3.3消元——二元一次方程组的解法

合集下载

最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。

二元一次方程组的解法

二元一次方程组的解法

二元一次方程组的解法二元一次方程组是指包含两个未知数和两个方程的方程组。

解二元一次方程组的常用方法有消元法、代入法和矩阵法等。

下面将分别介绍这三种方法的步骤和应用。

一、消元法消元法是解二元一次方程组常用的方法,它的基本思想是通过消去一个未知数,从而将方程组转化为只含一个未知数的一次方程,进而求解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 通过等式的加减消去一个未知数。

选择其中一个方程,将其系数乘以另一个方程中与其同未知数的系数的相反数,然后将两个方程相加或相减,消去该未知数。

2. 获得新的一次方程,其中只含有一个未知数。

3. 解新的一次方程,求得该未知数的值。

4. 将求得的未知数值代入原方程中,求得另一个未知数的值。

5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。

二、代入法代入法是解二元一次方程组的另一种常用方法,它的基本思想是将一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程,从而将方程组转化为只含一个未知数的方程,进而求解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 选择一个方程,将其一个未知数表示为另一个未知数的函数,例如将(1)中的 x 表示为 y 的函数:x = f(y)。

2. 将函数表达式代入另一个方程(2),得到只含有一个未知数 y的一次方程。

3. 解这个一次方程,求得 y 的值。

4. 将求得的 y 值代入第一个方程(1),求得 x 的值。

5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。

三、矩阵法矩阵法是用矩阵运算的方法解二元一次方程组,它的基本思想是将方程组转化为矩阵方程,通过对矩阵的运算得到解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)将方程组表示为矩阵形式:⎛ a₁ b₁⎞⎛ x ⎞⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ a₂ b₂⎠ * ⎝ y ⎠ = ⎝ c₂⎠利用矩阵的逆矩阵,可以得到未知数向量的值:⎛ x ⎞⎛ a₁ b₁⎞⁻¹⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ y ⎠ = ⎝ a₂ b₂⎠⎝ c₂⎠通过计算矩阵的逆矩阵,可以求得未知数的值。

消元——二元一次方程组的解法教学建议及例题分析

消元——二元一次方程组的解法教学建议及例题分析

消元——二元一次方程组的解法教学建议及例题分析教学建议二元一次方程组在生活中经常应用.它不仅是研究其它代数的基础,在解决实际问题中也有着广泛的应用.因此,探索和掌握解二元一次方程对学生更好地认识现实世界是非常重要的.本节课主要内容为二元一次方程组的解法:代入法和加减法.“消元”是解二元一次方程组的基本思路.所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数.因此本节课是从实际问题开始,介绍了代入和加减两种消元法解二元一次方程组.本节共包括两部分内容代入法和加减法.可分为四个课时完成. 解二元一次方程组是本节课的重点.根据本节课的教学目标、教材内容以及学生的认知特点,建议采用以引导发现法为主,并与讨论法相结合的教学策略.具体建议如下:1.学法在本节课的学习过程中,要注重培养学生自主、合作、探索的学习方式,充分发挥其主体作用,锻炼运算能力.采取让学生自己观察,大胆猜想、积极参与小组讨论交流及利用课件自主探索等学习方式.使学生在实际应用中获取知识,并通过讨论来深化对知识的理解.多创造条件和机会让学生发表见解,展示自我.在学习中,让学生能在具体的情境中列出二元一次方程组并求出方程组的解;了解“消元”的思想和步骤;通过应用题,使学生理解二元一次方程组的问题.2.教法本节课采用多媒体辅助教学,利用动画对等式性质进行直观演示,通过消元法的演示,直观、生动地反映消元的思想;此外还可利用实际问题,列二元一次方程组,同时给学生积极参与的机会,让学生自主探索二元一次方程组的实际问题,激发学生的学习兴趣.3. 突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用二元一次方程组给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.4.体现学生的主体意识.教师始终把学生放在主体的地位:让学生通过对二元一次方程组和一元一次方程的比较,分别归纳出它们的特点,从而感受到利用二元一次方程组解实际问题是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.5.体现学生思维的层次性.教师首先引导学生尝试用一元一次方程方法解决问题,然后再逐步引导学生列出含两个未知数的方程,寻找它们之间的特点,归纳出代入消元法的思想和步骤.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.6.渗透建模的思想.把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.7.重视方程的应用价值的同时关注其文化内涵.在《九章算术》中记载了很多利用二元一次方程组解决的问题.向学生介绍古今中外的数学,使学生在数学知识和能力得到提高的同时能够感受到数学文化的熏陶.典型例题例1.用代入法解方程组:①X+4y=13 ②分析:这一例题是代入法解二元一次方程组的典型例题,学生能解答,但是部分学生可能对于用含有一个未知数的式子表示另一个未知数还不太熟悉,因此教师要铺垫:用哪个方程表示哪个未知数好一些.技巧:熟练掌握用含有一个未知数的式子来表示另一个未知数即可.例2.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比2:5.某厂每天生产这种消毒液22.5吨.这些消毒液应该分装大、小瓶两种产品各多少瓶?分析:抓住问题中的两个等量关系.规律:由实际问题,设未知数,找等量关系,列一元一次方程.例3:用加减法解方程组: 3x+5y=21 ①2x-5y=-11 ②分析:从绝对值是否相等来判断是否可以用加减法,再利用符号判断是用加法还是用减法.例4. 解方程组: 3x+4y=16 ①5x-6y=33 ②分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减这两个方程不能消元.对方程进行适当的变形,使得这两个方程中某个未知数的系数相同或相反.。

消元——二元一次方程组的解法

消元——二元一次方程组的解法

这两个方程中未知数y的系数相同, ②-①可消去未知数y得 x=6 (②-①等式性质)
把x=6代入①,得 y=4.
像这样,通过对方程组中的两个方程进行加或减的运算就 可以消去一个未知数,得到一个一元一次方程,这种方法叫做 加减消元法,简称加减法.
联系上面的方法,想一想应怎样解方程组
4x+10y=3.6 ① 15x-10y=8 ②
加/减 代入 写解
求值1 求值2 写出方程组的解
解方程组:
x
3
1
y 2
1

x
2
1 4
y
2

方法1:
解:原方程组可化为: 2x+3y=4 ③
2x - y=8 ④
方法2:
由③-④得: y= -1
由 ④得: y= 2x-8 ⑤
把⑤代入③ ,得: 2x+3 (2x-8) =4 x=7/2 把x=7/2代入⑤得
某个未知数的系数相同或互为相反数,就可以直接用 加减法显得非常简便.
例1.用加减法解下列方程组:
(1) 4x+y=2 ①
(2)
4x-3y=-6 ②
3x 4x
+ 7y - 7y
= 27 ① =-13 ②
解: (1)①-②, 得 4y=8 y=2
解:① + ②,得 7x = 14 把 x = 2 代入①,得
对于较复杂的二元一次方程组,应先化简 (去分母,去括号, 合并同类项等),通常要 把每个方程整理成含未知数的项在方程的 左边,常数项在方程的右边的形式,再作 加减消元的考虑。
加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元
一元

3.3.4 二元一次方程组的解法——加减消元法

3.3.4 二元一次方程组的解法——加减消元法

知2-讲
化简,得x+y=3 ③,①-②,
得-x+y=-1④,联立③和④,得 x+y 3,
③+④,得2y=2,解得y=1. ③-④,得2x=4,解得x=2.
x+y 1,
所以原方程组的解是
x 2,

y

1.
(来自《点拨》)
总结
知2-讲
解轮换对称方程组的步骤: ①两式相加; ②两式相减; ③把新得的两个方程联立,解这个方程组.
知2-讲
x 6,

y

6.
(来自《点拨》)
例4
解方程组

x
2
y

x
3
y

6,
知2-讲
导引:先将方程组2化 x简 y, 再3x用加3 y减 2法4.解方程组.
解:将原方程组化简,得 5x+y 36,①
①×5,得25x+5y=180x.③ 5,
解法一:(消去x) 将①×2,得8x+2y=28.③ ②-③,得y= 2. 把y =2代入①,得4x + 2 = 14. x = 3.
知1-讲
所以
解法二: (消去y)x请 同3, 学们自己完成.

y

2.
(来自教材)
例3
解方程组:4x+2y 5, ① 5x 3y 9. ②
y

24.②
③-②,得26x=156,解得x=6.
把x=6代入①,得y=6.
所以原方程组的解是知2-讲源自x 6, y

6.
(来自《点拨》)
总结
知2-讲
每个二元一次方程组均可采用代入法或加减法求解,但是 在解题中我们应根据方程组的特点灵活选用最恰当的方法, 使计算过程简单,一般地,当化简后的方程组存在一个方 程的某个未知数的绝对值是1或有一个方程的常数项是0时, 用代入法;当两个方程中的某一个未知数系数的绝对值相 等或成倍数关系时,用加减法.

“消元--二元一次方程组的解法”教学设计

“消元--二元一次方程组的解法”教学设计

“8.2 消元──二元一次方程组的解法”教学设计濮阳县站前学校侯利华学习目标知识与技能会用代入法解二元一次方程组过程与方法经历用代入法贾二元一次方程组的训练,培养运算能力,体会化归思想情感、态度、价值观通过研究解决问题的方法,培养学生合作意识与探究精神学习重点用代入法解二元一次方程组.学习难点:对数学思想方法的理解,尤其是对用代入的方法实现消元的理解.突破这一难点的关键教学过程设计(一)情景导课背景材料:老师在我们学校代三个班的数学,所教学生共143人.问题1:你能提出什么数学问题?如何解决?学生可能提出的问题:(1)每个班有多少个学生?(2)男生、女生各多少个?……针对问题(2),增加条件:男生人数的2倍比女生人数的3倍少14人.学生活动:解决问题;展示方法.教师点拨:(1)用建模思想引领思维,实际问题-数学问题.(2)一元一次方程会解但难列,因为要综合考虑问题中的各种等量关系;二元一次方程组易列,因为可以分别考虑两个等量关系,但不会解。

从而产生了新问题。

方程组对于解含多个未知数的问题很有效,它的优越性会随着问题中未知数的增加而体现得更加明显.【设计意图】(1)由于是借班上课,以此形式开课既能创造轻松的氛围、拉近师生之间的距离,又可以巧妙引出本节课的教学内容.(2)问题是学生自己提出的,因此他们解决这个问题的积极性更高,思维更开阔,各种方法的出现便会成为必然.(3)让学生体会到方程组在解决实际问题中的优越性.(二)解决问题问题2:怎么解二元一次方程组呢?追问:为什么要这样做?依据是什么?你的解题思路是什么?你的解题方法的名称是什么?为什么可以这样归纳?(学生思考、交流.)教师明确:转化思想──新问题转化成旧问题;消元思想──将未知数的个数由多化少,逐一解决.(学生展示自己的方法.)师生交流,达成共识,明确思路:变形—代入—求解—写解。

教师规范解题过程,进而形成概念:代入消元法──把二元一次方程组中的一个方程变形成用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.【设计意图】我们一直强调让学生“知其然,而且要知其所以然”.但学生往往停留在对知识或方法的表层理解的水平上,究其原因,还是没有形成较强的问题意识,不习惯于多问个“为什么是这样的”、“这样做的依据是什么”等问题.因此,教学应不失时机地培养学生养成良好的问题意识.在问题的引导下,鼓励学生投入到活动中,并留给学生足够的独立思考和自主探索的时间和空间,从而让学生积极、主动地思考,随着思维的自然流淌,“顺势”自然地理解消元思想,解决问题的思路逐渐清晰. 通过探索实践,体验知识方法的形成过程,发现代入消元法的由来及过程,真正体会消元思想.练习1 你能把下列方程写成用含x的式子表示y的形式吗?(1)3x+y-1=0;(2)2x-y=3;(3)2y-4x=7。

3.3(2)二元一次方程组的解法(加减消元)及典型例题

3.3(2)二元一次方程组的解法(加减消元)及典型例题
ቤተ መጻሕፍቲ ባይዱ
m = 1 +2n
1 2 2 5
所以原方程组的解:
m =5 n=2
即m 的值是5,n 的值是4.
7、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值. 解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ② 由①得:y = 2 – 3x ③ 把③代入② 得: 5x + 2(2 – 3x)- 2 = 0 5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4 -x = -2 即x 的值是2,y 的值是-4. 把x = 2 代入③,得: y= 2 - 3×2 y= -4 所以原方程组的解: ∴ x=2 y = -4
1 3y 2 3y 6
把(3)代人(2)得
5
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
y 1 3
把x=1代入(1)得 2+3y=1

x 1 1 y 3
试 一 试 , 有 谁 能 用 三 种 方 法 解 ?
有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:

分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
6、若方程5x 求m 、n 的值.
m-2n+4y 3n-m =

消元-二元一次方程组的解法

消元-二元一次方程组的解法
建立
01
02
03
确定未知数
首先需要确定方程组中的 未知数,并为其设置合适 的符号。
建立方程
根据问题背景和已知条件, 建立两个或更多方程,确 保每个方程都包含至少一 个未知数。
方程的表示
使用数学符号来表示方程 ,如“=”、“+”、“”等,确保方程的书写规 范。
消元法的应用
购物计算
在购物时,我们经常需要计算多种商 品的总价,消元法可以帮助我们快速 准确地计算出总价。
工资计算
旅行预算
在规划旅行预算时,我们需要考虑多 个费用项,如交通、住宿、餐饮等, 消元法可以帮助我们快速计算出总预 算。
在计算工资时,我们可能需要将多个 工资项相加或相减,消元法可以简化 计算过程。
在数学问题中的应用
GDP、CPI等。
物理学
在物理学中,消元法可以用于解 决多个物理量之间的关系问题,
如力学、电磁学等。
化学
在化学中,消元法可以用于解决 化学反应中的平衡问题,如酸碱
中和反应等。
THANKS FOR WATCHING
感谢您的观看
消元-二元一次方程组的解法
contents
目录
• 消元法的简介 • 消元法的步骤 • 二元一次方程组的解法 • 消元法的注意事项 • 消元法的实际应用
01 消元法的简介
消元法的定义
• 消元法,也称为代入法或加减消元法,是一种解二元一次方程 组的方法。通过对方程进行变形,消去一个未知数,将二元一 次方程组转化为一元一次方程,进而求解。
对于某些特殊情况,如方程组中存在 多个未知数或方程组无解,消元法可 能无法得出正确结果。
消元法的优缺点比较
优点
简单易行,适用范围广,是解决二元 一次方程组最常用的方法之一。

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中的基础概念,它在各个领域中都有广泛的应用。

本文将介绍线性方程组的解法,帮助读者更好地理解和解决相关问题。

Ⅰ. 一元一次方程的解法一元一次方程是线性方程组中最简单的形式,通常以“ax + b = 0”的形式表示,其中a和b为已知数,x为未知数。

解此方程的步骤如下:1. 将方程变形,将未知数项和常数项分别移至等式两边,得到“ax = -b”;2. 若a≠0,两边同时除以a,得到“x = -b/a”;3. 若a=0,若-b=0,则方程有无数解;否则,方程无解。

Ⅱ. 二元一次方程组的解法二元一次方程组包含两个未知数和两个方程,一般以如下形式表示:{a₁x + b₁y = c₁,a₂x + b₂y = c₂}常用的解法有以下三种:1. 代入法:将其中一个方程的其中一个未知数表示为另一个未知数的函数,然后代入另一个方程,解得一个未知数的值,再代入回第一个方程求得另一个未知数的值。

这种方法特别适用于其中一个方程的一个未知数的系数为1,或者已经表示为另一个未知数的函数的情况。

2. 消元法:通过消去其中一个未知数,得到一个只含一个未知数的一元一次方程,然后按照一元一次方程的解法求解。

这种方法特别适用于其中一个方程的一个未知数的系数相等,但反号的情况。

3. 克莱姆法则:通过计算系数行列式的值,可以求得二元一次方程组的解。

具体步骤是构造齐次线性方程组的系数矩阵,并计算系数矩阵的行列式值D。

然后使用未知数的系数与常数项分别替换掉系数矩阵的对应列,并计算新矩阵的行列式值Dx和Dy。

最后,解得x = Dx / D,y = Dy / D。

克莱姆法则适用于系数矩阵的行列式值不为0的情况。

Ⅲ. 三元及以上线性方程组的解法三元及以上线性方程组的解法相对复杂,但仍然可以利用与二元一次方程组相似的方法求解。

1. 高斯消元法:高斯消元法是一种基于矩阵的线性方程组求解方法。

通过初等行变换将线性方程组化为阶梯形,然后回代求解得到每个未知数的值。

3.3.3二元一次方程组的解法——加减消元法

3.3.3二元一次方程组的解法——加减消元法

3x+2y=13
1、方程组
消去y后所得方程
3x-2y=5
是__6_x_=_1_8__; 消去x后所得方程是__4_y=_8___.
2、已知(2x+3y-4)²+∣x+2y-7∣=0.
2x 3y 4 0
由题意得方程组:
x
2y
7
0

3、用适当方法解下列方程组:
0.6x-0.5y=0.4 x+y=60
2、在消元的过程中如果口算能力稍差,用括号的 形式写出来.
①变形:使同一个未知数的系数相同或互为相反数; ②加减消元:通过加或减,让“二元”化成“一元”; ③求解:解一元一次方程,求出x的值; ④回代:求出y的值; ⑤写解:写出原方程组的解.
1、当相同字母的未知数的系数相同时; 2、当相同字母的未知数的系数互为相反数时; 3、当相同字母的未知数的系数不相等时.
能消去未知数y吗?怎样 ②-①得:分析
消y呢?依据是什么?
2x + y = 40
左-左= 右-右
-) x + y = 22
x +0 = 18
x y 22 ①
解方程组
2x
ቤተ መጻሕፍቲ ባይዱ
y
40

解:②-①得: x=18
将x=18代入①得: 18+y=22
解得: y=4
∴原方程组的解是
x y
18 4
3x 7y 9 ①
解得: x=3
将x=3代入②得: 15-6y=4
解得:
y
11 6
x 2
∴原方程组的解是
y
11 6
3x 4y 16 ①
5x

消元----二元一次方程组的解法(三)

消元----二元一次方程组的解法(三)

鸡西市第四中学2012—2013上学期初二级数学导学案第十三章第二节消元----二元一次方程组的解法(三)编制人:冯国梁复核人:使用时间:2012 年12月14日编号:【课堂寄语】智慧课堂,快乐成长。

重在体验,高效课堂。

一、快乐课堂(明确目标,自主学习)学习目标:1.会用加减法解简单的二元一次方程组.(直接加减)(重点)2.进一步体会解二元一次方程组的基本思想——“消元”,渗透化归思想.自学方法:观察、猜想、归纳、类比、交流,从“学会”到“会学”。

一、自学探究:1、复习旧知解方程组22 240 x yx y+=⎧⎨+=⎩有没有其它方法来解呢?2、思考:这个方程组的两个方程中,y的系数有什么关系?•利用这种关系你能发现新的消元方法吗?两个方程中未知数y的系数相同,②-①可消去未知数y,得- =40-22 即x=18,把x=18代入①得y=4。

另外,由①-②也能消去未知数y,得—=22-40 即-x=-18,x=18,把x=18代入①得y=4.3、探究想一想:联系上面的解法,想一想应怎样解方程组410 3.6 15108 x yx y+=⎧⎨-=⎩这两个方程中未知数y的系数,•因此由①+②可消去未知数y,从而求出未知数x的值。

4、归纳:加减消元法的概念从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加或者相减,就可以消去一个未知数,得到一个一元一次方程。

两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

5、拓展应用:用加减法解方程组3416 5633 x yx y+=⎧⎨-=⎩分析:直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。

①×3,得9x+12y=48 ③②×2,得10x-12y=66 ④这时候y的系数互为相反数,③+④就可以消去y,思考:用加减法消去x应如何解?解得结果与上面一样吗?二、自我检测:教材p109 练习1 1)、2)、3)、4)解方程组(直接快速写出方程组的解)⎩⎨⎧=+=-15y x y x ⎩⎨⎧==y x ;⎩⎨⎧=+=-182y x y x ⎩⎨⎧==y x ;⎩⎨⎧=+=-1252y x y x ⎩⎨⎧==y x ;⎩⎨⎧=+=-152y x y x ⎩⎨⎧==y x 。

消元──二元一次方程组的解法

消元──二元一次方程组的解法

消元法的应用
பைடு நூலகம்
解二元一次方程组
定义方程组
转化方程组
执行消元
求解未知数
验证解的正确性
首先需要定义二元一次 方程组的表达式,例如 `ax + by = e` 和 `cx + dy = f`。
将方程组中的每个方程 转化为等式,例如 `a1x + b1y = e1` 和 `c1x + d1y = f1`。
通过数学运算,消去其 中一个未知数,例如将 第一个等式乘以某个系 数后与第二个等式相减 ,从而消去 `y`。
反复检查每一步的计算是否正确。
03
未能正确转化二元为一元
有些学生在消元过程中未能正确地将二元一次方程组转化为一元一次方
程,导致无法得到正确的解。因此,需要加强对于消元法步骤和技巧的
掌握,确保在消元过程中不会出现错误。
解决难题的方法
加强基础知识掌握
熟练掌握二元一次方程组的概念和性质,以及消元法的步骤和技巧,是解决难题的基础。因此,学生需要加强对 基础知识的掌握和理解。
步骤三
将得到的未知数的值代入原方程组中,求 得另一个未知数的值。
步骤二
解一元一次方程,得到一个未知数的值。
步骤四
得到方程组的解。
02
具体消元法
代入消元法
总结词
通过将一个方程中的某个未知数用另一个未知数表示,并将其带入另一个方程 ,从而简化方程组。
详细描述
代入消元法是一种基本的消元方法,它通过将一个方程中的某个未知数用另一 个未知数表示,并将其带入另一个方程,以简化方程组的求解过程。这种方法 通常适用于具有线性方程的情况。
在数学和其他领域的应用
在数学领域的应用

3.3.2代入消元法解二元一次方程组

3.3.2代入消元法解二元一次方程组
Βιβλιοθήκη 十分钟检测复习引入
篮球联赛中,每场比赛都要分出胜负, 每队胜一场得2分,负一场得1分,某队为了 争取较好的名次,想在全部20场比赛中的38 分,那么这个队胜负场数分别为多少?
3.3.2代入消元法解二元一次方程组
备课人:赵丽
把下列方程写成用含x的式子表示y的形式:
(1) (3)
x y
2 x 3 y 9(4) x 2 y 1 4
2、用代入法解下列方程组
3x 2 y 10 3m 4n 7 (3) (4) 9 m 10 n 23 0 2 x y 0
3、解问题2中的方程组:
x y 35 2 x 4 y 94
ax by 13 4、已知二元一次方程组 (a b) x ay 9 x 3 的解为 求a , b 的值. y 2
1 9 (2 ) x y 9 2
x y 20 解方程组 2 x y 38


代入消元法
从一个方程中求出某一个未知数 的表达式,再把它“代入”另一个方 程,进行求解,这种方法叫做代入消 元,简称代入法。
课本例题
2 x 3 y 7 解方程组: x 2 y 3
课后练习
1、把下列方程写成用含x的代数式表示y的形式
3x 2 y 4 (2) 5 x y 5
(1)
(3)
5x 2 y 1 0
x y 300 (1) x y 10
2、用代入法解下列方程组
x 3 y 1 (2) x 2 y 6


用代入消元法解二元一次方程组的步骤: (1)从方程中选一个系数比较简单的方程,把 其中的某个未知数用含有另一个未知数的式 子表示出来。 (2)把(1)中所得的一元一次方程代入另一 个方程中,消去一个未知数。 (3) 解所得到的一元一次方程,求出一个未知 数的值。 (4) 把所求得的一个未知数的值代入(1)中 所得的方程,求出另一个未知数的值,从而 确定方程的解。

2019秋沪科版七年级数学上册 3.3.3 用加减消元法解二元一次方程组

2019秋沪科版七年级数学上册 3.3.3 用加减消元法解二元一次方程组

把x = 5代入②得,y = 1.
所以原方程组的解为
新知探究
方法总结
同一未知数的系数__不__相__等__也__不__互__为__相__反__数__时, 利用等式的性质, 使得未知数的系数_相__等__或__互__为__相__反__数___.
找系数的最小公倍数
新知探究
归纳总结
用加减法解二元一次方程组: 特点: 同一个未知数的系数相同或互为相反数
把 y 1 代入①,得 2x 5 7.
解得 x 1.
x 1,
所以方程组的解为

y

1.
新知探究
3x+2y=23,① 解方程组 5x+2y=33.②
解:由②-①,得 2x=10 x=5.
将x=5代入①,得 15+2y=23 y=4. x=5,
所以原方程组的解是 y=4.
像上面这种解二元一次方程组的方法,叫做 加减消元法,简称加减法.
新知探究
例2:解方程组:84xx3yy1340,.

分析:当方程组中两方程未知数系数不具备相 同或互为相反数的特点时 要建立一个未知数系数的绝对值相等的, 且与原方程组同解的新的方程组.
新知探究
4x y 14, 8x 3y 30. 解法一(消去x)
所以原方程组的解为 y=4.
新知探究
合作探究
问题:怎样解下面的二元一次方程组呢? 3 x + 5 y = 21 ①
2 x – 5 y = -11 ②
把②变形得 x 5y 11
2

代入①,不就消去x了!

新知探究 问题:怎样解下面的二元一次方程组呢? 3 x + 5 y = 21 ① 2 x – 5 y = -11 ② 把②变形得

人教版数学七年级下册《消元—解二元一次方程组》二元一次方程组(第2课时加减法)

人教版数学七年级下册《消元—解二元一次方程组》二元一次方程组(第2课时加减法)
用加减消元法解方程组: 5x-6y=33.
如果用加减法消去 x应如何解?解得 的结果一样吗?
4y=-2,
x=6, 所以这个方程组的解是
系数复杂的类型
归纳总结
用加减法解方程组的一般步骤:
化系 加减 求解 写解
把系数化为相同或相反 消去一个元 分别求出两个未知数的值 写出原方程组的解
练习 1.用加减法解下列方程组:
综合运用
6.顺丰旅行社组织200人到花果岭和云水洞旅游,到花果岭的 人数比到云水洞的人数的2倍少1,到两地旅游的人数各是多 少?
综合运用
7.小方、小程两人相距6km,两人同时出发相向而行,1h相 遇;同时出发同向而行,小方3h可追上小程.两人的平均速 度各是多少?
综合运用
8.一种商品有大小盒两种包装,3大盒、4小盒共装108瓶, 2大盒、3小盒共装76瓶,大盒与小盒每盒各装多少瓶?
解:①-②,得 2x=4-4 x=0
解:①-②,得 2x=4+4 x=4
解 ①-②,得 -2x=12 x =-6
解 ①-②,得 8x=16 x =2
归纳总结 上面这些方程组的特点是什么?解这类方程组基本思路是什么?主 要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
基本思路:
主要步骤:加减 求解 写解
加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,

消元法解二元一次方程组

消元法解二元一次方程组

消元法解方程组的应用实例
x + y = 30
使用加减消元法解得:x = 16, y = 14
x - y = (3 - 2) times (x/3 + y/2)
因此,甲比乙多走了16 14 = 2公里。
05 消元法的优缺点
优点
简单易行
消元法是一种基础的解二元一次方程组的方 法,其步骤简单明了,易于理解和操作。
结合其他方法
对于一些特殊形式的二元一次方程组,可以考虑结合其他方法如代 入法、参数法等来求解,以提高求解效率和准确性。
THANKS FOR WATCHING
感谢您的观看
代入消元法
通过将一个方程中的一个未知数 用另一个未知数表示,代入另一 个方程中,将二元一次方程组转 化为一元一次方程。
二元一次方程组的解的性质
解的唯一性
对于给定的二元一次方程组,其解是唯一的。
解的稳定性
当方程组的系数发生变化时,解不会发生改变。
03 消元法的步骤
代入消元法
1
代入消元法是通过将一个方程中的一个未知数用 另一个方程表示,然后将其代入另一个方程中求 解的方法。
在此添加您的文本16字
y = 2x - 1
在此添加您的文本16字
将第二个方程代入第一个方程中,得到
在此添加您的文本16字
2x + 3(2x - 1) = 7
在此添加您的文本16字
解得:x = 2, y = 1
加减消元法实例
加减消元法是通过两个方程相加或相 减来消除一个未知数的方法。例如,
对于方程组
在解二元一次方程组时,可以先尝试代入消元法,如果不行再考虑加减消 元法。
04 消元法解二元一次方程组 实例

消元——二元一次方程组的解法(6)

消元——二元一次方程组的解法(6)
例1:已知关于x、y的二元一次方程组 ax by 2 x 5 的一组解是 ,求a、b的值。பைடு நூலகம் ax by 22 y 3
版权所有-
x y 3 mx ny 8 例2:已知方程组 与方程组 x y 1 mx ny 4 的解相同,求 m、n的值。
版权所有-
2x+3y=16 ① x+4y=13
解:由② ,得 x=13

解:由②×2 ,得
- 4y
2x+8y=26
③ 将③-① ,得 5y=10 y=2 将y=2代入② ,得 x=5 x=5 y=2

将③代入① ,得 2(13 - 4y)+3y=16 y=2 将y=2代入③ ,得 x=5 x=5 y=2
版权所有-
x 2 y 5m 例4:已知关于x、y的方程组 的解 x 2 y 9m 满足方程3x 2 y 19,求m的值。
2004x 2003y 2000m 变式:已知方程组 的解 2003x 2004 y 2007m 满足x y 1,求m的值。
x 3 ax by 1 1、如果 是方程组 的解, y 2 ax by 5 2003 2005 求a 2b 的值。
三.解答题
x 2 y 5m 2、已知关于x、y的方程组 的解 x 4 y 9m 满足方程3x 2 y 19,求m的值。
ax by 4 3x y 5 3、已知方程组 与方程组 ax by 6 4x 7 y 1 的解相同,求 a、b 的值。 版权所有-
2x 5y 6 3x 5y 16 变式: 已知关于x、y的方程组 和 ax by 4 bx ay 8 的解相同,求a b的值。

3、3二元一次方程及其解法(3)

3、3二元一次方程及其解法(3)

卫民中学高效课堂自主学习型数学导学案编号:029 年级:七年级学生姓名:课题:3、3二元一次方程及其解法—加减消元法自研课(时段:晚自习时间:10 分钟)1、旧知链接: 1、用代入消元法解二元一次方程组的基本思想是什么?2、根据等式的基本性质填空:若a=b,那么a±c=3思考:若a=b,c=d,那么a+c=b+d吗?理由是:_____________________________________________________________2、新知自研:自研P102页到P104页的练习展示课(时段:正课时间: 60 分钟)一、学习主题:通过自学,掌握加减消元解二元一次方程组。

知道解决问题的基本思想:化“未知”为“已知”,将“复杂”转为“简单”,化“二元一次方程组”为“一元一次方程”。

二、【定向导学·互动展示·当堂反馈】训练课(时段:晚自习 , 时间: 20分钟)“日日清巩固达标训练题” 自评: 师评: 基础题:1.用加减法解下列方程组34152410x y x y +=⎧⎨-=⎩较简便的消元方法是:将两个方程_______,消去未知数_______.2、用加减法解下列方程组⎩⎨⎧=+=-1464534y x y x 较简便的消元方法是:将两个方程_______,消去未知数_______.3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.(1) 32155423x y x y -=⎧⎨-=⎩消元方法___________.(2) 731232m n n m -=⎧⎨+=-⎩ 消元方法____________4.用加减消元法解下列方程(1)⎩⎨⎧=+=-13y x y x (2)34152410x y x y +=⎧⎨-=⎩ (3) ⎩⎨⎧=+=-1732723y x y x发展题:解下列方程组357,234232.35x y x y ++⎧+=⎪⎪⎨--⎪+=⎪⎩提高题:已知方程组25264x y ax by +=-⎧⎨-=-⎩和方程组35368x y bx ay -=⎧⎨+=-⎩的解相同,求(2a +b )2005的值.培辅课(时段:大自习 附培辅单)1、基本题你都能顺利的独立完成吗?今晚你需要老师提供帮助吗?(需要,不需要)2、效果描述: 反思课1、病题诊所:2、精题入库:【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元 一元
主要步骤: 变形 加减 求解
同一个未知数的系 数相同或互为相反数
消去一个元 求出两个未知数的值 写出方程组的解
写解
2. 二元一次方程组解法有 代入法、加减法 .
P106.第6题
特点:
同一个未知数的系数相同或互为相反数
二元 一元
基本思路: 加减消元:
主要步骤: 加减
求解 写解
消去一个元 分别求出两个未知数的值
写出原方程组的解
2x 3y 12 ① ② 备上述特点时, 必须用等式性质来改 变方程组中方程的形 式,即得到与原方程 组同解的且某未知数 系数的绝对值相等的 新的方程组,从而为 加减消元法解方程组 创造条件.
两个方程
二.选择题
6x+7y=-19①
1. 用加减法解方程组
6x-5y=17 ②
应用( B)
A. ①-②消去y B.①-②消去x C. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是 (B)
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、解下列方程组
① 2x 5y 7 ② 2 x 3 y 1
解:把 ②-①得:8y=-8 y=-1 把y =-1代入①,得 2x-5╳(-1)=7 解得:x=1
x 1 所以原方程组的解是 y 1


思考: 1、由前面的两个例题,你能说出什么 是加减消元法吗?
两个二元一次方程中同一未知数的系数互为相反数 或相等时,将两个方程的两边分别相加或相减,就 能消去这个未知数,得到一个一元一次方程,这种 方法叫做加减消元法,简称加减法。


3x 5y 21 2 x 5 y -11
5 y 11 把②变形得: x
代入①,不就消去
① ②
x 了!
小明
2
3x 5y 21 2 x 5 y -11
① ②
5 y 21 3x
把①变形得
可以直接代入②呀!
小彬
5 y和 5 y
互为相反数……
7x-4y=4

3x-4y=14 5x+4y=2
① ②
5x-4y=-4 ②
解: ①+②,得 解: ①-②,得 8x=16 2x=4+4, x=2 x=4 将x=4代入①得 将x=4代入①得 y=-2 y=6 x 4 x 2 y 2 y 6
1.上面这些方程组的特点是什么? 2.解这类方程组基本思路是什么? 3.主要步骤有哪些?
2、什么时候用加减法?何时用加法?何 时用减法?

某一个未知数的系数相等或互为相反数时,用加减 消元法;某个未知数的系数互为相反数时用加法, 系数相等时用减法
x+3y=17
1.已知方程组 2x-3y=6
两个方程
只要两边 分别相加 就可以消去未知数 y 25x-7y=16
2.已知方程组
25x+6y=10 只要两边 分别相减 就可以消去未知数 x
解:由①+②得: 5x=10
① ②
x=2
y =3
把x=2代入①,得
x3 所以原方程组的解是 y 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
分析:
2x 5y 7 2x 3y 1
① ②
观察方程组中的两个方程,未知数x的系数 相等,都是2.把这两个方程两边分别相减, 就可以消去未知数x,同样得到一个一元一 次方程.
按照小丽的思路,你能消去 一个未知数吗?
小丽
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边
3x 5y 21 ① 2 x 5 y -11 ②
② 左边 =
3X+5y +2x - 5y=10 5x+0y =10 5x=10
+
① 右边 +
②右边
3x 5y 21 2 x 5 y -11
1、解二元一次方程组的基本思路是什么? 基本思路:
消元: 二元
一元
2、用代入法解方程的步骤是什么?
主要步骤: 变形 用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值 写出方程组的解
代入
求解 写解
3x 5y 21 2 x 5 y -11
怎样解下面的二元一次 方程组呢?
相关文档
最新文档