高考数学一轮复习知识点:函数的单调性与较值
2021版新高考地区高考数学(人教版)大一轮复习第2讲 函数的单调性与最值
第2讲 函数的单调性与最值一、知识梳理 1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.[注意] 有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.2.函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(1)对于任意x ∈I ,都有f (x )≥M ; (2)存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值1.函数单调性的两个等价结论 设∀x 1,x 2∈D (x 1≠x 2),则(1)f (x 1)-f (x 2)x 1-x 2>0(或(x 1-x 2)[f (x 1)-f (x 2)]>0)⇔f (x )在D 上单调递增.(2)f (x 1)-f (x 2)x 1-x 2<0(或(x 1-x 2)[f (x 1)-f (x 2)]<0)⇔f (x )在D 上单调递减.2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的单调递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区| (1)求单调区间忘记定义域导致出错;(2)混淆“单调区间”与“在区间上单调”两个概念出错. 1.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B .设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).2.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________. 解析:由题意知,[2,+∞)⊆[m ,+∞), 所以m ≤2. 答案:(-∞,2]考点一 确定函数的单调性(区间)(基础型) 复习指导| 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义.核心素养:数学抽象角度一 判断或证明函数的单调性(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.利用定义法证明或判断函数单调性的步骤[注意] 判断函数的单调性还有图象法、导数法、性质法等. 角度二 利用函数图象求函数的单调区间求函数f (x )=-x 2+2|x |+1的单调区间.【解】 f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和(0,1],单调递减区间为(-1,0]和(1,+∞).【迁移探究】 (变条件)若本例函数变为f (x )=|-x 2+2x +1|,如何求解?解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1]和(1+2,+∞);单调递减区间为(-∞,1-2]和(1,1+2].确定函数的单调区间的方法[注意] (1)函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y =1x在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.(2)“函数的单调区间是M ”与“函数在区间N 上单调”是两个不同的概念,显然N ⊆M .1.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 可能是( ) A .(-∞,0) B .⎣⎡⎦⎤0,12 C .[0,+∞)D .⎝⎛⎭⎫12,+∞解析:选B .y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0x 2-x ,x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的草图,如图.由图易知原函数在⎣⎡⎦⎤0,12上单调递增. 2.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C .由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.3.判断函数y =2x 2-3x的单调性.解:因为f (x )=2x 2-3x =2x -3x ,且函数的定义域为(-∞,0)∪(0,+∞),而函数y =2x和y =-3x 在区间(-∞,0)上均为增函数,根据单调函数的运算性质,可得f (x )=2x -3x 在区间(-∞,0)上为增函数.同理,可得f (x )=2x -3x在区间(0,+∞)上也是增函数.故函数f (x )=2x 2-3x 在区间(-∞,0)和(0,+∞)上均为增函数.考点二 函数的最值(值域)(基础型) 复习指导| 理解函数的最大(小)值,并能利用函数的单调性求最值.核心素养:逻辑推理(1)(一题多解)函数y =x +x -1的最小值为________.(2)(2020·福建漳州质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+a ,x ≤0,x +4x ,x >0有最小值,则实数a 的取值范围是________.【解析】 (1)法一(换元法):令t =x -1,且t ≥0,则x =t 2+1, 所以原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又因为t ≥0,所以y ≥14+34=1,故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在[1,+∞)内为增函数,所以y min =1.(2)(基本不等式法)由题意知,当x >0时,函数f (x )=x +4x≥2x ·4x=4,当且仅当x =2时取等号;当x ≤0时,f (x )=2x +a ∈(a ,1+a ],因此要使f (x )有最小值,则必须有a ≥4.【答案】 (1)1 (2)[4,+∞)求函数最值的五种常用方法1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4.所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1. 答案:1考点三 函数单调性的应用(综合型) 复习指导| 利用函数单调性求解,要明确函数的所给区间,不同区间有不同的单调性.角度一 比较两个函数值已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)](x 2-x 1)<0恒成立, 知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e), 所以b >a >c . 【答案】 D比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.角度二 解函数不等式已知函数f (x )=-x |x |,x ∈(-1,1),则不等式f (1-m )<f (m 2-1)的解集为________.【解析】 由已知得f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤0,-x 2,0<x <1,则f (x )在(-1,1)上单调递减,所以⎩⎨⎧-1<1-m <1,-1<m 2-1<1,m 2-1<1-m ,解得0<m <1,所以所求解集为(0,1). 【答案】 (0,1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.角度三 求参数的值或取值范围(1)(2020·南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是________.【解析】 (1)设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数,所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2=(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0. 因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)利用单调性求参数的策略(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.1.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A .⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C .⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D .因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.故选D .2.函数y =f (x )在[0,2]上单调递增,且函数f (x )的图象关于直线x =2对称,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72<f (1)解析:选B .因为f (x )的图象关于直线x =2对称,所以f (x )=f (4-x ),所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫12.又0<12<1<32<2,f (x )在[0,2]上单调递增,所以f ⎝⎛⎭⎫12<f (1)<f ⎝⎛⎭⎫32,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 3.若函数f (x )=|2x +a |的单调增区间是[3,+∞),则a 的值为________.解析:由图象(图略)易知函数f (x )=|2x +a |的单调增区间是⎣⎡⎭⎫-a 2,+∞,令-a2=3,得a =-6.答案:-6[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C .当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数f (x )=-x +1x 在⎣⎡⎦⎤-2,-13上的最大值是( ) A .32B .-83C .-2D .2解析:选A .函数f (x )=-x +1x 的导数为f ′(x )=-1-1x 2,则f ′(x )<0,可得f (x )在⎣⎡⎦⎤-2,-13上单调递减,即f (-2)为最大值,且为2-12=32.3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C .由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.所以-1<x <0或0<x <1.故选C .4.(多选)(2021·预测)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0解析:选CD .根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.5.(创新型)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C .由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].答案:[1,2]7.函数y =2+-x 2+4x 的最大值是________,单调递增区间是________.解析:函数y =2+-x 2+4x =2+-(x -2)2+4,可得当x =2时,函数y 取得最大值2+2=4;由4x -x 2≥0,可得0≤x ≤4,令t =-x 2+4x ,则t 在[0,2]上为增函数,y -2+t 在[0,+∞)上为增函数,可得函数y =2+-x 2+4x 的单调递增区间为[0,2].答案:4 [0,2]8.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集为________.解析:由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1,即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2.答案:(-1,2)9.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0, 所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,a 的取值范围为(0,1].[综合题组练]1.已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -ln x ,x >1对任意的x 1≠x 2都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,3)C .(3,+∞)D .[1,3)解析:选D .由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0, 所以函数f (x )在R 上单调递减,所以⎩⎪⎨⎪⎧a -3<0,3(a -3)+2≥-4a ,解得1≤a <3.故选D . 2.(多选)若函数f (x )满足条件:①对于定义域内任意不相等的实数a ,b 恒有f (a )-f (b )a -b >0;②对于定义域内任意x 1,x 2都有f ⎝⎛⎭⎫x 1+x 22≥f (x 1)+f (x 2)2成立.则称其为G 函数.下列函数为G 函数的是( ) A .f (x )=3x +1 B .f (x )=-2x -1 C .f (x )=x 2-2x +3D .f (x )=-x 2+4x -3,x ∈(-∞,1)解析:选AD .①对于定义域内任意不相等的实数a ,b 恒有f (a )-f (b )a -b >0,则函数f (x )在定义域为增函数;②对于定义域内任意x 1,x 2都有f ⎝⎛⎭⎫x 1+x 22≥f (x 1)+f (x 2)2成立,则函数f (x )为“凸函数”.其中A .f (x )=3x +1在R 上为增函数,且f ⎝⎛⎭⎫x 1+x 22=f (x 1)+f (x 2)2,故满足条件①②;B .f (x )=-2x -1在R 上为减函数,不满足条件①;C .f (x )=x 2-2x +3在(-∞,1)上为减函数,在(1,+∞)为增函数,不满足条件①;D .f (x )=-x 2+4x -3的对称轴为x =2,故函数f (x )=-x 2+4x -3在(-∞,1)上为增函数,且为“凸函数”,故满足条件①②.综上,为G 函数的是AD .3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.(创新型)如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3 ]上单调递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上单调递增,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上单调递增,所以当x >2时,f (x )单调递增,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x )单调递增,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈()0,+∞,且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间()0,+∞上是单调递减函数.(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9),由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x ) 在[2,9]上的最小值为-2.。
高考第一轮复习-函数的单调性
年级高三学科数学版本人教版(文)内容标题函数的单调性编稿老师孙力【本讲教育信息】一. 教学内容:函数的单调性1. 概念:设函数)(xf的定义域为I(1)增函数:如果对于属于定义域I内某个区间上的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf<,那么称函数)(xf在这个区间上是增函数。
(2)减函数:如果对于属于定义域I内某个区间的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf>,则称)(xf在这个区间上是减函数。
(3)单调区间:如果函数)(xfy=在某个区间是增函数或减函数,则称函数)(xfy=在这一区间上具有(严格的)单调性,该区间叫做)(xfy=的单调区间。
注:①中学单调性是指严格单调的,即不能是)()(21xfxf≤或)()(21xfxf≥②单调性刻画的是函数的“局部”性质。
如xy1=在)0,(-∞与),0(+∞上是减函数,不能说xy1=在),0()0,(+∞⋃-∞上是减函数。
③单调性反映函数值的变化趋势,反映图象的上升或下降2. 单调性的判定方法(定义法、复合函数单调性结论,函数单调性性质,导数,图象)(1)定义法[例1] 证明函数1)(31-=xxf在R上是增函数证:设21xx<,则3223123113212131231121)()(xxxxxxxxxfxf++-=-=-而分子021<-=xx分母043)21(3222312311322312311321>++=+⋅+=xxxxxxx故0)()(21<-xfxf得证补:讨论函数22)(x xaxf-=的单调性)10(≠<a解:设1>a时,对任Rx∈,022>-xxa,设121<<xx2112222212)()(x x x x a x f x f +--=,而)](2)[(221212211222x x x x x x x x +--=+--0> 即)()(12x f x f >故在)1,(-∞单增,同理在),1(+∞单减 当10<<a 时,同理在(1,∞-)单减,在(1,∞+)单增[例2] 讨论xx x f +=1)(的单调性解:设21x x <,则)11)((11)()(2112112212x x x x x x x x x f x f --=+-+=-21212112)()1)((x x x x x x x x +--=(1)当1021≤<<x x 时,1021<<x x ,0)()(12<-x f x f (2)当211x x <≤时,211x x <,0)()(12>-x f x f 故)(x f 在]1,0(上是减函数,在),1[+∞上是增函数[例3] 试求函数xpx x f +=)((p 0≠)的单调区间 分析:考虑到212112112212)()()()(x x p x x x x x px x p x x f x f --=+-+=-以下分类讨论 (1)当p 0>时① 若p x x -≤<21,则0)()(12>-x f x f ,)(x f 增 ② 若021<<≤-x x p ,则0)()(12<-x f x f ,)(x f 减③ 若p x x ≤<<210,则0)()(12<-x f x f ,)(x f 减④ 若21x x p <≤,则0)()(12>-x f x f ,)(x f 增(2)当0<p 时① 若021<<x x ,则0)()(12>-x f x f 增 ② 若210x x <<,则0)()(12>-x f x f 增综上所述,0>p 时,)(x f 在)0,[p -或],0(p 上是减函数)(x f 在],(p --∞或),[+∞p 上是增函数时,在或上是增函数在)0,[p-及],0(p上分别单调递减另法,利用导数21)(xpxf-=')(122pxx-=(1)若0>p则))((1)(2pxpxxxf-+='(2)若0<p,则0)(>'xf下证高考分式函数试题类型与解法研究[例4] 讨论分式函数xbaxxf+=)(的单调性(0≠ab)以下只研究0,0>>ba与0,0<>ba两种情形对于0,0><ba与0,0<<ba可利用对称性得到。
2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值
第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。
(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第5课 函数的单调性与最值教师用书
第5课函数的单调性与最值[最新考纲]内容要求A B C函数的单调性√函数的最值√1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是增函数或减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫作y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M是y=f(x)的最大值M是y=f(x)的最小值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)函数y =|x |是R 上的增函数.( ) (4)所有的单调函数都有最值.( ) [答案] (1)√ (2)× (3)× (4)×2.(2016·高考改编)下列函数中,在区间(-1,1)上为减函数的是________.(填序号) ①y =11-x ;②y =cos x ; ③y =ln(x +1); ④y =2-x.④ [①中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x 在(-1,1)上为增函数;②中,y =cos x 在(-1,1)上先增后减;③中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;④中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x在(-1,1)上是减函数.]3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.设函数f (x )=x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.⎩⎪⎨⎪⎧a 2-2a ,-2<a <1-1,a ≥1 [∵f (x )=x 2-2x =(x -1)2-1,∴当a ≥1时,函数在[-2,1]上递减,在[-1,a ]上递增,g (a )=-1.当-2<a <1时,函数在[-2,a ]上递减,∴g (a )=a 2-2a ,综上可知,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a <1,-1,a ≥1.]5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值X 围为________.(-∞,1]∪[2,+∞) [∵f (x )=x 2-2ax -3=(x -a )2-a 2-3, ∴f (x )关于x =a 对称.要使y =f (x )在区间[1,2]上具有单调性, 只需a ≥2或a ≤1.]函数单调性的判断(1)函数f (x )=log 2(x 2-1)的单调递减区间为________. (2)试讨论函数f (x )=x +k x(k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).](2)法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-kx 1x 2.因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +k x(k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.法二:f ′(x )=1-k x2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.[规律方法] 1.利用定义判断或证明函数的单调性时,作差后应注意差式的分解变形要彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.易错警示:求函数的单调区间,应先求定义域,在定义域内求单调区间,如本题(1). [变式训练1] 讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.【导学号:62172024】[解] 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1.∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数.利用函数的单调性求最值已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试某某数a 的取值X 围.[思路点拨] (1)先判断函数f (x )在[1,+∞)上的单调性,再求最小值;(2)根据f (x )min>0求a 的X 围,而求f (x )min 应对a 分类讨论.[解] (1)当a =12时,f (x )=x +12x +2,f ′(x )=1-12x 2>0,x ∈[1,+∞),即f (x )在[1,+∞)上是增函数,∴f (x )min =f (1)=1+12×1+2=72.(2)f (x )=x +ax+2,x ∈[1,+∞).法一:①当a ≤0时,f (x )在[1,+∞)内为增函数.f (x )min =f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, ∴-3<a ≤0.②当0<a ≤1时,f (x )在[1,+∞)内为增函数,f (x )min =f (1)=a +3,∴a +3>0,a >-3,∴0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值X 围是(-3,1]. 法二:f (x )=x +a x+2>0,∵x ≥1,∴x 2+2x +a >0,∴a >-(x 2+2x ),而-(x 2+2x )在x =1时取得最大值-3,∴-3<a ≤1,即a 的取值X 围为(-3,1].[规律方法] 利用函数的单调性求最值是求函数最值的重要方法,若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).请思考,若函数f (x )在闭区间[a ,b ]上是减函数呢? [变式训练2] (2016·高考)函数f (x )=xx -1(x ≥2)的最大值为________.2 [法一:∵f ′(x )=-1x -12,∴x ≥2时,f ′(x )<0恒成立,∴f (x )在[2,+∞)上单调递减,∴f (x )在[2,+∞)上的最大值为f (2)=2. 法二:∵f (x )=xx -1=x -1+1x -1=1+1x -1, ∴f (x )的图象是将y =1x的图象向右平移1个单位,再向上平移1个单位得到的.∵y =1x在[2,+∞)上单调递减,∴f (x )在[2,+∞)上单调递减,故f (x )在[2,+∞)上的最大值为f (2)=2.法三:由题意可得f (x )=1+1x -1. ∵x ≥2,∴x -1≥1,∴0<1x -1≤1, ∴1<1+1x -1≤2,即1<x x -1≤2. 故f (x )在[2,+∞)上的最大值为2.]函数单调性的应用☞角度1 比较大小设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是________.【导学号:62172025】b <a <c [因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .]☞角度2 解不等式已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的解集是________. ⎣⎢⎡⎭⎪⎫12,23 [由题意知⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,即⎩⎪⎨⎪⎧x ≥12,x <23,所以12≤x <23.]☞角度3 求参数的取值X 围(1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a的取值X 围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧a -2x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值X 围为________.(1)⎣⎢⎡⎦⎥⎤-14,0 (2)(2,3] [(1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值X 围是⎣⎢⎡⎦⎥⎤-14,0.(2)要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f 1≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a≤3,即实数a的取值X围是(2,3].][规律方法] 1.比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.3.利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[思想与方法]1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. [易错与防X]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.3.函数在两个不同的区间上单调性相同,要分开写,用“,”隔开,不能用“∪”连结.课时分层训练(五) A 组 基础达标 (建议用时:30分钟)一、填空题1.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值X 围是________.【导学号:62172026】⎝ ⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 2.给定函数:①y =x ;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数序号是________.②③ [①y =x 在区间(0,1)上单调递增;②y =log 12(x +1)在区间(0,1)上单调递减;③y =|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,在区间(0,1)上单调递减;④y =2x +1在区间(0,1)上单调递增.]3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值X 围是________. 【导学号:62172027】(-∞,1] [函数f (x )=⎩⎪⎨⎪⎧x +a ,x ≥-a ,-x -a ,x <-a ,即函数f (x )在(-∞,-a )上是减函数,在[-a ,+∞)上是增函数,要使函数f (x )在(-∞,-1)上单调递减,则-a ≥-1,即a ≤1.]4.函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.43,1 [f (x )=2x x +1=2x +1-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.]5.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值X 围为________.⎝ ⎛⎭⎪⎫13,1 [由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x 2,因为y =ln(1+x )与y =-11+x2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0,解得13<x <1.所以符合题意的x 的取值X 围为⎝ ⎛⎭⎪⎫13,1.] 6.函数f (x )=-(x -3)|x |的递增区间是________.⎣⎢⎡⎦⎥⎤0,32 [f (x )=-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.]7.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.(-∞,2) [当x ≥1时,f (x )=log 12x ≤log 121=0.当x <1时,f (x )=2x∈(0,2), ∴f (x )的值域为(-∞,2).]8.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2,满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,138 [由f x 1-f x 2x 1-x 2<0可知f (x )在R 上是减函数,故⎩⎪⎨⎪⎧a -2<0,⎝ ⎛⎭⎪⎫122-1≥2a -2,解得a ≤138.]9.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为________. 【导学号:62172028】b <a <c [∵y =f (x )的图象关于x =1对称,∴f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52. 又2<52<3,且f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3), ∴f (2)<f ⎝ ⎛⎭⎪⎫-12<f (3), 即b <a <c .]10.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,则不等式f (x )+f (x -8)≤2的解集为________.(8,9] [因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2可得f [x (x -8)]≤f (9),f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.]二、解答题11.(2017·某某模拟)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. [解] (1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.12.已知f (x )=xx -a (x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值X 围.【导学号:62172029】[解] (1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)f (x )=xx -a =x -a +a x -a =1+a x -a , 当a >0时,f (x )在(-∞,a ),(a ,+∞)上是减函数,又f (x )在(1,+∞)内单调递减,∴0<a ≤1,故实数a 的取值X 围是(0,1].B 组 能力提升(建议用时:15分钟)1.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.6 [由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2. ∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,∴f (x )的最大值为f (2)=23-2=6.]2.(2017·某某模拟)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值X 围是________.[22,22+2) [设y =log 12t ,t =x 2-ax +a . 因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞,2]上为单调减函数,且t min >0,故需⎩⎪⎨⎪⎧ a 2≥2,22-2a +a >0,解得22≤a <2+2 2.] 3.规定符号“*”表示一种两个正实数之间的运算,即a *b =ab +a +b ,a ,b 是正实数,已知1*k =3,求函数f (x )=k *x 的值域.[解] 由题意知1]k )+1+k =3,解得k =1或k =-2(舍去),所以f (x )=k *x =1]x )+x +1=⎝⎛⎭⎪⎫x +122+34,因为x >0,所以f (x )>1,即f (x )的值域是(1,+∞).4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.[解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数,∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。
2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】
2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。
2020年高考数学一轮复习(新课改)第1课时系统知识——函数的单调性与最值、奇偶性、周期性
第二节函数的性质第1课时系统知识一一函数的单调性与最值、奇偶性、周期性若函数y= f(x)在区间D上是增函数或减函数,则称函数y= f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y= f(x)的单调区间.[点拨](1)函数单调性定义中的X i , X2具有以下三个特征:一是任意性,即任意两数X i, D ”,任意”两字决不能丢;二是有大小,即X i VX2(或X1>X2);三是同属一个单调区间,三者缺一不可.⑵若函数在区间D上单调递增(或递减),则对D内任意的两个不等自变量X1, X2的值, 都有fXL二竺或fXk 4竺<。
.X1 —X2 X1—X2 /(3)函数f(X)在给定区间上的单调性,是函数在此区间上的整体性质,不一定代表在整个定义域上有此性质.[谨记常用结论](1) 函数f(X)与f(x)+ c(c为常数)具有相同的单调性.(2) k>0时,函数f(x)与kf(x)单调性相同;k<0时,函数f(x)与kf(x)单调性相反.1⑶若f(x)恒为正值或恒为负值,贝y f(x)与具有相反的单调性.⑷若f(x), g(x)都是增(减)函数,则当两者都恒大于零时,f(x) •(x)是增(减)函数;当两者都恒小于零时,f(x) g(x)是减(增)函数.(5)在公共定义域内,增+增=增,减+减=减,增—减=增,减—增=减.[小题练通]1. [人教A版教材P39B组T1]函数f(x)= x2—2x的单调递增区间是______ .答案:[1 ,+^ )2. [教材改编题]如果二次函数f(x)= x2—(a—1)x + 5在区间2, 1上是增函数,则实数a的取值范围为_________ .解析:T函数f(x) = x2—(a —1)x+ 5的对称轴为x =旦^1且在区间2,1上是增函数,a —1答案:(—R, 2]3. [教材改编题]函数f(x)= log1 (x2—4)的单调递增区间为________ .2解析:由x2—4>0得x<—2或x>2.又u = x2—4在(一a,—2)上为减函数,在(2, + a)上为增函数,y= log 1 u为减函数,2故f(x)的单调递增区间为(一a,—2).答案:(一a,—2)4. [易错题]设定义在[—1,7]上的函数y= f(x)的图象如图所示,则函数y= f(x)的增区间为________ .答案:[—1,1], [5,7]2x + k5.若函数y= 与y= log3(x—2)在(3, +a )上具有相同的单调性,贝U实数k的取值x—2范围是_________ .解析:由于y= lOg3(x—2)的定义域为(2 , + a ), 且为增函数,故函数y=空土^ = 2x —2+ 4+ k= 2 + 也在(3, + a)上也是增函数,则有4+ k v 0, x —2 x —2 x —2得k v — 4.f(X)Vf —的实数x的取值范答案:(—a, —4)6•已知函数f(x)为定义在区间[—1,1]上的增函数,则满足围为________ .—1W x W1,解析:由题设得1x<2解得—1W x<1.答案:—1,—前提设函数f(x)的定义域为1,如果存在实数M满足条件对于任意x€ I,都有f(x)W M ;存在X o€ I,使得f(X o)= M对于任意x € I,都有f(x)》M ;存在x°€ I,使得f(x^)= M结论M为最大值M为最小值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值•当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值或最小值.[点拨](1)对于单调函数,最大(小)值出现在定义域的边界处;(2) 对于非单调函数求最值,通常借助图象求解更方便;(3) 一般地,恒成立问题可以用求最值的方法来解决,而利用单调性是求最值的常用方法•注意以下关系:f(x)> a恒成立?f(x)min> a ;f(x) W a恒成立?f(x)max <乱解题时,要务必注意“=”的取舍.[小题练通]21. __________________________________________________________ [人教A版教材P31例4]函数f(x)=二二在[2,6]上的最大值是___________________________ •答案:22. [教材改编题]设函数f(x)= 2~在区间[3,4]上的最大值和最小值分别为M ,m,则晋=x—2 M 解析:易知f(x)= x—2 = 2+七,所以f(x)在区间[3,4]上单调递减,4所以M = f(3) = 2 + ---- =6,3 —2 所以m!_ 16_ 8M —6 —3.答案:3.[教材改编题喏函数f(x)=—;+ b(a>0)在;,2上的值域为••• f(X )min = f 2 = 2 , f(x)max = f(2) = 2.1—2a 十 b = 1, 即 -1+b = 2,答案:1 54.[易错题]函数y =~22 i解析:由 y = X ^ ,可得 x 2 = —-^.由 x 2>0,知—0,解得—1 w y<1,x 十 1 1 — y 1 — y故所求函数的值域为[—1,1). 答案:[—1,1) 5.函数f(x) = x ,x> 1,的最大值为x 2 + 2, x<11解析:当x > 1时,函数f(x)= -为减函数,所以f(x)在x = 1处取得最大值,为 f(1) = 1; 当x<1时,易知函数f(x) = — x 2+ 2在x = 0处取得最大值,为 f(0) = 2.故函数f(x)的最大值 为2.答案:26.已知函数 f(x)=— x 2 + 4x 十a , x € [0,1],若f(x)有最小值一2,贝V f(x)的最大值为解析:函数 f(x)=— x 2 + 4x 十 a =— (x — 2)2+ 4+ a , x € [0,1],且函数 f(x)有最小值—2. 故当x = 0时,函数f(x)有最小值,当 x = 1时,函数f(x)有最大值•当 x = 0时,f(0) = a =—2,.・. f(x)=— x 2+ 4x — 2, •当 x = 1 时,f(x)max = f(1)=—十十 4X 1 — 2 = 1.答案:1[谨记常用结论]1. 函数奇偶性的几个重要结论-1解析:•/ f(x)=-三+ b(a>0)在 1,2 是增函数,a = 1, 解得 5b = 5.⑴如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0) = 0.⑵如果函数f(x)是偶函数,那么f(x) = f(|x|).(3) 既是奇函数又是偶函数的函数只有一种类型,即f(x)= 0, x€ D,其中定义域D是关于原点对称的非空数集.(4) 奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.2. 有关对称性的结论(1) 若函数y= f(x + a)为偶函数,则函数y= f(x)关于x = a对称.若函数y= f(x+ a)为奇函数,则函数y= f(x)关于点(a,0)对称.(2) 若f(x)= f(2a—x),则函数f(x)关于x = a 对称;若f(x) + f(2a—x) = 2b,则函数f(x) 关于点(a, b)对称.[小题练通]1. ________________ [人教A版教材P39A组T6]已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)= x(1 + x),贝U f( —1) = .答案:—22. [教材改编题]设f(x)是定义在R上的奇函数,当x>0时,f(x) = x1 2 3+ 1,则f( —2)+ f(0)解析:由题意知f( —2) =—f(2) = —(22+ 1) =—5, f(0) = 0,••• f(—2) + f(0) = — 5.答案:—53. [教材改编题]已知函数f(x)为偶函数,且当x<0时,f(x)= x + 1,则当x>0时,f(x)=解析:当x>0 时,一xv0,「. f(—x)=—x + 1,又f(x)为偶函数,• f(x)=—x+ 1.答案:—x+ 14. [易错题]已知f(x) = ax2+ bx是定义在[a —1,2 a]上的偶函数,那么 a + b的值是2 1解析:T f(x)= ax2+ bx是定义在[a —1,2 a]上的偶函数,• a—1 + 2a = 0,二a=;. 31又f( —x)= f(x) ,• b= 0,二a+ b= 3.3答案:5.在函数y= xcosx, y= e x+ x2, y= lg . x2—2, y= xsin x 中,偶函数的个数是___________ 解析:y= xcos x是奇函数,y= lg x2—2和y= xsin x是偶函数,y= e x+ x2是非奇非偶函数,所以偶函数的个数是 2.答案:26.已知函数 f(x)= asin x + bln*^ +1,若 f 1 + f — 2 =6,则实数 t=________________ ,解析:令g(x)= asin x + bln 齐,则易知g(x)为奇函数,所以gg g J — 2戶0,则由 f(x)= g(x)+1,得 f 1 + f —1 = g 1 + g —1 + 2t = 2t = 6,解得 t = 3.答案:31. 周期函数对于函数y = f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f(x + T) = f(x),那么就称函数 y = f(x)为周期函数,称T 为这个函数的周期.2. 最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最小正周期.[谨记常用结论]定义式f(x + T)= f(x)对定义域内的x 是恒成立的.(1)若 f(x + a) = f(x + b),则函数 f(x)的周期为 T = |a — b|; 1 1f(x + a) = — f(x), f(x + a)=,f(x + a)=—匚何>0),则 f(x)为周期函数,且T = 2a 为它的一个周期.[小题练通]1.[教材改编题]设f(x)是定义在 R 上的周期为 2的函数,当 x € (— 1,1)时,f(x)= 「4x + 2,—1<x <0,则虑 L __________________ .x , 0< x<1, 2答案:12.[教材改编题]若f(x)是R 上周期为2的函数,且满足 f(1) = 1, f(2) = 2,贝U f(3) — f(4)解析:由 f(x)是 R 上周期为 2 的函数知,f(3) = f(1) = 1, f(4) = f(2) = 2,••• f(3) — f(4) =— 1.答案:—1=x ,贝y f(2 019) = __________(2)若在定义域内满足3.[教材改编题]已知f(x)是定义在R 上的函数,并且 1f(x + 2)= f x ,f(x)1 1解析:由已知,可得f(x + 4) = f[(x + 2) + 2]= —— =-—=f(x),故函数f(x)的周期为f (X + 2)4.A f(2 019) = f(4X 504+ 3) = f(3)= 3.答案:34. [易错题]函数f(x)的周期为4,且x€ (-2,2], f(x) = 2x- x2,则f(2 018) + f(2 019) + f(2 020)的值为________ .解析:由f(x)= 2x-x2, x€ (-2,2],知f(- 1)=- 3, f(0)= 0, f(2) = 0,又f(x)的周期为4,所以f(2 018) + f(2 019) + f(2 020) = f(2) + f( - 1)+ f(0) = 0 - 3+ 0=- 3.答案:—35. 已知f(x)是R上的奇函数,且对任意x€ R都有f(x+ 6)= f(x) + f(3)成立,则f(2 019)解析:•/ f(x)是R上的奇函数,••• f(0) = 0,又对任意x€ R都有f(x + 6) = f(x) + f(3),二当x=- 3 时,有f(3) = f( - 3) + f(3) = 0, • f( - 3) = 0 , f(3) = 0 , • f(x+ 6) = f(x),周期为6. 故f(2 019) = f(3) = 0.答案:06.偶函数y= f(x)的图象关于直线x= 2对称,f(3) = 3,则f( - 1) = __________ .解析:因为f(x)的图象关于直线x= 2对称,所以f(x) = f(4- x) , f( - x) = f(4 + x),又f(- x) = f(x),所以f(x) = f(4 + x),则f( - 1) = f(4 - 1) = f(3) = 3.答案:3。
2020届高考高中理科数学一轮专题复习第二章 2.2函数的单调性与最值
§2.2 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间A 上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示 对任意x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的递增区间.提示 (-∞,-a ]和[a ,+∞).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的递增区间是[1,+∞).( × ) (3)函数y =1x的递减区间是(-∞,0)∪(0,+∞).( × )(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(5)所有的单调函数都有最值.( × ) 题组二 教材改编2.函数f (x )=x 2-2x 的递增区间是 . 答案 [1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是 .答案 24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是 . 答案 (-∞,2]解析 由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2. 题组三 易错自纠5.函数y =12log (x 2-4)的递减区间为 .答案 (2,+∞)6.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2,满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 .答案 ⎝⎛⎦⎤-∞,138 解析 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138. 7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是 . 答案 [-1,1)解析 由条件知⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a <1.8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为 .答案 2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.题型一 确定函数的单调性命题点1 求函数的单调区间例1 (1)函数y =12log (2x 2-3x +1)的递减区间为( )A.(1,+∞)B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞答案 A解析 由2x 2-3x +1>0,得函数的定义域为⎝⎛⎭⎫-∞,12∪(1,+∞). 令t =2x 2-3x +1,x ∈⎝⎛⎭⎫-∞,12∪(1,+∞). 则y =12log t ,∵t =2x 2-3x +1=2⎝⎛⎭⎫x -342-18, ∴t =2x 2-3x +1的递增区间为(1,+∞). 又y =12log t 在(1,+∞)上是减函数,∴函数y =12log (2x 2-3x +1)的递减区间为(1,+∞).(2)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是 .答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,该函数图像如图所示,其递减区间是[0,1).命题点2 讨论函数的单调性例2 判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解 函数f (x )=ax 2+1x (1<a <3)在[1,2]上是增加的.证明:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3, 所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的. 引申探究如何用导数法求解本例?解 f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3, 所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x(其中1<a <3)在[1,2]上是增加的.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图像法,图像不连续的单调区间不能用“∪”连接.(4)具有单调性函数的加减.跟踪训练1 (1)下列函数中,满足“任意x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A.f (x )=2x B.f (x )=|x -1| C.f (x )=1x -xD.f (x )=ln(x +1)答案 C解析 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上是减少的,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上是增加的,则函数g (x )=a |x -2|的递减区间是 .答案 (-∞,2]解析 因为f (x )在R 上是增加的,所以a -1>0,即a >1,因此g (x )的递减区间就是y =|x -2|的递减区间(-∞,2].(3)函数f (x )=|x -2|x 的递减区间是 . 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.画出f (x )图像,由图知f (x )的递减区间是[1,2]. 题型二 函数的最值1.函数y =x 2-1x 2+1的值域为 .答案 [-1,1)解析 由y =x 2-1x 2+1,可得x 2=1+y1-y .由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为 . 答案2解析 由1-x 2≥0,可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4,θ∈[0,π], 所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为 . 答案 [3,+∞)解析 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图像如图所示.根据图像可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 4.当-3≤x ≤-1时,函数y =5x -14x +2的最小值为 .答案 85解析 由y =5x -14x +2,可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3.∴所求函数的最小值为85. 5.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为 . 答案 3解析 由于y =⎝⎛⎭⎫13x 在[-1,1]上是减少的,y =log 2(x +2)在[-1,1]上是增加的,所以f (x )在[-1,1]上是减少的,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关 答案 B解析 方法一 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b . ∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 故选B.方法二 由题意可知,函数f (x )的二次项系数为固定值,则二次函数图像的形状一定.随着b 的变动,相当于图像上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图像左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华 求函数最值的五种常用方法及其思路 (1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三 函数单调性的应用命题点1 比较函数值的大小例3 已知函数f (x )的图像向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B.c >b >a C.a >c >b D.b >a >c答案 D解析 根据已知可得函数f (x )的图像关于直线x =1对称,且在(1,+∞)上是减函数,因为a=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,且2<52<3,所以b >a >c . 命题点2 解函数不等式例4 已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是 . 答案 (-5,-2)∪(2,5)解析 因为函数f (x )=ln x +2x 在定义域上是增加的,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5. 命题点3 求参数的取值范围例5 (1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4 D.π答案 C解析 ∵f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, ∴当x -π4∈⎣⎡⎦⎤-π2,π2, 即x ∈⎣⎡⎦⎤-π4,3π4时, y =sin ⎝⎛⎭⎫x -π4是增加的, f (x )=-2sin ⎝⎛⎭⎫x -π4是减少的, ∴⎣⎡⎦⎤-π4,3π4是f (x )在原点附近的递减区间, 结合条件得[0,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴a ≤3π4,即a max =3π4.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上是增加的,则实数a 的取值范围为 . 答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)若函数f (x )=ln(ax 2+x )在区间(0,1)上是增加的,则实数a 的取值范围为 . 答案 ⎣⎡⎭⎫-12,+∞ 解析 若函数f (x )=ln(ax 2+x )在区间(0,1)上是增加的,则函数g (x )=ax 2+x 在(0,1)上是增加的且g (x )>0恒成立.当a =0时,g (x )=x 在(0,1)上是增加的且g (x )>0,符合题意;当a >0时,g (x )图像的对称轴为x =-12a <0,且有g (x )>0,所以g (x )在(0,1)上是增加的,符合题意;当a <0时,需满足g (x )图像的对称轴x =-12a ≥1,且有g (x )>0,解得a ≥-12,则-12≤a <0.综上,a ≥-12.思维升华 函数单调性应用问题的常见类型及解题策略 (1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是 . 答案 ⎣⎡⎭⎫32,2解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎡⎭⎫32,2.(2)定义在R 上的奇函数y =f (x )在(0,+∞)上是增加的,且f ⎝⎛⎭⎫12=0,则不等式19(log )f x >0的解集为 . 答案 ⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3 解析 由题意知,f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, f (x )在(-∞,0)上也是增加的.∴19(log )f x >f ⎝⎛⎭⎫12或19(log )f x >f ⎝⎛⎭⎫-12, ∴19log x >12或-12<19log x <0,解得0<x <13或1<x <3.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3.1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y =ln(x +2) B.y =-x +1 C.y =⎝⎛⎭⎫12xD.y =x +1x答案 A解析 函数y =ln(x +2)的递增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数y =12log (-x 2+x +6)的递增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-∞,12 答案 A解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =12log t ,易知其为减函数,由复合函数的性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的递减区间为⎝⎛⎭⎫12,3,故选A. 3.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A.f (π)>f (-3)>f (-2) B.f (π)>f (-2)>f (-3) C.f (π)<f (-3)<f (-2) D.f (π)<f (-2)<f (-3)答案 A解析 因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数, 所以f (π)>f (3)>f (2), 即f (π)>f (-3)>f (-2).4.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,则a 的取值范围是( ) A.⎝⎛⎦⎤0,13 B.⎣⎡⎦⎤13,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎦⎤14,13答案 A解析 当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,∴f (x )是R 上的减函数.∵f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,∴⎩⎪⎨⎪⎧0<1-2a <1,0<a <1,1-2a ≥13,∴0<a ≤13.5.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知定义在R 上的奇函数f (x )在[0,+∞)上是减少的,若f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-∞,134 B.(-∞,-3) C.(-3,+∞) D.⎝⎛⎭⎫134,+∞ 答案 D解析 依题意得f (x )在R 上是减函数,所以f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,等价于x 2-2x +a >x +1对任意的x ∈[-1,2]恒成立,等价于a >-x 2+3x +1对任意的x ∈[-1,2]恒成立.设g (x )=-x 2+3x +1(-1≤x ≤2),则g (x )=-⎝⎛⎭⎫x -322+134(-1≤x ≤2),当x =32时,g (x )取得最大值,且g (x )max =g ⎝⎛⎭⎫32=134,因此a >134,故选D. 7.已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为 . 答案 a >b >c解析 ∵f (x )在R 上是奇函数, ∴a =-f ⎝⎛⎭⎫log 215=f ⎝⎛⎭⎫-log 215=f (log 25). 又f (x )在R 上是增函数, 且log 25>log 24.1>log 24=2>20.8, ∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是增加的,则实数a 的取值范围是 . 答案 ⎣⎡⎦⎤-14,0 解析 当a =0时,f (x )=2x -3在定义域R 上是增加的,故在(-∞,4)上是增加的;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上是增加的,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是⎣⎡⎦⎤-14,0. 9.记min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为 .答案 6解析 由题意知,f (x )=⎩⎪⎨⎪⎧x +2,0≤x ≤4,10-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a 的取值范围是 . 答案 (-∞,1]∪[4,+∞) 解析 作函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2, 即a ≤1或a ≥4. 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的; (2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. (1)证明 当a =-2时,f (x )=xx +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上是增加的. (2)解 设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1, 由g (x )在[-2,2]上是单调函数, 知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1) 答案 D解析 ∵当x =0时,两个表达式对应的函数值都为0,∴函数的图像是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a的取值范围是 . 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上是减少的,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上是减少的, ∴-x 2-2x +3<3,∴f (x )在R 上是减少的, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2 020x +ln(x 2+1+x )-2 020-x +1,则不等式f (2x -1)+f (2x )>2的解集为 . 答案 ⎝⎛⎭⎫14,+∞ 解析 由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上是增加的,∴2x -1>-2x ,∴x >14,∴原不等式的解集为⎝⎛⎭⎫14,+∞. 16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1. (1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解 (1)由⎩⎪⎨⎪⎧x 2-1>0,1<x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2). (2)∵函数f (x )在(0,3]上是增函数, ∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,a ∈[-1,1],∴需满足⎩⎪⎨⎪⎧g (-1)≥0,g (1)≥0,即⎩⎪⎨⎪⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0, 即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
2024届新高考一轮总复习人教版 第二章 第2节 函数的单调性与最值 课件(35张)
【小题热身】 1.思考辨析(在括号内打“√”或“×”). (1)对于函数 y=f(x),若 f(4)<f(5),则 f(x)为增函数.( ) (2)函数 y=f(x)在[4,+∞)上是增函数,则函数的单调递增区间是[4,+∞).( ) (3)函数 y=3x的单调递减区间是(-∞,0)∪(0,+∞).( ) (4)对于函数 f(x),x∈D,若对任意 x1, x2∈D,且 x1≠x2 有(x1-x2)[f (x1)-f(x2)]>0,则 函数 f(x)在区间 D 上是增函数.( ) 答案:(1)× (2)× (3)× (4)√
【考点集训】
1.下列函数中,在区间(0,+∞)上为减函数的是( )
A.y=-sin x
B.y=x2-2x+3
C.y=ln (x+1)
x
D.y=2 022-2
解析:y=-sin x 和 y=x2-2x+3 在(0,+∞)上不具备单调性;y=ln (x+1)在(0,
+∞)上单增.故选 D.
答案:D
2.函数 y=log1(-x2+x+6)的单调递增区间为( )
-1<12,解得 1≤x<32,故选 D. 答案:D
4.(必修第一册 P81 例 5 改编)函数 f(x)=2x-5 1在区间[2,4]上的最大值为________, 最小值为________.
解析:因为 f(x)在[1,5]上是减函数,所以最大值为 f(2)=2×52-1=53,最小值为 f(4)
第二章 函 数
[课标解读] 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值, 理解它们的作用和实际意义.
备考第 1 步——梳理教材基础,落实必备知识
1.函数单调性的定义
义域为 I,区间 D⊆I,如果∀x1,x2∈D,当 x1<x2 时
3.2.1函数的单调性与最值课件高三数学一轮复习
解题技法
判断函数的单调性的方法
定义法 一般步骤:设元→作差→变形→判断符号→得出结论 若f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的上
图象法 升或下降确定单调性
导数法 先求导数,再利用导数值的正负确定函数的单调性
(0,1)
11
-3
解题技法 函数单调性的应用策略
2.函数的最值
前提 条件 结论
设函数y=f(x)的定义域为D,如果存在实数M满足
∀x∈D,都有_f_(x_)_≤_M__; ∃x0∈D,使得_f_(_x_0)_=_M__
∀x∈D,都有_f_(x_)_≥_M__; ∃x0∈D,使得_f_(_x_0)_=_M__
M为最大值
M为最小值
微点拨(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上 单调时最值一定在端点取到; (2)开区间上的“单峰”函数一定存在最大(小)值.
第三章 函数及其应用
第二节 函数的基本性质第1课时 函数的单调性与最值
必备知识·逐点夯实 核心考点·分类突破
【课标解读】 【课程标准】 1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的 作用和实际意义. 2.理解函数的单调性、最值的实际意义,掌握函数单调性的简单应用. 【核心素养】 数学抽象、逻辑推理、数学运算.
类型 题号
辨析 1
改编 2
易错 4
高考 3
× ×
×
√
提示:
(1) 应对任意的x1<x2,都有f(x1)<f(x2)成立才可以.
×
反例:f(x)=x在[1,+∞)上为增函数,但f(x)=x的单调递增区
(2)
×
间是(-∞,+∞).
高考一轮复习---函数的单调性与最值知识点与题型
高考一轮复习---函数的单调性与最值知识点与题型一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征:一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范:(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3)函数f(x)单调递增,g(x)单调递减,则f(x)-g(x)是增函数;(4)函数f(x)单调递减,g(x)单调递增,则f(x)-g(x)是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反;(6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.三、考点解析考点一 确定函数的单调性(区间))例、(1)求函数f (x )=-x 2+2|x |+1的单调区间.(2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.跟踪训练1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1) 2.函数f (x )=log 12(x 2-4)的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(2,+∞) D .(-∞,-2)3.判断函数f (x )=x +a x(a >0)在(0,+∞)上的单调性. 考点二 求函数的值域(最值))例、(1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在]2,21[上的值域为]2,21[,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.注: (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.跟踪训练1.函数f (x )=x 2+4x的值域为________. 2.若x ∈]32,6[ππ-,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.3.已知f (x )=x 2+2x +a x,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.考点三 函数单调性的应用考法(一) 比较函数值的大小例、偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式例、设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,2] C .[2,6] D .[2,+∞)[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)例、已知函数f (x )=x -a x +a 2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.跟踪训练1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =)21(-f ,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是课后作业一1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x | 2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .125.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)6.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2-ax -5,x ≤1,a x,x >1是R 上的增函数,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-2] C .[-3,-2] D .(-∞,0)7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.8.函数f (x )=⎩⎪⎨⎪⎧ 1x ,x ≥1,-x 2+2,x <1的最大值为________. 9.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________. 10.若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________. 11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在]2,21[上的值域是]2,21[,求a 的值.12.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.课后作业二1.若f(x)=-x2+4mx与g(x)=2mx+1在区间[2,4]上都是减函数,则m的取值范围是()A.(-∞,0)∪(0,1] B.(-1,0)∪(0,1] C.(0,+∞) D.(0,1] 2.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.3.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.。
高考数学一轮复习讲义 第9课时 函数的单调性与最值 理
课题:函数的单调性与最值考纲要求:① 理解函数的单调性、最大值、最小值及其几何意义; ② 会运用函数图像理解和研究函数的单调性、最值 教材复习1.函数单调性和单调区间的定义:利用定义法证明单调性的一般步骤:① ; ② ; ③ ;④ 3.函数的最值常见初等函数的单调区间①幂函数②指数函数③对数函数④三角函数⑤多项式函数 基本知识方法1.函数单调性的定义:①如果函数()x f 对区间D 内的任意21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数。
②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]b a x x ,,21∈,那么()()()x f x x x f x f ⇔>--02121在[],a b 是增函数; ()()()x f x x x f x f ⇔<--02121在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数。
3.复合函数单调性的判断:4.函数单调性的应用.利用定义都是充要性命题.即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈);若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等5.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;6.判断函数的单调性的方法有:()1用定义;()2用已知函数的单调性;()3利用函数的导数;()4如果()f x 的递增(减)区间是D ,那么()f x 在D 的任一非空子区间上也是增(减)函数;()5图象法;()6复合函数的单调性结论:“同增异减”; ()7奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性;()8 互为反函数的两个函数具有相同的单调性;(9)在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0()f x f x >为减函数;()()0f x ≥为增函数;⑤()f x -为减函数.()10“对勾函数”:)0,0(>>+=b a x b ax y 在,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减. 7.证明..函数单调性的方法:()1利用单调性定义①;()2利用单调性定义②. 8.函数的单调区间必须是定义域的子集. 9.两条结论()1闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到;()2开区间上的“单峰”函数一定存在最大(小)值.典例分析:题型一:求函数的单调区间问题1.()1(07辽宁文)函数212log (56)y x x =-+的单调增区间为.A 52⎛⎫+∞ ⎪⎝⎭, .B (3)+∞,.C 52⎛⎫-∞ ⎪⎝⎭, .D (2)-∞,()2求下列函数的单调区间:①()243f x x x =-+ ②213log (43)y x x =-+ ③y =题型二:判断或证明函数的单调性 问题2.①试讨论函数()1axf x x =-()0a ≠在()1,1-上的单调性.②(2000全国,节选()2)设函数()f x ax =,其中0a >.()1略;()2求证:当a ≥1时,函数()f x 在区间[)0,+∞上是单调函数题型三:利用函数的单调性求字母的取值范围问题3.()1(06北京文)已知(3)4,1()log ,1aa x a x f x x x --⎧=⎨≥⎩<,是R 上的增函数,那么a 的取值范围是 .A ()1,+∞ .B (),3-∞ .C ⎪⎭⎫⎢⎣⎡3,53.D ()1,3()2已知函数2)1(2)(2+-+=x a x x f 在区间]3,(-∞上是减函数,求实数a 的取值范围题型四:函数的单调性的应用问题4.()1(07福建)已知()f x 为R 上的减函数,则满足1(1)f f x ⎛⎫>⎪⎝⎭的实数x 的取值范围是.A (1)-∞,.B (1)+∞, .C (0)(01)-∞,, .D (0)(1)-∞+∞,,()2若()x x x x f +-++=11lg 21,则不等式⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-21x x f <21的解集为题型五:单调性与最值问题5.①函数()21()log 23xf x x ⎛⎫=-+ ⎪⎝⎭在区间[]1,1-上的最大值是②(20136-≤a ≤3)的最大值为.A 9.B 92.C 3.D 2题型六:抽象函数的单调性 问题6.(05山东模拟)设()f x 是定义在R 上的函数,且对任意实数x 、y 都有()()()f x y f x f y +=+.求证:()1()f x 是奇函数;()2若当0x >时,有()0f x >, 则()f x 在R 上是增函数.课后作业:1.利用函数单调性定义证明:()f x =1+-x 在(],1-∞上是减函数2.函数212log (23)y x mx =-+在(,1)-∞上为增函数,则实数m 的取值范围3.已知函数1()1ax f x x -=+在区间(,1)-∞-上是减函数,试求a 的取值范围4.已知)2(log ax y a -=在]1,0[上是x 的减函数,则a 的取值范围是 .A )10(, .B )2,1( .C )2,0( .D ),2[+∞5.下列函数中,在区间(),0-∞上是增函数的是 .A 842+-=x x y .B )(log 21x y -= .C 2y x=-.D x y -=16.)(x f 为),(+∞-∞上的减函数,R a ∈,则.A )2()(a f a f <.B )()(2a f a f <.C )()1(2a f a f <+.D )()(2a f a a f <+7.(1991全国)如果奇函数()f x 在区间[]3,7上是增函数,且最小值为5,那么()f x在区间[]7,3--上是 .A 增函数且最小值为5-.B 增函数且最大值为5-.C 减函数且最小值为5-.D 减函数且最大值为5-8.已知()y f x =是偶函数,且在[)0,+∞上是减函数,则2(1)f x -是增函数的区间是.A ),0[+∞ .B ]0,(-∞ .C [1,0)(1,)-+∞ .D (,1](0,1]-∞-9.(04湖南文)若2()2f x x ax =-+与1()ax g x +=在区间[]1,2上都是减函数,则a的取值范围是 .A ()()1,00,1-.B ()(]1,00,1- .C ()0,1 .D (]0,110.(04上海)若函数()2f x a x b =-+在[)0,+∞上为增函数,则实数a 、b 的范围是11.已知偶函数)(x f 在]20[,内单调递减,若)1(-=f a ,)41(log 21f b =,)5.0(lg f c =,则a 、b 、c 之间的大小关系是_____________12.(2012兰州模拟)已知函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+ ⎪⎪⎝⎭⎩≤ 是R 上的增函数,则实数a 的取值范围是 .A (1)+∞,.B [)4,8 .C (48), .D (18),13.已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围.14.已知函数xx x x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性.15.设0a >,()x x e af x a e=+是R 上的偶函数.()1求a 的值;()2证明()f x 在(0,)+∞上为增函数.★★ 16.(05北京东城模拟)函数()f x 对任意的,a b R ∈,都有 ()()()1f a b f a f b +=+-,并且当0x >时()1f x >.()1求证:()f x 是R 上的增函数;()2若(4)5f =,解不等式2(32)3f m m --<★★17.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有 1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=, ()1求证:()f x 是偶函数;()2 ()f x 在(0,)+∞上是增函数;()3解不等式2(21)2f x -<.走向高考:1.(07天津)在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f.A 在区间[]1,2--上是增函数,区间[]4,3上是增函数.B 在区间[]1,2--上是增函数,区间[]4,3上是减函数 .C 在区间[]1,2--上是减函数,区间[]4,3上是增函数 .D 在区间[]1,2--上是减函数,区间[]4,3上是减函数2.(09陕西文) 定义在R 上的偶函数()f x 满足:对任意的12,[0,)x x ∈+∞12()x x ≠,有2121()()0f x f x x x -<-.则.A (3)(2)(1)f f f <-< .B (1)(2)(3)f f f <-<.C (2)(1)(3)f f f -<< .D (3)(1)(2)f f f <<-3.(07福建)已知函数()x f 为R 上的减函数,则满足()11f xf <⎪⎪⎭⎫ ⎝⎛的实数x 的范围是 .A ()1,1- .B ()1,0 .C ()()1,00,1 - .D ()()+∞-∞-,11,4.(2011江苏)()5()log 21f x x =+的单调递增区间是5.(07重庆)已知定义域为R 的函数()f x 在(8)+∞,上为减函数,且函数(8)y f x =+ 为偶函数,则.A (6)(7)f f >.B (6)(9)f f >.C (7)(9)f f > .D (7)(10)f f >6.(05山东)下列函数既是奇函数,又在区间[]1,1-上单调递减的是 .A ()sin f x x =.B ()1f x x =-+.C ()1()2x x f x a a -=+.D 2()ln 2x f x x-=+477.(2013全国大纲)若函数21()f x x ax x =++在区间1,2⎛⎫+∞ ⎪⎝⎭是增函数, 则a 的取值范围是 .A []1,0- .B [1,)-+∞ .C []0,3 .D [3,)+∞8.(05重庆)若函数()f x 是定义在R 上的偶函数,在]0,(-∞上是减函数,且(2)0f =, 则使得()0f x <的x 的取值范围是.A (),2-∞;.B ()2,+∞;.C ()(),22,-∞-+∞; .D ()2,2-9.(2012安徽)若函数()2f x x a =+的递增区间是[)3,+∞,则a =10.(89全国)已知2()82,f x x x =+-若2()(2)g x f x =-,那么()g x.A 在()1,0-上是减函数; .B 在()0,1上是减函数;.C 在()2,0-上是增函数; .D 在()0,2上是增函数;。
高考理科数学一轮总复习第二章函数的单调性与最值
第2讲函数的单调性与最值一、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A上是递减的①如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.②如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.(3)单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们称这个函数为增函数或减函数,统称为单调函数.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(1)对于任意的x∈I,都有f(x)≥M;(2)存在x ∈I ,使得f (x )=M(2)存在x ∈I ,使得f (x )=M结论 M 为最大值M 为最小值1.函数单调性的两种等价形式 设任意x 1,x 2∈[a ,b ]且x 1≠x 2,(1)f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2.五条常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”. (4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的递增区间是[1,+∞).( ) (3)函数y =1x 的递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到. ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K(1)求单调区间忘记定义域导致出错; (2)对于分段函数,一般不能整体单调,只能分段单调; (3)利用单调性解不等式忘记在单调区间内求解; (4)混淆“单调区间”与“在区间上单调”两个概念. 1.函数y =log 12(x 2-4)的递减区间为________.答案:(2,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是定义在R 上的减函数,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1, 解得⎩⎪⎨⎪⎧a <2,a ≤138,即a ≤138.答案:⎝⎛⎦⎤-∞,138 3.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,即⎩⎪⎨⎪⎧-3≤a ≤1,-1≤a ≤1,a <1.所以-1≤a <1. 答案:[-1,1)4.(1)若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是________;(2)若函数f (x )=x 2+2(a -1)x +2的递减区间为(-∞,4],则a 的值为________. 答案:(1)a ≤-3 (2)-3确定函数的单调性(区间)(多维探究) 角度一 给出具体解析式的函数的单调性(1)函数f (x )=|x 2-3x +2|的递增区间是( )A.⎣⎡⎭⎫32,+∞ B .⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D .⎝⎛⎦⎤-∞,32和[2,+∞) (2)函数y =x 2+x -6的递增区间为________,递减区间为________.【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的递增区间是⎣⎡⎦⎤1,32和[2,+∞);递减区间是(-∞,1)和⎝⎛⎭⎫32,2.故选B.(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的递减区间为(-∞,-3],递增区间为[2,+∞). 【答案】 (1)B (2)[2,+∞) (-∞,-3] 角度二 含参函数的单调性(一题多解)判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上是减少的;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上是增加的. 法二:f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为减函数, 当a <0时,f (x )在(-1,1)上为增函数.确定函数单调性的4种方法(1)定义法.利用定义判断.(2)导数法.适用于初等函数、复合函数等可以求导的函数.(3)图象法.由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法.利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.[提醒] 求函数的单调区间,应先求定义域,在定义域内求单调区间.1.函数y =-x 2+2|x |+3的递减区间是________. 解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图,由图象可知,函数y =-x 2+2|x |+3的递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)2.判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝⎛⎭⎫ax 21+1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的.求函数的最值(师生共研)(1)函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. (2)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是________.【解析】 (1)由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6.【答案】 (1)3 (2)26-6求函数最值的5种常用方法及其思路1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1.答案:1函数单调性的应用(多维探究) 角度一 比较大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称. 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e),所以b >a >c . 【答案】 D角度二 解函数不等式已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)【解析】 因为当x =0时,两个表达式对应的函数值都为零,所以函数f (x )的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数, 当x >0时,f (x )=ln(x +1)也是增函数, 所以函数f (x )是定义在R 上的增函数. 因此,不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1. 【答案】 D角度三 根据函数的单调性求参数(1)(2020·南阳调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a的取值范围是________.【解析】 (1)法一:设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数, 所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞). 法二:由f (x )=x -a x +a 2得f ′(x )=1+ax 2,由题意得1+ax2≥0(x >1),可得a ≥-x 2,当x ∈(1,+∞)时,-x 2<-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)函数单调性应用问题的3种常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.(2020·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a -2x +2a +3,x <a , 因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调, 所以a >1.所以a 的取值范围是(1,+∞).故选B.2.定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)解析:选C.因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数f (x )在[-2,2]上是增加的,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C.[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( )A .(-∞,0)B .⎣⎡⎦⎤0,12C .[0,+∞)D .⎝⎛⎭⎫12,+∞ 解析:选B.y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0函数y 的草图如图所示.由图易知原函数在⎣⎡⎦⎤0,12上递增.故选B. 3.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3]解析:选B.由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].4.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D.因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=4-x -x +2的值域为________.解析:因为⎩⎪⎨⎪⎧4-x ≥0,x +2≥0,所以-2≤x ≤4,所以函数f (x )的定义域为[-2,4].又y 1=4-x ,y 2=-x +2在区间[-2,4]上均为减函数, 所以f (x )=4-x -x +2在[-2,4]上为减函数, 所以f (4)≤f (x )≤f (-2). 即-6≤f (x )≤ 6. 答案:[-6,6]7.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)8.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是________.解析:由题意知,⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13. 答案:⎣⎡⎭⎫18,139.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值.解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的;(2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上是增加的. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.[综合题组练]1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D.函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B.因为函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.故选B.3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1, 3 ]上递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上是增加的,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上是增加的,所以当x >2时,f (x ) 是增加的,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x ) 是增加的,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。
数学一轮复习第二章函数导数及其应用第三讲函数的单调性与最值学案含解析
第三讲函数的单调性与最值知识梳理·双基自测错误!错误!错误!错误!知识点一函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1〈x2时,都有__f(x1)〈f(x2)__,那么就说函数f(x)在区间D上是增函数当x1〈x2时,都有__f(x1)>f(x2)__,那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是__上升的__自左向右看图象是__下降的__2。
单调区间的定义如果函数y=f(x)在区间D上是__增函数或减函数__,那么就说函数y=f(x)在这一区间具有(严格的)单调性,__区间D__叫做函数y=f(x)的单调区间.知识点二函数的最值1.复合函数的单调性函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.2.单调性定义的等价形式设任意x1,x2∈[a,b],x1≠x2。
(1)若有(x1-x2)[f(x1)-f(x2)]〉0或错误!〉0,则f(x)在闭区间[a,b]上是增函数.(2)若有(x1-x2)[f(x1)-f(x2)]<0或错误!〈0,则f(x)在闭区间[a,b]上是减函数.3.函数单调性的常用结论(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(2)若k〉0,则kf(x)与f(x)单调性相同,若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=错误!的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=错误!的单调性相同.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R上的函数f(x),有f(-1)〈f(3),则函数f(x)在R上为增函数.(×)(2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y=错误!的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)对于任意两个函数值f(x1)、f(x2),当f(x1)〉f(x2)时都有x1〉x2,则y=f(x)为增函数.(×)(5)已知函数y=f(x)是增函数,则函数y=f(-x)与y=错误!都是减函数.(×)[解析](1)函数的单调性体现了任意性,即对于单调区间上的任意两个自变量值x1,x2,均有f(x1)<f(x2)或f(x1)〉f(x2),而不是区间上的两个特殊值.(2)单调区间是定义域的子区间,如y=x在[1,+∞)上是增函数,但它的单调递增区间是R,而不是[1,+∞).(3)多个单调区间不能用“∪”符号连接,而应用“,”或“和”连接.(4)设f(x)=错误!,如图.当f(x1)〉f(x2)时都有x1〉x2,但y=f(x)不是增函数.(5)当f(x)=x时,y=错误!=错误!,有两个减区间,但y=错误!并不是减函数,而y=f(-x)是由y=f(t)与t=-x复合而成是减函数.题组二走进教材2.(必修1P32T3改编)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为__[-1,1]和[5,7]__.3.(必修1P44AT9改编)函数y=(2m-1)x+b在R上是减函数,则m的取值范围是__m〈12__。
函数的单调性与最值课件-2025届高三数学一轮复习
2
1
单调递减,所以B不符合要求;对于C,由反比例函数的图象可知, f ( x )=- 在
(0,+∞)上单调递增,所以C符合要求;对于D,当0< x <1时, y =3| x -1|=31- x
在(0,1)上单调递减,所以D不符合要求.故选C.
(2)[全国卷Ⅱ]函数 f ( x )=ln( x 2-2 x -8)的单调递增区间是( D
2025届高考数学一轮复习讲义
函数之 函数的单调性与最值
一、知识点讲解及规律方法结论总结
1. 函数的单调性
单调递增
单调递减
一般地,设函数f(x)的定义域为D,区间I⊆D,如果∀x1,x2∈I,
定
义
当x1<x2时,都有① f(x1)<f(x2)
,那 当x1<x2时,都有② f(x1)>f(x2)
,那
A. f(x)=-ln x
1
C. f(x)=-
B.
1
f(x)=
2
D. f(x)=3|x-1|
C )
[解析] 对于A,因为函数 y =ln x 在(0,+∞)上单调递增,所以 f ( x )=-ln x 在(0,
1
1 x
+∞)上单调递减,所以A不符合要求;对于B,因为 f ( x )= =( ) 在(0,+∞)上
D. (-1,+∞)
B )
3. [教材改编] y =
[解析]
2+1
的值域为
−3
(-∞,2)∪(2,+∞) .
2+1
2(−3)+7
7
7
y=
=
=2+
,显然
≠0,所以 y ≠2.故函数的值域
第一轮复习14---导数与函数的单调性、极值、最值
1 - k e; k 2时,最小值为
1 2 1 0 a 1时,极大值- a a ln a, 极小值 - ; 2 2 a 1时,无极值; 1 1 2 a 1时,极大值- , 极小值 - a a ln a。 2 2
极值最值 已知函数f x ax2 1a 0 , g x x 3 bx. 当a 3, b 9时,若函数f x g x 在区间 k ,2上的最大值为28,求k的取值范围。
含参数的单调区间
1 3 设函数f x x 1 a x 2 4ax 24a, 3 其中常数a R, 求f x 的单调区间。
含参数的单调区间
已知函数f x e a R,减区间为 。
ln a,,减区间为 , ln a。 a 0时,增区间为
求最值: 求出极值,与端点值比 较。
极值最值
e 设f x , 其中a为正实数. 2 1 ax 4 若a , 求f x 的极值点。 3
3 1 x1 是极小值点, x2 是极大值点。 2 2
x
极值最值
1 2 设a 0,函数f x x a 1x a1 ln x . 2 求函数f x 的极值。
'
是减少的。该区间为函 数的减区间。
单调区间
1 3 设函数f x x 1 a x 2 4ax 24a, 3 其中常数a 1, 求f x 的单调减区间。
2,2a
含参数的单调区间--界点讨论法
界点选取原则: 1,开口 2,△ 3,根的大小 4,根与定义域的关系
单调性下的取值范围
y f x 是区间上的增函数 y f x 是区间上的减函数 f x 0在区间上恒成立。