15[1].1.2__同底数幂的乘法及幂的乘方的习题课
同底数幂的乘法、幂的乘方、积的乘方练习卷
同底数幂的乘法、幂的乘方、积的乘方练习卷同底数幂的乘法同底数幂相乘的法则是:底数不变,指数相加。
例如,a^m * a^n = a^(m+n)。
逆用法则是:a^(m+n) = a^m * a^n。
练:一.判断题1.x^3 + x^2 = x^5 (×)2.x^5 * x^2 = x^10 (√)3.a * a^2 * a^7 = a^9 (√)4.m^4 * m^4 = 2m^4 (×)5.y^y^5 = y^7 (√)二.填空题:1.m^5 * m^3 = m^82.-a^2 * a^6 = -a^83.(-a)^2 * a^6 = a^84.2^5 + 2^5 = 2^6二.计算题1.(b+2)^3 * (b+2)^5 * (b+2) = (b+2)^92.(x-2y)^2 * (2y-x)^3 = (x-2y)^53.x^3 * x^5 + x * x^3 * x^4 = 2x^84.(2x-1)^2 * (2x-1)^3 + (2x-1)^4 * (-2x+1) = (2x-1)^5三、一种计算机每秒可做4×10^8次运算,它工作3×10^3秒共可做多少次运算?总共可做的次数为:4 * 10^8 * 3 * 10^3 = 1.2 * 10^12.四、解答题:1.若3a=5,3b=6,求3a+b的值。
3a+b = 3a * 3b/3a = 5 * 6/3 = 10.2.若ma-2=6,mb+5=11,求ma+b+3的值。
ma+b+3 = ma * mb/ma-2 + 3 = 6 * 11/4 + 3 = 18.75.幂的乘方幂的乘方的法则是:底数不变,指数相乘。
例如,(a^m)^n = a^(m*n)。
逆用法则是:a^(m*n) = (a^m)^n。
练:一.计算题1.(10^3)^3 = 10^92.(x^4)^3 = x^123.(-x^3)^4 = x^124.(-x)^3 * (-x)^2 = -x^55.(a^2)^3 * a^5 = a^116.(x^2)^8 * (x^4)^4 = x^247.(b*m+1)^4 * (b*m-1)^5 = b^9 * m^98.(-x^3)^2 * (-x^2)^3 = -x^109.(-a^2)^3 + (-a)^3 = -2a^3二.解答题:1.若2^x+2^y-5=0,求4*16的值。
(完整版)同底数幂、幂的乘方、积的乘方知识点及习题
6. 若 am 2, a n 5 , 则 am n =________.
二、选择题
1
7. 下面计算正确的是 ( )
A . b 3b2 b6 ; B . x3 x3 x 6 ; C . a 4 a 2 a 6 ; D . mm5 m6
8. 81 × 27 可记为 ( )
A. 93 ; B. 37 ; C. 36 ; D. 312 9. 若 x y , 则下面多项式不成立的是 ( )
2、 (-2 x2y) 3+8(x 2) 2· (-x 2) · (-y 3)
3、 -2 100X0.5 100X(-1) + 1994 1 2
4. 已知 2m=3, 2n=22,则 22m+n的值是多少
8
5.已知
9a2
31 g
3
4 ,求 a 3 的值
6. 已知 10 5,10 6 ,求 102 3 的值 7. 已知 x n=5,y n=3, 求 (x 2y) 2n的值。
B.-2
× 104 C.0 D.-10
4
2、 ( x - y ) 6·( y - x ) 5=_______。 3 、 10m· 10m-1· 100=______________。
4、 a 与 b 互为相反数且都不为 0, n 为正整数,则下列两数互为相反数的是 ( )
7、 计算 (-2) 1999+(-2) 2000 等于 ( )
( 2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再 按法则进行计算 .
例 1: 计算列下列各题
(1) a3 a4 ;
(2) b b2 b3 ; (3) c
2
4
c
c
(完整版)同底数幂、幂的乘方、积的乘方知识点及习题,推荐文档
D.a2n 与b2n
(2) –a·(-a)2·a3
(3) –b2·(-b)2·(-b)3
(4) x·(-x2)·(-x)2·(-x3)·(-x)3
(5) x n x x n1
(7) x6·(-x)5-(-x)8 ·(-x)3
(6)x4-m ·x4+m·(-x) (8) -a3·(-a)4·(-a)5
A. x5 ;
B. x5 ;
C. x6 ;
D. x6 .
7.下列四个算式中: ①(a3)3=a3+3=a6;②[(b2)2]2=b2×2×2=b8;③[(-x)3]4=(-x)12=x12; ④(-y2)5=y10,正确的算式有( )
A.0 个;
B.1 个;
C.2 个;
D.3 个.
8.下列各式:① a5
幂的运算
1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加.
公式表示为: am an amn m、n为正整数
同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即
am an a p amm p (m、n、为p 正整数 )
注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相 加,所得的和作为积的指数.
中等:
1、 (-10)3·10+100·(-102)的运算结果是( )
A.108
B.-2×104
2、(x-y)6·(y-x)5=_______。
C.0
D.-104
3、10m·10m-1·100=______________。
4、a 与 b 互为相反数且都不为 0,n 为正整数,则下列两数互为相反数的是( )
5.计算
x3
y2
第1讲 幂的运算-七年级下册数学同步精品讲义
第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
1.1-1.2同底数幂乘法,幂的乘方,积的乘方-北师大版七年级数学下册教案
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《同底数幂乘法,幂的乘方,积的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相同底数的幂相乘的情况?”(如计算相同货币单位累加的总额)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索幂运算的奥秘。
其次,幂的乘方法则对学生来说是一个新的挑战。虽然通过案例分析,他们能够理解指数相乘的概念,但在实际操作中,一些学生还是会犯指数相加的错误。这可能是因为他们对幂的乘方运算的本质理解不够深入,我需要在以后的课堂上继续加强这方面的讲解和练习。
关于积的乘方法则,我发现学生们在处理多个因子时容易出现重复计算的问题。这可能是因为他们在分解积的乘方时,没有清晰地认识到每个因子只需要乘方一次。在以后的教学中,我需要设计更多的练习题,帮助学生巩固这一知识点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解同底数幂乘法的基本概念。同底数幂乘法是指当底数相同时,幂的乘法可以通过指数相加来进行计算。这一概念在数学运算中非常重要,它可以帮助我们简化计算过程,提高解题效率。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算2^3•2^4,通过同底数幂乘法法则,我们可以得出2^(3+4)=2^7,从而简化计算。
(3)积的乘方法则在涉及多个因子时的应用,尤其是当积的乘方中包含相同因子时,如何避免重复计算。
难点举例:计算(2×2×3)^2,学生应能识别2是重复因子,得出2^2×2^2×3^2=4×4×9。
在教学过程中,教师要针对这些重点和难点内容,通过实例讲解、互动提问、练习巩固等多种方式,帮助学生深入理解和掌握本节课的核心知识。同时,要关注学生的个别差异,对于理解上存在困难的学生给予个别指导和鼓励,确保每位学生都能透彻理解并灵活运用所学知识。
15.1.1同底数幂的乘方
3个10 个 5个10 个
= 10 × L × 10
8个10 个
= 10
8
10m×10n
m n
m n
10m+n =?
m+n
a a ⋅a =?
a ⋅ a = (a ⋅ a ⋅L⋅ a ⋅ a)×(a ⋅ a ⋅L⋅ a ⋅ a)
= a⋅ a⋅La⋅ a
(m +n)个a 个 m个a 个 n个a 个
(3)x.x3.( )=x7 (4)xm.( (5)若8=2x,则x=_________ (6)若8×4=2x,则x=__________
(7)若3 ×27 ×9=3x,则x=____________
流 小 结 交
1、本节课我们经历了怎样的过程? 本节课我们经历了怎样的过程? 2、本节课我们学到了什么? 本节课我们学到了什么? 3、学了本节课后我们有什么感想? 学了本节课后我们有什么感想?
课堂作业:
必做题:习题15.1 复习巩固1 选做题:已知: 2×8n×16n=222, 求n的值
解: (1)x2×x5=x 2+5=x7
(2) 107×104 =a 7+4=a11 (3)5m×5n=5 (m+n) (4)xm.x 3 m+1=x m+3m+1=x 4m+1
计算: 计算:
(1). x ⋅ x
2
5
1 1 ( 2 ). × 2 2
3
6
( 3 ). a ⋅ a ⋅ a
15.1.1同底数幂的乘法 同底数幂的乘法
卫星绕地球运动的速度约是 3米/秒,求卫星绕地球运 7.9×10 行105秒走过的路程.
3×105 10 7.9×
北师大版七年级数学下册1.1同底数幂的乘法习题课件
4.(202X年海安模拟)化简(-a)2·a3所得的结果是
A.a5
B.-a5
C.a6
D.-a6
5.(202X年仪征模拟)若2×22×2n=29,则n等于__6___.
(A )
6.计算下列各题: (1)an+2·an+1·an·a; 解:(1)原式=an+2+n+1+n+1=a3n+4. (2)(a+b)3m·(b+a)m+n. 解:原式=(a+b)3m·(a+b)m+n=(a+b)3m+m+n=(a+b)4m+n.
A.3
B.6
C.9
D.81
5.(202X年上海青浦区月考)(a-b)·(b-a)4=___(a_-__b_)_5____.
6.计算: (1)-b2·(-b)2·(-b3); 解:原式=b2×b2×b3=b2+2+3=b7. (2)(x-y)3·(y-2)2·(y-2)5; 解:原式=(x-y)3(y-2)2+5=(x-y)3(y-2)7. (3)-a2·a5+a·(-a)3·a3; 解:原式=-a2·a5-a·a3·a3=-a7-a7=-2a7. (4)x4·(-x)5+(-x)4·x5.
2.(202X年新疆模拟)下列运算正确的是
A.a3·a3=a9
B.a3+a3=a6
C.a3·a3=a6
D.a2·a3=a6
3.(202X年东莞期末)已知ax=3,ay=9,则ax+y=__2_7___.
(D ) (C )
【第二关】
4.(202X年卫辉期末)已知3a=1,3b=2,则3a+b+1的值为 ( B )
方法点拨:在利用同底数幂的乘法法则计算时,第一应分析每个因 数或因式是否为同底数幂,如果不是,再看能否通过适当的变形化为同 底数幂,在把算式化为同底数幂的乘法后,再按同底数幂的乘法法则计 算.
同底数幂的乘法、幂的乘方与积的乘方训练题及答案
第一部分 1. C 2. B 3. B 4. D 5. A 6. A 7. C 8. A 9. D 10. A
第二部分 11. (1) 12. 13. 或 14. 15.
;(2)
第三部分 16. (1) 16. (2) 16. (3)
. .
答案
.
17. (1)
18. (1)
,
. . . .
,余式为 .求
B.
C.
D.
,则 的值为 ( )
B.
C.
D.
二、填空题(共 5 小题;共 15 分) 11. 如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多
边形,它的面积 可用公式
( 是多边形内的格点数, 是多边形边界上的格点
数)计算,这个公式称为“皮克定理”.现有一张方格纸共有 个格点,画有一个格点多边
A.
B.
C.
D.
6.
展开后的项数为 ( )
A.
B.
C.
D.
7. 已知:
,则 是
位正整数.
A.
B.
C.
D.
8. 若 取全体实数,则代数式 A. 一定为正 C. 可能是
的值 ( ) B. 一定为负 D. 正数、负数、 都有可能
编辑版 word
9. 将一多项式 ()
A.
10. 若 A.
,除以
后,得商式为
同底数幂的乘法、幂的乘方与积的乘方训练题及答案
一、选择题(共 10 小题;共 30 分) 1. 下列运算正确的是 ( )
A.
B.
C.
D.
2. 下列计算结果正确的是 ( )
A.
同底数幂的运算练习题
同底数幂的运算练习题在数学中,我们经常会遇到同底数的幂的运算。
熟练掌握这些运算对于解决数学问题和应用数学在实际生活中非常重要。
本文将提供一些同底数幂的运算练习题,帮助你巩固和提高自己的运算能力。
1. 基本运算1.1. 乘法规则计算下列同底数幂的乘法:1.$2^3 \\times 2^4$2.$5^2 \\times 5^3$3.$10^4 \\times 10^6$1.2. 除法规则计算下列同底数幂的除法:1.$\\dfrac{7^5}{7^2}$2.$\\dfrac{3^4}{3^2}$3.$\\dfrac{8^6}{8^3}$1.3. 幂的乘方计算下列同底数幂的乘方:1.(23)42.(42)33.(105)22. 混合运算计算下列混合运算:1.$2^5 \\times 2^3 + 2^4 \\div 2^2$2.$3^4 - 3^2 \\times 3^2 + 3^3$3.$5^3 \\div (5^2 + 5) \\times 5^4$3. 幂运算的性质3.1. 幂的乘法性质根据幂的乘法性质计算下列等式右边的值:1.$2^3 \\times 2^4 = 2^{(\\_\\_\\_\\_\\_)}$2.$3^2 \\times 3^5 = 3^{(\\_\\_\\_\\_\\_)}$3.$5^4 \\times 5^7 = 5^{(\\_\\_\\_\\_\\_)}$3.2. 幂的除法性质根据幂的除法性质计算下列等式右边的值:1.$\\dfrac{6^5}{6^3} = 6^{(\\_\\_\\_\\_\\_)}$2.$\\dfrac{4^2}{4^5} = 4^{(\\_\\_\\_\\_\\_)}$3.$\\dfrac{9^7}{9^2} = 9^{(\\_\\_\\_\\_\\_)}$3.3. 幂的幂性质根据幂的幂性质计算下列等式右边的值:1.$(2^3)^4 = 2^{(\\_\\_\\_\\_\\_)}$2.$(3^2)^5 = 3^{(\\_\\_\\_\\_\\_)}$3.$(5^4)^7 = 5^{(\\_\\_\\_\\_\\_)}$4. 应用题解决下列问题:1.一个正方体的边长是10 cm,计算它的体积。
同底数幂的乘法幂的乘方积的乘方习题课
12月1日 第十五周 星期四 第4课时n m n a a (m mn a (m 、n 为整数)nn n a b (m 、n 为整数)、谈谈这三个幂的运算法则的联系与区别?注意:三个运算性质的逆运用。
(15)'222310()()2x x x x【教师活动】:提出问题与要求,并引导学生进行分析,注意幂的表示意义,计算时,应2x ,2()x ,23()x 的含义是完全不一样的,运算的依据也不一样。
【学生活动】:在教师的引导下,小组讨论完成解答,并由一位学生板演。
解:22231022610()()2()2x x x x x x x x1010102x x x例2、下列计算错在哪里?并加以改正。
(1)22()y y x x (2)444(3)12y y x x (3)326(7)49x x (4)337343()22x x (5)4520x x x (6)325()x x【教师活动】:提出问题与要求,并引导学生进行分析,要充分理解幂的运算法则,然后可提问学生每一步运算过程的依据,防止可能发生的错误,计算错误的原因,主要有两个方面:一是粗心,二是对运算法则的理解上存在错误,因此,要针对具体错误,找出原因,本道题主要是运算法则上出现错误。
323()y x:提出问题与要求,并引导学生进行分析,先根据积的乘方法则分别计算,而后再根据同底数幂的运算法则进行计算,注意本道题的特点,具有相,因此解题时也可以依据同底数幂的运算法则计算。
323649669461510()y y y y y x x x x x 。
32332233251510()()()y y y y x x x x 。
巩固提高(8)'22n a b 与311m mn a b 的积与单项式3225()()a b a b 是同类项,【教师活动】:提出问题与要求,引导分析:要进行计算我们首先要理解积的乘方法则的而22n a b 与311m m n a b 的积应该写成:2311(2)()n m mn a b a b 然后再根据操作的乘方法则进行计算得2312n m m na b,再还要计算3225()()a b a b 得出:835a b ,是同类项可知:3273m n m n ,解这个方程组得12m n ,进而,我们可以计算出222m n mn 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1.2 同底数幂的乘法及幂的乘方的习题课
教学目标:熟练掌握同底数幂的乘法及幂的乘方的运算法则,并能灵活的对法则
逆用。
教学重点:运用法则准确地进行计算
教学难点:逆用法则解决问题
教学过程:
一、复习同底数幂的乘法法则及幂的乘方的乘法法则
1、同底数幂相乘,底数不变,指数相加——m n m n a a a += (m,n 为正整数)
2、幂的乘方,底数不变,指数相乘——()m n m n a a = (m,n 为正整数)
三、知识巩固
练习:1、计算
(1)24322()a a a ⋅- (2)69532310()m m m m m m ⋅++⋅⋅
例1、计算
(1)324()()x x x -⋅-⋅- (2)2213()()n x x x +-⋅-⋅
四、提高练习:
1、如果2,5,6m n a a a ===,求(1)1m a + (2)2n a + (3)3m n a ++
2、若22m m x x ⋅=,求9m x 的值。
3、已知3x a =,试用a 的代数式表示59x
4、如2,3m n a a =-=,求(1)2m n a +;(2)32m n a +
5、n 为正整数时,求23381n n ++⋅的值
6、如果16m n a a a +⋅=,28m n +=,求m 和n 的值
五、作业:
【教学反思】。