高等数学教学课件d8.pptx
合集下载
《高数下第八章》课件
球面坐标系
球面坐标系将点的位置与球坐 标和两个角度联系起来。
球面坐标系下的三重积 分计算
可以通过变量替换将三重积分 转化为球面坐标下的计算。
相关应用
用于计算球面坐标图形的体积、 质心坐标等。
总结
本章重点内容概述
回顾并总结本章重点知识和概念。
解答问题技巧与方法
分享解答高数问题的技巧和方法。
重要的公式和定理
介绍与二重积分和三重积分相关的重要公式 和定理。
课程思考题解析
解析本章课程思考题,并提供答案和解析。
《高数下第八章》PPT课 件
本PPT课件将详细介绍《高数下》第八章的内容,涵盖二重积分、三重积分, 以及不同坐标系下的应用。欢迎同学们认真学习和实践。
第一节:二重积分
1
计算方法
2
可以通过分区求和或直接利用公式进
行计算。ห้องสมุดไป่ตู้
3
定义
二重积分是对二元函数在某个闭区域 上进行积分的过程。
应用举例
用于计算平面图形的面积、质心坐标 等。
相关应用
用于计算极坐标图形的面积、 质心坐标等。
第四节:三重积分在柱面坐标下的应 用
1 柱面坐标系
柱面坐标系将点的位置与柱坐标和极角两个数值联系起来。
2 柱面坐标系下的三重积分计算
可以通过变量替换将三重积分转化为柱面坐标下的计算。
3 相关应用
用于计算柱面坐标图形的体积、质心坐标等。
第五节:三重积分在球面坐标下的应用
第二节:三重积分
1
计算方法
2
可以通过分区求和或直接利用公式进
行计算。
3
定义
三重积分是对三元函数在某个闭区域 上进行积分的过程。
高等数学教学课件PPT
注 (1) 周期函数在每个周期上有相同的图形
(2) 通常周期函数的周期是指最小正周期
(3) 并非每个周期函数都有最小正周期
例:常量函数 f ( x) C
y
狄利克雷函数
1 f (x) 0
xQ x QC
1
概念
概念
集映
函
合射
逆映射
反函数
数
区邻 间域
构造 复合映射
构造
➢概念
设函数 f : D f (D) 是单射, 则它存在逆映射 f 1 : f (D) D 称映射 f 1 为函数f 的反函数. 一般地, y f ( x), x D的反函数记成 y f 1( x), x f (D)
1, x 0
y
sgn
x
0,
x0
1, x 0
y
1
o
x
1
y
注 分段函数不一定就是非初等函数!
2 1o 1 2 3 4 x
x x0
2
例5 设f(x)的定义域D=[0,1],求下述函数的定义域
当 x1 x2 时,恒有 f ( x1) f ( x2 )
那么称函数f (x)在区间I上是单调增加的 o
类似可定义函数f (x)在区间I上是单调减少的
x1 x2 x
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
➢ 如果对于区间I上的任意两点x1及x2,
当 x1 x2 时,恒有 f ( x1) f ( x2 )
设f是从集合X到集合Y的映射
若
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射
若对X中任意两个不同的元素 则称f为X到Y的单射
《高等数学》PPT课件
因dyx, 故有 dx y
fxfyxy 0
记
f x f y Байду номын сангаас
x y
机动 目录 上页 下页 返回 结束
极值点必满足 引入辅助函数 则极值点满足:
fxx0
fyy0 (x,y)0
F f ( x , y ) ( x , y )
F x fx x 0
F y fyy 0
F 0
辅助函数F 称为拉格朗日( Lagrange )函数.利用拉格
据一元函数极值的必要条件可知定理结论成立.
说明: 使偏导数都为 0 的点称为驻点 .
但驻点不一定是极值点.
例如, zxy有驻点( 0, 0 ),但在该点不取极值.
机动 目录 上页 下页 返回 结束
推广 如果三元函数u f ( x, y, z)在点 P( x0 , y0 , z0 ) 具有偏导数,则它在 P( x0 , y0 , z0 )有极值的必要条
所 以 z f ( 1 , 1 ) 2 为 极 小 值 ;
当 z2 6 时 , A 1 4 0 ,
所 以 z f ( 1 , 1 ) 6 为 极 大 值 .
例3. 讨论函 数
zx3y3及 z(x2y2)2在点(0,0)
是否取得极值.
解: 显然 (0,0) 都是它们的驻点并,且在 (0,0) 都有
A<0 时取极大值;
则: 1) A C B 20时, 具有极值
当
A>0 时取极小值.
2) 当 A C B 20时, 没有极值.
3) 当 A C B 20时, 不能确定 , 需另行讨论.
证明见 第九节(P65) .
机动 目录 上页 下页 返回 结束
求函数z f ( x, y)极值的一般步骤:
高等数学课件详细
分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
《高等数学课件PPT》-完整详细版
1
微积分基本定理
微积分基本定理的概念和推导,描述定积分和不定积分之间的关系。
2
带变限积分
带变限积分的计算方法和几何解释,通过例题演示如何求解带变限积分。
极限和连续
深入介绍极限和连续的概念、性质和运算法则,帮助学生理解和掌握这两个重要概念。
极限
数列极限和函数极限的定义和性质,常见的极限计 算方法和极限存在准则。
连续
函数连续的定义和判定条件,连续函数的性质和运 算法则。
函数及其图像
介绍函数的概念和性质,以及如何通过绘制函数图像来更好地理解函数。
函数
函数的定义、定义域、值域和性质,常见函数类型 和函数之间的关系。
图像
绘制函数图像的方法和技巧,通过观察图像认识函 数的特点和变化趋势。
导数和微分
介绍导数和微分的概念、性质和计算方法,以及它们在几何和物理中的应用。
1 导数
导数的定义和性质,导数的计算方法和常见 函数的导数公式。
2 微分
微分的概念和计算方法,微分在几何和物理 中的应用。
《高等数学课件PPT》-完整详 细版
一份完整详细的高等数学课件PPT,深入介绍高等数学的各个知识点,帮助 学生更好地理解和掌握这门重要学科。
课程目标和重要性
通过介绍高等数学课程的学习目标和重要性,帮助学生明确学习目标,激发学习兴趣,并认识到 高等数学在现实生活和学科发展中的广泛应用。
学习目标
深入理解高等数学的各个概念和方法,提高解决数学问题的能力。
不定积分与牛顿-莱布尼茨公式
深入研究不定积分的概念、性质和计算方法,以及牛顿-莱布尼茨公式的推导和应用。
1 不定积分
不定积分的定义和计算方法,常见函数的不 定积分公式。
第8章高等数学PPT课件
定义6 对于函数y = f (x)在x0附近有定义(在x0可以没有定义),如果当x
无限地趋近于x0(始终不等于x0)时,函数值f (x)无限趋近于一个确定的常
数A,则称函数y = f (x)当
x →x0时以A为极限,记作f (x) = A 或f (x)
→ A (x →x0)。
lim
xx0
第21页/共40页
余弦函数y = cos x的性质:
定义域是R,值域是[-1, 1],是偶函数, 是周期函数,最小正周期是2π
正切函数y = tan x的性质:
定义域是{x
x
R, 且x
2
k
,
k
Z}
,
值域是R,是奇函数,是周期函数,最小正周
期是π
第15页/共40页
余切函数y = cot x的性质:
定义域是{x x R,且x k , k Z} ,值
第19页/共40页
二、函数极限的定义
定义3 对于函数y = f (x),如果当x无限地增 大时,函数值f (x)无限趋近于一个确定的常 数limA,则称函数y = f (x)当x → +∞ 时以A为
x
极限,记作
f (x) = A或 f (x) → A (x → +∞)。
定义4 对于函数y = f (x),如果当lixm无限地 x 变小(x的绝对值无限地增大)时,函数值f (x)无限趋近于一个确定的常数A,则称函数y = f (x)当x → -第∞20页时/共4以0页A为极限,记作
lim
x x0
第22页/共40页
定义8 对于函数y = f (x)在x0附近有定义(在x0可以没有定义),如果当x 从小于x0的方向无限地趋近于x0(始终不等于x0)时,函数值f (x)无限趋近 于一个确定的常数A,则称A是函数y = f (x)当x →x0时的左极限,记为 f (x) = A或f (x) → A (x →x0-)。
高等数学ppt课件
05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法
高等数学课件详细
导数的应用
第五章
函数的单调性和极值
导数与函数的单调性:导数大于0,函数单调递增;导数小于0,函数单调递减
极值的定义:函数在某点处的导数为0,且该点两侧的导数符号相反,则该点为函数的极 值点
极值的分类:极大值和极小值
极值的求解:通过求导数等于0的点,并判断该点两侧的导数符号,确定极值点
曲线的凹凸性和拐点
质。
定积分的应用: 定积分在物理、 工程、经济等 领域有着广泛 的应用,如计 算物体的质量、 体积、重心等。
定积分的计算 方法:常用的 定积分计算方 法有牛顿-莱布 尼茨公式、积 分表法、数值
积分法等。
定积分的运算和求法
定积分的定义: 对函数在某一区 间上的积分
定积分的性质: 线性性、可加性、 单调性等
导数:函数在某一点的切 线斜率
凹凸性:函数在某点附近 的增减性
拐点:函数在某点附近的 凹凸性发生变化的点
应用:判断函数的单调性、 极值、最值等
洛必达法则和不定积分
洛必达法则:用于求解极限, 包括0/0型和∞/∞型
不定积分:用于求解函数的原 函数,包括基本积分公式和换 元积分法
洛必达法则的应用:求解极限、 求导、求积分等
不定积分的应用:求解函数的 原函数、求导、求积分等
泰勒公式和等价无穷小量代换
等价无穷小量代换:将复杂 函数替换为简单函数,便于 计算和近似
泰勒公式的应用:求极限、 求导数、求积分等
泰勒公式:将函数展开为多 项式形式,便于计算和近似
等价无穷小量代换的应用: 求极限、求导数、求积分等
不定积分与定积分
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用。
极限的运算和求法
极限的定义:函数 在某点或某区间上 的极限值
高等数学第八章课件.ppt
x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 切向量:切线的方向向量称为曲线的切向量.
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x
高等数学ppt课件
定积分的性质
定积分具有可加性、可积性、可微性等性质 。
定积分的应用
01
02
03
几何应用
定积分可以用于计算平面 图形和三维物体的面积和 体积,如矩形、圆形、球 体等。
物理应用
定积分可以用于计算变力 沿直线做功、液体压力等 物理问题。
经济应用
定积分可以用于计算经济 指标,如成本、收益、利 润等。
05
多重积分与向量分析
多重积分的概念与性质
多重积分的定义
多重积分是单变量积分概念的推广,它涉及多个变量 的积分。多重积分可以看作是对于每个变量进行积分 ,然后将结果相乘。
多重积分的性质
多重积分的性质包括积分的可加性、积分的可交换性、 积分的可结合性等。这些性质与单变量积分的性质类似 ,但需要考虑到多个变量的复杂性。
函数定义
函数是一种数学工具,它建立了数与数之间的对应关系,可以将一个数集中的每一个数唯一地映射到另一个数集中。 函数的性质包括定义域、值域、对应关系等。
函数的表示方法
函数的表示方法有表格法、图示法和解析法等,其中解析法是最常用的方法之一。解析法是通过数学表达式来表示函 数的关系。
函数的单调性
函数的单调性是指函数在某区间内的单调递增或单调递减的性质。单调函数具有连续性和可导性等性质 。
03
导数与微分
导数的定义与性质
总结词
导数是描述函数值随自变量改变速率的 方式,是函数局部性质的重要体现。
VS
详细描述
导数定义为函数在某一点的变化率,即函 数在这一点处切线的斜率。导数的基本性 质包括:(1)常数函数的导数为零;( 2)导函数在某点的极限就是原函数在该 点的导数值;(3)两个函数相加或相减 后的导数等于各自导数之和或之差;(4 )常数倍函数的导数等于该常数乘以原函 数的导数。
《高等数学课件》课件
导数的定义
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
《高等数学》课件
《高等数学》PPT课件
欢迎来到《高等数学》PPT课件。让我们一起探索数学的奇妙世界,进一步 了解高等数学的概述和其在现实生活中的应用与意义。
什么是高等数学
高等数学是数学的重要分支,研究微积分、极限、连续、导数、积分和常微 分方程等概念与理论,为其他学科提供数学工具和方法。
极限与连续
1
极限的定义
极限是数列或函数无限接近某一特定值的概念。学习极限有助于我们理解数学中 的趋势和变化规律。
积分具有线性性质、换元积分法和分部积分法等运算法则,简化了对复杂函数的 积分计算。
3
牛顿-莱布尼兹公式
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使我们能够通过求不定积分 来求定积分。
常微分方程
1 常微分方程的定义
常微分方程描述了自变量和函数之间的关系,在物理、生物和工程等领域中有广泛应用。
2 一阶常微分方程的解法
偏导数及其运算法则
多元函数的极值
偏导数描述了多元函数在给定 方向上的变化率,通过偏导数, 我们可以了解函数在各个方向 上的变化情况。
多元函数的极值是指函数在特 定约束条件下的最大值和最小 值,可以通过偏导数和拉格朗 日乘数法等方法求解。
通过分离变量、齐次化和常数变易法等方法,我们可以解决一阶常微分方程。
3 二阶常微分方程的解法
二阶常微分方程的解法需要基于一阶方程的解法,我们可以通过特征方程和待定系数法 等方法求解。
多元函数微积分初步
二元函数的概念和性质
二元函数描述了自变量和因变 量之间的关系,帮助我们研究 二维空间中的变化规律。
函数的微分
微分是导数的一个重要应用,描述了函数图像在某一点处的近似变化,以及函数在一段区间 内的平均变化率。
欢迎来到《高等数学》PPT课件。让我们一起探索数学的奇妙世界,进一步 了解高等数学的概述和其在现实生活中的应用与意义。
什么是高等数学
高等数学是数学的重要分支,研究微积分、极限、连续、导数、积分和常微 分方程等概念与理论,为其他学科提供数学工具和方法。
极限与连续
1
极限的定义
极限是数列或函数无限接近某一特定值的概念。学习极限有助于我们理解数学中 的趋势和变化规律。
积分具有线性性质、换元积分法和分部积分法等运算法则,简化了对复杂函数的 积分计算。
3
牛顿-莱布尼兹公式
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使我们能够通过求不定积分 来求定积分。
常微分方程
1 常微分方程的定义
常微分方程描述了自变量和函数之间的关系,在物理、生物和工程等领域中有广泛应用。
2 一阶常微分方程的解法
偏导数及其运算法则
多元函数的极值
偏导数描述了多元函数在给定 方向上的变化率,通过偏导数, 我们可以了解函数在各个方向 上的变化情况。
多元函数的极值是指函数在特 定约束条件下的最大值和最小 值,可以通过偏导数和拉格朗 日乘数法等方法求解。
通过分离变量、齐次化和常数变易法等方法,我们可以解决一阶常微分方程。
3 二阶常微分方程的解法
二阶常微分方程的解法需要基于一阶方程的解法,我们可以通过特征方程和待定系数法 等方法求解。
多元函数微积分初步
二元函数的概念和性质
二元函数描述了自变量和因变 量之间的关系,帮助我们研究 二维空间中的变化规律。
函数的微分
微分是导数的一个重要应用,描述了函数图像在某一点处的近似变化,以及函数在一段区间 内的平均变化率。
大学数学课件:高等数学完整PPT讲义
多元函数和偏微分方程
探索多元函数和偏微分方程的特性和解法。研究多元函数的极限、连续性, 并学习偏导数和偏微分方程的求解方法。
向量分析和线性代数基础
深入研究向量分析和线性代数的基本概念和技巧。掌握向量的运算法则、曲线和曲面的参数方程,以及 线性方程组的解法。
大学数学课件:高等数学 完整PPT讲义
欢迎来到我们的大学数学课件!这是一个完整的PPT讲义,旨在帮助学生深 入理解高等数学的关键概念和技巧。
高等数学课程概述
探索高等数学的广阔世界。从数学的起源和发展,到各个数学领域的实际应用。了解数学对科学、工程 和经济的重要性。
ቤተ መጻሕፍቲ ባይዱ
数学符号和思维导图
掌握数学中常用的符号和记号。了解符号的含义和用法,以便更好地理解和 推导数学公式。使用思维导图来整理和呈现复杂的数学概念。
微积分基础知识
深入研究微积分的基本原理和概念。包括导数、积分和微分方程等重要概念, 以及它们在实际中的应用。
微分学和积分学
学习微分学和积分学的高级概念。探索微分学的极限、连续性和微分法则, 以及积分学的定积分、不定积分和积分方法。
常微分方程和级数
了解常微分方程和级数的基本理论和解法。研究一阶和高阶常微分方程的解析解和数值解法,以及级数 的收敛性和求和方法。
高等数学数学PPT课件精选全文完整版
归转化思想。
做
学生进行练习训练,个人独立思考与分组讨论相结合。
训
学生上黑板演示解题过程,其他学生点评,教师分析总结。
01
课程尚处于建设阶段,教学资源有待于进 一步完善,现有教学资源还没有得到充分 利用。
进一步开拓更多的学习资源,团队教师增 进针对教学方法和教学资源建设与利用方 面的交流。
பைடு நூலகம்
02
教学内容和教学设计在不断变化的社会需 求、学生思想,以及不断产生的新技术面 前有些滞后。
教学问题
转变传统的教学理念和改变旧的教学模式 探索、建立了新的教学模式和教学方法。
教学对象
教学对象为一年级学生,对大学学习环境、学习 方式需要有一定的适应期 。 教师向学生介绍大学学习的特点与方法,帮助学 生尽快度过适应期。
教学特色
通过不同形式的自主学习 、探究活动,让 学生体验
数学发现和创造的历程,发展他们的创 新意识 。
课程内容及授课学时数(1学期,共64课时)
序号 1 2 3 4 5 6
课程内容 第一章 函数的极限与连续 第二章 导数与微分 第三章 导数应用 第四章 不定积分 第五章 定积分 第六章 空间解析几何
授课学时 12 12 6 16 16 2
导向
依据
度
专业
满足 专业培养目
标
必需 够用
理论知识以“必需、够用”为原则,教学内 容体现“专业性”
教学内容的针对性
专业理论知识需求
后续课程学习要求
教学内容的适用性
高等数学基本要求 教学内容的针对性
淡化严格论证 强化数学应用 注重数学软件
符合课程目标
教学内容选择 辅助多媒体教学 自主学习能力
《高等数学》PPT课件
x
y
y
xy ln y xy ln x
y2 x2
例9
设
y
(x
a1 )a1 ( x
a2求
dy dx
解 两边取对数得
ln y a1 ln( x a1 ) a2 ln( x a2 ) an ln( x an )
两边对 x 求导得
完整版课件ppt
14
例10
1 y a1 a2 an
例6
设 y ( x 1)3 x 1 , 求y. ( x 4)2 e x
解 等式两边取对数得
完整版课件ppt
11
ln y ln( x 1) 1 ln( x 1) 2 ln( x 4) x 3
上式两边对 x求导得
y 1 1 2 1 y x 1 3( x 1) x 4
dx
解得
dy dx
ex y xey
,
由原方程知 x 0, y 0,
dy dx
x0
ex xe
y
y
x0 y0
1.
完整版课件ppt
4
例2 设曲线C的方程为 x3 y3 3 xy,求过C上
点(3 , 3)的切线方程, 并证明曲线C在该点的法 22
线通过原点 .
解 方程两边对 x求导, 3x2 3 y2 y 3 y 3xy
§4、隐函数与参变量 函数微分法
完整版课件ppt
1
一、隐函数的导数
定义: 由方程F(x, y)0所确定的函数 y y(x)称为 隐函数.
相应地,y f (x)形式的函数称为显函数.
F(x, y) 0
y f ( x) 隐函数的显化
问题:1、 方程F(x, y)0什么时候确定一个隐函数? 2、隐函数不易显化或不能显化如何求导?
高等数学教学课件-d8-1
YSoAuNthGeZrnHOMUedicUaNl IUVnEivReSrsIiTtyY
机动 目录 上页 下页 返回 结束
说明: 由
(x,y,z)1
1
( x 1 x 2 ,y 1 y 2 ,z 1 z 2 )
得定比分点公式:
A
xx11x2 ,
y
y1 y2 1
,
zz11z2
M B
o
A
当1时, 点 M 为 AB 的中点 ,于是得
第七章
第一节 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系
四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
YSoAuNthGeZrnHOMUedicUaNl IUVnEivReSrsIiTtyY
机动 目录 上页 下页 返回 结束
一、向量的概念
向量: 既有大小, 又有方向的量称为向量
中点公式:
B
xx1
x2 2
,
y
y1
2
y2
,
zz1
2
z
2
M
YSoAuNthGeZrnHOMUedicUaNl IUVnEivReSrsIiTtyY
机动 目录 上页 下页 返回 结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
z R
设 r (x ,y ,z)作 ,O M r ,则有 rOM O P O Q OR o
YSoAuNthGeZrnHOMUedicUaNl IUVnEivReSrsIiTtyY
机动 目录 上页 下页 返回 结束
例4. 求证以 M 1 ( 4 , 3 , 1 ) , M 2 ( 7 , 1 , 2 ) , M 3 ( 5 , 2 , 3 )