数学中考复习函数与图象2
中职教育数学《二次函数图像和性质复习》课件 (2)
(h,k)
(
b
4acb2
,
)
2a
4a
直线 x h 直线 x h
直线 x b
2a
x h时 x h时 y 最小 0 y 最小 k
x2ba时y, 最小 4a4cab2
x h时 y 最大 0
x h时 y 最大 k
xb时y, 最大 4acb2
2a
4a
在对称轴左侧,y随x的增大而减小
增 减
二次函数复习
作自我介绍
1
知识整理
1.二次函数的定义:
形如y=ax2+bx+c (a,b,c是常数, a≠0)的函数叫做二次函数
自变量x的取值范围是:任意实数
注意:当二次函数表示某个实际问题时,还必
须根据题意确定自变量的取值范围.
2.二次函数的表达式:
(1 )二次函数的一般形式:函数y=ax2+bx+c
二次函数y=ax2的图象与二次函数 y=a(x-h) 2+k的图象的关系
• 二次函数y=a(x-h) 2+k的图象可由抛物线 y=ax2向左(或向右)平移h的绝对值个单位, 在向上(或向下)平移k的绝对值个单位而得 到.
例5 当x取何值时,二次函数 y2x28x1有最大值 或最小值,最大值或最小值是多少?
解法一(配方法):
y2x28x12x24x 12x24x441
2x2277
所以当x=2时,y最小值=-7。
解法二(公式法):
因为a=2>0,抛物线 y2x28x1有最低点, 所以y有最小值,
因为 - b 8 2 ,4 a c b 2 4 2 1 8 2 7
2 a 2 2 4 a
y
O
x
(中考数学复习)第17讲 二次函数的图象与性质(二) 课件 解析
课堂回顾 · 巩固提升
浙派名师中考
4.(2013·苏州)已知二次函数y=x2-3x+m的图象与x轴的一个
交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两
实数根是
( B )
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
第17课 二次函数的图象与性质 (二)
浙派名师中考
1.二次函数y=a(x-h)2+k的图象和y=ax2图象的关系.
2.当满足___b_2-__4_a_c_>_0___时,抛物线y=ax2+bx+c(a≠0)与x轴 有两个交点;当满足__b_2_-__4_a_c_=__0___时,抛物线y=ax2+bx +c(a≠0)与x轴只有一个交点;当满足___b_2-__4_a_c_<_0__时,抛 物线y=ax2+bx+c(a≠0)与x轴没有交点.
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·宁波)如图17-1所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
C.a-b+c<0
D.4ac-b2<0
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长. 解:由A(0,-4)、C(4,0)得:OA=OC= 4,且△OAC是等腰直角三角形. 如图17-10所示,在OA上取ON=OB=2, 则∠ONB=∠ACB=45°; ∴∠ONB=∠NBA+∠OAB=∠ACB= ∠OMB+∠OAB,即∠NBA=∠OMB. 在△ABN、△AM1B中,∠BAN=∠M1AB, 图17-10 ∠ABN=∠AM1B,
中考数学 考点系统复习 第三章 函数 第二节 一次函数的图象与性质
9.★(2022·聊城)如图,一次函数 y=x+4 的图象与 x 轴,y 轴分别交 于点 A,B,点 C(-2,0)是 x 轴上一点,点 E,F 分别为直线 y=x+4 和 y 轴上的两个动点,当△CEF 周长最小时,点 E,F 的坐标分别为 Exy==-152,,32 2,Fxy0==,123, 2.
3.(2022·鄂州)数形结合是解决数学问题常用的思想方法.如图,一次
函数 y=kx+b(k,b 为常数,且 k<0)的图象与直线 =13x 都经过点 A(3,
1),当 kx+b<13x 时,根据图象可知,x 的取值范围是
(A )
A.x>3
B.x<3
C.x<1
D.x>1
4.某物体在力 F 的作用下,沿力的方向移动距离 s,力对物体所做的功
B
27,n是直线
y
=kx+b(k<0)上的两点,则 m,n 的大小关系是 mm<<nn.
7.(2022·安徽)在同一平面直角坐标系中,一次函数 y=ax+a2与 y=a2x
+a 的图象可能
( D)
8.(2022·杭州)已知一次函数 y=3x-1 与 y=kx(k 是常数,k≠0)的图 3x-y=1, xx==11,,
第二节 一次函数的图象 与性质
1.(2022·株州)在平面直角坐标系中,一次函数 y=5x+1 的图象与 y
轴的交点的坐标为
( D)
A.(0,-1) C.51,0
B.-15,0 D.(0,1)
2.( 2022·凉山州) 一次函数 y=3x+b(b≥0)的图象一定不经过( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
中考数学专项复习《二次函数图像与坐标轴的交点问题》练习题及答案
中考数学专项复习《二次函数图像与坐标轴的交点问题》练习题及答案一、单选题1.抛物线y=kx2−7x−7的图象和x轴有交点,则k的取值范围是()A.k≥−74B.k≥−74且k≠0C.k>−74D.k>−74且k≠02.下列二次函数的图象与x轴没有交点的是()A.y=-3x2+2x B.y=x2-3x-4C.y=x2-4x+4D.y=x2+4x+53.已知抛物线y=ax2+bx+c(a≠0)与x轴交点为(﹣1,0)和(3,0),与y轴交点为(0,﹣2),则一元二次方程ax2+bx+c=0(a≠0)的根为()A.x1=﹣1,x2=3B.x1=﹣2,x2=3C.x1=1,x2=﹣3D.x1=﹣1,x2=﹣24.关于x的函数y=(a−2)x2+2x−1与x轴有交点,则a的取值范围是()A.a≥1B.a>1C.a>1且a≠2D.a≥1且a≠25.抛物线y=x2﹣2x+3与x轴的交点个数是()A.0B.1C.2D.36.如图,抛物线y=−x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.−4<x<1B.−3<x<1C.x<−4或x>1D.x<−3或x>1 7.已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是A.3B.5C.7D.不确定8.二次函数y=ax2﹣bx的图象如图,若方程ax2﹣bx+m=0有实数根,则m的最大值为()A.-3B.3C.-6D.09.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1.给出下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个10.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如下表:x﹣2﹣101234y50﹣3﹣4﹣305y<0,则x的取值范围是0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧,则其中正确结论的个数是()A.0B.1C.2D.311.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a>0B.b>0C.c>0D.b2-4ac>012.抛物线y=ax2+bx+c(a≠0)形状如图,下列结论:①b>0;②a-b+c=0;③当x<-1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根。
九年级数学下第26章二次函数26.1二次函数及其图象2二次函数y=ax2的图象习题新人教
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月27日星期日2022/3/272022/3/272022/3/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/272022/3/272022/3/273/27/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/272022/3/27March 27, 2022
x> 0时 , y随 x的 增 大 而 增 大 , x< 0时 , y随 x的 增 大 而 减 小 .
2.a<0⇔开口向下⇔有最大值⇔
x> 0时 , y随 x的 增 大 而 减 小 , x< 0时 , y随 x的 增 大 而 增 大 .
知识点 2 求二次函数y=ax2的解析式
【例2】(2013·山西中考)如图是我省某地一座抛物线形拱桥,
(1)求此抛物线的解析式. (2)过点P作CB所在直线的垂线,垂足为点R, 求证:PF=PR.
【解析】(1)由题意可得:点A的坐标为(2,-1),
∵抛物线的顶点为坐标原点O,
∴可设抛物线的解析式为:y=ax2, 将点A(2,-1)代入可得:4a=-1,解得a=- 1 ,
4
∴抛物线的解析式为y=- 1 x2.
【例1】函数 ym2xm 2m 4 是关于x的二次函数,求:
(1)满足条件的m的值. (2)m为何值时,抛物线有最低点?求出这个最低点,这时当x为何 值时,y随x的增大而增大? (3)m为何值时,抛物线的开口方向向下?这时当x为何值时,y随x 的增大而减小?
【解题探究】(1)函数是二次函数的条件是自变量的最高次数
人教版初中数学中考复习 一轮复习 二次函数及其应用2(课件)
解方程,得 m1=-2,m2=3(不符合题意,舍去) ∴m=-2
典型例题——二次函数与方程、不等式的关系
9. (2021•泸州)直线 l 过点(0,4)且与 y 轴垂直,若二次函数 y=(x﹣a)2+(x﹣2a)2+
(x﹣3a)2﹣2a2+a(其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴
解方程,得 m1= 41-1 ,m2= - 41+1 (不符合题意,舍去)
4
4
∴m= 41-1 , 4
1 - m>3,即 m<-3,当 x=3 时,y=6.∴9来自6m+2m2-m=6,
解方程,得 m1=-1,m2= - 3 (均不符合题意,舍去). 2
综上所述,m=-2 或 m=
41-1
.
4
2 1<- m≤3,即-3≤m<-1,当 x=-m 时,y=6. ∴m2-m=6
bx+c=0有 两个不相等的 实数根;
②如果抛物线y=ax2+bx+c(a≠0)与x轴 只有一个 交点,则一元二次方
程ax2+bx+c=0有两个 相等 的实数根;
③如果抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则一元二次方程ax2+bx
+c=0 没有 实数根.
知识点梳理——知识点4:二次函数与一元二次方程及不等式的关系
A(1,0),B(m,0)(-2<m<-1),下列结论①2b+c>0;②2a+c<0;
③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等实数根,
A 则4ac-b2<4a;其中正确结论的个数是(
)
A.4
B.3
C.2
D.1
典型例题——二次函数与方程、不等式的关系
中考数学复习 函数及其图象二次函数的图象和性质二课件
解:(1)令 y=0,则-12x2+2x+6=0, ∴x1=-2,x2=6,∴A(-2,0),B(6,0). 由函数图象得,当 y≥0 时,x 的取值范围为-2≤x≤6.
2.[2019·温州]如图 15-2,在平面直角坐标系中,二次函数 y=-12x2+2x+6 的图象交 x 轴于点 A,B(点 A 在点 B 的左侧). (2)把点 B 向上平移 m 个单位得点 B1.若点 B1 向左平移 n 个单位,将与该二次函数 图象上的点 B2 重合;若点 B1 向左平移(n+6)个单位,将与该二次函数图象上的点 B3 重合.已知 m>0,n>0,求 m,n 的值.
方法二:∵抛物线 y=ax2+bx+c 经过 A(-1,0),B(3,0),C(0,3)三点,
������-������ + ������ = 0,
������ = -1,
∴ 9������ + 3������ + ������ = 0,解得 ������ = 2,
������ = 3,
������ = 3,
m<2.
例2 (2)已知二次函数y=2x2-mx-m2. ①求证:对于任意实数m,二次函数y=2x2-mx-m2的图象与x轴总有公共点; ②若这个二次函数图象与x轴有两个公共点A,B,且B点坐标为(1,0),求点A的坐 标. (2)解:①证明:Δ=(-m)2-4×2×(-m2)=m2+8m2=9m2≥0,
| 考向精练 | 1.[2018·自贡]若函数y=x2+2x-m的图象与x轴有且只有一个公共点,则m的值为
-1 .
2.[2019·泰安]若二次函数y=x2+bx-5图 [答案] x1=2,x2=4 象的对称轴为直线x=2,则关于x的方程 [解析]∵二次函数 y=x2+bx-5 图象的
浙江中考数学复习第三单元函数及其图象课时训练二次函数的图象与性质(二)
课时训练(十四)二次函数的图象与性质(二)|夯实基础|1.抛物线y=2x2-2x+1与坐标轴的交点个数是()A.0B.1C.2D.32.若二次函数y=x2+mx的对称轴是直线x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=-7D.x1=-1,x2=73.[ 019·淄博]将二次函数y=x2-4x+a的图象向左平移一个单位,再向上平移一个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是 ()A.a>3B.a<3C.a>5D.a<54.如图K14-1,已知二次函数y1=x2-x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是()图K14-1A.0<x<2B.0<x<3C.2<x<3D.x<0或x>35.[ 019·鄂州]二次函数y=ax2+bx+c的图象如图K14-2所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()图K14-2A.1个B.2个C.3个D.4个6.[ 019·泸州]已知二次函数y=(x-a-1)(x-a+1)-3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<-1时,y随x的增大而减小,则实数a的取值范围是()A.a<2B.a>-1C.-1<a≤D.-1≤a<27.[ 019·湖州]已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()图K14-38.[ 019·广元]如图K14-4,抛物线y=ax2+bx+c(a≠0)过点(-1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是.图K14-49.[ 019·雅安]已知函数y=-0)- ≤0)的图象如图K14-5所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.图K14-510.[ 019·达州]如图K14-6,抛物线y=-x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(-2,y1),点N1,y2,点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=-(x+1)2+m;④点A关于直线x=1的对称点为C,点D,E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是.图K14-611.[ 019·荆门]抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(-1,0),B(m,0),C(-2,n)(1<m<3,n<0),下列结论:①abc>0;②3a+c<0;③a(m-1)+2b>0;④a=-1时,存在点P使△PAB为直角三角形.其中正确结论的序号为.12.[ 018·黄冈]已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线的两交点为A,B,O为原点,当k=-2时,求△OAB的面积.13.如图K14-7,抛物线l:y=-1(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA·MP=12.(1)求k的值;(2)当t=1时,求AB的长,并求直线MP与抛物线l的对称轴之间的距离;(3)把抛物线l在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.图K14-714.[ 019·杭州]设二次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=1时,y=-1.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示)..(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<11|拓展提升|15.[ 018·杭州]四位同学在研究函数y=x2+bx+c(b,c为常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是 ()A.甲B.乙C.丙D.丁16.如图K14-8所示,将二次函数y=x2-m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:(1)当m=1,且y1与y2恰好有三个交点时,b有唯一值为1;(2)当b=2,且y1与y2恰有两个交点时,m>4或0<m<;(3)当m=b时,y1与y2至少有两个交点,且其中一个为(0,m);(4)当m=-b时,y1与y2一定有交点.其中正确说法的序号为.图K14-817.如图K14-9①,抛物线y=-x2+mx+n交x轴于点A(-2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图②,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.图K14-918.[ 019·仙桃]在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.【参考答案】1.C2.D3.D4.C5.C[解析]①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴->0,∴b<0.∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故①错误;②当x=-1时,y>0,∴a-b+c>0,∵-=1,∴b=-2a,把b=-2a代入a-b+c>0中得3a+c>0,故②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<-b.∵a-b+c>0,∴a+c>b,∴|a+c|<|b|,∴(a+c)2<(-b)2,即(a+c)2-b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选C.6.D[解析]y=(x-a-1)(x-a+1)-3a+7=x2-2ax+a2-3a+6,∵抛物线与x轴没有公共点,∴Δ=(-2a)2-4(a2-3a+6)<0,解得a<2.∵抛物线的对称轴为直线x=--=a,抛物线开口向上,而当x<-1时,y随x的增大而减小, ∴a≥-1,∴实数a的取值范围是-1≤a<2.7.D[解析]由得1110故直线与抛物线的两个交点坐标分别为(1,a+b)和-,0.对于D选项,从直线过第一、二、四象限可知:a<0,b>0.又∵|a|>|b|,∴a+b<0.从而(1,a+b)在第四象限,因此D选项不正确,故选D.8.-6<M<6[解析]∵y=ax2+bx+c过点(-1,0),(0,2),∴c=2,a-b=-2,∴b=a+2.∵顶点在第一象限,a<0,∴->0,b>0,a+2>0,a>-2,∴-2<a<0,M=4a+2b+c=4a+2(a+2)+2=6a+6,∴-6<M<6.9.0<m<1[解析]由y=x+m与y=-x2+2x得x+m=-x2+2x,整理得x2-x+m=0,当有两个交点时,b2-4ac=(-1)2-4m>0,解得m<1,当直线y=x+m经过原点时与函数y=-0)-0的图象有两个不同的交点,再向上平移,有三个交点,∴m>0,∴m的取值范围为0<m<1.10.①③④[解析]由题意得,m+2=-x2+2x+m+1,化简得x2-2x+1=0,∵b2-4ac=0,∴抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点,①正确;由图可得:y1<y3<y2,故②错误;y=-x2+2x+m+1=-(x-1)2+m+2,将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=-(x+1)2+m,故③正确;当m=1时,抛物线解析式为y=-x2+2x+2,∴A(0,2),C(2,2),B(1,3).作点B关于y轴的对称点B'(-1,3),作点C 关于x轴的对称点C'(2,-2).连结B'C',与x轴、y轴分别交于点D,E.则BE+ED+CD+BC=B'E+ED+C'D+BC=B'C'+BC.此时,四边形BCDE的周长最小.为+,故④正确.11.②③[解析]将A(-1,0),B(m,0),C(-2,n)代入解析式y=ax2+bx+c,∴对称轴x=-1=-,∴-=m-1,a(m-1)=-b.∵1<m<3,∴ab<0.∵n<0,∴a<0,∴b>0.∵a-b+c=0,∴c=b-a>0,∴abc<0,①错误;②易知当x=3时,y<0,∴9a+3b+c=9a+3(a+c)+c=12a+4c=4(3a+c)<0,②正确;③a(m-1)+2b=-b+2b=b>0,③正确;④a=-1时,y=-x2+bx+c=-x2+bx+b+1,∴P,b+1+,若△PAB为直角三角形,则△PAB为等腰直角三角形,∴b+1+=+1,∴b=-2,∵b>0,∴不存在点P使△PAB为直角三角形.④错误.故答案为②③.12.解:(1)证明:联立两个函数表达式,得x2-4x=kx+1,即x2-(4+k)x-1=0,其中Δ=(4+k)2+4>0,所以该一元二次方程有两个不相等的实数根,即直线l与抛物线总有两个交点.(2)如图,连结AO,BO,联立两个函数表达式,得x2-4x=-2x+1,解得x1=1-,x2=1+.设直线l与y轴交于点C,在一次函数y=-2x+1中,令x=0,得y=1,所以C(0,1),OC=1.所以S△ABO=S△AOC+S△BOC=1·OC·|x A|+1·OC·|x B|=1·OC·|x A-x B|=1×1×2=.13.解:(1)设点P(x,y),则MP=y,由OA的中点为M知OA=2x,代入OA·MP=12,得2x·y=12,即xy=6,∴k=xy=6.(2)当t=1时,令y=0,得0=-1(x-1)(x+3).∴x1=1,x2=-3.由点B在点A的左边,得B(-3,0),A(1,0),∴AB=4.∵抛物线l的对称轴为直线x=-1,而点M的坐标为1 0,∴直线MP与抛物线l的对称轴之间的距离为.(3)∵A(t,0),B(t-4,0),∴抛物线l的对称轴为直线x=t-2,直线MP为直线x=.当t- ≤,即t≤ 时,顶点(t-2,2)就是G的最高点;就是G的最高点.当t-2>,即t>4时,抛物线l与直线MP的交点-1814.解:(1)乙求得的结果不正确,理由如下:∵当x=0时,y=0;当x=1时,y=0,∴二次函数图象经过点(0,0),(1,0),∴x1=0,x2=1,∴y=x(x-1)=x2-x,当x=1时,y=-1,∴乙求得的结果不正确.(2)对称轴为直线x=1.当x=1时,y=-1-),∴函数的最小值为-1-).(3)证明:∵二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=x1x2(1-x1)(1-x2)=(x1-1)(x2-)=-x1-12+1-x2-12+1.∵0<x1<x2<1,并结合函数y=x(1-x)的图象,.∴0<-x1-12+1≤1,0<-x2-12+1≤1,且-x1-12+1与-x2-12+1不能同时取1,∴0<mn<11 15.B[解析]甲:-=1,b=-2;乙∶1-b+c=0;丙:-=3,4c-b2=12;丁:4+2b+c=4.若甲错:10- 1 由乙、丁得1代入丙,不成立,不合题意;若乙错:- 1 由甲、丁得代入丙,成立,符合题意;若丙错:10由甲、丁得代入乙,不成立,不符合题意; 若丁错:10- 1由甲、乙得代入丙,不成立,不合题意. 16.(2)(3)[解析]根据题意,y1=-或) --)(1)中,当m=1时,由于y1与y2恰好有三个交点,故有两种可能:一是直线y=x+b过点(-1,0)且与抛物线y=-x2+1相交,解得b=1;二是直线y=x+b与抛物线y=-x2+1有且仅有1个交点,且与抛物线y=x2-1有两个交点,解得b=,故(1)不正确.(2)中,要使y1与y2恰有两个交点,有两种情况:一是直线y=x+2与y=-x2+m没有交点,令x2+x+2-m=0,由12-4(2-m)<0,得m<,则0<m<;二是直线y=x+2与x轴的交点横坐标x满足-<x<,即-<-2<,解得m>4,故(2)正确.(3)中,由得两个交点(0,m),(-1,m-1),故(3)正确.(4)中,直线y=x-m恒过点(0,-m),将x=代入y=x-m,得y=-m,显然不一定大于或等于0,即y1与y2不一定有交点,故不正确.17.解:(1)将A(-2,0),C(0,2)的坐标代入抛物线的解析式y=-x2+mx+n,得--0解得1∴抛物线的解析式为y=-x2-x+2.(2)由(1)知,该抛物线的解析式为y=-x2-x+2,易得B(1,0),依据S△AOM=2S△BOC列方程可得:1·AO×|y M|=2×1×OB×OC,∴1×2×|-a2-a+2|=2,∴a2+a=0或a2+a-4=0,解得a=0或-1或-1 1 ,∴符合条件的点M 的坐标为:(0,2)或(-1,2)或-1 1,-2或-1- 1,-2.(3)设直线AC 的解析式为y=kx+b ,将A (-2,0),C (0,2)代入,得 - 0解得 1∴直线AC 的解析式为y=x+2,设N (x ,x+2)(- ≤x ≤0) 则D (x ,-x 2-x+2),ND=(-x 2-x+2)-(x+2)=-x 2-2x=-(x+1)2+1, ∵-1<0,∴x=-1时,ND 有最大值1.18.[解析](1)先求出直线的解析式,然后由二次函数解析式与一次函数解析式得到一元二次方程,利用根的判别式Δ≥0 求出a 的取值范围;(2)对自变量的取值范围在对称轴的左、右两侧进行分类,结合增减性求出m 的值;(3)抛物线经过(0,-1)这一定点,将抛物线分开口向上和开口向下两种情况求出a 的取值范围. 解:(1)将A (-3,-3),B (1,-1)的坐标代入 y=kx+b 中,得:- 1 解得 1∴直线l 的解析式为:y=1x-. ∵抛物线C 与直线l 有交点, ∴ax 2+2x-1=1 x-有实数根, 整理得2ax 2+3x+1=0, ∴Δ=9-8a ≥0 ∴a ≤98,∴a 的取值范围是a ≤98且a ≠0.(2)当a=-1时,抛物线为:y=-x 2+2x-1=-(x-1)2,对称轴为直线x=1, 当m ≤x ≤m+2<1时,y 随x 的增大而增大, 当x=m+2时,函数y 有最大值-4, ∴m=1(舍去)或-3.当1<m ≤x ≤m+2时,y 随x 的增大而减小, 当x=m 时,函数y 有最大值-4, ∴m=-1(舍去)或3. 综上所述m= 3. (3)9≤a<98或a ≤-2.[解析]当a<0时,对称轴为直线x=-1,-1>0,11 将B (1,-1)代入y=ax 2+2x-1,得a=-2,∴当a ≤-2时,抛物线C 与线段AB 有两个不同的交点; 当a>0时,对称轴为直线x=-1 ,-1 <0,将A (-3,-3)代入y=ax 2+2x-1,得a= 9,∴当 9≤a<98时,抛物线C 与线段AB 有两个不同的交点. 综上所述,抛物线C 与线段AB 有两个不同的交点时, 9≤a<98或a ≤-2.。
【人教版】2014中考数学复习方案:二次函数的图象与性质(二)(29张PPT)
第15讲┃二次函数的图象与性质(二)
(1)二次函数的图象是抛物线,是轴对称图形,充 分利用抛物线的轴对称性,是研究利用二次函数的性 质解决问题的关键. (2)已知二次函数图象上几个点的坐标,一般用待 定系数法直接列方程(组)求二次函数的解析式. (3)已知二次函数图象上的点(除顶点外)和对称轴 ,便能确定与此点关于对称轴对称的另一点的坐标.
解
(3)从图象和(1)(2)中可知,二次函数y=x2+2x的图
象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0), 方程x2+2x=0有两个根0,-2; 二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为 (1,0),方程x2-2x+1=0有两个相等的实数根1; 二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+
探究四 二次函数的图象与性质的综合运用
命题角度: 二次函数的图象与性质的综合运用.
例5 [2013· 内江] 已知二次函数y=ax2+bx+c(a>0)的 图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,与y轴 交于点C,x1,x2是方程x2+4x-5=0的两根. (1)若抛物线的顶点为D,求S△ABC∶S△ACD的值; (2)若∠ADC=90°,求二次函数的解析式.
解
(1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+
2的图象与x轴分别有两个交点,一个交点,没有交点.
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1
=0有两个相等的根1,验证略;方程x2-2x+2=0没有实数
根.
考点聚焦
归类探究
回归教材
中考预测
第15讲┃二次函数的图象与性质(二)
山东省德州市2022年中考数学复习 第3章 函数及其图象 二次函数试题
二次函数命题点分类集训(时间:120分钟 共26题 答对______题)命题点1 二次函数的性质1. (湘潭)抛物线y =2(x -3)2+1的顶点坐标是( )A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)2. (衢州)二次函数y =ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x… -3 -2 -1 0 1 … y…-3-2-3-6-11…则该函数图象的对称轴是( ) A. 直线x =-3 B. 直线x =-2 C. 直线x =-1 D. 直线x =03. (兰州)二次函数y =x 2-2x +4化为y =a (x -h )2+k 的形式,下列正确的是( )A. y =(x -1)2+2B. y =(x -1)2+3C. y =(x -2)2+2D. y =(x -2)2+44. (玉林)抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个5. (来宾)已知函数y =-x 2-2x ,当________时,函数值y 随x 的增大而增大. 命题点2 二次函数图象的平移6. (上海)如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y =(x -1)2+2B. y =(x +1)2+2C. y =x 2+1D. y =x 2+37. (2015临沂)要将抛物线y =x 2+2x +3平移后得到抛物线y =x 2,下列平移方法正确的是( )A. 向左平移1个单位,再向上平移2个单位B. 向左平移1个单位,再向下平移2个单位C. 向右平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向下平移2个单位8. (眉山)若抛物线y =x 2-2x +3不动,将平面直角坐标系........xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为( )A. y =(x -2)2+3B. y =(x -2)2+5C. y =x 2-1D. y =x 2+49. (滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y =x 2+5x +6,则原抛物线的解析式是( )A. y =-(x -52)2-114B. y =-(x +52)2-114C. y =-(x -52)2-14D. y =-(x +52)2+14命题点3 二次函数图象与系数的关系10. (2015泰安)某同学在用描点法画二次函数y =ax 2+bx +c 图象时,列出了下面的表格:x … -2 -1 0 1 2 … y…-11-21-2-5…由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -511. (黄石)以x 为自变量的二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,则实数b 的取值范围是( )A. b ≥54B. b ≥1或b ≤-1C. b ≥2D. 1≤b ≤212. (遂宁)已知直线y =bx -c 与抛物线y =ax 2+bx +c 在同一直角坐标系中的图象可能是( )13. (义乌)抛物线y =x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是( )A. 4B. 6C. 8D. 1014. (常德)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是( )A. 1B. 2C. 3D. 4第14题图 15. (2014扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a -2b +c 的值为________.第15题图命题点4 二次函数图象与方程、不等式16. (宿迁)若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为( )A. x 1=-3,x 2=-1B. x 1=1,x 2=3C. x 1=-1,x 2=3D. x 1=-3,x 2=117. (泸州)若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,则1x 1+1x 2的值为________.18. (2017原创)如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为____________.第18题图命题点5 二次函数的实际应用 19. (台州)竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =________.20. (扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t · 为正整数....)的增大而增大,a 的取值范围应为________. 21. (青岛8分)如图,需在一面墙上绘制几个相同的抛物线型图案,按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32m.(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的抛物线型图案?第21题图22. (成都8分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x 棵橙子树.(1)直接写出平均每棵树结的橙子数y (个)与x 之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?23. (十堰8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg ,且不高于180元/kg.经销一段时间后得到如下数据:销售单价x (元/kg) 120 130 … 180 每天销量y (kg)10095…70设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?命题点6 二次函数综合题24. (宁波10分)如图,已知抛物线y =-x 2+mx +3与x 轴交于点A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.第24题图25. (百色12分)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点坐标;②求抛物线L 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.第25题图 26. (无锡10分)已知二次函数y =ax 2-2ax +c (a >0)的图象与x 轴的负半轴和正半轴分别交于A 、B 两点,与y 轴交于点C ,它的顶点为P ,直线CP 与过点B 且垂直于x 轴的直线交于点D ,且CP ∶PD =2∶3.(1)求A 、B 两点的坐标;(2)若tan ∠PDB =54,求这个二次函数的关系式.第26题图。
中考数学复习 第三单元 函数及其图象 第14课时 二次函数的图象与性质(二)课件0
根据抛物线的轴对称性可知抛物线与 x 轴的右交点在原点与(1,0)之间(不含这两
1
4
点),∴当 x=1 时,y=a+b+c<0.∵a=3b,∴3b+c<0,∴4b+3c<0,∴结论④错误.
故选 A.
2. [2019·鄂州]二次函数y=ax2+bx+c的图象如图14-7所示,对称轴是直线x=1.下
∴b2-4ac>0,∴①正确;
∵抛物线的对称轴为直线 x=1,而点(-1,0)关于直线 x=1 的对称点的坐标为(3,0),
∴方程 ax2+bx+c=0 的两个根是 x1=-1,x2=3,∴②正确;
∵对称轴 x=- =1,即 b=-2a,而 x=-1 时,y=0,即 a-b+c=0,∴a+2a+c=0,
A.1
B.2
C.3
图14-6D.4)源自[答案] A3
[解析]根据对称轴-2 =-2得 b=3a,故可得 3a-b=0,∴结论①正确;
∵抛物线与 x 轴有两个不同的交点,∴b2-4ac>0,∴结论②正确;
根据结论①可知 b=3a,∴5a-2b+c=5a-6a+c=-a+c,观察图象可知 a<0,c>0,
特殊关系
当x=-1时,y=⑩ a-b+c
若a+b+c>0,则当x=1时,y>0
若a-b+c>0,则当x=⑪ -1 时,y>0
图象的特征
对点演练
题组一
必会题
1.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线
2020年重庆中考复习数学函数图象专题训练二(含答案)
2020年重庆中考复习数学函数图象专题训练二(含答案)类型一:函数图象与直线y=k有几个交点的问题1、(2019•南岸区模拟)某课外学习小组根据学习函数的经验,对函数y=x2﹣4|x|的图象与性质进行了探究请补充完整以下探索过程(1)列表:X…﹣5﹣4﹣3﹣2﹣101234…y…m0﹣3﹣4﹣30﹣3﹣4n0…直接写出m=,n=;(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象,并结合图象写出该函数的两条性质:性质1:性质2:(3)若方程x2﹣4|x|=k有四个不同的实数根,请根据函数图象,直接写出k的取值范围.2、(2019•九龙坡区校级模拟)某课外学习小组根据学习函数的经验,对函数y=x3﹣3x的图象与性质进行了探究.请补充完整以下探索过程:(1)列表:x…﹣2﹣1012…y…﹣2m20n2…请直接写出m,n的值;(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;(3)若函数y=x3﹣3x的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为(用“<”连接);(4)若方程x3﹣3x=k有三个不同的实数根.请根据函数图象,直接写出k的取值范围.类型二:函数12y y 求x 的范围问题1、(2019春•沙坪坝区校级期末)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a |=.结合上面经历的学习过程,现在来解决下面的问题:在函数y =|kx ﹣1|+b 中,当x =1时,y =3,当x =0时,y =4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y =的图象如图所示,结合你所画的函数图象,直接写出不等式|kx ﹣1|+b ≥的解集.2、(2019•重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x =0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.4、(2019秋•万州区校级月考)已知函数y=+b(a、b为常数且a≠0)中,当x=2时,y=4;当x=﹣1时,y=1.请对该函数及其图象进行如下探究:(1)求该函数的解析式,并直接写出该函数自变量x的取值范围;(2)请在下列直角坐标系中画出该函数的图象;列表如下:x…﹣4﹣3﹣2﹣10123456……y………描点连线:(3)请结合所画函数图象,写出函数图象的两条性质;(4)请你在上方直角坐标系中画出函数y=2x的图象,结合上述函数的图象,写出不等式+b≥2x 的解集.类型三:函数图象与直线y=kx+b有几个根的问题3、(2019春•北碚区校级月考)某班“数学兴趣小组”对函数y=,的图象和性质进行了探究探究过程如下,请补充完成:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值.请直接写出m,n的值:m=;n=.x…﹣2﹣10n234…y…m0﹣1﹣3532…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)通过观察函数的图象,小明发现该函数图象与反比例函数y=(k>0)的图象形状相同,是中心对称图形,且点(﹣1,m)和(3,)是一组对称点,则其对称中心的坐标为.(5)当2≤x≤4时,关于x的方程kx+=有实数解,求k的取值范围.2020年重庆中考复习数学函数图象专题训练二(含答案)类型一:函数图象与直线y=k有几个交点的问题1、(2019•南岸区模拟)某课外学习小组根据学习函数的经验,对函数y=x2﹣4|x|的图象与性质进行了探究请补充完整以下探索过程(1)列表:X…﹣5﹣4﹣3﹣2﹣101234…y…m0﹣3﹣4﹣30﹣3﹣4n0…直接写出m=5,n=﹣3;(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象,并结合图象写出该函数的两条性质:性质1:函数图象关于y轴对称性质2:函数有最小值(3)若方程x2﹣4|x|=k有四个不同的实数根,请根据函数图象,直接写出k的取值范围.解:(1)当x=﹣5时,y=x2﹣4|x|=5;当x=3时,y=x2﹣4|x|=﹣3.(3)观察函数图象,可知:性质1:函数图象关于y轴对称;性质2:函数有最小值﹣4.故答案为:函数图象关于y轴对称;函数有最小值.③∵方程x2﹣4|x|=k有四个不同的实数根,∴﹣4<k<0.2、(2019•九龙坡区校级模拟)某课外学习小组根据学习函数的经验,对函数y=x3﹣3x的图象与性质进行了探究.请补充完整以下探索过程:(1)列表:x…﹣2﹣1012…y…﹣2m20n2…请直接写出m,n的值;(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;(3)若函数y=x3﹣3x的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为y1<y2<y3(用“<”连接);(4)若方程x3﹣3x=k有三个不同的实数根.请根据函数图象,直接写出k的取值范围.解:(1)从函数的对称性可得:m=,n=﹣2;(2)描点如下函数图象(3)从图象看,x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为:y1<y2<y3,(4)从图象看,方程x3﹣3x=k有三个不同的实数根,在x轴下方的临界点是y=﹣2,同理x轴上方的临界点是y=2,故:﹣2<k<2.解:(1)直接写出a= 1 ,m= 1 ,n=0 ;(2)如图,请再描出剩下的点,并画出该函数的图象;x<<时,y随x的增大而减小;(写一条即可)(4)01t<<类型二:函数12y y 求x 的范围问题1、(2019春•沙坪坝区校级期末)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a |=.结合上面经历的学习过程,现在来解决下面的问题:在函数y =|kx ﹣1|+b 中,当x =1时,y =3,当x =0时,y =4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y =的图象如图所示,结合你所画的函数图象,直接写出不等式|kx ﹣1|+b ≥的解集.解:(1)∵在函数y =|kx ﹣1|+b 中,当x =1时,y =3;当x =0时,y =4, ∴,得,∴这个函数的表达式是y =|x ﹣1|+3;(2)∵y =|x ﹣1|+3,∴y =,∴函数y =x +2过点(1,3)和点(4,6);函数y =﹣x +4过点(0,4)和点(﹣2,6); 该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.2、(2019•重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x =0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,得,∴这个函数的表达式是y=|x﹣3|﹣4;(2)∵y=|x﹣3|﹣4,∴y=,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣﹣1过点(0,﹣1)和点(﹣2,2);该函数的图象如右图所示,性质是当x>2时,y随x的增大而增大;(3)由函数图象可得,不等式|kx﹣3|+b≤x﹣3的解集是1≤x≤4.4、(2019秋•万州区校级月考)已知函数y=+b(a、b为常数且a≠0)中,当x=2时,y=4;当x=﹣1时,y=1.请对该函数及其图象进行如下探究:(1)求该函数的解析式,并直接写出该函数自变量x的取值范围;(2)请在下列直角坐标系中画出该函数的图象;列表如下:x…﹣4﹣3﹣2﹣10123456……y………描点连线:(3)请结合所画函数图象,写出函数图象的两条性质;(4)请你在上方直角坐标系中画出函数y=2x的图象,结合上述函数的图象,写出不等式+b≥2x 的解集.解:(1)把x=2时,y=4;x=﹣1时,y=1代入y=+b得,解得,∴该函数的解析式为y=+2(x≠1);(2)如图:x…﹣4﹣3﹣2﹣10123456……y…10﹣2643……描点连线:(3)观察图象可知:①当x<0时,y随x的增大而减小.②当x>2时,y随x的增大而减小;(4)如图:y=+2与y=2x的交点为(0,0),(2,4),结合函数图象+2≥2x的解集为x≤0或1<x≤2.类型三:函数图象与直线y=kx+b有几个交点的问题3、(2019春•北碚区校级月考)某班“数学兴趣小组”对函数y=,的图象和性质进行了探究探究过程如下,请补充完成:(1)函数y=的自变量x的取值范围是x≠1;(2)下表是y与x的几组对应值.请直接写出m,n的值:m=;n=.x…﹣2﹣10n234…y…m0﹣1﹣3532…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)通过观察函数的图象,小明发现该函数图象与反比例函数y=(k>0)的图象形状相同,是中心对称图形,且点(﹣1,m)和(3,)是一组对称点,则其对称中心的坐标为(1,1).(5)当2≤x≤4时,关于x的方程kx+=有实数解,求k的取值范围.解:(1)函数y=的自变量x的取值范围是x≠1.(2)当x=﹣1时,y=,∴m=.当y=3时,则3=,解得x=,∴n=,(3)函数图象如图所示:(4)该函数的图象关于点(1,1)成中心对称,(5)当2≤x≤4时,函数y=中,≤y≤2,把x=4,y=代入函数y=kx+得,=4k+,解得k=,把x=2,y=2代入函数y=kx+得2=2k+,解得k=,∴关于x的方程kx+=有实数解,k的取值范围是≤k≤.4、(2019秋•确山县期中)小华是数学兴趣小组的一名成员,他在学过二次函数的图象与性质之后,对y=﹣x2+3|x|+4的图象与性质进行了探究,探究过程如下,请你补充完整.(1)小刚通过计算得到几组对应的数值如下.x…﹣5﹣4﹣3﹣2﹣﹣1012345…y…﹣6046646640a…填空:自变量的取值范围是全体实数,a=﹣6.(2)在如图所示的平面直角坐标系中,描出上表中各组对应数值的点,并根据描出的点,画出该函数的图象.(3)请你根据画出的图象,写出此函数的两条性质.①函数图象关于y轴对称;②当x>时,y随x的增大而减小.(4)直线y=k+b经过(),若关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,则b 的取值范围为4<a<.解:(1)函数y=﹣x2+3|x|+4的自变量x的取值范围是全体实数;当x=5时,y=﹣(5)2+3×|5|+4=﹣6,∴a=﹣6,(2)根据给定的表格中数据描点画出图形,如图所示.(3)观察函数图象,可得出:①函数图象关于y轴对称,②当x>时,y随x的增大而减小.(4)观察图象可知:关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根时,b的取值范围是4<a<.。
中考数学总复习第三单元函数课时训练二次函数的图象和性质二
课时训练(十五)二次函数的图象和性质(二)(限时:50分钟)|夯实基础|1.[2018·毕节]将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5B.y=(x+2)2+5C.y=(x-2)2-5D.y=(x-2)2+52.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2018的值为()A.2015B.2016C.2017D.20193.[2017·枣庄]已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大4.若抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A.m≤2B.m<-2C.m>2D.0<m≤25.若二次函数y=x2+mx图象的对称轴是直线x=2,则关于x的方程x2+mx=5的解为()A.x1=1,x2=5B.x1=1,x2=3C.x1=1,x2=-5D.x1=-1,x2=56.二次函数y=ax2+bx的图象如图K15-1,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()图K15-1A.-3B.3C.-6D.97.已知二次函数y=ax2+bx+c的图象如图K15-2所示,则|a-b+c|+|2a+b|=()图K15-2A.a+bB.a-2bC.a-bD.3a8.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.9.[2018·淮安]将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.10.[2017·株洲]如图K15-3,二次函数y=ax2+bx+c图象的对称轴在y轴的右侧,其图象与x轴交于点A(-1,0),点C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>√5-1.以上结论中,正确的结论序号是.图K15-311.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点..(2)若该抛物线的对称轴为直线x=52①求该抛物线所对应的函数表达式;②把该抛物线沿y轴向上平移多少个单位后,得到的抛物线与x轴只有一个公共点?|拓展提升|12.[2018·永州]如图K15-4①,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点E(0,3).(1)求抛物线的表达式.(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小?如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图K15-4②,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M,N(点M,N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.图K15-413.[2018·怀化]如图K15-5,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的表达式和直线AC的表达式.(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标.(3)试探究:在抛物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.图K15-5参考答案1.A2.D[解析] ∵抛物线y=x2-x-1与x轴的一个交点为(m,0),∴m2-m-1=0,∴m2-m=1,∴m2-m+2018=1+2018=2019.3.D[解析] 将a=1代入原函数表达式,令x=-1,求出y=2,由此得出A选项不符合题意;将a=-2代入原函数表达式,得y=-2x2+4x-1,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;利用公式法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;利用公式法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.4.A[解析] 由题意可知Δ=4-4(m-1)≥0,∴m≤2,故选A.=2,解得m=-4,∴关于x的方程x2+mx=5可化为5.D[解析] ∵二次函数y=x2+mx图象的对称轴是直线x=2,∴-m2x2-4x-5=0,即(x+1)(x-5)=0,解得x1=-1,x2=5.6.B[解析] ∵抛物线的开口向上,顶点的纵坐标为-3,=-3,即b2=12a.∴a>0,-m24m∵关于x的一元二次方程ax2+bx+m=0有实数根,∴Δ=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m的最大值为3., 7.D[解析] 根据二次函数y=ax2+bx+c的图象可知,a>0,又抛物线过坐标原点,∴c=0.∵抛物线的对称轴为直线x=-m2m <1,解得-2a<b<0,∴|a-b+c|=a-b,|2a+b|=2a+b,∴|a-b+c|+|2a+b|=a-b+2a+b=3a.∴0<-m2m8.m>1[解析] 根据抛物线y=x2+2x+m与x轴没有公共点可知,方程x2+2x+m=0没有实数根,∴判别式Δ=22-4×1×m<0,∴m>1. 9.y=x 2+210.①④ [解析] 由图象可知抛物线开口向上,∴a>0,由抛物线经过A (-1,0),B (0,-2),对称轴在y 轴的右侧可得{m -m +m =0,m =−2,-m 2m >0,由此可得a-b=2,b<0,故a=2+b<2,综合可知0<a<2.将a=b+2代入0<a<2中,得0<b+2<2,可得-2<b<0. 当|a|=|b|时,因为a>0,b<0,故有a=-b.又a-b=2,可得a=1,b=-1,故原函数为y=x 2-x-2,当y=0时,即有x 2-x-2=0,解得x 1=-1,x 2=2,x 2=2>√5-1. 故答案为①④.11.解:(1)证明:y=(x-m )2-(x-m )=x 2-(2m+1)x+m 2+m , ∵Δ=(2m+1)2-4(m 2+m )=1>0,∴不论m 为何值,该抛物线与x 轴一定有两个公共点.(2)①∵x=--(2m +1)2=52,∴m=2,∴抛物线所对应的函数表达式为y=x 2-5x+6.②设抛物线沿y 轴向上平移k 个单位后,得到的抛物线与x 轴只有一个公共点,则平移后抛物线所对应的函数表达式为y=x 2-5x+6+k.∵抛物线y=x 2-5x+6+k 与x 轴只有一个公共点, ∴Δ=25-4(6+k )=0,∴k=14,即把该抛物线沿y 轴向上平移14个单位后,得到的抛物线与x 轴只有一个公共点.12.解:(1)设所求二次函数的表达式为y=a (x-1)2+4,∵抛物线与y 轴交于点E (0,3),∴a (0-1)2+4=3,解得a=-1,∴所求二次函数的表达式为y=-(x-1)2+4,即y=-x 2+2x+3.(2)存在一点G ,使得EG+FG 最小. ∵抛物线的顶点A 的坐标为(1,4),∴与点E (0,3)关于抛物线对称轴x=1成轴对称的点为E'(2,3).如图①,连接E'F ,设直线E'F 的函数表达式为y=kx+b , ∴{2m +m =3,m =−3,解得{m =3,m =−3,即y=3x-3, 当x=1时,y=0,即点G (1,0),使得EG+FG 最小.(3)如图②,连接AN ,BN ,过点N 作NT ∥y 轴交AB ,x 轴分别于点S ,T. 在y=-x 2+2x+3中,当y=0时,x 1=-1,x 2=3, 则B (3,0).∵A (1,4),B (3,0),∴AB=2√5. 设直线AB 的函数表达式为y=mx+t ,∴{m +m =4,3m +m =0,解得{m =−2,m =6,即y=-2x+6. 设N (n ,-n 2+2n+3),则S (n ,-2n+6),∴NS=-n 2+4n-3. ∵S △ABN =S △ANS +S △BNS ,∴12AB ·MN=12NS ·(3-1),∴MN=√55(-n 2+4n-3)=-√55(n 2-4n+3)=-√55(n-2)2+√55,∴当n=2,即N (2,3)时,MN 最大,为√55.∵PN ⊥AB ,∴设直线PN 的函数表达式为y=12x+c ,且N (2,3),∴c=2,则y=12x+2, ∴点P (0,2),∴S △OPN =12OP ·x N =12×2×2=2.13.[解析] (1)利用待定系数法求抛物线和直线的表达式.(2)根据轴对称确定最短路线问题,作点D 关于y 轴的对称点D 1,连接BD 1,BD 1与y 轴的交点即为所求的点M ,然后求出直线BD 1的表达式,再求解即可.(3)可分两种情况(①以C 为直角顶点,②以A 为直角顶点)讨论,然后根据两直线垂直的关系求出P 点所在直线的表达式,将直线和抛物线的表达式联立求出点P 的坐标.解:(1)将点A (-1,0)和B (3,0)的坐标代入抛物线y=ax 2+2x+c 中,可得{m -2+m =0,9m +6+m =0,解得{m =−1,m =3,∴抛物线的表达式为y=-x 2+2x+3. 令x=0,则y=3,∴点C 的坐标为(0,3). 设直线AC 的表达式为y=kx+b , 则{-m +m =0,m =3,解得{m =3,m =3.∴直线AC 的表达式为y=3x+3.(2)如图,作点D 关于y 轴的对称点D 1,连接BD 1交y 轴于点M ,则点M 即为所求.由抛物线表达式可得D 点的坐标为(1,4),则D 1的坐标为(-1,4). 设直线BD 1的表达式为y=k 1x+b 1,则{3m 1+m 1=0,-m 1+m 1=4,解得{m 1=−1,m 1=3,则直线BD 1的表达式为y=-x+3,令x=0可得y=3,则点M 的坐标为(0,3). (3)存在.如图①,当△ACP 以点C 为直角顶点时,易得直线CP 的表达式为y=-13x+3. 由{m =−13m +3,m =−m 2+2m +3,得{m 1=0,m 1=3(舍去){m 2=73,m 2=209, ∴P 点坐标为73,209.如图②,当△ACP 是以点A 为直角顶点时,易得直线AP 的表达式为y=-13x-13.由{m =−13m -13,m =−m 2+2m +3,得{m 1=−1,m 1=0(舍去){m 2=103,m 2=−139, ∴P 点坐标为103,-139. 综上,符合条件的点P 的坐标为73,209或103,-139.。
中考数学专题复习:二次函数图象综合应用
图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。
中考数学复习 二次函数的图象与性质 复习课 课件
二次函数的图象与性质
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图象和性质 用函数观点看方程与不等式
应用
1. 二次函数的定义
一般地,形如 y=ax2+bx+c(其中a,b,c为 常数,且a≠0)的函数, 叫做二次函数. 其中x是自 变量, a,b,c 分别是函数解析式的二次项系数、 一次项系数和常数项.
最大值为4ac b. 2 4a
【温馨提示】判断函数图象增减性时,可在旁边画出大致图象,数形结合更直观.
2. 二次函数的图象和性质
(4)根据函数图象判断相关结论
图象(示意图)
结论
>
a_____0
b__>___0
c<0 b2-4ac > 0
a_<____0
b=0 c>0
b2-4ac_>____0
a>0
B E
D
二次函数的对称性
例3.如图,在平面直角坐标系网格中,点Q,R,S,T 都在格点上,过点
P(1,2)的抛物线y=ax2+2ax+c(a<0)可能还经过( D )
A. 点Q
B. 点R
C. 点S
D. 点T
分析:由y=ax2+2ax+c得到对称轴为
P'
x b 2a 1 2a 2a
b_<____0
c_>____0
b2-4ac > 0
a<0
b_<____0
c<0
b2-4ac_=____0
2. 二次函数的图象和性质
图象(示意图) _________
_________
y=ax2+bx
九年级上数学专题复习二:二次函数图象与系数的关系(含答案)
专题复习二 二次函数图象与系数的关系(1)系数a 决定抛物线的开口方向和大小,a>0时,开口向上;a<0时,开口向下.(2)对称轴在y 轴的左侧,a ,b 同号;对称轴在y 轴的右侧,a ,b 异号.(3)c>0时,图象与y 轴交点在x 轴上方;c=0时,图象过原点;c<0时,图象与y 轴交点在x 轴下方.(4)b 2-4ac 的符号决定抛物线与坐标轴的交点个数.1.已知二次函数y=ax 2+bx 的图象如图所示,那么a ,b 的符号为(C ).A.a >0,b >0B.a <0,b >0C.a >0,b <0D.a <0,b <0(第1题) (第2题) (第5题)2.如图所示为二次函数y=ax 2+bx+c 的图象,对称轴是直线x=1,则下列结论错误的是(D ).A.c >0B.2a+b=0C.b 2-4ac >0D.a-b+c >03.二次函数y=ax 2-a 与反比例函数y=xa (a ≠0)在同一平面直角坐标系中可能的图象为(A ).A. B. C. D.4.二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点(D ).A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)5.抛物线y=ax 2+bx+c 的顶点为D(-1,2),与x 轴的一个交点A 在(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:①b 2-4ac <0;②a+b+c <0;③c-a=2;④方程ax 2+bx+c-2=0有两个相等的实数根.其中正确的结论有(C ).A.1个B.2个C.3个D.4个6.已知抛物线y=ax 2+2x+c 与x 轴的交点都在原点的右侧,则点M(a ,c)在第 三 象限.7.如图所示为二次函数y=ax 2+bx+c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:(第7题)①abc <0;②b 2-4ac >0;③4b+c <0;④若B (-25,y 1),C (-21,y 2)为函数图象上的两点,则y 1>y 2; ⑤当-3≤x ≤1时,y ≥0.其中正确的结论有 ②③⑤ (填序号).8.已知二次函数y=ax 2+bx+c 的图象开口向下,顶点落在第二象限.(1)试确定a ,b ,b 2-4ac 的符号,并简述理由.(2)若此二次函数的图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为32,求抛物线的二次函数的表达式.【答案】(1)∵抛物线开口向下,∴a <0.∵顶点在第二象限,∴⎪⎪⎩⎪⎪⎨⎧>-<-044022ab ac a b ,∴b <0,b 2-4ac >0.(2)由题意可得c=0,此时顶点坐标为(-a b 2,-a b 42).∵顶点在直线x+y=0上,∴-a b 2-a b 42=0. ∴b=-2.此时顶点坐标为(a 1,-a 1).∴21a +21a =(32)2.∴a=-31或a=31 (舍去).∴抛物线的函数表达式为y=-31x 2-2x. 9.已知函数y=x 2-2mx 的顶点为点D.(1)求点D 的坐标(用含m 的代数式表示).(2)求函数y=x 2-2mx 的图象与x 轴的交点坐标.(3)若函数y=x 2-2mx 的图象在直线y=m 的上方,求m 的取值范围.【答案】(1)y=x 2-2mx=(x-m)2-m 2,∴顶点D(m ,-m 2).(2)令y=0,得x 2-2mx=0,解得x 1=0,x 2=2m.∴函数的图象与x 轴的交点坐标为(0,0),(2m ,0).(3)∵函数y=x 2-2mx 的图象在直线y=m 的上方,∴顶点D 在直线y=m 的上方.∴-m 2>m ,即m 2+m <0.∴m 的取值范围是-1<m <0.10.已知抛物线y=ax 2+3x+(a-2),a 是常数且a <0,下列选项中,可能是它大致图象的是(B).A.B.C.D.11.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:①4ac-b 2<0;②4a+c <2b ;③3b+2c <0;④m(am+b)+b <a(m ≠-1).其中正确的结论有(B ).A.4个B.3个C.2个D.1个(第11题) (第12题) (第14题)(第15题)12.函数y=x 2+bx+c 与y=x 的图象如图所示,则下列结论:①b 2-4c <0;②c-b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b-1)x+c <0.其中正确结论的个数为(C ).A.1B.2C.3D.413.二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 的取值范围是 0<t <2 .14.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则a b 的值为 -2 ,a c 的取值范围是 -8<ac <-3 . 【解析】∵抛物线的对称轴为直线x=1,∴x=-a b 2=1,即a b =-2.由图象知当x=-2时,y >0,即4a-2b+c >0①,当x=-1时,y <0,即a-b+c <0②,将b=-2a 代入①②,得c >-8a ,c <-3a. 又∵a >0,∴-8<ca <-3.15.如图所示为抛物线y=ax 2+bx+c 的图象,A ,B ,C 为抛物线与坐标轴的交点,且OA=OC=1,则a ,b 之间满足的关系式为 a-b+1=0 .(第16题)16.如图所示为二次函数y=ax 2+bx+c(a ≠0)的图象.(1)判断a ,b ,c 及b 2-4ac 的符号.(2)若OA=OB ,求证:ac+b+1=0.【答案】(1)a>0,b<0,c<0,b 2-4ac>0.(2)∵OA=OB ,且OB=|c|=-c ,∴ax 2+bx+c=0有一根为x=c.∴ac 2+bc+c=0.∴ac+b+1=0.17.对于二次函数y=ax 2+bx+c ,如果当x 取任意整数时,函数值y 都是整数,那么我们把该函数的图象叫做整点抛物线(例如:y=x 2+2x+2).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的函数表达式: y=21x 2+21x .(不必证明) (2)请探索:是否存在二次项系数的绝对值小于21的整点抛物线?若存在,请写出其中一条抛物线的表达式;若不存在,请说明理由.【答案】(1)y=21x 2+21x (2)假设存在符合条件的抛物线,则对于抛物线y=ax 2+bx+c ,当x=0时,y=c;当x=1时,y=a+b+c. 由整点抛物线定义知:c 为整数,a+b+c 为整数,∴a+b 必为整数.又当x=2时,y=4a+2b+c=2a+2(a+b )+c 是整数,∴2a 必为整数.∴|a|≥21.∴不存在二次项系数的绝对值小于21的整点抛物线.(第18题)18.【攀枝花】二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列命题中,正确的是(D ).A.a >b >cB.一次函数y=ax+c 的图象不经过第四象限C.m(am+b)+b <a(m 是任意实数)D.3b+2c >0【解析】由二次函数的图象可知a >0,c <0;由x=-1得-ab 2=-1,故b >0,b=2a ,则b >a >c ,故A 错误.∵a >0,c <0,∴一次函数y=ax+c 的图象经过第一、三、四象限,故B 错误.当x=-1时,y 最小,即a-b+c 最小,故a-b+c <am 2+bm+c ,即m(am+b)+b >a ,故C 错误. 由图象可知当x=1时y >0,即a+b+c >0,∵b=2a ,∴a=21b.∴21b+b+c >0.∴3b+2c >0,故D 正确.故选D.19.【杭州】在平面直角坐标系中,设二次函数y 1=(x+a)(x-a-1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式.(2)若一次函数y 2=ax+b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的表达式.(3)已知点P(x 0,m)和点Q(1,n)在函数y 1的图象上,若m <n ,求x 0的取值范围.【答案】(1)函数y 1的图象经过点(1,-2),得(a+1)(-a)=-2,解得a 1=-2,a 2=1.当a1=-2时,y1=(x-2)(x+2-1)=x 2-x-2;当a2=1时,y1=(x+1)(x-2)=x 2-x-2.综上所述,函数y1的表达式为y=x 2-x-2.(2)当y=0时,(x+a)(x-a-1)=0,解得x 1=-a ,x 2=a+1.∴y 1的图象与x 轴的交点是(-a ,0),(a+1,0).当y2=ax+b 经过(-a ,0)时,-a 2+b=0,即b=a 2;当y2=ax+b 经过(a+1,0)时,a 2+a+b=0,即b=-a 2-a.(3)由题意知,函数y 1的对称轴为直线x=21.当点P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n)与(0,n)关于对称轴对称,由m <n ,得0<x 0≤21;当点P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得21<x 0<1.综上所述,m <n ,所求x 0的取值范围0<x 0<1.20.如图所示,二次函数y=ax 2+2ax-3a(a ≠0)图象的顶点为H ,与x 轴交于A ,B 两点(点B 在点A 右侧),点H ,B 关于直线l:y=33x+3对称.(1)求A ,B 两点坐标,并证明点A 在直线l 上.(2)求二次函数的表达式.(3)过点B 作直线BK ∥AH 交直线l 于点K,M,N 分别为直线AH 和直线l 上的两个动点,连结HN,NM,MK ,求HN+NM+MK 的最小值.(第20题)图1图2(第20题答图)【答案】(1)由题意得ax 2+2ax-3a=0(a ≠0),解得x 1=-3,x 2=1.∴点A 的坐标为(-3,0),点B 的坐标为(1,0).∵直线y=33x+3,当x=-3时,y=33×(-3)+ 3=0,∴点A 在直线l 上.(2)∵点H ,B 关于过点A 的直线y=33x+3对称,∴AH=AB=4.∵AH=BH ,∴△ABH 为正三角形.如答图1所示,过顶点H 作HC ⊥AB 于点C ,则AC=21AB=2,HC=23,∴顶点H(-1,23),代入二次函数表达式,解得a=-23.∴二次函数表达式为y=-23x 2-3x+233. (3)易求得直线AH 的函数表达式为y=3x+33,直线BK 的函数表达式为y=3x-3.由⎪⎩⎪⎨⎧-=+=33333x y x y ,解得⎩⎨⎧==323y x ,即K(3,23).∴BK=4.∵点H ,B 关于直线AK 对称,∴HN+MN 的最小值是MB.如答图2所示,过点K 作直线AH 的对称点Q,连结QK,交直线AH 于点E ,则QM=MK,QE=EK=KD=23,则QK=43,AE ⊥QK.∴BM+MK 的最小值是BQ,即BQ 的长是HN+NM+MK 的最小值.∵BK ∥AH,∴∠BKQ=∠HEQ=90°.由勾股定理可求得QB=8.∴HN+NM+MK 和的最小值为8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考复习-----函数与图象班级:姓名:日期:一、中考要求:1.能通过实例,了解常量、变量的意义;了解函数的概念和三种表示方法,能举出函数的实例。
2.能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求函数值。
3.能结合图象对简单实际问题中的函数关系进行分析,尝试对变量的变化规律进行初步预测。
二、知识要点:1.在某一变化的过程中,数值保持不变的量叫做_______;可以取不同的数值的量叫做_____。
2.由函数解析式画函数图象,一般步骤是:。
3.表示两个变量之间的函数关系可以用如下3种方法:______________________________。
4.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义。
①函数的解析式是整式时,自变量可取;②函数的解析式分母中含有字母时,自变量的取值应使;③函数的解析式是二次根式时,自变量的取值应使。
(2)对于反映实际问题的函数关系,应使实际问题。
5.提取图象信息的方法。
(1)、。
(2)、。
(3)、。
三、典例剖析:1.求下列函数中自变量x 的取值范围。
(1)2321y x x =-++(2)2228x y x x +=--(3)3y x =+(4)13x y x -=-2.(2011山东东营,16,4分)如图,用锤子以相同的力将铁钉垂入木块,随着铁钉的深入,铁钉所受的阻力也越来越大。
当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13。
已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是αcm,如铁钉总长度是6cm,则α的取值范围是_________________5.(2011江西,14,3分)将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案。
设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是。
3.(10济宁)如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()4.(2010湖北孝感,7,3分)一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为s (千米),则s 与t 的函数图象大致是()∙∙∙∙ABCDyxO(第3题)5.(2011浙江杭州,7,3)一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是()6.(2011四川宜宾,8,3分)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是()7.(2011江苏南通,9,3分)甲、乙两人沿相同的路线由A 地到B 地匀速前进,A ,B 两地间的路程为20千米,他们前进的路程为s (单位:千米),甲出发后的时间为t (单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是()A .甲的速度是4千米/小时 B.乙的速度是10千米/小时C.乙比甲晚出发1小时 D.甲比乙晚到B 地3小时四、课堂练习:见《初中数学学业考试复习指导》第53页到56页。
五.2011年中考题选1.(2011江苏苏州,14,3分)函数y=12-x 的自变量x 的取值范围是________________。
2.(2011江苏宿迁,10,3分)函数21-=x y 中自变量x 的取值范围是。
3.(2011广东汕头,7,42x -x 的取值范围是.4.(2011江西,8,3分)时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12:00开始到12:30止,y 与t 之间的函数图像是()5.(2011江苏泰州,5,3分)某公司计划新建一个容积V (m3)一定的长方体污水处理池,池的底面积S (m2)与其深度h (m )之间的函数关系式为S=Vh(h ≠0),这个函数的图像大致是()A.B.C.D.6.(2011四川重庆,8,4分)为了建设社会主义新农村,我市积极推进“行政村通畅工程”,张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造道路里程y(公里)与时间x(天)的函数关系的大致图像是()A.B.C.D.7.(2011福建泉州,6,3分)小吴今天到学校参加初中毕业会考,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是().8.(2011湖南益阳,8,4分)如图3,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B 处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()9.(2011重庆綦江,9,4分)小明从家中出发,到离家1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A.B.C.D.ols olsABolsolsC D10.(2011江西南昌,8,3分)时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12:00开始到12:30止,y 与t 之间的函数图像是().A. B. C. D.11.(2011贵州贵阳,8,3分)如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x 与货车在隧道内的长度y 之间的关系用图象描述大致是()(第11题图)12.(2011湖南永州,14,3分)如图所示,在矩形ABCD 中,垂直于对角线BD 的直线l ,从点B 开始沿着线段BD 匀速平移到D .设直线l 被矩形所截线段EF 的长度为y ,运动时间为t ,则y 关于t 的函数的大致图象是()13.(2011湖南常德,15,3分)小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈.出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油.设油箱中所剩的汽油量为V (升),时间为t 的大致图象是()14.(2011浙江衢州,9,3分)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为123v v v 、、,且123v v v <<,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图像可能是()ttttVVVVO OO OA B C DA .OytB .OytC .Oyt D .OytlFE C DBA (第14题)15.(2011四川内江,10,3分)小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校,所用的时间与路程的关系如图所示。
放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()A.14分钟 B.17分钟 C.18分钟 D.20分钟16.(2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1个 B.2个 C.3个 D.4个17.(2011山东潍坊,8,3分)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD .下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面18.(2011山东临沂,14,3分)甲、乙两个同学从400m 环形跑道上的同一点出发,同向而行,甲的速度为6m/s ,乙的速度为4m/s .设经过x (单位:s )后,跑道上此两人间的较短部分的长度为y (单位:m ),则y 与x (0≤x ≤00)之间函数关系可用图像表示为()AB400591712002000s(米)t(分钟)C D19.(2011江苏盐城,8,3分)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A .他离家8km 共用了30minB .他等公交车时间为6minC .他步行的速度是100m/minD .公交车的速度是350m/min 20.(2011湖北武汉市,15,3分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完。
21.(2011湖南衡阳,18,3分)如图所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图所示,那么△ABC的面积是。
22.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离S (千米)与时间t (时)的关系可以用图中的曲线表示.根据这个图象回答下列问题:(1)小李到达离家最远的地方是什么时间?(2)小李何时第一次休息?(3)10时到13时,小骑了多少千米?(4)返回时,小李的平均车速是多少?(第19题图)22.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).看上面问题的图,回答下列问题:(1)小强让爷爷先上多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?。