限时,即有,从而,.例2、已知,试确定使等式成立的角α的集合.例3、已知,求sinx,cosx的值.解:由等式两边平方:.∴,即,∴为一元二次方程的两个根,解得.又∵,∴.因此.例4、化简:.解法一:原式=.解法二:原式=.解法三:原式=.例5、已知,则(1)____________________.(2)____________________.(3)____________________.解:(1);(2);三角函数的诱导公式一、知识概述诱导公式一:.诱导公式二:.诱导公式三:,,.诱导公式四:,,.诱导公式五:,.诱导公式六:,.引申:诱导公式七:,.诱导公式八:,.记忆公式的口诀“奇变偶不变,符号看象限”.二、例题讲解例1、化简:(1);(2)(3).(4)(5).解:(1)原式.(2)原式=.(5)例2、已知求的值.解:由得,所以例3、已知则________.解:.正弦函数、余弦函数的图象与性质(一)一、知识概述1、正弦函数、余弦函数的图象2、性质:①定义域:x∈R②值域:[-1,1]③周期性:都是周期函数,且最小正周期为.二、例题讲解例1、作函数的简图.(2)描点连线(图象见视频).例2、求下列函数的周期(1);(2);(3);(4).解:(1)令,则.∵f(x+T)=f(x)恒成立,.∴周期为4.注:.(2).注:.(3)T=π.(4)T=.假设,使令x=0,得,,与时矛盾.∴T=.例3、求下列函数的定义域:(1); (2) y=lg(2sinx+1)+.解:(1),∴,∴.(2) ,∴.∴其定义域为.正弦函数与余弦函数的图象与性质(二)一、知识概述1、图象(见视频)2、性质:(1)定义域:都为R.(2)值域:都为[-1,1].(3)周期性:都是周期函数,且T=2π.(4)奇偶性:y=sinx是奇函数,y=cosx是偶函数.(5)对称性:y=sinx的对称中心为(kπ,0)(k∈Z),对称轴为.y=cosx的对称中心为,对称轴为.(6)单调性:y=sinx在上单调递增;在上单调递减.y=cosx在上单调递减;在上单调递增.二、例题讲解例1、在中,,若函数y=f(x)在[0,1]上为单调递减函数,则下列命题正确的是()A.B.C.D.解:∵,∴,.所以.答案:C例2、求下列函数的单调递增区间:(1);(2);(3);(4)y=-|sin(x+)|解:(1)法一:图象法(图象见视频).法二:令,∴.所以,函数单调递增区间为.(2)令,∴,所以,函数单调递增区间是.(3)令.所以,函数单调递增区间是.法二:∵,令,,所以,函数的递增区间是.(4)函数的递增区间为[kπ+,kπ+](k∈Z).(图象见视频)法二:令.解得.∴函数的递增区间为[kπ+,kπ+](k∈Z).正切函数的图象与性质一、知识概述1、图象:2、性质:(1)定义域:;(2)值域:R;(3)周期性:;(4)奇偶性:奇函数;(5)对称性:y=tanx的对称中心为.(6)单调性:在内单调递增.二、例题讲解例1、求下列函数的定义域:(1);(2);(3).解:(1)由,得,∴.∴的定义域为.(2)令,∵sinx∈[-1,1]且,∴定义域为R.(3)由已知,得,∴,∴原函数的定义域为(备注:视频中区间书写有误,后面一个应该是半开半闭区间).例2、求函数的定义域,周期和单调区间.函数y=Asin(ωx+φ)的图象一、知识概述的图象可由y=sinx的图象经过以下的变换得到:①将y=sinx的图象向左(右)平移个单位得到的图象;②将的图象保持纵坐标不变,横坐标伸长(缩短)到原来的倍,得到的图象;③将的图象保持横坐标不变,纵坐标伸长(缩短)到原来的A倍,得到的图象.A表示振幅,为周期,为频率,为初相,为相位.二、例题讲解例1、函数的图象是由y=sinx的图象经过怎样的变换得到.解:①将的图象向左平移个单位,得到的图象;②将的图象保持纵坐标不变,横坐标缩短到原来的,得到的图象;③将的图象保持横坐标不变,纵坐标伸长到原来的3倍,得到的图象.变式1:y=sinx的图象由的图象经过怎样的变换得到.解:横坐标不变,纵坐标缩短到原来的,得到的图象;再将的图象向右平移个单位,得到y=sin2x的图象;再将y=sin2x的图象纵坐标不变,横坐标伸长到原来的2倍,得到y=sinx的图象.变式2:函数y=f(x)的图象先向右平移个单位,再保持纵坐标不变,横坐标缩短到原来的,得到的图象,求f(x)的解析式.答案:.例2、已知函数(,)一个周期内的函数图象,如下图所示,求函数的一个解析式.解:由图知:函数最大值为,最小值为,又∵,∴,由图知,∴,∴,法一:∴,∴,∴.,代入上面两式检验,得满足条件.∴.法二:..法三:令,.三角函数模型的简单应用例1、已知电流在一个周期内的图象如图:(1)根据图中数据求的解析式.(2)如果t在任意一段秒的时间内,电流都能取得最大值和最小值,那么ω的最小正整数值是多少例2、某港口水的深度y(米)是时间,单位:时)的函数,记作,下面是某日水深的数据:t时03691215182124y米经长期观察,的曲线可以近似地看成函数的图象.(1)试根据以上数据,求出函数的近似表达式;(2)一般情况下船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)解:(1)由已知数据,易知函数的周期T=12,振幅A=3,b=10,(视频板书中应为f(t)).(2)由题意,该船进出港时,水深应不小于5+=11.5米,,解得:,在同一天内,取.∴该船可在当日凌晨1时进港,17时出港,在港口内最多停留16个小时.例3、如图所示,一个摩天轮半径为10米,轮子的底部在地面上2米处,如果此摩天轮按逆时针方向每20秒转一圈,且当摩天轮上某人经过点P处(点P与摩天轮中心O高度相同)时开始计时:(1)求此人相对于地面的高度关于时间的函数关系式;(2)在摩天轮转动的一圈内,有多长时间此人相对于地面的高度不超过10米.解:(1)以O为坐标原点,以OP所在直线为x轴建立直角坐标系,在t秒内摩天轮转过的角为,∴此人相对于地面的高度为(米).(2)令,则,,,故约有秒此人相对于地面的高度不超过10米.例4、某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.(1)试建立出厂价格、销售价格的模型,并求出函数解析式;(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数.三角函数的综合应用例1、求下列函数的值域:(1);(2);(3);(4);(5).解:(1)∵,∴,∴,所以,值域为.(2)..另解:,∴,∴,解得,.(3),,.(4)由题意,∴,∵,∴时,,但,∴,∴原函数的值域为.(5)∵,又∵,∴,∴,∴函数的值域为.例2、是否存在α、β,α∈(-,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立若存在,求出α、β的值;若不存在,请说明理由.解:由条件得①2+②2得sin2α+3cos2α=2,∴cos2α=,∴.∵α∈(-,),∴,α=或-.由②得cosβ=.又β∈(0,π),∴β=,又.∴存在α=,β=满足条件.例3、已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,求的值.解:由是偶函数,得,即,或对任意x∈R恒成立.,,.又f(x)图象关于对称,.,则k=1时,,满足条件.当k=2时,,此时,满足条件.当k≥3时,不合要求.综上.。

相关文档
最新文档